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Abstract. This work deals with an iteration method for numerical solving the problem of 
one-dimensional coupled thermoelasticity under given boundary conditions. This iteration based 
on the Adomian’s decomposition method. All the material properties have been considered 
variable on position with a power law. The numerical results have been calculated for different 
cases of the gradient parameter and the gradient index. The numerical results have been shown in 
figures. The gradient parameter and the gradient index have significant effects on the temperature 
increment, the strain, the stress, and the displacement. 
Keywords: Adomian’s decomposition method, thermoelasticity, iteration method, power law, 
functionally graded. 

1. Introduction 

Recently, much attention has been devoted to the numerical methods in which do not require 
discretization of time-space variables or to the linearization of the non-linear equations [1]. 
Adomian introduced the decomposition method for solving linear and non-linear ordinary and 
partial differential equations [2-4]. This method offers accurate and computable with 
approximately convergent solutions to linear and non-linear partial and ordinary differential 
equations [5-16]. Adomian got the solutions of many bio-mathematical models of viruses, bacteria, 
antigens, and tumor tissues [4]. Adomian’s decomposition method (ADM) is to divide the given 
equation into linear and nonlinear parts of the equation [1, 13].  

2. Mathematical idealizations of a FGM by using power law 

This particular idealization for FGM modeling is well-known in the fracture mechanics  
science. The thickness ℎ, the typical material properties 𝑃(𝑥) at any point at a distance 𝑥 from the 
reference surface has been modeled to this equation [17]: 

𝑃(𝑥) = 𝑃 1 − 𝑅 𝑥ℎ ,   𝑅 = 1 − 𝑃𝑃 ,   𝑃 = 𝑃(𝑥)| ,   𝑃 = 𝑃(𝑥)| . (1) 

𝑅 is the gradient parameter when it vanishes all the material properties are in the standard case 
with constant values. 𝑛  is the material gradient index which depends upon the design  
requirements [17]. 

3. Formulation the problem in general form 

Consider an isotropic and thermo-elastic body in one-dimensional fill the region which is 
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defined by Ψ = 𝑥: 0 ≤ 𝑥 < ℎ  where ℎ is the thickness of the body, and it is initially at rest and 
has been loaded by the harmonic thermal wave, and the surface is traction free.  

The displacement components for one-dimension medium have the form [18]:  𝑢(𝑥, 𝑡) = 𝑢 (𝑥, 𝑡),      𝑢 = 𝑢 = 0. (2) 

The equation of motion: 

𝜌(𝑥)  ∂  𝑒∂ 𝑡 = 𝜆(𝑥) + 2 𝜇(𝑥) ∂  𝑒∂ 𝑥 − 𝛾(𝑥) ∂ 𝜃∂ 𝑥 . (3) 

The generalized equation of heat conduction has the form: ∂∂𝑥 𝐾(𝑥) ∂𝜃∂𝑥 = 𝜌(𝑥) 𝐶 (𝑥) ∂𝜃∂ 𝑡 + 𝛾(𝑥) 𝑇  ∂𝑒∂ 𝑡, (4) 𝐾(𝑥) ∂ 𝜃∂𝑥 + ∂𝐾(𝑥)∂𝑥 ∂𝜃∂𝑥 = 𝜌(𝑥) 𝐶 (𝑥) ∂𝜃∂ 𝑡 + 𝛾(𝑥) 𝑇  ∂𝑒∂ 𝑡. (5) 

The constitutive relation takes the form: 

𝜎 = 𝜆(𝑥) + 2𝜇(𝑥) 𝑒 −  𝛾(𝑥) 𝜃,   𝑒 = ∂ 𝑢∂ 𝑥. (6) 

In the above equations, 𝜃 = (𝑇 − 𝑇 ) is the temperature increment, 𝜌(𝑥) is the density, 𝜆(𝑥) 
and 𝜇(𝑥) are Lame’s parameters, 𝐾(𝑥) is the thermal conductivity, 𝛾(𝑥) is a material constant given 
by 𝛾(𝑥) = 3𝜆(𝑥) + 2𝜇(𝑥) 𝛼 (𝑥), 𝛼 (𝑥) being the coefficient of linear thermal expansion, and 𝐶 (𝑥) is the specific heat at constant strain.  

4. Formulation of the problem by using the exponential law 

Substitute from Eq. (7) into Eqs. (4)-(6), we get: 𝐾(𝑥), 𝜆(𝑥), 𝜇(𝑥), 𝐶 (𝑥), 𝜌(𝑥), 𝛼 (𝑥) = 𝐾 , 𝜆 , 𝜇 , 𝐶 , 𝜌 , 𝛼 1 − 𝑅 𝑥ℎ , (7) 𝜌   ∂  𝑒∂ 𝑡 = 𝜆 + 2 𝜇 − 𝛾 1 − 𝑅 𝑥ℎ ∂ 𝜃∂ 𝑥 , (8) 1 − 𝑅 𝑥ℎ ∂ 𝜃∂𝑥 − 𝑛𝑅ℎ 1 − 𝑅 𝑥ℎ ∂𝜃∂𝑥 = 𝜌  𝐶𝐾 1 − 𝑅 𝑥ℎ ∂𝜃∂ 𝑡      + 𝛾 𝑇𝐾 1 − 𝑅 𝑥ℎ ∂𝑒∂ 𝑡, (9) 

𝜎 = (𝜆 + 2𝜇 ) 1 − 𝑅 𝑥ℎ 𝑒 − 𝛾 1 − 𝑅 𝑥ℎ 𝜃. (10) 

For simplicity, we use the non-dimensional variables (we will drop the primes) [18]: 

(𝑥′, 𝑢′, ℎ′) = 𝑐 𝜂(𝑥, 𝑢, ℎ),   𝑡 = 𝑐 𝜂𝑡,   𝜃 = 𝜃𝑇 ,   𝜎 = 𝜎′(𝜆 + 2𝜇 ), (11) 

where: 
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𝜂 = 𝜌 𝐶𝐾 ,   𝛾 = (3𝜆 + 2𝜇 )𝛼 ,   𝑐 = 𝜆 + 2𝜇𝜌 ,   𝜀 = 𝛾 𝑇𝜆 + 2𝜇 ,   𝜀 = 𝛾𝜌 𝐶 ,  

thus, we obtain: ∂  𝑒∂ 𝑥 = ∂  𝑒∂ 𝑡 + 𝜀 1 − 𝑅 𝑥ℎ ∂ 𝜃∂ 𝑥 ,   (12) ∂ 𝜃∂𝑥 = 1 − 𝑅 𝑥ℎ ∂𝜃∂ 𝑡 + 𝜀 1 − 𝑅 𝑥ℎ ∂𝑒∂ 𝑡 + 𝑛𝑅ℎ 1 − 𝑅 𝑥ℎ ∂𝜃∂𝑥 , (13) 𝜎 = 1 − 𝑅 𝑥ℎ 𝑒 − 𝜀 1 − 𝑅 𝑥ℎ 𝜃. (14) 

Eq. (13) has been reduced to the form: ∂ 𝜃∂𝑥 = 1 − 𝑅 𝑥ℎ ∂𝜃∂ 𝑡 + 𝜀 1 − 𝑅 𝑥ℎ ∂𝑒∂ 𝑡 + 𝑛𝑅ℎ 1 + 𝑅 𝑥ℎ ∂𝜃∂𝑥 . (15) 

5. Adomian’s decomposition method (ADM) 

The differential operator 𝐿 is defined as following [8, 10, 15]: 𝐿 𝑒(𝑥, 𝑡) = 𝐿 𝑒(𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡), (16) 𝐿 𝜃(𝑥, 𝑡) = 1 − 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡) + 𝜀   𝐿 𝑒(𝑥, 𝑡) + 𝑛𝑅ℎ 1 + 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡). (17) 

The appeared operators in the above equations are defined as: 

𝐿 = ∂∂𝑡 ,   𝐿 = ∂∂𝑡 ,    𝐿 = ∂∂𝑥 ,    𝐿 = ∂∂𝑥 . (18) 

Assuming that the inverse of the operator 𝐿  , 𝐿  exists in the forms [8, 10, 15]: 

𝐿 𝑓(𝑥) = 𝑓(𝑥 )𝑑𝑥 ,    𝐿 𝑓(𝑥) = 𝑓(𝑥 )𝑑𝑥 𝑑𝑥 . (19) 

Thus, applying the inverse operator on both the sides of Eqs. (17) and (18), we obtain: 

𝑒(𝑥, 𝑡) = 𝑒(0, 𝑡) + ∂𝑒(𝑥, 𝑡)∂𝑥 + 𝐿 𝐿 𝑒(𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡) , (20) 𝜃(𝑥, 𝑡) = 𝜃(0, 𝑡) + ∂𝜃(𝑥, 𝑡)∂𝑥       +𝐿 1 − 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ 𝐿 𝑒(𝑥, 𝑡) + 𝑛𝑅ℎ 1 + 𝑅 𝑥ℎ 𝐿 𝜃(𝑥, 𝑡) . (21) 

We decompose the functions 𝜃(𝑥, 𝑡) and 𝑒(𝑥, 𝑡) as following [8, 10, 15]: 

𝜃(𝑥, 𝑡) = 𝜃 (𝑥, 𝑡) = 𝜃 + 𝜃 (𝑥, 𝑡) ,    𝑒(𝑥, 𝑡) = 𝑒 (𝑥, 𝑡) = 𝑒 + 𝑒 (𝑥, 𝑡), (22) 
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𝑒 = 𝑒(0, 𝑡) + ∂𝑒(𝑥, 𝑡)∂𝑥 ,    𝜃 = 𝜃(0, 𝑡) + ∂𝜃(𝑥, 𝑡)∂𝑥 , (23) 

𝑒 (𝑥, 𝑡) = 𝑒(0, 𝑡) + ∂𝑒(𝑥, 𝑡)∂𝑥  

     +𝐿 𝐿 𝑒 (𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ  𝐿 𝜃 (𝑥, 𝑡) , (24) 

𝜃 (𝑥, 𝑡) = 𝜃(0, 𝑡) + ∂𝜃(𝑥, 𝑡)∂𝑥  

     +𝐿 ⎣⎢⎢
⎢⎢⎡ 1 − 𝑅 𝑥ℎ  𝐿 𝜃 (𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ 𝐿 𝑒 (𝑥, 𝑡)
+ 𝑛𝑅ℎ 1 + 𝑅 𝑥ℎ 𝐿 𝜃 (𝑥, 𝑡) ⎦⎥⎥

⎥⎥⎤. (25) 

We obtain these components by 𝑒 (𝑥, 𝑡) and 𝜃 (𝑥, 𝑡) the recursive formulas [8, 10, 15]: 𝑒 (𝑥, 𝑡) = 𝐿 𝐿 𝑒 (𝑥, 𝑡) + 𝜀 1 − 𝑅 𝑥ℎ 𝐿 𝜃 (𝑥, 𝑡) ,    𝑘 ≥ 1, (26) 𝜃 (𝑥, 𝑡) = 𝐿 1 − 𝑅 𝑥ℎ 𝐿 𝜃 (𝑥, 𝑡) + 𝜀   𝐿 𝑒 (𝑥, 𝑡)       + 𝑛𝑅ℎ 𝐿 1 + 𝑅 𝑥ℎ 𝐿 𝜃 (𝑥, 𝑡),    𝑘 ≥ 1. (27) 

The bounding plane 𝑥 = 0 is thermally loaded by harmonic heat and traction free as follows:  

𝜃(𝑥, 𝑡)| = 𝜃 sin(𝜔𝑡),   ∂𝜃(𝑥, 𝑡)∂𝑥 = 0,    𝜎(𝑥, 𝑡)| = 0,    ∂𝑒(𝑥, 𝑡)∂𝑥 = 0. (28) 

Moreover, the series solutions of Eq. (22) are convergent very rapidly in real physical 
problems as in [12, 13]. The convergence of the series has investigated by several authors in  
[1, 5, 8, 9, 12-15]. In an algorithmic form, the suitable value for the tolerance 𝑇𝑜𝑙 =  10-6 [10]: 

6. The numerical results  

The constants of the material properties were taken as follows [18]: 𝐾 =  386 W/(mK),  𝛼 = 1.78×10-5K-1, 𝐶 = 383.1 J/(kgK), 𝜂 = 8886.73 s/m2, 𝑇 = 293 K, 𝜇 =  3.86×1010 N/m2, 𝜆 =  7.76×1010 N/m2, 𝜌 =  8954 kg/m3, 𝜀 =  0.0104443, 𝜀 =  1.60862, 𝜔 = 𝜋 , 𝜃 =  1.0,  ℎ = 1.0. 

 
Fig. 1. 𝜃(𝑥,2.0) distribution for 𝑅 = 0.0, 0.1 

 
Fig. 2. 𝑒(𝑥,2.0) distribution when 𝑅 = 0.0, 0.1 
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Fig. 3. 𝜎(𝑥,2.0) distribution when 𝑅 = 0.0, 0.1 

 
Fig. 4. 𝑢(𝑥,2.0) distribution when 𝑅 = 0.0, 0.1 

 

 
Fig. 5. 𝜃(𝑥,2.0) distribution when 𝑅 = 0.0, 0.5 

 
Fig. 6. 𝑒(𝑥,2.0) distribution when 𝑅 = 0.0, 0.5 

 

 
Fig. 7. 𝜎(𝑥,2.0) distribution when 𝑅 = 0.0, 0.5  

 
Fig. 8. 𝑢(𝑥,2.0) distribution when 𝑅 = 0.0, 0.5 

7. Conclusions 

Figs. 1-8 represent the temperature increment, the strain, the stress, and the displacement 
distribution with various values of the gradient parameter. 𝑅 = 0.0 gives the normal case of 
non-functionally graded material, while 𝑅 ≠ 0.0 performs a functionally graded material of power 
law with different values𝑅 = (0.1, 0.2). From the consideration in Eq. (1), 𝑅 = 0.1 means that the 
ratio 𝑃 = 90 % 𝑃 , and 𝑅 = 0.2 gives that the ratio 𝑃 = 80 % 𝑃 . According to the 
results and the figures, the parameter 𝑅  has significant effects on all the stat-functions 𝜃 = 𝜃(𝑥, 𝑡), 𝑒 = 𝑒(𝑥, 𝑡), 𝜎 = 𝜎 (𝑥, 𝑡), and 𝑢 = 𝑢(𝑥, 𝑡). Moreover, 𝑛 has been assumed with 
different values through the calculations (𝑛 = 1, 5, 10) which give various materials’ designs. 
Figs.  1, 3, 5 and 7 show that when the value of the parameters 𝑛 and 𝑅 increase, the value of the 
temperature increment and the absolute value of the stress increase, while Figs. 2, 4, 6, and 8 show 
that when the value of the parameters 𝑛  and 𝑅  increases the value of the strain and the 
displacement decrease. 
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