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Abstract: A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an

ordered pair S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying

digraph of S and σ : A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each

ei ∈ {+,−}. Particularly, a Smarandachely 2-signed digraph or Smarandachely 2-marked

digraph is called abbreviated a signed digraph or a marked digraph. In this paper, we define

the path signed digraph
−→
Pk(S) = (

−→
Pk(D), σ′) of a given signed digraph S = (D, σ) and offer

a structural characterization of signed digraphs that are switching equivalent to their 3-path

signed digraphs
−→
P3(S). The concept of a line signed digraph is generalized to that of a path

signed digraphs. Further, in this paper we discuss the structural characterization of path

signed digraphs
−→
Pk(S).
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§1. Introduction
For standard terminology and notion in digraph theory, we refer the reader to the classic text-
books of Bondy and Murty [2]and Harary et al. [4]; the non-standard will be given in this paper
as and when required.

A Smarandachely k-signed digraph (Smarandachely k-marked digraph) is an ordered pair
S = (D, σ) (S = (D, µ)) where D = (V,A) is a digraph called underlying digraph of S and σ :
A → (e1, e2, ..., ek) (µ : V → (e1, e2, ..., ek)) is a function, where each ei ∈ {+,−}. Particularly,
a Smarandachely 2-signed digraph or Smarandachely 2-marked digraph is called abbreviated
a signed digraph or a marked digraph. A signed digraph is an ordered pair S = (D, σ), where

1Received February 21, 2010. Accepted March 24.
2The third author is B.E student at Department of Computer Science & Engineering, Rajeev Institute of

Technology, Hassan. This is her first research contribution.



A Note on Path Signed Digraphs 43

D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−} is a function. A
marking of S is a function µ : V (D) → {+,−}. A signed digraph S together with a marking µ

is denoted by Sµ. A signed digraph S = (D, σ) is balanced if every semicycle of S is positive
(See [4]). Equivalently, a signed digraph is balanced if every semicycle has an even number of
negative arcs. The following characterization of balanced signed digraphs is obtained in [9].

Proposition 1.1(E. Sampathkumar et al. [9]) A signed digraph S = (D, σ) is balanced if,
and only if, there exist a marking µ of its vertices such that each arc −→uv in S satisfies σ(−→uv) =
µ(u)µ(v).

In [9], the authors define switching and cycle isomorphism of a signed digraph as follows:

Let S = (D, σ) and S′ = (D′, σ′), be two signed digraphs. Then S and S′ are said to be
isomorphic, if there exists an isomorphism φ : D → D′ (that is a bijection φ : V (D) → V (D′)
such that if −→uv is an arc in D then

−−−−−−→
φ(u)φ(v) is an arc in D′) such that for any arc −→e ∈ D,

σ(−→e ) = σ′(φ(−→e )).

Given a marking µ of a signed digraph S = (D, σ), switching S with respect to µ is
the operation changing the sign of every arc −→uv of S′ by µ(u)σ(−→uv)µ(v). The signed digraph
obtained in this way is denoted by Sµ(S) and is called µ switched signed digraph or just switched
signed digraph.

Further, a signed digraph S switches to signed digraph S′ (or that they are switching
equivalent to each other), written as S ∼ S′, whenever there exists a marking of S such that
Sµ(S) ∼= S′.

Two signed digraphs S = (D, σ) and S′ = (D′, σ′) are said to be cycle isomorphic, if there
exists an isomorphism φ : D → D′ such that the sign σ(Z) of every semicycle Z in S equals to
the sign σ(φ(Z)) in S′.

Proposition 1.2(E. Sampathkumar et al. [9]) Two signed digraphs S1 and S2 with the same
underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

§2. Path Signed Digraphs

In [3], Harary and Norman introduced the notion of line digraphs for digraphs. The line digraph
L(D) of a given digraph D = (V,A) has the arc set A := A(D) of D for its vertex set and (e, f)
is an arc in L(D) whenever the arcs e and f in D have a vertex in common in such a way that
it is the head of e and the tail of f ; hence, a given digraph H is called a line digraph if there
exists a digraph D such that L(D) ∼= H. By a natural way, Broersma and Li [1] generalized
the concept of line digraphs to that of directed path graphs.

Let k be a positive integer, and denote
−→
Pk or

−→
Ck a directed path or a directed cycle on

k vertices, respectively. Let D be a digraph containing at least one directed path
−→
Pk. Denote

Πk(D), the set of all
−→
Pk’s of D. Then the directed

−→
Pk-graph of D, denoted by

−→
Pk(D), is

the digraph with vertex set Πk(D); pq is an arc of
−→
Pk(D) if, and only if, there is a

−−−→
Pk+1 or−→

Ck = (v1v2...vk+1) in D (with v1 = vk+1 in the case of a
−→
Ck) such that p = v1v2...vk and
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q = v2...vkvk+1. Note that
−→
P1(D) = D and

−→
L (D). In [7], the authors proposed an open

problem for further study, i.e., how to give a characterization for directed
−→
P3-graphs.

We extend the notion of
−→
Pk(D) to the realm of signed digraphs. In a signed digraph

S = (D, σ), where D = (V,A) is a digraph called underlying digraph of S and σ : A → {+,−}
is a function. The path signed digraph

−→
Pk(S) = (

−→
Pk(D), σ′) of a signed digraph S = (D, σ)

is a signed digraph whose underlying digraph is
−→
Pk(D) called path digraph and sign of any

arc e =
−→
Pk

−→
P ′k in

−→
Pk(S) is σ′(

−→
Pk

−→
P ′k) = σ(

−→
Pk)σ(

−→
P ′k). Further, a signed digraph S = (G, σ)

is called path signed digraph, if S ∼= −→
Pk(S′), for some signed digraph S′. At the end of this

section, we discuss the structural characterization of path signed digraphs
−→
Pk(S).We now gives

a straightforward, yet interesting, property of path signed digraphs.

Proposition 2.1 For any signed digraph S = (D, σ), its path signed digraph
−→
Pk(S) is balanced.

Proof Since sign of any arc σ′(e =
−→
Pk

−→
P ′k) in

−→
Pk(S) is σ(

−→
Pk)σ(

−→
P ′k), where σ is the marking

of
−→
Pk(S), by Proposition 1.1,

−→
Pk(S) is balanced. ¤

Remark: For any two signed digraphs S and S′ with same underlying digraph, their path
signed digraphs are switching equivalent.

In [9], the authors defined line signed digraph of a signed digraph S = (D, σ) as follows:

A line signed digraph L(S) of a signed digraph S = (D, σ) is a signed digraph L(S) =
(L(D), σ′) where for any arc

−→
ee′ in L(D), σ′(

−→
ee′) = σ(−→e )σ(

−→
e′ ) (see also, E. Sampathkumar et

al. [8]).

Hence, we shall call a given signed digraph S a line signed digraph if it is isomorphic to the
line signed digraph L(S′) of some signed digraph S′. By the definition of path signed digraphs,
we observe that

−→
P2(S) = L(S).

Corollary 2.2 For any signed digraph S = (G, σ), its
−→
P2(S) (=L(S)) is balanced.

In [9], the authors obtain structural characterization of line signed digraphs as follows:

Proposition 2.3(E. Sampathkumar et al. [9]) A signed digraph S = (D, σ) is a line signed
digraph (or

−→
P2-signed digraph) if, and only if, S is balanced signed digraph and its underlying

digraph D is a line digraph (or
−→
P2-digraph).

Proof Suppose that S is balanced and D is a line digraph. Then there exists a digraph
D′ such that L(D′) ∼= D. Since S is balanced, by Proposition 1.1, there exists a marking µ

of D such that each arc −→uv in S satisfies σ(−→uv) = µ(u)µ(v). Now consider the signed digraph
S′ = (D′, σ′), where for any arc −→e in D′, σ′(−→e ) is the marking of the corresponding vertex in
D. Then clearly, L(S′) ∼= S. Hence S is a line signed digraph.

Conversely, suppose that S = (D, σ) is a line signed digraph. Then there exists a signed
digraph S′ = (D′, σ′) such that L(S′) ∼= S. Hence D is the line digraph of D′ and by Corollary
2.2, S is balanced. ¤

We strongly believe that the above Proposition can be generalized to path signed digraphs
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−→
Pk(S) for k ≥ 3. Hence, we pose it as a problem:

Problem 2.4 If S = (D, σ) is a balanced signed digraph and its underlying digraph D is a path
digraph, then S is a path signed digraph.

§3. Switching Equivalence of Signed Digraphs and Path Signed Digraphs

Broersma and Li [1] concluded that the only connected digraphs D with
−→
P3(D) ∼= D consists

of a directed cycle with in-trees or out-trees attached to its vertices, with at most non-trivial
trees, where a directed tree T of D is an out-tree of D if V (T ) = V (D) and precisely one vertex
of T has in-degree zero (the root of T ), while all other vertices of T have in-degree one, and an
in-tree of D is defined analogously with respect to out-degrees.

Proposition 3.1(Broersma and Hoede [1]) Let D be connected digraph without sources or
sinks. If D has an in-tree or out-tree, then

−→
P3(D) ∼= D if, and only if, D ∼= −→

Cn for some n ≥ 3.
Hence, if D is strongly connected, then

−→
P3(D) ∼= D if, and only if, D ∼= −→

Cn for some n ≥ 3.

In the view of the above result, we now characterize signed digraphs that are switching
equivalent to their

−→
P3-signed digraphs.

Proposition 3.2 For any strongly connected signed digraph S = (D, σ), S ∼ −→
P3(S) if, and

only if, S is balanced and D ∼= −→
Cn for some n ≥ 3.vskip 3mm

Proof Suppose S ∼ L(S). This implies, D ∼= L(D) and hence by Proposition 3.1, D ∼= −→
Cn.

Now, if S is signed digraph, then by Corollary 2.2, implies that L(S) is balanced and hence if
S is unbalanced its line signed digraph L(S) being balanced cannot be switching equivalent to
S in accordance with Proposition 1.2. Therefore, S must be balanced.

Suppose that S is balanced and D ∼= −→
Cn for some n ≥ 3. Then, by Proposition 2.1,

−→
P3(S)

is balanced, the result follows from Proposition 1.2. ¤
In [9], the authors defined a signed digraph S is periodic, if Ln+k(S) ∼ Ln(S) for some

positive integers n and k.

Analogous to the line signed digraphs, we defined periodic for
−→
P3(S) as follows:

For some positive integers n and k, define that a path signed digraph
−→
P3(S) is periodic, if−−−→

Pn+k
3 (S) ∼ −→

Pn
3 (S).

Proposition 3.3(Broersma and Hoede [1]) If D is strongly connected digraph and
−→
Pn

3 (D) ∼= D

for some n ≥ 1, then
−→
P3(D) ∼= D and D is a directed cycle.

The following result is follows from Propositions 2.1,3.2 and 3.3.

Proposition 3.4 If S is strongly connected signed digraph, and
−→
Pn

3 (S) ∼ S for some n ≥ 1,
then

−→
P3(S) ∼ S and D is a directed cycle.

The negation η(S) of a given signed digraph S defined as follows: η(S) has the same
underlying digraph as that of S with the sign of each arc opposite to that given to it in S.
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However, this definition does not say anything about what to do with nonadjacent pairs of
vertices in S while applying the unary operator η(.) of taking the negation of S.

For a signed digraph S = (D, σ), the
−→
Pk(S) is balanced (Proposition 2.1). We now examine,

the condition under which negation of
−→
Pk(S) (i.e., η(

−→
Pk(S))) is balanced.

Proposition 3.5 Let S = (D, σ) be a signed digraph. If
−→
Pk(D) is bipartite then η(

−→
Pk(S)) is

balanced.

proof Since, by Proposition 2.1,
−→
Pk(S) is balanced, then every semicycle in

−→
Pk(S) contains

even number of negative arcs. Also, since
−→
Pk(G) is bipartite, all semicycles have even length;

thus, the number of positive arcs on any semicycle C in
−→
Pk(S) are also even. This implies that

the same thing is true in negation of
−→
Pk(S). Hence η(

−→
Pk(S)) is balanced. ¤

Proposition 3.2 provides easy solutions to three other signed digraph switching equivalence
relations, which are given in the following results.

Corollary 3.6 For any signed digraph S = (D, σ), η(S) ∼ −→
P3(S) if, and only if, S is an

unbalanced signed digraph on any odd semicycle.

Corollary 3.7 For any signed digraph S = (D, σ) and for any integer k ≥ 1,
−→
Pk(η(S)) ∼ −→

Pk(S).
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