Smarandache's function applied to perfect numbers

Sebastián Martín Ruiz

5 August 1998

Smarandache's function may be defined as follows:
$S(n)=$ the smallest positive integer such that $S(n)$! is divisible by n. [1] In this article we are going to see that the value this function takes when n is a perfect number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right), p=2^{k}-1$ being a prime number.
Lemma 1 Let $n=2^{i} \cdot p$ when p is an odd prime number and i an integer such that:

$$
0 \leq i \leq E\left(\frac{p}{2}\right)+E\left(\frac{p}{2^{2}}\right)+E\left(\frac{p}{2^{3}}\right)+\cdots+E\left(\frac{p}{2^{E\left(\log _{2} p\right)}}\right)=e_{2}(p!)
$$

Where $e_{2}(p!)$ is the exponent of 2 in the prime number descomposition of $p!$. $E(x)$ is the greatest integer less than or equal to x.
One has that $S(n)=p$.
Demonstration:
Given that $\operatorname{gcd}\left(2^{i}, p\right)=1(g c d=$ greatest common divisor) one has that $S(n)=\max \left\{s\left(2^{i}\right), S(p)\right\} \geq S(p)=p$. Therefore $S(n) \geq p$.

If we prove that p ! is divisible by n then one would have the equality.

$$
p!=p_{1}^{e_{p_{1}}(p!)} \cdot p_{2}^{e_{p_{2}}(p!)} \cdots p_{s}^{e_{p}(p!)}
$$

where p_{i} is the i-th prime of the prime number descomposition of $p!$. It is clear that $p_{1}=2, \quad p_{s}=p, \quad e_{p},(p!)=1$ for which:

$$
p!=2^{e_{2}(p!)} \cdot p_{2}^{e_{p_{2}}(p!)} \cdots p_{s-1}^{e_{p-1}(p!)} \cdot p
$$

From where one can deduce that:

$$
\frac{p!}{n}=2^{e_{2}(p!)-i} \cdot p_{2}^{e_{p_{2}}(p!)} \cdots p_{s-1}^{e_{p+1}(p!)}
$$

is a positive integer since $e_{2}(p!)-i \geq 0$.
Therefore one has that $S(n)=p$

Proposition 1 If n a perfec number of the form $n=2^{k-1} \cdot\left(2^{k}-1\right)$ with $k a$ positive integer, $2^{k}-1=p$ prime, one has that $S(n)=p$.
Demonstration:
For the Lemma it is sufficient to prove that $k-1 \leq e_{2}(p!)$.
If we can prove that

$$
\begin{equation*}
k-1 \leq 2^{k-1}-\frac{1}{2} \tag{1}
\end{equation*}
$$

we will have proof of the proposition since:

$$
k-1 \leq 2^{k-1}-\frac{1}{2}=\frac{2^{k}-1}{2}=\frac{p}{2}
$$

As $k-1$ is an integer one has that $k-1 \leq E\left(\frac{p}{2}\right) \leq e_{2}(p!)$
Proving (1) is the same as proving $k \leq 2^{k-1}+\frac{1}{2}$ at the same time, since k is integer, is equivalent to proving $k \leq 2^{k-1}$ (2).
In order to prove (2) we may consider the function: $f(x)=2^{x-1}-x \quad x \in R$.
This function may be derived and its derivate is $f^{\prime}(x)=2^{x-1} \ln 2-1$.
f will be increasing when $2^{x-1} \ln 2-1>0$ resolving x :

$$
x>1-\frac{\ln (\ln 2)}{\ln 2} \simeq 1^{\prime} 5287
$$

In particular f will be increasing $\forall x \geq 2$.
Therefore $\forall x \geq 2 f(x) \geq f(2)=0$ that is to say $2^{x-1}-x \geq 0 \quad \forall x \geq 2$ therefore

$$
2^{k-1} \geq k \quad \forall k \geq 2 \quad \text { integer }
$$

and thus is proved the proposition.
EXAMPLES:

$6=2 \cdot 3$	$S(6)=3$
$28=2^{2} \cdot 7$	$S(28)=7$
$496=2^{4} \cdot 31$	$S(496)=31$
$8128=2^{6} \cdot 127$	$S(8128)=127$

References:

[1] C. Dumitrescu and R. Müller: To Enjoy is a Permanent Component of Mathematics. SMARANDACHE NOTIONS JOURNAL Vol. 9, No. 1-2,(1998) pp 21-26.

Author:
Sebastián Martín Ruiz. Avda, de Regla 43. CHIPIONA (CADIZ) 11550 SPAIN.

