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Let A, B',C" be the feet of the altitudes of an acute-angled triangle ABC
(A" € BC, B' € AC, C’ € AB). Let a',V, ¥ denote the sides of the podaire triangle
A'B'C'. Smarandache’s Podaire theorem [2] (see [1]) states that

Za’b’ < iZaZ Q1)

where a, b, c are the sides of the triangle ABC. Our aim is to improve (1) in the following
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First we need the following auxiliary proposition.
Lemma. Let p and p’ denote the semi-perimeters of iriangles ABC and A'B'C’, re-

form:

spectively. Then »
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Proof. Since AC' = bcos A, AB' = ccos A, we get
C'B' = AB® + AC” — 2AB'- AC' - cos A = a® cos? A,
so C'B’' = acos A. Similarly one obtains
A'C'=bcosB, A'B’' =ccosC.
Therefore
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(where R is the radius of the circumcircle). By a = 2Rsin A, etc. one has
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where S = area(ABC). By p= g (r = radius of the incircle) we obtain

T
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Now, Euler’s inequality 2r < R gives relation (3).
- For the proof of (2) we shall apply the standard algebraic inequalities

3(zy + 7z +y2) < (z+y+2)? <32 +y° + 22).

Now, the proof of (2) runs as follows:
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Remark. Other properties of the podaire triangle are included in a recent paper of
the author ([4]), as well as in his monograph [3].
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