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Abstract. A dynamic model of a galloping transmission line able to describe for the coupling of 
its longitudinal, in-plane, out-of-plane and torsional vibrations is established. It also considers the 
effects of geometrical nonlinearity and aerodynamic nonlinearity. By the static configuration, the 
reduced model is obtained. Then, the equations of motion are obtained through the Galerkin 
method. It contains two in-plane, two out-of-plane and two torsional components. By numerical 
calculation, the maximum amplitudes at wind speeds are drawn and the galloping behavior of 
transmission line with thin ice accretions is analyzed. The obtained results show that the second 
galloping mode is more triggered. The double-mode galloping occurs in all motions, in which the 
maximum amplitude is bigger than in single-mode galloping. And the double-mode galloping 
presents the track of inclined ‘8’ in longitudinal direction. 
Keywords: transmission line, galloping, the coupling mode, the Galerkin method. 

1. Introduction 

Galloping of iced transmission lines is a self-excited vibration with low frequency and high 
amplitude, which is a serious problem in the safe operation of the entire power transmission  
system. Many efforts have been done to investigate the galloping. Den Hartog [1] established the 
vertical galloping model and proposed the vertical galloping mechanism. Luongo [2] and Jones 
[3] proposed the vertical-horizontal coupling model to account for the galloping behavior, which 
neglected the effect of torsion motion. Through a detailed aerodynamic wind tunnel study on iced 
transmission line, Nigol [4, 5] proposed that galloping was caused largely by the self-excited 
torsional mechanism. Yu. P [6] investigated the vertical-torsional coupling system and proposed 
inertially coupled galloping mechanism. Hence, through experimental and theoretical analysis, it 
was verified that the torsion motion played a significant role in galloping behavior of transmission 
line. Zhang et al. [7] also established the model with vertical-torsional motions and studied the 
influence of the system parameters on the amplitude of galloping. Lou et al. [8] proposed a model 
to describe three-dimensional galloping behavior and studied the bifurcation and stability behavior 
for nonlinear galloping of iced transmission lines. Huo et al. [9] proposed the model of a 
transmission line to describe for the coupling of its in-plane, out-of-plane and torsional vibrations. 
Then, by the singularity theory, they investigated the effects of the parameters on system. 

Most of the above studies used the Galerkin method, which is usually adopted to disperse the 
partial different equations and reserves the concerned modes. However, through the study on 
suspended cable, we can find that the symmetric in-plane modes consist of antisymmetric vertical 
components and symmetric longitudinal components [10, 11]. Hence, the phenomenon of 
frequency crossover occurs, which causes the order exchange of symmetric and antisymmetric 
modes [12]. Based on this theory, Yu. P et al. [13] and Luongo et al. [14] adopted the galloping 
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model of the coupling of in-plane, out-of-plane and torsional vibrations, in which the longitudinal 
motion was simplified, to study the internal resonance behavior of conductor galloping and the 
effect of twist on nonlinear galloping respectively. However, the nonlinear dynamic investigations 
were only focused on the first mode, which neglected the higher mode. 

Hence, the objective of the present paper is to investigate the effect of the higher mode on 
galloping. The dynamic model of the transmission line containing the coupling effects of the 
longitudinal, in-plane, out-of-plane and torsional vibrations is established, which also considered 
the effects of geometrical nonlinearity and aerodynamic nonlinearity. Then, the first two-mode 
equations of motion are obtained through the Hamilton’s principle and the Galerkin method. By 
numerical calculation, the galloping behavior is analyzed at wind speeds and the effects of the 
coupling mode on galloping behavior are also investigated. 

2. The dynamic model 

The transmission line is modeled as a body made of flexible cable with length 𝑙, in which the 
effect of the flexural rigidity is neglected due to a small sag-to-span ratio. A crescent-shaped thin 
ice accretion that is assumed to be uniform along the transmission line is considered. Both ends 
of the transmission line are considered to be fixed for the rigid body assumption of the tower [15]. 
The initial configuration of conductor, Γ , which just goes by gravity of the conductor and the ice, 
and the dynamic configuration, Γ, are shown in Fig. 1(a). The symbols 𝑢 𝑥, 𝑡 , 𝑣 𝑥, 𝑡 , 𝑤 𝑥, 𝑡 , 𝜃 𝑥, 𝑡  denote the longitudinal, in-plane, out-of-plane and torsional dynamic displacements 
respectively at time 𝑡. An infinitesimal length of the transmission line, dx, is considered and its 
dynamic displacement is illustrated in Fig. 1(b).  

 
a) 

 
b) 

Fig. 1. The schematic diagram of transmission line model: a) configuration, b) dynamic displacement 

Through the multivariate Taylor series expansion, the dynamic strain can be obtained: 

𝜀 = 𝑑𝑠 − 𝑑𝑠𝑑𝑠  = 1 − 𝑦 + 𝑦 𝑢 + 𝑦 − 𝑦 + 𝑦 𝑣 + 12 − 𝑦 + 32 𝑦 𝑣     + 12 − 12 𝑦 + 12 𝑦 𝑤 + 32 𝑦 − 12 𝑦 𝑣 + 𝑦 − 12 𝑦 𝑣 𝑤 ,  (1) 

where 𝑑𝑠  and 𝑑𝑠 mean the undeformed arc length and the deformed arc length respectively. The 
catenary equation, 𝑦 , is: 

𝑦 = −2𝐻𝑚𝑔 sinh 𝑚𝑔𝑥2𝐻 sinh 𝑚𝑔 𝑙 − 𝑥2𝐻 , (2) 

where 𝐻 is the horizontal initial tension of the transmission line; 𝑚 is the mass per unit length of 
the iced transmission line; 𝑔 is gravitational acceleration. 
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The potential energy of the transmission line is given by: 

𝑉 = 𝑇 + 12 𝐸𝐴𝜀 𝑑𝑠 − 𝑑𝑠 + 12 𝐺𝐽𝜀 𝑑𝑠 , (3) 

where 𝑇  is the initial tension of the transmission line, 𝑇 = 𝐻 1 + 𝑦 ⁄ ; 𝐸𝐴 and 𝐺𝐽 are the 
in-plane and torsional stiffness. 𝜀  is the torsional strain of the transmission line, 𝜀 = ∂𝜃 ∂⁄ 𝑠 . 

By the aerodynamic model of the iced transmission line and the effect of the thin ice accretions 
[16], the kinetic energy and the virtual work are given by: 

𝑇 = 12 𝑚𝑢 + 𝑚𝑣   + 𝑚𝑤   + 𝐼𝜃 𝑑𝑠 , 𝑊 = 𝐹 𝑢 + 𝐹 𝑣 + 𝐹 𝑤 + 𝑀𝜃 𝑑𝑠 , (4) 

where 𝐼 is the mass moment of inertia per unit length at original point; 𝐹 , 𝐹 , 𝐹  and 𝑀 are the 
aerodynamic forces acting on the longitudinal, in-plane, out-of-plane and torsional direction of 
the iced conductor respectively. Their expressions are obtained by the reference [6], given by: 𝐹𝐹𝑀 = 12 𝜌 𝑈 𝐷 1 0 00 1 00 0 𝐷 𝐶𝐶𝐶 = 12 𝜌 𝑈 𝐷 1 0 00 1 00 0 𝐷 𝑟 𝑟 𝑟𝑟 𝑟 𝑟𝑟 𝑟 𝑟 𝛼𝛼𝛼 , (5) 

where 𝑈  is relative wind velocity, 𝑈 = 𝑈 − 𝑤 + 𝑣 + 𝐷𝜃 2⁄ ; 𝑈 and 𝜌  are the mean wind 
speed and the air density; 𝐷  is the diameter of a bare conductor; 𝐶 , 𝐶 , and 𝐶  are the 
aerodynamic coefficients; and 𝑟 , 𝑟  and 𝑟  (𝑖 = 1, 2, 3) are the fitting coefficients obtained 
from the experimental data [17]. 

The equations of galloping are obtained through the Hamilton’s principle: 

𝛿 𝑇 − 𝑉 𝑑𝑡 + 𝛿𝑊𝑑𝑡 = 0. (6) 

For a small 𝜃, the equations of motion are found to be: 𝐹 − 𝑚𝑢 + 𝐻 1 + 𝑦 ⁄ + 𝐸𝐴𝜀 1 − 𝑦 + 𝑦 = 0. (7) 𝐹 + 𝑚𝑔 − 𝑚𝑣 + 𝑚𝑒 cos𝜃 𝜃 − 𝑚𝑒 𝜃 sin𝜃
     · 𝐻 1 + 𝑦 ⁄ + 𝐸𝐴𝜀 𝑦 − 𝑦 + 𝑦 + 1 − 2𝑦 + 3𝑦 𝑣+ 92 𝑦 − 32 𝑦 𝑣 + 𝑦 − 12 𝑦 𝑤 = 0. (8) 

𝐹 − 𝑚𝑤 + 𝑚𝑒 sin𝜃 𝜃 + 𝑚𝑒 𝜃 cos𝜃     · 𝐻 1 + 𝑦 ⁄ + 𝐸𝐴𝜀 1 − 𝑦 + 𝑦 𝑤 + 2𝑦 − 𝑦 𝑣 𝑤 = 0. (9) 𝑀 − 𝐼𝜃 + 𝑚𝑒 cos𝜃 𝑣 + 𝑚𝑒 sin𝜃 𝑤 − 𝑚𝑒 sin𝜃 𝑣𝜃 + 𝑚𝑒 cos𝜃 𝑤𝜃     + 1 + 𝑦 𝐺𝐽𝜃 − 2 1 + 𝑦 𝐺𝐽𝜃 𝑦 𝑦 = 0.  (10) 

3. Galerkin discretization 

By the static configuration [6, 11], a reduced model of the transmission line containing the 
in-plane, out-of-plane and torsional motions is derived from Eq. (7)-(10). Then, a discrete model 
is found by applying Galerkin procedure: 
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𝑣 𝑥, 𝑡 = 𝑞 𝑡 𝜑 𝑥 + 𝑞 𝑡 𝜑 𝑥 ,𝑤 𝑥, 𝑡 = 𝑞 𝑡 𝜑 𝑥 + 𝑞 𝑡 𝜑 𝑥𝜃 𝑥, 𝑡 = 𝑞 𝑡 𝜑 𝑥 + 𝑞 𝑡 𝜑 𝑥 , , (11) 

where 𝑞 𝑡  𝑖 = 𝑣, 𝑤, 𝜃, 𝑗 = 1,2  are the dynamic displacements for the in-plane, out-of-plane 
and torsional modes. 𝜑 𝑥  are the trial functions characterized by orthogonal series [10, 11]. 
Then, the discrete equations of the reduced model are given by: 𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝑔 , 𝑞 + 𝑔 , 𝑞 + 𝑔 , 𝑞 + 𝑔 , 𝑞 + 𝑔 , 𝑞 𝑞 𝑞     +𝑔 , 𝑞 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 𝑞   + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞     +𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 + 𝜑 𝑥 𝐹 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥,     (12) 

𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞     +𝑔 , 𝑞 + 𝑔 , 𝑞 𝑞 𝑞 + 𝑔 , 𝑞 𝑞     + 𝜑 𝑥 𝐹 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥,  (13) 

𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 + 𝑔 , 𝑞 𝑞     + 𝜑 𝑥 𝐹 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥,  (14) 𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞 + 𝑔 , 𝑞 𝑞    + 𝜑 𝑥 𝐹 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥,  (15) 

𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝜑 𝑥 𝑀 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥, (16) 𝑞 + 𝑐 𝑞 + 𝜔 , 𝑞 = 𝜑 𝑥 𝑀 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 𝑑𝑥, (17) 

where 𝑐 , 𝜔 ,  𝑖 = 𝑣, 𝑤, 𝜃, 𝑗 = 1,2  are the damping ratios and natural frequencies respectively; 𝑔 ,  are the integral constants; 𝐹 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞  𝑖 = 𝑣, 𝑤, 𝑗 = 1,2  
and 𝑀 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞 , 𝑞  are nonlinear aerodynamic terms of the in-plane 
and out-of-plane and torsional motions. 

4. Numerical results and discussions 

The numerical calculation of Eq. (12)-(17) is performed. The selected parameters are shown 
in Table 1 [17]. At the different wind speeds, the maximum amplitude curve of the first two modes 
is shown in Fig. 2. I-1st, O-1st and T-1st denote the first mode of the in-plane, out-of-plane and 
torsional galloping respectively. Meanwhile, I-2st, O-2st and T-2st denote the corresponding 
second modes. 

From Fig. 2, we can see that the first two modes in three directions all show the limit-amplitude 
galloping. Taking the in-plane galloping as an example, with the increase of the wind speed, the 
first two modes are triggered successively. Meanwhile, the double-mode galloping area is found 
(3-8 m/s). In addition, under the selected parameters in Table 1, the maximum galloping amplitude 
of the second mode is bigger than that of the first mode. Similarly, the galloping area triggered in 
second mode (3 m/s-16 m/s) is wider than that in first mode (1-8 m/s). 

The double-mode galloping should be got more attention. Then, the spatial galloping profiles 
at 5 m/s are shown in Fig. 3 containing the projections in three directions. Duo to the coupling 
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galloping, no fixed nodes or peaks are presented in the galloping profiles. Considering that the 
second mode is on the node at 𝑙/2 span, only the first mode is contained, which is shown in 
Fig. 3(b), (c). However, there are two modes at 3𝑙/4 span, including the first mode (0.550 Hz) and 
the second mode (0.909 Hz), which is shown in Fig. 3(d), (e). Furthermore, from Fig. 3(d), we can 
see that the amplitudes present the superposition or counteract, the maximum of which is bigger 
than that in single-mode area. Hence, the antisymmetrical mode of vibration is presented. 
Meanwhile, the galloping track shows the inclined ‘8’ motion in double-mode area while it shows 
the elliptical motion in single-mode area along the longitudinal direction 

Table 1. Parameters of transmission line 
Parameter Data Parameter Data Parameter Data 𝐻 (N) 30000 𝐴 (mm2) 423.24 𝜌  (kg/m3) 1.29 𝑙 (m) 125.88 𝐺𝐽 (N m2/rad) 101 𝜉  (𝑗 = 1,2) 0.01, 0.012 𝑚 (kg/m) 2.379 𝐼 (kg/m) 0.3344×10-3 𝜉  (𝑗 = 1,2) 0.03, 0.036 𝐸 (N/m2) 4.78×1010 the initial angle of ice (𝜃 ) 40° 𝜉  (𝑗 = 1,2) 0.10, 0.12 

Note: 𝜉 , 𝜉  and 𝜉  denote the damping ratios of in-plane,  
out-of-plane and torsional motions respectively 

 
Fig. 2. The maximum amplitude of the first two modes 

 
a) 

 
b) 

 
c) 

 
d) 

 
e) 

Fig. 3. The double-mode galloping at 5 m/s: a) the spatial galloping profiles,  
b) the time history at 𝑙/2 span, c) the amplitude-frequency responses at 𝑙/2 span,  

d) the time history at 3𝑙/4 span, e) the amplitude-frequency responses at 3𝑙/4 span 

5. Conclusions 

For the iced transmission line, the continuous elastic dynamic model is established, containing 
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the longitudinal, in-plane, out-of-plane and torsional motions. Then, through the static 
configuration and Galerkin Discretization, the nonlinear equations of motions are obtained, which 
contain two in-plane, two out-of-plane and two torsional components. The galloping behavior is 
analyzed as follows: 

1) The first two modes present the limit-amplitude galloping. As the wind speeds increases, 
the first mode, the coupling mode and the second mode will be appeared in turn. 

2) The galloping area of the second mode triggered by the wind speed is wider than that of the 
first mode. And the maximum amplitude is even bigger in double-mode galloping area than in 
single-mode galloping area. 

3) Once the coupling mode occurs, the galloping track presents the inclined ‘8’ motion along 
the longitudinal direction. However, it shows the elliptical motion in single-mode area. 
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