Perfect Powers in Smarandache Type Expressions

Florian Luca

In [2] and (3] the authors ask how many primes are of the Smarandache
form (see [10]) z¥ + y*, where gcd (z, y) =1 and z, y > 2. In [6] the author
showed that there are only finitely many numbers of the above form which
are products of factorials.

In this article we propose the following

Conjecture 1. Let a, b, and c be three integers with ab # 0. Then the
equation

az¥ + by* = cz" withz, y, n>2, andged (2, y) =1, (1)

has finitely many solutions (z, y, 2z, n)-
We announce the following result:
Theorem 1. The "abc Conjecture” implies Conjecture 1.

The proof of Theorem 1 is based on an idea of Lang (see [5])-

For any integer k let P(k) be the largest prime number dividing k£ with
the convention that P(0) = P(£1) = 1. We have the following result.

Theorem 2. Let a, b, and ¢ be three integers with ab# 0. Let P > 0
be a fized positive integer. Then the equation
az¥+by* = ¢z withz, y, n > 2, ged (z, y) = 1,and P(y) < P, (2)

has finitely many solutions (z, y, 2z, n). Moreover, there ezists a com-
putable positive number C depending only on a, b, ¢, and P such that all
the solutions of equation (2) satisfy max (z, v) <C.

The proof of theorem 2 uses lower bounds for linear forms in logarithms
of algebraic numbers.

Conjecture 2. The only solutions of the equation
¥yt =2" withz, y, n>2, z2>0, ged (z, ¥) =1, (3)

are (z, ¥, z, n) =(3, 2, 1, n).
We have the following results:
Theorem 3. The equation
¥ £y* =2 with z, y > 2, and gcd (z, y) =1, (4)

has finitely many solutions (z, y, z) with2 | zy. Moreover, all such solutions
satisfy max (z, y) < 3-10%3.



The proof of Theorem 3 uses lower bounds for linear forms in logarithms
of algebraic numbers.

Theorem 4. The equation
2V 4+ y% = 2" (3)
has no solutions (y, z, n) such thaty is odd and n > 1.

The proof of theorem 4 is elementary and uses the fact that Z[iv/2] is

an UFD.
2. Preliminary Results

We begin by stating the abc Conjecture as it appears in [5]. Let k be a
nonzero integer. Define the radical of k to be

Nok) =[] » (6)
plk

i.e. the product of the distinct primes dividing k. Notice that if z and y are

integers, then
No(zy) < No(z)No(y),

and if ged (z, y) =1, then
No(zy) = No(z)No(y)-

The abc Conjecture ([5]). Given € > O there ezists a number C(¢)
having the following property. For any nonzero relatively prime integers
a, b, ¢ such that a +b = ¢ we have

max(|al, [b], lc]) < C(e)No(abe)'+*.

The proofs of theorems 2 and 3 use estimations of linear forms in logarithms
of algebraic numbers. :

Suppose that (1, ..., {; are algebraic numbers, not 0 or 1, of heights not
exceeding Aj, ..., 4, respectively. We assume A, > e*form =1, ..., L
Put Q = log A;...log A;. Let F = Q[(1, ..., (1] Let ny, ..., m; be integers,
not all 0, and let B > max |n.,|. We assume B > e?. The following result
is due to Baker and Wiistholz.

Theorem BW ([1]). If (T*...¢* # 1, then

C7 G — 1] > 5 exp(~(16(1 + 1)dg) 29 Qlog B). )

In fact, Baker and Wiirtholz showed that if log(, ..., log{; are any
fixed values of the logarithms, and A =nilog (i + ... +nilog§ # 0, then

log |A| > —(16ldp) X+ Qlog B. (8)
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Now (7) follows easily from (8) via an argument similar to the one used by
Shorey et al. in their paper [9].

We also need the following p-adic analogue of theorem BW which is due
to Alf van der Poorten.

Theorem vdP ([7]). Let  be a prime ideal of F lying above a prime
integer p. Then,

d
ordy (¢F* ¢ — 1) < (16(1 + 1)dF)l2(l+l)l—(’;-o%Q(log B (9

We also need the following two results.

Theorem K ([4]). Let A and B be nonzero rational integers. Let
m > 2 and n > 2 with mn > 6 be rational integers. For any two integers
and y let X = max (|z|, |y|). Then

P(Az™ + By™) > C(log, X logs X)'/* (10)

where C > 0 is a computable constant depending only on A, B, m and n.

Theorem S ([8]). Letn > 1 and A, B be nonzero integers. For integers
m >3, z and y with |z| > 1, ged (z, y) =1, and Az™ + By™ # 0, we have

P(Az™ + By™) > C((log m)(log logm)) /> (11)

and '
|Az™ + By"| > exp(C((log m)(loglog m))1/2) (12)

where C > 0 is a computable number depending only on A, B and n.

Let K be a finite extension of Q of degree d, and let Ok be the ring
of algebraic integers inside K. For any element v € Ok, let [y] be the ideal
generated by v in Ok. For any ideal I in Ok, let N(I) be the norm of I.
Let 71, 72, ..., ™ be a set of prime ideals in Ok. Put

p = max P(N(x;)).
Write
7 = [pi] fori=1, .., {

where p1, P2, ..., Pt € Ok and h is the class number of K. Denote by S the
set of all elements o of Ok such that [a] is exclusively composed of prime
ideals 7y, w2, ..., ;. Then we have
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Lemma T. ([9]). Let « € S. Assume that

(o] = wirmd2 .o,

There exist a B € O with |N(8)] < p™™ and a unit € € Ok such that
a = efpl'p3?...o0 .

Moreover,
b; =a;h+ ¢ for some 0 < ¢; < h.

3. The Proofs

The Proof of Theorem 1. We may assume that ged (a, b, ¢) = 1.
By C;, Ca, ..., we shall denote computable positive numbers depending
only on a, b, c. Let (z, y, z, n) be a solution of (1). Assume that z >y,
and that £ > 3. Let d = ged (az?, by®). Notice that d | ab. Equation (1)
becomes '

i _= (13)
By the abc Conjecture for € = 2/3 it follows that

C(2/3)Ny(abc)3/®

7 No(zyz)®/2. (14)

max (Jaz], [oy?] lez"]) <

Let :
01 = C(2/3)No(abc)5/3

Since d > 1, and |b] > 1, from inequality (14} it follows that
= < byl < Cilayl2)*? < o323, (15)

Since z > min (y, 3), it follows easily that y* > z¥. Hence,

n _ E y é z x
12| lc:z: +2y7| < Cay
where Cy = %ﬂ. We conclude that
2] < G/ "y < Gy (16)

Combining inequalities (15) and (16) it follows that
¥ < Clcg/GIIO/Sy(Sx/Bn)’

or
yx(1—5/3n) < 031.10/3, (17)
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where C3 = 01025/ 6 Since 2 <y and 2 < n, it follows that
2:/6 < 2:(1—5/311) < 03x10/3‘ (18)

Inequality (18) clearly shows that z < Cj.
The Proof of Theorem 2. We may assume that

P > max (P(a), P(b), P(c))-

By Ci, Ca, ..., we shall denote computable positive numbers depending
only on a, b, ¢, P. We begin by showing that n is bounded. Fix d €
{2, 3, ..., P—1}. Suppose that z, y, z, nis a solution of (2) withn > 3
and d | y. Since

by® = cz™ — a(:ry/d)d (19)

it follows, by Theorem S, that
P =P(by") = P(cz" - a(:z:y/d)d) > C1((logn)(log log'n.))l/2 (20)

where C; is a computable number depending only on a, ¢, d. Inequality
(20) shows that n < Cs.

Suppose now that ny > 6. Let X = max (z, |z|). From equation (19)
and theorem K, it follows that

P = P(by®) = P(cz” — az¥) > Cs(log, X logs X) vz (21)

where C3 > 0 is a computable constant depending only on a, ¢, and Co.
From inequality (21) it follows that X < C3. Let Cyq = max (Cb, Cs). It
follows that, if ny > 6, then max (z, |z|, n) < Cs. We now show that y is
bounded as well. Suppose that y > max (Cy, €?). Rewrite equztion (2) as

lezI” _ |1 - (——b)y’-x-y|. (22)

lajzy a

Let A > e° be an upper bound for the height of —b/a and C4. Let 2 =
(log A)®. From theorem BW we conclude that

logle| +nlog|z| — log ja] — ylogz > —log2 — 64*Qlogy.  (23)
Since z > 2, and max (z, |z, n) < Cu, it follows, by inequality (23), that
ylog2—6412Qlogy < ylog £—642Qlogy < Cqlog Cs—loglaj+log|c|+log 2.

(24)
From equation (24) it follows that y < Cs.
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Suppose now that n = y = 2. We first bound 2 in terms of z. Rewrite

equation (2) as
2

i+ (G)(F)

Let Cs > 0 be a computable positive number depending only on a and &
such that

2Z2=2" : (25)

I%‘ (g;) < % for z > Cs. (26)
From equation (25) and inequality (26), it follows that
rla] <= (- 5(5) <= <+ 5 5) <3l en
for ¢ > Cs. Taking logarithms in inequality (27) we obtain
zCr + Cs < logz < zCr + Co for z > Cs (28)
where Cr — 10_52, Cs = log |b] -;log?.[cl’ and Cy = log |3b] ;logl2c|- We
now rewrite equation (2) as
(cz)? — acx? = ab2”. (29)
Let o = \/ac. Then
(ez +az)(cz — qx) = cb2”. : (30)

We distinguish 2 cases.

CASE 1. ac < 0. Let K = Q[a]. Since ac < 0, it follows that all the
units of Ok are roots of unity. Since K is a quadratic field, it follows that
the ideal [2] has at most two prime divisors. Since

ged ([cz +ozl, [ez - a:z:]) 2[abc]

it follows, by lemma T, that
ez + ax = eBp* (31)

where % —l<u< %, and ¢, 83, p € Ok are such that || = 1, |p| = 272,

where h is the class number of K, and |8] < Cy¢ where Cjg is a computable
number depending only on a, b, and ¢. Conjugating equation (31) we get

cz — ax = EfP™. (32)

From equations (31) and (32) it follows that
20z = fp*(1 — (= ~2)(8) "' BE) *(®)")-
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Hence,

2lalz = |BlIpl*|1 - (—e~*)(8) "' B() "(B)¥| (33)
Taking logarithms in equation (33) we obtain
log(2|a|) +log z = log 8] +ulogp+log |1 — (=~ 2)(B) " B(p)"“(@)"|- (34)

Let A, and P be upper bounds for the heights of —e~2(8)~!3 and p, respec-
tively. Assume that min (4, P) > e®. Let Q = log A(log P)2. Assume also

that % > 1 + &2. From equation (34), theorem BW, the fact that |p| = 27/2,

x T .
and the fact that 7= l1<u< 7 we obtain that

log(2|e]) + logz > log|B] + ulog|p| — log2 — 6412Qlogu >

z h
log|8] + (ﬁ - 1) . (5) log 2 — log 2 — 641?Qlog(z/h). (35)

Inequality (35) clearly shows that z < Ci;.

CASE 2. ac > 0. We may assume that both a and ¢ are positive. If
b < 0, equation (2) can be rewritten as

lajz? — |b]2% =|c]z2 > 0 (36)

Equation (36) clearly shows that < Cj2. Hence, we assume that b > 0.
We distinguish two subcases.

CASE 2.1. y/ac € Z. In this case, from equation
(c|z] + az)(clz| — az) = be2”

and from the fact that

gcd (clzl + az, clz| - a:z:) | 2cech (37)
it follows easily that
cz| + ax = 32¢
{ |2] 8 (38)
clz| —az =7

where 3, <, u are positive integers with 0 < 8 < be, v < (be) - (2ach) and
u > z — ord2(2ach). From equation (38) it follows that

20z = [2% — 7. (39)

From equation (39), and from the fact that 0 < B < be, v < (be) - (2ach),
and u > z — orda(2aeh), it follows that z < Cis.
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CASE 2.2. Jac € Z. Let K = Q[a]. Let ¢ be a generator of the torsion
free subgroup of the units group of Ok. From equation (37) and lemma T,
it follows that
ozl + az = €010} (40)
where % —-1l<u< %, and G, p; € Ok are such that 1 < B; < Ci4 for some
computable constant Ci4, and 1 < p1 < 2"-¢. From equation (40), it follows
that
clzl —ax =€ " Gapy (41)

where 32 = |61]%/81, and p2 = 2" /p1. Suppose now that z > Cs. Since
™ = 5B (del + as)

it follows, from inequality (28), and from the fact that % -l<u< % and

1 <p; < 2" -¢, that
Im| < Cisz + Cis for x > Cs, (42)

for some computable constants Cys and Cy¢ depending only on a, b, and c.
From equations (40) and (41), it follows that

20z = €™ B1p¥ - (1 - E_Qm(ﬁl)_lﬁz(m)_"??)

or
202 = (dzl +oz) - (1 — € 2™(B) ™ Balp1) 775 ) (43)

Let A;, Az, As, A4 be upper bounds for the heights of €, (81)~!02, p1, P2
respectively. Assume that min (A;, A2, As, A4) > e®. Denote Q =
H;l log A;. Denote C;; = max (2Cis, 1/h). From inequality (42), it
follows that

max (2|m|, u) < Ci7z + Cie. (4—4)

Let B = Ci7z + Cis. Taking logarithms in equation (43), and applying
theorem BW, we obtain

log(2a) + log z = log(clz| + ax) +log |1 — €™>™(61) ™ Ba(p1) ¥p3 | >
log(clz] + az) — log 2 — 80 Qlog(Cy7z + Cie). (45)
Combining inequalities (28) and (45) we obtain
log(4a) +log z + 801 Qlog(C17z + Cis) > log(clz| +az) > logz > Crz + Cs
This last inequality clearly shows that z < Cg.
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The Proof of Theorem 3. We treat only the equation
z¥ + % = 2%

We may assume that z is even. First notice that, since ged (z, y) =1, it
follows that ged (z, z) = ged (y, 2) = 1. Rewrite equation (4) as

z¥ = (z+yz/2)(z—yz/2). .
Since ged (z, ¥*/?) =1 and both z and y are odd, it follows that
ged (z+y7/%, z—y/%) =2.

Write z = 2d,d» such that either one of the following holds

{z+y’/2 =2y'1d’1’ or {z—!—yz/2 = 2d} (46)
z —y*/?* =2d} z— ™% =2v1gY
Hence, either

y*? =2~ df (47)
or

v/ = dt - 20 (49)

We proceed in several steps.
Step 1. (1) Ifz > y then either y < 9 and 2 < 27, ory > 9 and
T < 3y.
(2) Ifz <y and y > 2.6-10%, then y < 4z.
(1) Assume first that z > y. Since
e N

it follows that

% <Y < (2d1)Y <2¥  or v/ < &Y < av. (49)
Hence, R
5 logy < ylogz. (50)
Inequality (50) is equivalent to
z Y
2 . 1
logz < logy (51)

If y < 9, then one can check easily that (51) implies z < 27. Suppose now
that y > 9. We show that inequality (51) implies z < 3y. Indeed, assume
that z > 3y. Then

3y Yy < Z 2y
log3+logy log(3y) ~ logz ~ logy

(52)

71



Inequality (52) is equivalent to
3logy <log9 + 2logy

or y < 9. This contradiction shows that z < 3y fory > 9.
(2) Assume now that z <y. Suppose first that

y:r/2 = 2y—2d11} _ dg

In this case
(2d,)? > 2V 2dY = df +y*/% > d
. . vz
therefore 2d; > d2. Since = 2d1dy, it follows that 2d; > /z, or d; > 5
Suppose now that
y:t/2 — dzlj _ 2y—2d§l.
In this case,
d¥ > 297y >
or dy > ds. We obtain that dy > Vdide = 3’ > %_—
If equality (47) holds, it follows that
e e B
On the other hand, if equality (48) holds, then
do\Y
/2 — gvly —ov—2(22
dlll (dl) l (54)

From inequality (53) and equation (54), we conclude that, in either case,

y*? > di,ll — 9€(y—2) (gz)y (55)

1

for some ¢ € {x1}. Suppose now that z > e®. By theorem BW, and
inequality (55), it follows that

z
§logy > ylogd; —log2 —48%]logzlogy >

ylog l/,)—i —log2 —48'%]log zlogy (56)
or
48%%logzlogy +10g2 + = logy > ylog \/TE (57)
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CASE 1. Assume that z < 2. From inequality (57), it follows that

&
481% - 6log2 - logy + log 2 + 2% logy > ylog \/‘)é_ > %
or
(48103 -6log2 + 25) logy +log2 > g-
or
2(48'% - 6log 2 + 25 + 1) > ——. (58)
logy

Let C; = 2(48'% - 6log2 + 2° + 1). From inequality (58) and lemma 2 in
[6], it follows that

y < Cilog? C1 < 2(48'% - 6log 2 + 25 + 1) - 422 < 2.6 - 10%1. (59)
CASE 2. Assume that z > 26. Then,

d1>\/7'523\/5.

Inequality (56) becomes

1
48%logzlogy +log?2 + Zlogy > = ylogz

2 3
or _ 2
3e48'%logzlogy +log8 + 7 zlogy > ylogz
or 3
(3e481% + 1) logzlogy + 5 zlogy > ylogz
or -
4804142 o5 Y 0
348+ 14 5 0% > Togp (60)
Assume first that
3 T 3481041 (61)
2 logz '
In this case, o
z = 10 5
Togz <3 (3e48™ +1). (62)

‘)
Let Cy = -;: (3e48!° + 1). From inequality (62) and lemma 2 in (6], it follows
that 0
< Calog?Cy < §(3e481° +1)-41%2 < 6-10%. (63)

In this case, from inequalities (60) and (61), it follows that

y
logy

< 2(3e48% +1). (64)
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Let Cs3 = 2(3¢48!° + 1). It follows, by inequality (64) and lemma 2 in (6],
that '
y < Cslog? Cs < 2(3e48'% +1) - 422 < 1.8 - 10%%. (65)

Assume now that y > 2.6-10%!. From inequality (59), it follows that z > 28,
Moreover, since inequality (65) is a consequence of inequality (61), it follows

that
§_ T

2 logz

From inequalitites (60) and (66) it follows that

> 3e48'% + 1. (66)

3z Y
Togz > gy (67)

We now show that inequality (67) implies ¥y < 4z. Indeed, assume that
y > 4z. Then inequality (67) implies

3z > v oS iz 4z
logz ~ logy ~ log(4z) ~ logz +log4

or
3logz + 3log4 > 4logzx

or 3log4 > logz which contradicts the fact that z > 28.
Step 2. Ify > 3-10'%3, then y is prime.
Let

Y% =2v72dY — d or y*/? = d¥ —2v~2d3. (68)

Notice that if y*/2 = 2¥~2d¥ — d}, then ged (2d;, d2) = 1. Let p| y be a
prime number. Since p f 2d1dz = z, it follows, by theorem vdP, that

g < max (ord,, (2v—2dY —d3), ordp(d¥—2y‘2d,§)) < 48%e—L_ 1og? ylogz.

logp
(69)
By step 1, it follows that -
ly <z <2 48%e—P log?ylog(dy) <4- 48%e—P_log3y. (70)
4 = logp logp ™ ~
Hence, . »
436 436
- <16-48%ep — <16+ 48%%ep. (71)

Suppose that y is not prime. Let p | y be 2 prime such that p < \/y. From
inequality (71) it follows that

_%;7_ < 16-48%%
log” y
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or

—;/i— < 128 48%%. (72)
log” (/%)

Let k = /7 and C4 = 128 - 48%%. By inequality (72) 2nd lemma 2 in 6], it
follows that

VI =k < Cylog! Cq = 128 - 48%%¢ - 146* < 5.3 107 (73)

or
y < (5.3-10™)% <3101 (74)

This last inequality contradicts the assumption that y >3- 103,

Step 3. Ify > 3-101%3, thenz > y.
Let y = p be a prime. If y*/2 = 2v=24} — dj, it follows, by Fermat’s
little theorem that

2—1d1 —dy = 2y—2d¥ — d'é‘ = y:"'/'2 =0 (mod p),

therefore
dy = 2d; (mod p). (75)

On the other hand, if y*/2 = d} — 2¥~2dj, then
dy -2 1dy = d¥ — 2¥2d§ = y*/? = 0 mod p),

therefore
do = 2d; (mod p). (76)

Suppose that z < y. From congruences (75) and (76), we conclide that, in
both cases, z is a perfect square. Hence,

v == (EY = (4 (@) (- (v®)
From equation (77) it follows that

z—(vz)’ =1
78
{z—l—(\/iay:yz (7%)

Hence,

2(vz)? =y* - 1. (79)
It follows, by equation (79) and theorem BW, that

1 -2y~ (Vz)¥

zlogy — log2 — 64'%elog? ylog z. (80)

0 =log >

y*— 2(\/5)y| = log(y*) + log
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From inequality (80) and Step 1 it follows that

1
log 2 + 64'%elog® y > zlogy > %Q
or
4log2 + 4 - 64'2elog®y > ylogy
or
(4-642%e+1)log’y >y
or y
4-64%+1> . 81
oy (81)

Let Cs = 4-64'2¢ +1. By inequality (81) and lemma 2 in [6] it follows that

y < Cslog®Cs < (4-641%e+1)-53% < 8-10%. (82)

The last inequality contradicts the fact that y >3- 1043

Step 4. Suppose thaty > 3-10'3. Let y = p be a prime. Then,
with the notations of Step 1, every solution of equation (4) is of one of the
following forms:

(1) y*/* =2¥"2d} —dj withy=p, di=2+p, d2o=1, z=4+2p
3p—1

2

FA

(2) y/? =d¥ —2v"2d§ withy=p, d; =

,de=1 z=3p—1

’ -1
(3) y*/* =dy —2¥7%dj withy=p, d =222 d,=3z=3p-9

&)

4

We assume that y > 3 - 103, In this case, y = p is prime, and = > y.
From Step 1 we conclude that z < 3y. Moreover, from the arguments used

at Step 1 it follows that d; > i‘)—a_:_ Since = = 2d;d», it follows that

da < VI < /3y =/3p.

By the arguments used at Step 3 we may assume that z is not a perfect
square. We distinguish the following cases.

CASE 1. d» = 1. By congruences (75) and (76) it follows that d; =
2 (mod p), or 2d; =1 (mod p).

Assume that d; =2 (mod p). Sincez =2d;,andp=y <z < 3y = 3p,
it follows that d; =2+ pand z =2d; =4+ 2p.

Assume that 2d; =1 (mod p). Again, sincexz =2d;,and p=y <z <

,and z =3p — 1.

3y = 3p, it follows that d, = d

CASE 2. d» = 2. By congruences (75) and (76) it follows that d; =
4 (mod p), or dy = 1 (mod p). One can easily check that there is no solution
in this case. Indeed, if d; = 4 (mod p), it follows that d; > p + 4. Hence,
T = 2d;dy > 4(p +4) > 3p = 3y which contradicts the fact that z < 3y.
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Similar arguments can be used to show that there is no solution for which
dy =2 and d; =1 (mod p).

CASE 3. d» = 3. By congruences (75) and (76) it follows that d; =
6 (mod p), or 2d; = 3 (mod p). One can easily check that there is no
solution for which d; = 6 (mod p). Suppose that 2d; = 3 (mod p). Since

‘) 7

p=y <z < 3y=3pand z = 2d1d2 = 6d, it follows easily that d; = P
and x = 3p —9.

CASE 4. dyo =k > 4.

If k is even, then, by congruences (75) and (76), it follows that d; =
2k (mod p), or d; = k/2 (mod p). Since z is not a perfect square it follows
that d, > p+k/2, therefore z > 2pk+k? > pk > 4p > 3p = 3y contradicting
the fact that z < 3y.

If k is odd, then, by congruences (75) and (76), it follows that di =

2k (mod p), or 2d; = k (mod p). We conclude that d; > P

T = 2d;dy > k(p—k). Since k(p—k) >3pfor5 <k </3p and p > 3-10148,
we conclude that z > 3p = 3y contradicting again the fact that z < 3y.

, therefore

Step 5. There are no solutions of equation (2) withy >3- 10'*2 and
T even.

According to Step 4 we need to treat the following cases.
CASE 1.

Hence,
p**P = 32+ )P ~1> 272+ p)". (84)

Taking logarithms in inequality (84) we obtain
(2+p)logp > (p—3)log2 +plog(p +2)
or
21log p + p(logp — log(p +2)) > (p — 3) log 2. (85)
It follows, by inequality (85), that

2logp > (p—3)log2

> plog2 < 2logp +3log2 < 5logp. (86)
Tnequality (86) is certainly false for p =y >3- 10143,
CASE 2.

3p—1

F4
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Hence,

p8P=1/2 _ (3—%;3)? —277% < (g‘a“s——l)p < (3_1))?

or

pP=1/2 ¢ (g)” (87)

A

Taking logarithms in inequality (87) it follows that

p_

1
5 logp < plogl.5

or
2p
p—1

Tt follows that p < 1.5% < 4 which contradicts the fact that p > 3 - 1043
CASE 3.

log1.5 < 3log1.5 < log1.5%.

logp <

-1
l)

Z

yx/2=d31l__2y—'2d32/ Withy:p, dlzp ,d2=3,:z:=3p—9.

Hence,
p3P=9/2 = (p_;_g)p — P23 < (p;_s)p < pP. (88)

Z

From inequality (88) it follows that < p or p < 9 which contradicts

the fact that p=1y > 3- 10,

3p—9
2

The Proof of Theorem 4. The given equation has no solution
(y, z, n) withn > 1 and y odd, ¥ < 5. Assume now that y > 5. We
may assume that n is prime. We first show that n is odd. Indeed, assume
that (y, z) is a positive solution of y? + 2¥ = 2z with both y and z odd.
Then (z + y)(z — y) = 2¥. Since ged (z +y, z—y) = 2 it follows that
z—y=2and z+y=2v""1. Hence, y = 2v—2 _ 1. However, one can easily
check that 2¥=2 —1 >y for y > 5.

Assume now that n = p >3 is an odd prime. Write

(’,lj +o-1/2 -'i\ﬁ) . (y —o(y-1)/2, 1,\/5_3) =z
Since Z[i+/2] is euclidian and
ged (y+2070/2 .03, y - 207D/2. 500 =1
it follows that there exists a, b € Z such that
y+20702 Vi = (a+biva)"
y—20-0/2. V5 = (a- ln\/§)n
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From equations (89) it follows that

S (a+bi\/§)n-;-(a—bi\/§)n (©0)

and n n
(a +biV3) - (a — biv3)
224

From equation (90) we conclude that a is odd. From equation (91), it follows
that

o(y—1)/2 _

(91)

2=1/2 = p(na™"t + s),

where s is even. Since both n and a are odd, it follows that na® ! + s is
odd as well. Hence, b = 2=1)/2, Equation (5) can now be rewritten as

Y+ =2z"= ((a +biv2) - (a - bi\/i))n = (a2 +26%)"

or
y? +2V = (a® +2¥)" > 2™ > 2% (92)

Inequality (92) implies that

y? > 2% —2¥ = 2¥(2%¥ . 1) > 2¥,

Z

which is false for y > 5.
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