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Abstract. In this paper, both classic and less commonly used classification techniques are evaluated in terms of 

recognizing human activities recorded in the PAMAP2 dataset that was created using three inertial measurement 

units. Seven algorithms are compared in terms of their accuracy performance with the best classifier being based 

on the Orthogonal Matching Pursuit algorithm that has been modified to remove the limitation of the number of 

training vectors per class present in its original version. The overview shows that human activities as defined by 

the PAMAP2 dataset can be recognized reliably even without any prior data preprocessing.  

1. Introduction 
Human activity recognition is one of the more recent research topics that recently gained on popularity 
and focus of both academic and commercial researchers. Since human activity monitoring has a broad 
range of applications, like homecare systems, prisoner monitoring, physical therapy and rehabilitation, 
public security, military uses and others, motivation to create a reliable human activity recognition 
system is great. 

Generally, approaches to recognizing activities can be divided into two groups - sensor-based and 
vision-based. Sensor-based systems use various sensors that are attached to the subject being 
monitored. Vision-based activity recognition systems, on the other hand, try to eliminate the need for 
sensors and attempt to recognize subject's behavior from images and video sequences. Both 
approaches have their challenges arising from their nature. While sensor-based systems require 
classification algorithms to be as speedy as possible in order to be implemented in low-power 
wearable devices, accurate and reliable vision-based systems are still a challenge no matter the 
computation power. This paper focuses on sensor-based systems, one of which was used to create the 
Physical Activity Monitoring for Aging People (PAMAP2) dataset that this paper elaborates on. 

1.1. Current Approaches in Activity Recognition 

In general, in activity recognition authors attempt to recognize static states (lying, sitting, standing, 
etc.), dynamic states (walking, running, etc.) and/or transition states (i.e. standing to walking). Data 
preprocessing to improve the classification accuracy is common [17]. Classification methods currently 
widely used in the area are based both on classic algorithms like the Classification And Regression 
Tree (CART) [9] or k-Nearest Neighbor (k-NN) [4] and more advanced techniques like the Adaptive 
Neuro Fuzzy Interference System (ANFIS) [3] or Iterative Dichotomiser 3 (ID3) [5] and others. 

1.2. The PAMAP2 dataset 

The PAMAP2 dataset contains data of nine healthy human subjects, each subject wearing three inertial 
measurement units (IMUs) by Trivisio, Germany and a heart rate monitor. Each of the three IMUs 
measures temperature and 3D data from an accelerometer, gyroscope and magnetometer. The data is 
sampled at 100Hz and transmitted to PC via a 2.4GHz wireless network. Subjects wore one IMU on 
the dominant wrist, one on the dominant ankle and one on the chest. Detailed information on the 
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dataset can be found in [15] and [16]. 
The methods have been tested on all 9 test subjects in the dataset, labeled in the dataset as 

subject101 through subject109. Data of all these subjects consists of 2872532 measurements, each 
containing 54 values. The description of the values is available in the dataset documentation. Some 
values can be missing, indicated with a NaN (Not a Number) value. Every NaN value was replaced 
with a zero. 

The activities performed are lying, sitting, standing, walking, running, cycling, Nordic walking, 
ascending stairs, descending stairs, vacuum cleaning, ironing and rope jumping. Transition activities 
were discarded. Since some measurements contain only NaN values, these measurements were 
discarded as well. In total, 1942746 activity measurements were used. From each measurement, 
irrelevant values, that is the orientation of each IMU and timestamp, were removed. Since most heart-
rate values were NaNs due to different operating frequency, they were also removed. As a result, each 
measurement contains 39 values. These values were not preprocessed any further, the classifiers were 
tested on raw sensor data as provided by the dataset.  

2. Classifiers being evaluated 
To provide an overview of learning algorithms with application to human activity recognition, eight 
distinct classifiers were tested, including the above mentioned k-NN and CART. Also, the OMP 
classifier as defined in [12] was evaluated against a custom modification that significantly improves 
the reliability of the recognition. Other classifiers are Linear Discriminant Analysis (LDA) [14], 
Quadratic Discriminant Analysis (QDA) [11] and Nearest Centroid Classifier (NCC) [1]. The 
following subsections provide a brief informal description for each of the classifiers. 

2.1. k-Nearest Neighbors 

k-NN is a non-parametric algorithm, meaning that it makes no assumptions about the structure or 
distribution of the underlying data, thus being suitable for real-world problems that usually do not 
follow the theoretical models exactly. The method is also considered to be a lazy learning algorithm as 
it performs little to no training during computation. As a result, the method uses the whole training 
dataset during classification. k-NN is well known for its simplicity, speed and generally good 
classification results in applications like bioinformatics [2]. 

2.2. Nearest Centroid Classifier 

An extremely fast classifier. The approach is similar to that of k-NN, but instead of k closest training 
samples the method picks the label of the class whose training samples' mean (centroid) is closest to 
the signal query. The speed and simplicity of the algorithm is compensated by low classification 
performance. Therefore the classifier is usually coupled with one or more data preprocessing 
techniques. In many implementations the method has been successfully used to create pattern 
recognition systems in bioinformatics [6]. 

2.3. Classification and Regression Tree 

This algorithm classifies a sample according to groups of other samples with similar properties. 
During training, the training data is continuously divided into smaller subsets (tree nodes). When the 
divisions are finished, the samples are clustered together according to their properties. Testing samples 
are then evaluated against certain conditions in each node and propagated throughout the tree. When 
the sample reaches a leaf node, it is then assigned the class to which the samples in that node belong. 
In this paper, a binary tree with logical conditions was used. CARTs are still under extensive research 
and can be used even as part of larger algorithmic structures [8]. 

2.4. Linear Discriminant Analysis 

LDA is a well-known technique used to identify sample clusters in a given set of data. It attempts to 
divide clusters (data classes) with a linear function so that the classes are as distant from each other as 
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possible, but at the same time keeping the distance between individual data samples in a single class 
minimal. The method assumes that the data in each class is normally distributed, but it has still been 
successfully applied in many problems of automatic recognition, for example in image feature 
extraction [7]. 

2.5. Quadratic Discriminant Analysis 

As the name suggests, QDA is very closely related to LDA with the exception that QDA does not 
assume the normal distribution of the data in each class. Instead of the linear function that separates 
the classes from each other, the function used by QDA is quadratic and can be considered to be a 
generalization of LDA. Due to greater time complexity, the method is not as widely used as LDA, but 
it is still feasible in many applications, including the already-mentioned bioinformatics [13].  

2.6. Orthogonal Matching Pursuit 

Well described in [10], OMP is an iterative sparse approximation algorithm that reduces data into a 
given number of sparse coefficients and thus can be considered a dimensionality reduction algorithm. 
Given an overcomplete dictionary of observations, for each observation to be classified OMP picks a 
number of the best fitting observations from the dictionary and uses them to compute the sparse 
coefficients. Those are then checked against the dictionary itself for similarity and classified. 
Originally, the classifier required the number of training observations for each class to be the same. 
The algorithm was modified so that this limitation is no longer present and evaluated (OMP2 in 
tables). 

 
Table 1. Recognition accuracy for each of the classifier. 

 Training set size 

Classifier 10% 20% 30% 40% 50% 

OMP2 98.27 99.14 99.56 99.43 99.60 

3-NN 97.51 98.72 99.31 99.29 99.54 

CART 98.87 98.49 99.15 99.11 99.37 

OMP 95.85 97.56 98.29 98.39 99.43 

QDA 75.33 75.37 73.62 73.66 74.68 

LDA 61.84 61.16 58.98 58.65 61.34 

NCC 51.09 50.63 48.88 46.60 49.59 

3. Experiments 
The following section describes the dataset used to evaluate the performance of the classifiers as well 
as the process of the evaluation and its results. 

3.1. Experimental settings 

The execution of some of the algorithms can be customized through execution parameters which, for 
these experiments, were set according to the best empirical speed/accuracy ratio. The k-NN 
algorithm's k parameter was set to 3. The number of sparse coefficients s computed by OMP was 10. 
For CART, default MATLAB settings was used. All of the algorithms were implemented in the latest 
version of MATLAB. The entire dataset was divided into a training and a testing set. Experiments 
were performed on 5 different settings where the training set was a 10%, 20%, 30%, 40% or 50% 
portion of the dataset. 

Given the varied time complexity of the individual classifiers, they were divided into two groups 
according to the speed with which they finished. Algorithms considered in this paper to be high-speed 
are LDA, QDA and NCC whose training and testing phase took only several seconds total. The rest is 
considered to be low-speed as finishing an entire experiment was a matter of tens of minutes to hours, 
depending on the training set size. For this reason, the number of observations used in the testing 
phase of a run was limited to 10000. As all compared classifiers are purely deterministic, it was 
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sufficient to run the experiment with each setting only once. 
 

Table 2. Classification accuracy with regards to individual actions (30% training set).

 Classifier 

Actions OMP2 3-NN CART OMP QDA LDA NCC 

lying 100 100 99.80 100 88.95 90.28 90.48 

sitting 100 99.83 98.90 99.66 83.52 80.03 83.43 

standing 99.75 99.75 99.63 99.63 82.27 67.49 58.99 

walking 99.27 99.02 99.27 95.36 60.67 44.54 25.57 

running 99.86 98.56 99.00 99.71 75.72 31.75 26.29 

cycling 99.78 100 99.57 98.92 91.58 86.18 66.52 

N. walking 98.54 97.97 99.92 95.54 58.93 34.42 8.20 

asc. stairs 98.81 99.15 97.46 97.63 52.20 48.98 24.58 

des. stairs 99.56 99.12 96.70 96.70 52.75 35.39 14.94 

vacuum cl. 100 99.90 98.89 99.20 76.26 58.85 53.52 

ironing 99.57 99.46 99.46 99.14 88.20 71.14 72.10 

rope j. 100 99.32 99.55 100 65.77 53.38 49.55 

3.2. Results 

The classification accuracies given as percentual success rate are shown in Table 1 where the 
classifiers are sorted according to their success in the descending order. It can be seen that in almost 
every case the modified version of the OMP classifier (OMP2) is superior to the other classifiers, the 
exception being the 10% training set where CART performs better. For training set sizes of 30% and 
higher, OMP2 becomes very closely followed by k-NN which is, in turn, only slightly better than 
CART. The original OMP, while providing satisfactory results, was the least successful of the low-
speed algorithms. At 10% training set, the difference between OMP and OMP2 was the most 
significant at 2.42%. When the training set size was set to 50%, all low-speed methods provided very 
accurate recognitions. 

For high-speed classifiers the recognition accuracies were not very impressive, once again proving 
that lower time complexity usually impacts precision. NCC was the fastest of the classifiers, but also 
the least successful. Following was, as was expected, LDA with slower computation, but better results. 
The same holds true for QDA. 

How accuracy is dependent on the training set can be seen in Figure 1 for the low-speed classifiers 
and Figure 2 for the high-speed ones. For the more sophisticated, low-speed algorithms the increase of 
training set size does indeed benefit the recognition accuracy. That is not the case of the high-speed 
classifiers where the training set size practically did not matter or made the accuracy worse. That is the 
expected behavior because the observation distribution in the dataset does not change with the amount 
of observations, meaning it is very difficult if not impossible to reliably cluster observations together 
according to their classes. This also explains why Figure 2 suggests that larger training sets actually 
diminish the accuracy performance. 

Since the experiments show that 30% can provide very satisfactory results, it is reasonable to 
consider this training set size a good compromise between speed and accuracy. For this reason, 
Table 2 elaborates on the results for this training set size. It shows the percentual success rates for each 
classifier with regards to each of the actions to be recognized. Lying and sitting came out as activities 
fairly easy to recognize with any of the evaluated classifiers while distinguishing Nordic walking was 
a task too difficult for high-speed classifiers. This is to be expected due to the similarity of Nordic 

walking to simple walking. Low-speed classifiers performed very well in recognizing every activity 
when OMP2's worst result was misclassifying only 1.46% of total Nordic walking observations. k-NN 
managed to drop below 99% only in a single activity. CART provided fairly consistent and 
satisfactory results, although 2.86% deficiency in descending stairs against OMP2 becomes 
noteworhty. 



AN OVERVIEW OF CLASSIFICATION TECHNIQUES FOR HUMAN ACTIVITY RECOGNITION.  

P DOHNÁLEK, P GAJDOŠ, T PETEREK AND V SNÁŠEL 

 ©VIBROENGINEERING. VIBROENGINEERING PROCEDIA. NOVEMBER 2013. VOLUME 2. ISSN 2345-0533 121 

 

 

Figure 1. Accuracy dependency on the size of the training set for 
low-speed classifiers. 

 

 

Figure 2. Accuracy dependency on the size of the training set for 
high-speed classifiers. 

4. Conclusion 
This paper evaluated several classification techniques and presented their success rates in human 
activity recognition without any prior preprocessing. Given the sensor technology that was used to 
create the PAMAP2 dataset, it was shown that activities performed in the database can be recognized 
reliably and with very high precision. In terms of recognition accuracy, the presented modification of 
the OMP classifier was shown to perform the best, however the precision comes at the price of 
significant time complexity. The fastest of the algorithms was NCC, but its recognition accuracy is not 
sufficient for practical use. From the speed/accuracy ratio perspective, k-NN seems to be the most 
reasonable choice as its accuracy performance is superseded by OMP2 only closely, but k-NN has a 
significant edge in computation times. For this reason, the main focus of future work in this area 
should be making the classifiers more efficient or finding a suitable preprocessing technique that 
would enable high-speed classifiers to provide better results. 
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