NOTE ON THE DIOPHANTINE EQUATION 2z* -3y* =p

Mladen V. Vassilev - Missana and Krassimir T. Atanassov

The solving of the Diophantine equation

202 -3y =5 (1)

ie.,
227 -3y -5=0

was put as an open Problem 78 by F. Smarandache in [1]. Below this problem is solved
completely. Also, we consider here the Diophantive equation

?—6m? = -5, (2)
le.,
P—-6m?+5=0

and the Pellian equation
u? - 6v? = 1, (3)

1.e.,
W —6vi—1=0.

Here we use variables z and y only for equation (1) and [, m for equation (2).
We will need the following denotations and definitions:

N ={1,2,3,..};
if
Ft.w) =0

is an Diophantive equation, then:
(a;) we use the denotation < t,w > if and only if (or briefly: iff) t and w are integers which
satisfy this equation.
(a;) we use the denotation < t,w >€ N?iff t and w are positive integers;
K (t,w) denotes the set of all < ¢,w >;
K°(t,w) denotes the set of all < t,w > V7
K'(t,w) = K°(t,w) — {< 2,1 >}.

LEMMA 1: f <t,w > N? and < z,y >#< 2,1 >, then there exists < {,m >, such that
< I,m >€ N? and the equalities

z=!+3mandy=1[01+2m (4)

hold.

64



LEMMA 2: Let < I,m >€ N2 If £ and y are given by (1), then z and y satisfy (4)
and < r,y >€ N2
We shall note that lemmas 1 and 2 show that the map ¢ : A°(I,m) — K'(z,y) given by
(4) i1s a bijection.

Proof of Lemma 1: Let < z,y >€ N? be chosen arbitrarily, but < z,y >#< 2,1 >.
Then y > 2 and z > y. Therefore,
I=y+m (3)

and m is a positive integer. Subtracting (3) into (1), we obtain
y:—dmy +5—-2m? = 0. (6)

Hence

y=yi2=2m+ V6m? - 5. -

For m =1 (7) yields only
y=1uy =3

indeed
l=y=y<2

contradicts to y 2> 2.
Let m > 1. Then

2m - vV6m?2 — 5 < 0.

Therefore y = y, is impossible again. Thus we always have
y=1uy =2m+ V6m? - 5. (8)

Hence

y—2m = V6m? - 3. 9

The left-hand side of (9) is a positive integer. Therefore, there exists a positive integer !

such that
6m? — 5 = 1%

Hence [ and m satisfy (2) and < I,m > N2
The equalities (4) hold because of (3) and (8). ¢

Proof of Lemma 2: Let < ,m >€ A% Then we check the equality
2(1 4+ 3m)? = 3(1 +2m)? =5,

under the assumption of validity of (2) and the lemma is proved. ¢
Theorem 108 a, Theorem 109 and Theorem 110 from [2] imply the following

THEOREM 1: There exist sets A;(l,m) snch that

K{l,m)C K({l,m) (¢:=1,2),
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Ki(l,m)n Ky(l,m) =90,

and K(I,m) admits the representation
K(l,m) = K{{l,m)U I3(l,m).

The fundamental solution of K;(l,m) is < —1,1 > and the fundamental solution of
Ka(l,m)is < 1,1 >.

Moreover, if < u,v > runs K'(u,v), then:
(by) < I,m > runs K;(I,m) iff the equality

I+mv6=(=1+ V6)(u+vV6) (10)

holds;
(by) < I,m > runs Ny(l,m) iff the equality

I+m\/€=(l+\/6)(u+v\/6) (11)

holds.
We must note that the fundamental solution of (3) is < 3,2 >. Let u, and v, be given
by
un +vaV6 = (5+2VB)" (n € N. (12)
Then u, and v, satisfy (11) and < u,,v, >€ A% Moreover, if n runs N, then < un, v, >
runs K°(u,v). '
Let the sets K?(I,m) (i = 1,2) are introduced by

Ke(l,m) = Ki(l,m) N A (13)
As a corollary from the above remark and Theorem 1 we obtain

THEOREM 2: The set K°(l,m) may be represented as

Ke(l,m) = K7 (I,m)U K3(l,m), (14)
where
K(l,m)Nn K3(I,m) = 0. (15)
Moreover:
(c1) If n runs A and the integers I, and m, are defined by
I, + maV6 = (=1 + VB)(5 +2V6)", (16)

then I, and m, satisfy (2) and < I, m, > runs K{(l,m);
(c2) If n runs A U {0} and the integers [, and m, are defined by

L + maV6 = (1 + VB)(5+2V6)*, (17)

then [, and m, satisfy (2) and < [,,m, > runs K3(l/,m).
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Let ¢ be the above mentioned bijection. The sets N°(z,y) (1 = 1,2) are introduced by
Ke*(z,y) = o(K7(1,m)). (18)

From Theorem 2, and especially from (14), (15), and (18) we obtain

THEOREM 3: The set A°(z,y) may have the representation
KN®(z,y) = K?(z,y) U K3(x,y), (19)

where
K3(z,y) 0 K3(z,y) = 0. (20)

Moreover:
(d;) If n runs NV and the integers 7, and y, are defined by

Tn =l +3m, and y,, = [, + 2m,,, (21)

where [, and m, are introduced by (16), then z, and 3, satisfy (1) and < z,,y, > runs

K3 (z,y);
(d;) If n runs M U {0} and the integers z, and y, are defined again by (21), but I, and m,
now are introduced by (17), then z, and y, satisfy (1) and < z,,y. > runs K3(z,y).
Theorem 3 completely solves F. Smarandache’s Problem 78 from [1}, because [, and m,
could be expressed in explicit form using (16) or (17) as well.

*
* *

Below we shall introduce a generalization of Smarandache’s problem 87 from [1].
If we have to consider the Diophantine equation

222 - 3y = p, (22

where p # 2 is a prime number, then using {2, Ch. VII, exercize 2] and the same method as
in the case of (1), we obtain the following result.
THEOREM 4: (1) The necessary and sufficient condition for the solvability of (22) is

p = 5(mod24) or p = 23(mod24) (23);

(2) If (23) is valid, then there exists exactly one solution < z,y >€ N?
of (22) such that the inequalities z < \/%.p;y < ,/%.p hold. Every
other solution < z,y >€ A2 of (22) has the form:

z=101+3m

y=1+2m,

where < [,m >€ A? is a solution of the Diophantine equation

P —6m?®=—p.
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The question how to solve the Diophantine equation, a special case of which is the above
one, is considered in Theorem 110 from [2].
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