
 

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627, KAUNAS, LITHUANIA 23 

Development and exploration of a mathematical model 
for transmission of monkey-pox disease in humans 

N. O. Lasisi1, N. I. Akinwande2, F. A. Oguntolu3 
1Department of Mathematics and Statistics, Federal Polytechnic, Kaura Namoda, Nigeria 
2, 3Department of Mathematics, Federal University of Technology, Minna, Nigeria 
1Corresponding author 
E-mail: 1nurudeenlasisi2009@yahoo.com, 2aninuola@gmail.com, 3festus.tolu@futminna.edu.ng 
Received 5 December 2019; accepted 17 December 2019 
DOI https://doi.org/10.21595/mme.2019.21234 

Copyright © 2020 N. O. Lasisi, et al. This is an open access article distributed under the Creative Commons Attribution License, which 
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. 

Abstract. In this paper, mathematical model of Monkey-Pox transmission is developed and 
investigated, using ordinary differential equation. We verified the feasible region of the model and 
showed the positivity of the solutions. We obtained the disease free equilibrium (DFE). We 
computed and analysed the effective basic reproduction number (𝑅଴) of the model. 
Keywords: effective basic reproduction number, disease free equilibrium, mathematical 
modelling, monkey pox disease. 

1. Introduction 

Monkey-pox is known as pathogens, affecting livestock animals and humans and belongs to 
the orthopox virus, which included small pox cause infection in humans and cow pox viruses [1]. 
The monkey pox causes lymph nodes to swell. The symptoms are fever, headache, muscle aches, 
backache, swollen lymph nodes, a feeling of discomfort and exhaustion. The virus is similar to 
small pox in human. The virus can spread both from animal to human and from human to human. 
The increased transmission risk associated with factors involving introduction of virus to the oral 
mucosa [2].  

The incubation period range from 7 to 14 days. After 1 to 3 days of the appearance of fever, 
the patient develops raised bumps and the illness lasted for 2 to 4 weeks [5]. Thus, the reported 
case fatality ratio is range from 1 % to 10 % [3]. Currently, there are no vaccines for monkey pox, 
however, evidence showed that small pox vaccine reduced the risk of monkey pox among 
previously vaccinated persons in Africa [4, 5]. Centre for disease control and prevention also 
recommended that persons investigating monkey pox outbreaks and caring for infected individuals 
should vaccinated with small pox vaccine, to protect against the monkey pox. Individuals who 
have had close contact with persons confirmed to have monkey pox should be vaccinated up to 
14 days after exposure were recommended [4]. 

Mathematical models have played a central role to capture the dynamics of different Disease 
transmission [6]. The aim of this paper is therefore to the development and exploration of a 
mathematical model for transmission of monkey-pox disease in humans. Therefore, there is 
non-numerous work on mathematical modelling of monkey pox transmission. This Paper extends 
the work of [7] by incorporating Vaccination class for migrants, Exposed classes for both human 
and non-human population.  

2. Model formulation 

We formulate a model for the spread of Monkey-pox in human and primates (Monkey) 
population with the total population size at time t given by 𝑁௛ሺ𝑡ሻ and 𝑁௣ሺ𝑡ሻ. The populations are 
further compartmentalized into epidemiological classes as shown in the model flow diagram in 
Fig. 1. The total human population is divided into five subgroups that is the Susceptible, 𝑆௛ሺ𝑡ሻ, 
the Vaccinated, 𝑉௛ሺ𝑡ሻ, the Exposed, 𝐸௛ሺ𝑡ሻ, the Infected, 𝐼௛ሺ𝑡ሻ, and the Recovery with permanent 
immunity, 𝑅௛ሺ𝑡ሻ. The total primates (Monkey) population model divides into the Susceptible, 
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𝑆௣ሺ𝑡ሻ , the Infected primates, 𝐼௣ሺ𝑡ሻ , the Exposed, 𝐸௣ሺ𝑡ሻ  and the recovery with permanent 
immunity, 𝑅௣ሺ𝑡ሻ. As indicated in the compartmental diagram in Fig. 1, people enter Susceptible 
class through birth and immigration, (Λ௛), where a proportion of vaccinated human immigrants 
(𝑓) enter to the vaccinated class and proportion of unvaccinated immigrants (1 − 𝑓) enter to the 
susceptible class. We do not consider the immigration of infection person, because we assume that 
people who are coming from monkey-pox endemic zones have to be vaccinated. The susceptible 
individuals vaccinated at the rate 𝛾 and loss the vaccination at the rate 𝜔. Susceptible human get 
contact from primate at rate 𝜎௣భ , 𝑆௛  are exposed to monkey-pox infection at the rate 𝜎௛  and 
infected at the rate 𝛽௛, with natural death 𝜇௛ and die due to the infection at the rate 𝛿௛ and recovery 
with permanent immunity at a rate 𝜌௛. The Susceptible primates, 𝑆௣ class is generated from the 
daily recruitment of individuals through birth and immigration at the Λ௣ and natural death rate 𝜇௣. 
They become exposed to monkey-pox virus at the rate 𝜎௣మ and leave the class to infected class at 
the rate 𝛽௣. Individuals primate infected die due to the infection at the rate 𝛿௣ and recovery with 
the permanent immunity at the rate 𝜌௣.  

 
Fig. 1. Schematic diagram of transmission of monkey-pox disease 

Base on the above assumptions and schematic diagram of Fig. 1, the model for transmission 
dynamics of Monkey-pox infection in human and primates (Monkey) is described by a system of 
Ordinary Differential Equations (ODEs) given below: 𝑑𝑆௛𝑑𝑡 = ሺ1 − 𝑓ሻΠ௛ + 𝜔𝑉௛ − 𝛾𝑆௛ − ቆ𝜎௣భ൫𝜀௣𝐸௣ + 𝐼௣൯𝑁௣ + 𝜎௛ሺ𝜀௛𝐸௛ + 𝐼௞ሻ𝑁௛ ቇ 𝑆௛ − 𝜇௛𝑆௛, (1)𝑑𝐸௛𝑑𝑡 = ቆ𝜎௣భ൫𝜀௣𝐸௣ + 𝐼௣൯𝑁௣ + 𝜎௛ሺ𝜀௛𝐸௛ + 𝐼௞ሻ𝑁௛ ቇ 𝑆௛ − 𝛽௛𝐸௛ − 𝜇௛𝐸௛, (2)𝑑𝐼௛𝑑𝑡 = 𝛽௛𝐸௛ − 𝜌௛𝐼௛ − 𝜇௛𝐼௛ − 𝛿௛𝐼௛, (3)𝑑𝑉௛𝑑𝑡 = 𝑓Π௛ + 𝛾𝑆௛ − 𝜔𝑉௛ − 𝜇௛𝑉௛, (4)𝑑𝑅௛𝑑𝑡 = 𝜌௛𝐼௛ − 𝜇௛𝑅௛, (5)𝑑𝑆௣𝑑𝑡 = Π௣ − ൭𝜎௣ଶ൫𝜀௣𝐸௣ + 𝐼௣൯𝑁௣ ൱ 𝑆௣ − 𝜇௣𝑆௣, (6)𝑑𝐸௣𝑑𝑡 = ൭𝜎௣ଶ൫𝜀௣𝐸௣ + 𝐼௣൯𝑁௣ ൱ 𝑆௣ − 𝛽௣𝐸௣ − 𝜇௣𝐸௣, (7)𝑑𝐼௣𝑑𝑡 = 𝛽௣𝐸௣ − 𝜌௣𝐼௣ − 𝜇௣𝐼௣ − 𝛿௣𝐼௣, (8)

                                   (1 − 𝑓) Λ ℎ              𝜇ℎ                   𝜇ℎ                 𝜇ℎ𝑓Λ ℎ  

                                                                                      

                                            

                             Λ 𝑝  
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𝑑𝑅௣𝑑𝑡 = 𝜌௣𝐼௣ − 𝜇௣𝑅௣, (9)

where: 𝑁௛ = 𝑆௛(𝑡) + 𝐸௛(𝑡) + 𝐼௛(𝑡) + 𝑉௛(𝑡) + 𝑅௛(𝑡), (10)𝑁௣ = 𝑆௣(𝑡) + 𝐸௣(𝑡) + 𝐼௣(𝑡) + 𝑅௣(𝑡). (11)

The susceptible human host get infected from both the infected primate (𝐼௣) and infected 
human (𝐼௛) which is called force of infection from primates to human as well as human to human 
[7]. The term 𝜎௣ଵ is the product of the effective contact rate and probability of the human being 
get infected from the infected primates (𝐼௣) and 𝜎௛ is the product of the effective contact and 
probability of the human get infected from the infected persons (𝐼௛). Similarly, the 𝑆௣ get infected 
from infected primate, where 𝜎௣ଶ is the product of the effective contact rate and probability of the 
primates (monkey) get infected per contact with an infected primate (𝐼௣) [7]. The modification 
parameter 𝜀௛ account for the assumption that exposed human transmits at a rate lower than 
symptomatic humans. The modification parameter 𝜀௣ account for the assumption that exposed 
non-human transmits at a rate lower than symptomatic non-humans. It is assumed here that 
mortality of monkeys due to being hunted by humans is negligible and can be safely ignored. 

3. Analysis of the model equations 

Theorem 1: (Invariant Region) the following biological feasible region of the model 
Eqs. (1)-(9) Ω = {𝑆௛, 𝐸௛, 𝐼௛,𝑉௛,𝑅௛ , 𝑆௣,𝐸௣, 𝐼௣,𝑅௣) ∈ ℜାଽ : {𝑆௛(𝑡) + 𝐸௛(𝑡) + 𝐼௛(𝑡) + 𝑉௛(𝑡) +𝑅௛(𝑡) ≤ Λ௛ 𝜇௛;𝑆𝑝𝑡 + 𝐸𝑝𝑡 + 𝐼𝑝𝑡 + 𝑅𝑝(𝑡) ≤ Λ௣/𝜇௣} ⁄  is positively invariant and attracting. 

Proof; the addition of all the equations model in Eqs. (1)-(9) give: 𝑑𝑁௛𝑑𝑡 = Λ௛ − 𝜇௛𝑁௛ − 𝛿௛𝐼௛, 𝑑𝑁௣𝑑𝑡 = Λ௣ − 𝜇௣𝑁௣ − 𝛿௣𝐼௣. 
So that: 𝑑𝑁௛𝑑𝑡 ≤ Λ௛ − 𝜇௛𝑁௛ ,      𝑑𝑁௣𝑑𝑡 ≤ Λ௣ − 𝜇௣𝑁௣. (12)

It follows from [8], the Gronwall inequality, that: 𝑁௛(𝑡) ≤ 𝑁௛(0)𝑒ିఓ೓(௧) + Λ௛𝜇௛  ൛1 − 𝑒ିఓ೓(௧)ൟ, 𝑁௣(𝑡) ≤ 𝑁௣(0)𝑒ିఓ೛(௧) + Λ௣𝜇௣  ൛1 − 𝑒ିఓ೛(௧)ൟ. (13)

In particular, 𝑁௛(𝑡) ≤ Λ௛ 𝜇௛⁄  if 𝑁௛(0) ≤ Λ௛ 𝜇௛⁄  and 𝑁௣(𝑡) ≤ Λ௣ 𝜇௣⁄  if 𝑁௣(0) ≤ Λ௣ 𝜇௣⁄ . 
Thus, Ω is positively invariant. Hence, it is sufficient to consider the model dynamics Eqs. (1)-(9) 
in Ω , in this region, the model equations can be considered as been epidemiologically and 
mathematically well posed. 

Theorem 2: (Positivity of the Solution for the Model). Let 𝑡଴ > 0 and the initial conditions 
satisfied 𝑆௛(0) > 0 , 𝐸௛(0) > 0 , 𝐼௛(0) > 0 , 𝑉௛(0) > 0 , 𝑅௛(0) > 0 ,  𝑆௣(0) > 0 , 𝐸௣(0) >  0, 𝐼௣(0) >0, 𝑅௣(0) > 0, then the solutions 𝑆௛(𝑡), 𝐸௛(𝑡), 𝐼௛(𝑡), 𝑉௛(𝑡), 𝑅௛(𝑡), 𝑆௣(𝑡), 𝐸௣(𝑡), 𝐼௣(𝑡), 
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𝑅௣(𝑡), of the model Eqs. (1)-(9) are positive for all 𝑡 ≥ 0. 
Proof:  
Proving that for all 𝑡 ∈ [0, 𝑡଴], 𝑆௛(𝑡), 𝐸௛(𝑡), 𝐼௛(𝑡), 𝑉௛(𝑡), 𝑅௛(𝑡), 𝑆௣(𝑡), 𝐸௣(𝑡), 𝐼௣(𝑡), 𝑅௣(𝑡) 

will be positive in ℜାଽ , Since all the parameters used in the system are positive. Thus, it is clear 
from Eq. (1) that: 𝑑𝑆௛𝑑𝑡 = (1 − 𝑓)Λ௛ + 𝜔𝑉 − 𝛾𝑆௛ − 𝛼௛𝑆௛ − 𝜇௛𝑆௛ ≥ − (𝛾 + 𝛼௛ + 𝜇௛)𝑆௛. 

So that: 𝑆௛(𝑡) ≥ 𝑆௛(0)𝑒ି(ఊାఈ೓ାఓ೓)௧ି׬ௗ௧ ≥ 0    or     𝑆௛(𝑡) ≥ 𝑆௛(0) exp ൜−න(𝛾 + 𝛼௛ + 𝜇௛)𝑑𝑡ൠ. (14)

The similar approach can be used to show that 𝐸௛(𝑡) > 0, 𝐼௛(𝑡) > 0, 𝑉௛(𝑡) > 0, 𝑅௛(𝑡) > 0,  𝑆௣(𝑡) > 0, 𝐸௣(𝑡) > 0, 𝐼௣(𝑡) >0, 𝑅௣(𝑡) > 0. Thus, for all 𝑡 ∈ [0, 𝑡଴], 𝑆௛(𝑡), 𝐸௛(𝑡), 𝐼௛(𝑡), 𝑉௛(𝑡), 𝑅௛(𝑡), 𝑆௣(𝑡), 𝐸௣(𝑡), 𝐼௣(𝑡), 𝑅௣(𝑡) will be positive and remain in ℜାଽ . 

4. Existence of the equilibrium 

At equilibrium state, we let: 𝑑𝑆௛𝑑𝑡 = 𝑑𝐸௛𝑑𝑡 = 𝑑𝐼௛𝑑𝑡 = 𝑑𝑉௛𝑑𝑡 = 𝑑𝑅௛𝑑𝑡 = 𝑑𝑆௣𝑑𝑡 = 𝑑𝐸௣𝑑𝑡 = 𝑑𝐼௣𝑑𝑡 = 𝑑𝑅௣𝑑𝑡 = 0. (15)

From Eq. (3), we have: 

𝐸௛ = (𝜌௛ + 𝜇௛ + 𝛿௛)𝐼௛𝛽௛ . (16)

Substitute Eq. (16) into Eq. (2), we have: 

𝐼௛ ൬(𝜎௛𝜀௛(𝜌௛ + 𝜇௛ + 𝛿௛) + 𝜎௛𝛽௛)𝑆௛𝛽௛𝑁௛ − (𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)𝛽௛ ൰ = 0. (17)

Equation (17) gives: 

𝐼௛ = 0      or      ൬(𝜎௛𝜀௛(𝜌௛ + 𝜇௛ + 𝛿௛) + 𝜎௛𝛽௛)𝑆௛𝛽௛𝑁௛ − (𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)𝛽௛ ൰ = 0. (18)

From Eq. (8), we have: 

𝐸௣ = (𝜌௣ + 𝜇௣ + 𝛿௣)𝐼௣𝛽௣ . (19)

Substitute Eq. (19) into Eqs. (7), we have: 

𝐼௣ ቆ(𝜎௣ଶ𝜀௣(𝜌௣ + 𝜇௣ + 𝛿௣) + 𝜎௣𝛽௣)𝑆௣𝛽௣𝑁௣ − ൫𝛽௣ + 𝜇௣൯൫𝜌௣ + 𝜇௣ + 𝛿௣൯𝛽௣ ቇ = 0. (20)

Equation Eq. (20) gives: 
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𝐼௣ = 0      or      (𝜎௣ଶ𝜀௣(𝜌௣ + 𝜇௣ + 𝛿௣) + 𝜎௣𝛽௣)𝑆௣𝛽௣𝑁௣ − ൫𝛽௣ + 𝜇௣൯൫𝜌௣ + 𝜇௣ + 𝛿௣൯𝛽௣ = 0. (21)

Substitute 𝐼௛ = 0 in Eq. (9) into Eq. (16) and Eq. (5), we have: 𝐸௛ = 𝑅௛ = 0. (22)

Making 𝑉௛ subject of expression in Eq. (4) and Eq. (1), and equating them, we have: 

𝑉௛ = 𝑓Π௛ + 𝛾𝑆௛(𝜔 + 𝜇௛) = 𝛾𝑆௛ + 𝛼௛𝑆௛ + 𝜇௛𝑆௛ − (1 − 𝑓)Π௛𝜔 . (23)

Implies: 𝑓Π௛ + 𝛾𝑆௛ 𝜔 = ( 𝛾𝑆௛ + 𝛼௛𝑆௛ + 𝜇௛𝑆௛ − (1 − 𝑓)Π௛)(𝜔 + 𝜇௛). 
Since 𝐼௛ = 0, implies 𝛼௛ = 0, then we have: 

𝑆௛ = 𝑓𝜔Π௛ + [Π௛𝜔 + Π௛𝜇௛ − 𝑓Π௛𝜔 − 𝑓Π௛𝜇௛]𝛾𝜔 + 𝛾𝜇௛ + 𝜇௛𝜔 + 𝜇௛ଶ − 𝛾𝜔 . (24)

Reduced to: 

𝑆௛଴ = Π௛𝜔 + Π௛𝜇௛ − 𝑓Π௛𝜇௛𝛾𝜇௛ + 𝜇௛𝜔 + 𝜇௛ଶ . (25)

If there is no vaccination, then 𝑆௛଴ = ஈ೓ఓ೓ఓ೓మ = ஈ೓ఓ೓ as 𝜔 = 𝛾 = 𝑓 = 0. 
Substitute Eq. (25) into Eq. (4), we have: 

𝑉௛଴ = 𝑓Π௛𝜇௛𝜔 + 𝑓Π௛𝜇௛ଶ + 𝛾Π௛𝜔 + 𝛾Π௛𝜇௛(γ𝜇௛ + 𝜇௛𝜔 + 𝜇௛ଶ)(𝜔 + 𝜇௛) . (26)

Substitute 𝐼௣ = 0 in Eq. (21) into Eqs. (19) and (9), we have: 𝐸௣ = 𝑅௣ = 0. (27)

From Eq. (6), we have: 

𝑆௣଴ = Π௣𝜇௣ . (28)

The disease free equilibrium (DFE) state is given as: 𝐸଴ = { 𝑆௛∗,𝐸௛∗,𝑉௛∗, 𝐼௛∗ ,𝑅௛∗, 𝑆௣∗,𝐸௣∗, 𝐼௣∗,𝑅௣∗}     = ቊΠ௛𝜔 + Π௛𝜇௛ − 𝑓Π௛𝜇௛𝛾𝜇௛ + 𝜇௛𝜔 + 𝜇௛ଶ , 0, 𝑓Π௛𝜇௛𝜔 + 𝑓Π௛ 𝜇௛ଶ + 𝛾Π௛𝜔 + 𝛾Π௛𝜇௛(𝛾𝜇௛ + 𝜇௛𝜔 + 𝜇௛ଶ)(𝜔 + 𝜇௛) , 0, 0,Π௣𝜇௣ , 0, 0, 0ቋ. (29)

5. Effective basic reproduction number (𝑹𝒆) 

We applying next generation matrix operator to compute the effective basic reproduction 
number [9]. The largest Eigenvalue or spectral radius of 𝐹𝑉ିଵ is the effective basic reproduction 
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number of the model: 

𝐹𝑉ିଵ = ቈ𝜕𝐹௜(𝐸଴)𝜕𝑥௜ ቉ ቈ𝜕𝑉௜(𝐸଴)𝜕𝑥௜ ቉ିଵ, (30)

where 𝐹௜ is the rate of appearance of new infection in compartment 𝑖, 𝑉௜ is the transfer of infection 
from one compartment 𝑖 to another and 𝐸଴is the Disease-Free Equilibrium. 

Using this technique, we have spectral radius (𝜌) of the next generation matrix, 𝐹𝑉ିଵ that is, 𝑅଴ = 𝜌(𝐹𝑉ିଵ). Both 𝐹 and 𝑉 are obtained from the Jacobian matrix of the linearization of system 
Eqs. (1)-(9) disease free equilibrium. Therefore, the vector 𝐹  and 𝑉  representing inflow and 
outflow from compartments 𝐸௛, 𝐸௣, 𝐼௛ and 𝐼௉ are given by: 

𝑓 = ൮𝑓ଵ𝑓ଶ𝑓ଷ𝑓ସ൲ =
⎝⎜
⎜⎜⎛
ቆ𝜎௣ଵ൫𝜀௣𝐸௣ + 𝐼௣൯𝑁௣ + 𝜎௛(𝜀௛𝐸௛ + 𝐼௛)𝑁௛ ቇ𝑆௛𝛽௛𝐸௛𝜎௣ଶ(𝜀௣𝐸௣ + 𝐼௣)𝑆௉𝑁௣𝛽௣𝐸௣ ⎠⎟

⎟⎟⎞, (31)

𝐹 =
⎣⎢⎢
⎢⎢⎢
⎡𝜎௛𝜀௛𝑆௛଴𝑁௛଴ 𝜎௛𝑆௛଴𝑁௛଴ 𝜎௣భ𝜀௣𝑆௛଴𝑁௣଴ 𝜎௣భ𝑆௛଴𝑁௣଴𝛽௛ 0 0 00 0 𝜎௣మ𝜀௣𝑆௣଴𝑁௣଴ 𝜎௣మ𝑆௣଴𝑁௣଴0 0 𝛽௣ 0 ⎦⎥⎥

⎥⎥⎥
⎤
, (32)

𝑣 = ൮ 𝑣ଵ 𝑣ଶ 𝑣ଷ𝑣ସ൲ = ⎣⎢⎢
⎡ 𝐴ଵ𝐸௛ 𝐴ଶ𝐼௛ 𝐴ଷ𝐸௣𝐴ସ𝐼௣ ⎦⎥⎥

⎤, (33)

where, 𝐴ଵ = 𝛽௛ + 𝜇௛; 𝐴ଶ = 𝜌௛ + 𝜇௛ + 𝛿௛; 𝐴ଷ = 𝛽௣ + 𝜇௣ ; 𝐴ସ = 𝜌௣ + 𝜇௣ + 𝛿௣ and: 

𝑉 = ൮𝐴ଵ000    0 𝐴ଶ00    00 𝐴ଷ0    000𝐴ସ൲. (34)

From Eqs. (34), we have: 

𝑉ିଵ = ⎣⎢⎢
⎡1 𝐴ଵ⁄ 0 0 00 1 𝐴ଶ⁄ 0 00 0 1 𝐴ଷ⁄ 00 0 0 1 𝐴ସ⁄ ⎦⎥⎥

⎤. (35)

At DFE, and since 𝑁௛(𝑡) ≤ Π௛ 𝜇௛⁄  and 𝑁௣(𝑡) ≤ Π௣ 𝜇௣⁄  we have: 
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𝐹 =
⎣⎢⎢
⎢⎢⎢
⎡𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛ 𝜎௛𝜇௛𝑆௛଴Π௛ 𝜎௣భ𝜀௣𝜇௣𝑆௛଴Π௣ 𝜎௣భ𝜇௣𝑆௛଴Π௣𝛽௛ 0 0 00 0 𝜎௣మ𝜀௣𝜇௣𝑆௣଴Π௣ 𝜎௣మ𝜇௣𝑆௣଴Π௣0 0 𝛽௣ 0 ⎦⎥⎥

⎥⎥⎥
⎤
. (36)

From Eq. (36), we have: 

𝐹 = ⎣⎢⎢
⎢⎢⎡𝜎௛𝜀௛𝜇௛𝑆௛

଴Π௛ 𝜎௛𝜇௛𝑆௛଴Π௛ 𝜎௣భ𝜀௣𝜇௣𝑆௛଴Π௣ 𝜎௣భ𝜇௣𝑆௛଴Π௣𝛽௛ 0 0 00 0 𝜎௣మ𝜀௣ 𝜎௣మ0 0 𝛽௣ 0 ⎦⎥⎥
⎥⎥⎤, (37)

𝐹𝑉ିଵ = ቈ𝜕𝐹௜(𝐸଴)𝜕𝑥௝ ቉ ቈ𝜕𝑉௜(𝐸଴)𝜕𝑥௝ ቉ିଵ. (38)

Multiplying Eq. (37) and (35) together, we have: 

𝐹𝑉ିଵ = ⎣⎢⎢
⎢⎢⎡𝜎௛𝜀௛𝜇௛𝑆௛

଴Π௛ 𝜎௛𝜇௛𝑆௛଴Π௛ 𝜎௣భ𝜀௣𝜇௣𝑆௛଴Π௣ 𝜎௣భ𝜇௣𝑆௛଴Π௣𝛽௛ 0 0 00 0 𝜎௣మ𝜀௣ 𝜎௣మ0 0 𝛽௣ 0 ⎦⎥⎥
⎥⎥⎤
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡

1𝐴ଵ 0 0 00 1𝐴ଶ 0 00 0 1𝐴ଷ 00 0 0 1𝐴ସ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤. (39)

Equation (39) implies: 

𝐹𝑉ିଵ =
⎣⎢⎢
⎢⎢⎢
⎢⎢⎡𝜎௛𝜀௛𝜇௛𝑆௛

଴Π௛𝐴ଵ 𝜎௛𝜇௛𝑆௛଴Π௛𝐴ଶ 𝜎௣భ𝜀௣𝜇௣𝑆௛଴Π௣𝐴ଷ 𝜎௣భ𝜇௣𝑆௛଴Π௣𝐴ସ𝛽௛𝐴ଵ 0 0 00 0 𝜎௣మ𝜀௣𝐴ଷ 𝜎௣మ𝐴ସ0 0 𝛽௣𝐴ଷ 0 ⎦⎥⎥
⎥⎥⎥
⎥⎥⎤. (40)

The characteristics equation of Eq. (40), gives |𝐹𝑉ିଵ − 𝜆𝐼| = 0: 

⎣⎢⎢
⎡𝐾ଵ𝑆௛଴ − 𝜆 𝐾ଶ𝑆௛଴ 𝐾ଷ𝑆௛଴ 𝐾ସ𝑆௛଴𝐾ହ −𝜆 0 00 0 𝐾଺ − 𝜆 𝐾଻0 0 𝐾଼ −𝜆 ⎦⎥⎥

⎤ = 0, (41)

where: 
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𝐾ଵ = 𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛𝐴ଵ ,      𝐾ଶ = 𝜎௛𝜇௛Π௛𝐴ଶ ,      𝐾ଷ = 𝜎௣భ𝜀௣𝜇௣Π௣𝐴ଷ ,      𝐾ସ = 𝜎௣భ𝜇௣Π௣𝐴ସ , 𝐾ହ = 𝛽௛𝐴ଵ ,      𝐾଺ = 𝜎௣మ𝜀௣𝐴ଷ ,      𝐾଻ = 𝜎௣మ𝐴ସ ,      𝐾଼ = 𝛽௣𝐴ଷ. (42)

Determinant of Eq. (41) gives: (𝜆ଶ − 𝐾଺𝜆 − 𝐾଻𝐾଼) = 0     or     (𝜆ଶ − 𝐾ଵ𝑆௛଴𝜆 − 𝐾ଶ𝐾ହ𝑆௛଴) = 0. (43)

To solve Eq. (43) with completing the square method, we have: 

𝜆ଵ = 𝐾଺ ± ඥ𝐾଺ଶ + 4𝐾଻𝐾଼2 , 
𝜆ଵ = 𝜎௣మ𝜀௣(𝛽௣ + 𝜇௣) ± ඨ (𝜎௣మ𝜀௣)ଶ(𝛽௣ + 𝜇௣)ଶ + 4𝜎௣మ𝛽௣(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣)2 . (44)

𝜆ଵ is the spectral radius of 𝜌(𝐹𝑉ିଵ) and the reproduction number is the largest eigenvalue 
from Eq. (44): 

𝑅௣ = 𝜎௣మ𝜀௣(𝛽௣ + 𝜇௣) + ඨ (𝜎௣మ𝜀௣)ଶ(𝛽௣ + 𝜇௣)ଶ + 4𝜎௣మ𝛽௣(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣)2 , (𝜆ଶ − 𝐾ଵ𝑆௛଴𝜆 − 𝐾ଶ𝐾ହ𝑆௛଴) = 0. (45)

Implies: 

𝜆ଶ = 𝐾ଵ𝑆௛଴ ± ට𝐾ଵଶ𝑆௛଴మ + 4𝐾ଶ𝐾ହ𝑆௛଴2 . (46)

𝜆ଶ = 𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛) ± ඨ𝜎௛ଶ𝜀௛ଶ𝜇௛ଶ𝑆௛଴మΠ௛ଶ(𝛽௛ + 𝜇௛)ଶ + 4𝜎௛𝜇௛𝛽௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)2 . (47)

𝜆ଶ is the spectral radius of 𝜌(𝐹𝑉ିଵ): 

𝑅௛ = 𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛) + ඨ𝜎௛ଶ𝜀௛ଶ𝜇௛ଶ𝑆௛଴మΠ௛ଶ(𝛽௛ + 𝜇௛)ଶ + 4𝜎௛𝜇௛𝛽௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)2 . (48)

Then, we obtained effective basic reproduction number as Eqs. (48) and (45). There are two 
host populations and it was shown from the model flow diagram in Fig. 1 that the monkey 
transmits the infection to human host and human to human. Hence, the effective basic reproduction 
number can be represented as: 𝑅଴ = 𝑅௛ + 𝑅௣, (49)



DEVELOPMENT AND EXPLORATION OF A MATHEMATICAL MODEL FOR TRANSMISSION OF MONKEY-POX DISEASE IN HUMANS.  
N. O. LASISI, N. I. AKINWANDE, F. A. OGUNTOLU 

 ISSN PRINT 2351-5279, ISSN ONLINE 2424-4627, KAUNAS, LITHUANIA 31 

𝑅଴ = ⎝⎜
⎜⎜⎜⎜
⎛ 𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛) + 𝜎௣మ𝜀௣(𝛽௣ + 𝜇௣)

+ඨ𝜎௛ଶ𝜀௛ଶ𝜇௛ଶ𝑆௛଴మΠ௛ଶ(𝛽௛ + 𝜇௛)ଶ + 4𝜎௛𝜇௛𝛽௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)
+ඨ (𝜎௣మ𝜀௣)ଶ(𝛽௣ + 𝜇௣)ଶ + 4𝜎௣మ𝛽௣(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣) ⎠⎟

⎟⎟⎟⎟
⎞

2 . 
(50)

5.1. Analysis of effective basic reproduction number on 𝑹𝒑 and 𝑹𝒉 

Form Eq. (45), we have: 

𝑅௣ = 𝑀ଵ + ඥ𝑀ଵଶ + 𝑀ଶ2 , 
where: 

𝑀ଵ = 𝜎௣మ𝜀௣(𝛽௣ + 𝜇௣),     𝑀ଶ = 4𝜎௣మ𝛽௣(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣). (51)

Since the disease will not be established in the population if the secondary cases on average is 
less than a unit (𝑅௣ ≤ 1), this implies: 

𝑅௣ = 𝑀ଵ + ඥ𝑀ଵଶ + 𝑀ଶ2 ≤ 1, (52)𝑀ଵ + ට𝑀ଵଶ + 𝑀ଶ ≤ 2,      𝑅௣ ≤ 1. (53)

From Eqs. (53), we have: 𝑀ଶ = 4 − 4𝑀ଵ. (54)

Implies: 4𝜎௣మ𝛽௣(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣) ≤ 4൫𝛽௣ + 𝜇௣൯ − 4𝜎௣మ𝜀௣൫𝛽௣ + 𝜇௣൯ . (55)

From Eqs. (55), we make the product of the effective contact rate and probability of the 
primates (monkey) get infected per contact with an infected primate as a subject, we have: 

𝜎௣మ ≤ 4൫𝛽௣ + 𝜇௣൯൫𝜌௣ + 𝜇௣ + 𝛿௣൯4𝛽௣ + 4𝜀௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯ ,      𝑅௣ ≤ 1, (56)𝜎௣మ ≤ 𝑃௣,     𝑅௣ ≤ 1, (57)

Where: 

𝑃௣ = 4(𝛽௣ + 𝜇௣)(𝜌௣ + 𝜇௣ + 𝛿௣)4𝛽௣ + 4𝜀௣(𝜌௣ + 𝜇௣ + 𝛿௣) . (58)
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Also, we make the infected at the rate 𝛽௣ as a subject: 4𝜎௣మ𝛽௣ − 4𝛽௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯ ≤ 4𝜇௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯ − 4𝜎௣మ𝜀௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯, 𝛽௣ ≤ 𝜇௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯ − 𝜎௣మ𝜀௣൫𝜌௣ + 𝜇௣ + 𝛿௣൯𝜎௣మ − ൫𝜌௣ + 𝜇௣ + 𝛿௣൯ ,     𝑅௣ ≤ 1, (59)𝛽௣ ≤ 𝐿௣,     𝑅௣ ≤ 1. (60)

Where: 

𝐿௣ = 𝜇௣(𝜌௣ + 𝜇௣ + 𝛿௣) − 𝜎௣మ𝜀௣(𝜌௣ + 𝜇௣ + 𝛿௣)𝜎௣మ − (𝜌௣ + 𝜇௣ + 𝛿௣) . (61)

In a similar case, since the disease will not be established in the population if the secondary 
case on average is less than a unit (𝑅௛ ≤ 1). 

Form Eq. (48), we have: 

𝑅௛ = 𝑍ଵ + ඥ𝑍ଵଶ + 𝑍ଶ2 , (62)

where: 

𝑍ଵ = 𝜎௛𝜀௛𝜇௛𝑆௛଴𝛱௛(𝛽௛ + 𝜇௛),      𝑍ଶ = 4𝜎௛𝜇௛𝛽௛𝑆௛଴𝛱௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛), (63)

𝑅௛ = 𝑍ଵ + ඥ𝑍ଵଶ + 𝑍ଶ2 ≤ 1, (64)𝑍ଵ + ට𝑍ଵଶ + 𝑍ଶ ≤ 2,      𝑅௛ ≤ 1. (65)

From Eqs. (65), we have: 𝑍ଶ ≤ 4 − 4𝑍ଵ. (66)

Implies: 4𝜎௛𝜇௛𝛽௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛) ≤ 4Π௛(𝛽௛ + 𝜇௛) − 4𝜎௛𝜀௛𝜇௛𝑆௛଴Π௛(𝛽௛ + 𝜇௛) . (67)

From Eqs. (67), we make the product of the effective contact and probability of the human get 
infected from the infected persons as a subject, we have: 

𝜎௛ ≤ 4𝛱௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)4𝜇௛𝛽௛𝑆௛଴ + 4𝜀௛𝜇௛𝑆௛଴(𝜌௛ + 𝜇௛ + 𝛿௛),      𝑅௛ ≤ 1, (68)𝜎௛ ≤ 𝑃௛,      𝑅௛ ≤ 1, (69)

where: 

𝑃௛ = 4Π௛(𝛽௛ + 𝜇௛)(𝜌௛ + 𝜇௛ + 𝛿௛)4𝜇௛𝛽௛𝑆௛଴ + 4𝜀௛𝜇௛𝑆௛଴(𝜌௛ + 𝜇௛ + 𝛿௛). (70)

Also, we make the infected at the rate 𝛽௛ as a subject: 
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𝛽௛ ≤ Π௛𝜇௛(𝜌௛ + 𝜇௛ + 𝛿௛) − 𝜎௛𝜀௛𝜇௛𝑆௛଴(𝜌௛ + 𝜇௛ + 𝛿௛)𝜎௛𝜇௛𝑆௛଴ − Π௛(𝜌௛ + 𝜇௛ + 𝛿௛) ,      𝑅௛ ≤ 1, (71)𝛽௛ ≤ 𝐿௛,       𝑅௛ ≤ 1, (72)

where: 

𝐿௛ = Π௛𝜇௛(𝜌௛ + 𝜇௛ + 𝛿௛) − 𝜎௛𝜀௛𝜇௛𝑆௛଴(𝜌௛ + 𝜇௛ + 𝛿௛)𝜎௛𝜇௛𝑆௛଴ − Π௛(𝜌௛ + 𝜇௛ + 𝛿௛) . (73)

6. Conclusions 

The Monkey pox will be eradicated since the term 𝑃௣ is greater than the product of the effective 
contact rate and probability of the primates (monkey) 𝜎௣మ  getting infected and the term 𝐿௣  is 
greater than infected rate 𝛽௣ as shown in Eq. (60), provided 𝑅௣ ≤ 1. However, since 𝜎௣భ = 0, it 
means that there is no transmission between primates and humans population at disease free 
equilibrium. Similarly, the monkey pox will be eradicated among human population, since the 
term 𝑃௛  is greater than 𝜎௛  and 𝐿௛  is greater than 𝛽௛  as shown in Eq. (72), provided 𝑅௛ ≤ 1 . 
Epidemiological implication is that if the secondary cases of the monkey pox infection and human 
cases are on average less than one unit, then the disease will die out on the long run.  

In this paper, we developed a mathematical model of monkey-pox transmission disease. We 
analysed the invariant region and shown that the dynamics of model Eqs. (1)-(9) is in the region Ω, the model equations was considered as been epidemiologically and mathematically well posed. 
The positivity of the solutions for the model was showed which implies that the solutions were 
positive and remains in 𝑅ାଽ . The disease free equilibrium and effective basic reproduction number 
of the model were obtained. Analyses of effective basic reproduction number were done.  
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