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Abstract: 

 It is proved that a ring R in which for every x ∈ R there exists a (and hence 

the smallest) natural number n(x) > 1 such that xn(x) = x is always a Smarandache 

Ring. Two examples are provided for justification. 
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Introduction 

 In [14], it is stated that, in any human field, a Smarandache structure on a 

set A means a weak structure W on A such that there exists a proper subset B ⊂ A 
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which is embedded with a stronger structure S. These types of structures occur in 

our every day’s life. 

 The study of Smarandache Algebraic structures was initiated in the year 

1998 by Raul Padilla following a paper written by Florentin Smarandache called 

“Special Algebraic Structures”. Padilla treated the Smarandache Algebraic 

Structures mainly with associative binary operation. 

 In, [11], [12], [13], [14], W.B. Vasantha Kandasamy has succeeded in 

defining  around 243 Smarandache concepts by creating the Smarandache 

analogue of the various ring theoretic concepts.  

 The Smarandache notions are an excellent means to study local properties 

in Rings. The definitions of two levels of Smarandache rings, namely, S-rings of 

level I and S-rings of level II are given. S-ring level I, which by default of notion, 

will be called S-ring. 

 In [3] a ring R in which for every x ∈ R there exists a (and hence the 

smallest) natural number n(x) > 1 such that xn(x) = x  is introduced. In the literature 

such rings exist naturally, for instance, the rings Z6 (modulo integers),  Z10  

(modulo integers),   Boolean ring. In this paper we prove that “A ring R in which 

for every x ∈ R there exists a (and hence the smallest) natural number n(x) > 1 

such that xn(x) = x  is always a Smarandache ring. Two examples are provided for 

justification. 
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 In section I we recall some definitions, examples and propositions 

pertaining to Smarandache Rings. In section 2 we prove our main theorem.          

In section 3, we give examples to justify our theorem. For basic definitions and 

concepts please refer [3]. 

Section – I 

Definition 1.1: ([13]). A Smarandache ring (in short S-ring) is defined to be a ring 

A such that a proper subset of A is a field with respect to the operations induced. 

By a proper subset we understand a set included in A different from the empty set, 

from the unit element if any and from A. 

Example 1.2: Let F[x] be a polynomial ring over a field F. F[x] is an S-ring. 

Example 1.3: Let Z12 = {0,1,2, ….., 11} be a ring . Z12 is an S-ring as A = {0,4,8} 

is a field with 4 acting as the unit element. 

 It is interesting to note that we do not demand the unit of the ring to be the 

unit of the field. 

Definition 1.4: Let R be a ring. R is said to be a Smarandache ring of level II (S-

ring II) if R contains a proper subset A (A ≠ φ) such that 

(1.4.1)  A is an additive abelian group   

(1.4.2)           A is a semi group under multiplication 
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(1.4.3)  For a, b ∈ A, a.b = 0 if and only if a = 0 or b = 0.   

Proposition 1.5: ([13]) Let R be an S – ring I, then R is an S – ring II. 

Proposition 1.6: ([4]). Any finite domain is a division ring. 

Section – 2 

 In this section we show that the ring R in which for every element x ∈ R 

there exists a (and hence the smallest) natural number n(x) > 1 such that xn(x) = x  is  

a Smarandache ring. For completeness, we write some lemmas from [1].  

 In [3], it is well known that the ring R in which for every element x ∈ R 

there exists a (and hence the smallest) natural number n(x) > 1 such that xn(x) = x   

is commutative and xn(x)-1 is an idempotent element of R, i.e, for every x ∈ R, 

 (xn(x)-1)2 = x n(x)-1, (i) 

which implies that R has no nonzero nilpotent elements i.e., for every x ∈ R and 

every natural number k ≥ 1 

 xk = 0 implies x = 0 (ii) 

Lemma 2.1:  Let  R be a ring in which  for  every  element x ∈ R   there  exists  a  

( and hence the smallest ) natural number n(x) > 1 such that xn(x) = x . The ring R is 

partially ordered by ≤  where for all elements x and y of R 
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  x ≤ y if and only if xy = x2  (iii) 

Proof: It is immediate that ≤ is reflexive as xx = x2. Next, let x≤ y and y ≤ x   then 

xy = x2 and yx = y2. Now (   x2 – xy ) – ( yx – y2 ) = 0 ⇒ x2 – xy –  yx + y2 = 0  ⇒      

x2 – xy –  xy + y2 = 0  as R is commutative.  This implies that   x2 – 2xy + y2 = 0 ⇒     

( x – y)2 = 0. In view of (ii), we get x – y = 0  or x = y. Hence, ≤  is anti-symmetric. 

Finally, let x ≤ y and y ≤ z, i.e., xy = x2 and yz = y2. Now, x2z = xyz = xy2 = x2y = x3.   

So  x2z = x3 ⇒x2z2 = x3z and x3z = x4. But, then (x2z2 – x3z ) – (x3z – x4 ) = 0 ⇒ x2z2 

–2x3z + x4 = 0 ⇒ (xz – x2)2 = 0. In view of (ii), we get   xz = x2  ⇒ x ≤ z. Therefore, 

≤   is transitive. Hence, (R, ≤) is a partially ordered set. 

Lemma 2.2:  Let R be a ring in which    for every element x ∈ R there exists a      

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x. For all 

elements x, y, z of R  

                      y ≤ z ⇒ xy ≤ xz (iv) 

 and    xn(x)-1. y ≤ y (v) 

Proof:   Let  x, y, z be any three elements of R. In view of (iii)    y ≤ z ⇒ yz = y2 ⇒ 

x2 (yz) = x2y2 ⇒ (xy) (xz) = (xy)2   ⇒ xy ≤ xz.     

Further, in view of (i) we have   xn(x)-1. y2 = (xn(x)-1 y)2 ⇒ xn(x)-1. y ≤ y. 
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Definition 2.3: Let R be a ring in which for every element x ∈ R there exists a      

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x. A nonzero 

element a of R is called an atom of R provided for every   x ∈ R, 

 x ≤ a implies x = a or x = 0 (vi) 

 More over, R is called atomic provided for every nonzero element r of R 

there exists an atom a of R such that a ≤ r. 

Lemma 2.4: Let  R be a ring in which  for  every element x ∈ R  there exists   a    

( and hence the smallest ) natural number n(x) > 1 such that xn(x) = x , and let a  be 

an atom of R. Then   rn(r)-1 . a = a  or  ra=0, for every element r of R. 

Proof: By (v),we have rn(r)-1a ≤ a and since a is an atom by (vi) we have rn(r)-1a = a  

or  rn(r)-1a = 0 .  ⇒  rn(r)-1a = a  or ra=0 (since rn(r)  = r ). 

Definition 2.5: Let R be a ring in which   for every element x ∈ R there exists a    

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x. A subset S of 

R is called orthogonal provided  xy = 0 for distinct elements x and y of S. 

Lemma 2.6: Let R be a ring in which   for every element x ∈ R there exists a        

( and hence the smallest ) natural number n(x) > 1 such that xn(x) = x . Then the set 

(ei)i∈I of all idempotent atoms of R is an orthogonal set. 



 7

Proof: Since for each i ∈ I, ei is both an atom and an idempotent, from Lemma 

(2.4) it follows that   eiej = ej = ei or eiej = 0. 

Lemma 2.7: Let R be a ring in which for every element x ∈ R there exists a          

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x, and let a be an 

atom of R. Then  an(a)-1 is an idempotent atom of R. 

Proof: From (i) it follows that an(a)-1  is idempotent. Now, let x ≤  an(a)-1. But by 

(iv) we get   ax ≤   an(a)  =  a  i.e., ax  ≤   a.  Since a is an atom by (vi) it follows 

that   ax = a or ax = 0. 

 If ax = a then   an(a)-1 ⋅ x =  an(a)-1. By (iii) we get   an(a)-1 ≤  x. Hence, x = an(a)-1. 

 If ax = 0  then  an(a)-1⋅ x = 0 ; but an(a)-1 ⋅ x = x2. Therefore  x2 = 0. By (ii) we 

get   x = 0. 

Lemma 2.8: Let R be a ring in which for every element x ∈ R there exists a          

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x, and let (ei)i∈I 

be the set of all idempotent atoms of R, then for every i ∈ I the ideal Fi of R given 

by 

 Fi = {r ei / r ∈R } (vii) 

is a subfield of R. 
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Proof: Since 2
ie  =  ei , it follows that ei is an element of Fi and also the unit of Fi. 

 Now let rei be a non zero element of Fi. We show that rei has an inverse in 

Fi. If n(r) > 2 then   by lemma (2.4) we have (r ei) (rn(r)-2ei) = ei. It follows that   

rn(r)-2ei is the inverse of rei in Fi. 

 If n(r) = 2 then by lemma (2.4) we have (r ei) (r ei) = r2 2
ie  =  rei = ei . It 

shows that rei   has its own inverse in Fi. 

 Now, we are ready to prove the main theorem. 

Theorem 2.9: The ring R in which for every element x ∈ R there exists a (and 

hence the smallest) natural number n(x) > 1 such that xn(x) = x  is always a 

Smarandache ring. 

Proof: Let (ei)i∈I be the set of all idempotent atoms of R. In view of the lemma 

(2.8), for every i ∈ I, the ideal Fi of R given by Fi = {rei / r ∈R } is a field of R. 

Hence, the ring R is a Smarandache ring. 

SECTION – 3 

 In this section we give examples to justify our theorem (2.9).  Further, we 

show by an example that the condition ‘for every element x ∈ R there exists a       

(and hence the smallest) natural number n(x) > 1 such that xn(x) = x’ satisfied by the 

ring R in our results is a sufficient condition but not a necessary condition. 
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Example 3.1: Consider the ring  Z10 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9}(modulo 

integers). It is obvious that 02 = 0; 12 = 1; 25 = 2; 35 = 3; 43 = 4; 52 = 5; 62 = 6;      

75 = 7; 85 = 8; 93 = 9. Therefore the ring R = Z10 satisfies the condition ‘for every 

element x ∈ R there exists a (and hence the smallest) natural number  n(x) > 1 

such that xn(x) = x’. Further, in view of the relation table (see table I), and lemma 

(2.1), (Z10, ≤) is a partially ordered set.   The Hasse diagram (see [9]) of the p.o. 

set (Z10, ≤ ) is given (see fig. I ) for our use. 

        From the Hasse diagram it is obvious that the elements 2, 4, 5, 6, 8 are 

atoms and the elements 5, 6 are idempotent atoms in (Z10, ≤). In view of lemma 

(2.8), the ideals 

 F1 = {r.5 / r ∈Z10 } = {0, 5} and 

 F2 = {r.6 /r∈Z10 } = {0,2,4,6,8} are fields. Hence the ring Z10 (modulo 

integers) is a Smarandache ring.  
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Example 3.2: Consider the ring Z6 = {0, 1, 2, 3, 4, 5} (modulo integers).It is 

obvious that 02 =0; 12 =1; 23 =2; 32 =3; 42 =4; 53 = 5. Therefore, the ring R= Z6 

satisfies the condition   ‘for every element x ∈ R there exists a (and hence the 

smallest) natural number n(x) > 1 such that xn(x) = x’. In view of the relation table 

(see table II), and lemma (2.1), (Z6, ≤) is a partially ordered set.   The Hasse 

diagram (see [9]) of the p.o. set (Z6, ≤) is given (see fig. II) for our use. 

             From the Hasse diagram, it is obvious that the elements 2, 3,4, are 

atoms and the elements 3, 4 are idempotent atoms in (Z6, ≤ ). In view of lemma 

(2.8), the ideals F1 = {r.3 / r ∈Z6 } = {0, 3} and F2 = {r.4 /r∈Z6 } = {0, 2, 4,} are 

fields. Hence Z6 (modulo integers) is a Smarandache ring. 
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Fig – II 

 Finally, we show by an example that the condition ‘for every element x ∈ R 

there exists a (and hence the smallest) natural number n(x) > 1 such that xn(x) = x’ 

satisfied by the ring R in our results is a sufficient condition but not a necessary 

condition. 

Example 3.3: In [13] Vasantha Kandasamy W.B. quoted the example (1.3) for 

Smarandache ring. This ring Z12 = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11} (modulo 

integers) is a Smarandache ring but  the condition  ‘ for  every element x ∈ R  

there exists a   ( and hence the smallest ) natural number n(x) > 1 such that xn(x) = 

x’ fails  in the ring Z12 as there does not exist an integer n(2) > 1 for the integer 2 

in Z12  such that 2n(2) = 2. Hence, the condition is a sufficient condition but not a 

necessary condition. 
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