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Abstract: Let G be a connected graph of order n, and NC2(G) denote min{|N(u)∪N(v)| :

dist(u, v) = 2}, where dist(u, v) is the distance between u and v in G. A cycle C in G is

called a dominating cycle, if V (G)\V (C) is an independent set in G. In this paper, we prove

that if G contains a dominating cycle and δ ≥ 2, then G contains a dominating cycle of

length at least min{n, 2NC2(G)−1} and give a family of graphs showing our result is sharp,

which proves a conjecture of R. Shen and F. Tian, also related with the cyclic structures of

algebraically Smarandache multi-spaces.
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§1. Introduction

All graphs considered in this paper will be finite and simple. We use Bondy & Murty [1] for

terminology and notations not defined here.

Let G = (V,E) be a graph of order n and C be a cycle in G. C is called a dominating

cycle, or briefly a D-cycle, if V (G)\V (C) is an independent set in G. For a vertex v in G, the

neighborhood of v is denoted by N(v), and the degree of v is denoted by d(v). For two subsets

S and T of V (G), we set NT (S) = {v ∈ T \S :N(v) ∩ S 6= ∅}. We write N(u, v) instead of

NV (G)({u, v}) for any u, v ∈ V (G). If F and H are two subgraphs of G, we also write NF (H)

instead of NV (F )

(
V (H)

)
. In the case F = G, if no ambiguity can arise, we usually omit the

subscript G of NG(H). We denote by G[S] the subgraph of G induced by any subset S of V (G).

For a connected graph G and u, v ∈ V (G), we define the distance between u and v in

G, denoted by dist(u, v), as the minimum value of the lengths of all paths joining u and v in

G. If G is non-complete, let NC(G) denote min{|N(u, v)| : uv /∈ E(G)} and NC2(G) denote

min{|N(u, v)| : dist(u, v) = 2}; if G is complete, we set NC(G) = n− 1 and NC2(G) = n− 1.

In [2], Broersma and Veldman gave the following result.

Theorem 1([2]) If G is a 2-connected graph of order n and G contains a D-cycle, then G has

a D-cycle of length at least min{n, 2NC(G)} unless G is the Petersen graph.

For given positive integers n1,n2 and n3, let K(n1, n2, n3) denote the set of all graphs
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of order n1 + n2 + n3 consisting of three disjoint complete graphs of order n1, n2 and n3,

respectively. For any integer p ≥ 3, let J ∗
1 (resp. J ∗

2 ) denote the family of all graphs of order

2p+ 3 (resp. 2p+ 4) which can be obtained from a graph H in K(3, p, p) (resp. K(3, p, p+ 1))

by adding the edges of two triangles between two disjoint triples of vertices, each containing

one vertex of each component of H . Let J1 = {G :G is a spanning subgraph of some graph in

J ∗
1 } and J2 = {G :G is a spanning subgraph of some graph in J ∗

2 }. In [5], Tian and Zhang

got the following result.

Theorem 2([5]) If G is a 2-connected graph of order n such that every longest cycle in G

is a D-cycle, then G contains a D-cycle of length at least min{n, 2NC2(G)} unless G is the

Petersen graph or G ∈ J1 ∪ J2.

In [4], Shen and Tian weakened the conditions of Theorem 2 and obtained the following

theorem.

Theorem 3([4]) If G contains a D-cycle and δ ≥ 2, then G contains a D-cycle of length at

least min{n, 2NC2(G)− 3}.

Theorem 4([6]) If G contains a D-cycle and δ ≥ 2, then G contains a D-cycle of length at

least min{n, 2NC2(G)− 2}.

In [4], Shen and Tian believed the followings are true.

Conjecture 1 If G satisfies the conditions of Theorem 3, then G contains a D-cycle of length

at least min{n, 2NC2(G)− ǫ(n)}, where ǫ(n) = 1 if n is even, and ǫ(n) = 2 if n is odd.

Conjecture 2 If G contains a D-cycle and δ ≥ 2, then G contains a D-cycle of length at

least min{n, 2NC2(G)} unless G is one of the exceptional graphs listed in Theorem 2. And the

complete bipartite graphs Km,m+q (q ≥ 1) show that the bound 2NC2(G) is sharp.

In this paper, we prove the following result, which solves Conjecture 1 due to Shen and

Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces (see [3]

for details).

Theorem 5 If G contains a D-cycle and δ ≥ 2, then G contains a D-cycle of length at least

min{n, 2NC2(G)− 1} unless G ∈ J1.

Remark The Petersen graph shows that our bound 2NC2(G)− 1 is sharp.

§2. Proof of Theorem 5

In order to prove Theorem 5, we introduce some additional notations.

Let C be a cycle in G. We denote by
−→
C the cycle C with a given orientation. If u, v ∈ V (C),

then u
−→
Cv denotes the consecutive vertices on C from u to v in the direction specified by−→

C . The same vertices, in reverse order, are given by v
←−
Cu. We will consider u

−→
Cv and v

←−
Cu

both as paths and as vertex sets. We use u+ to denote the successor of u on
−→
C and u− to
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denote its predecessor. We write u+2 := (u+)+ and u−2 := (u−)−, etc. If A ⊆ V (C), then

A+ = {v+ : v ∈ A} and A− = {v− : v ∈ A}. For any subset S of V (G), we write N+(S) and

N−(S) instead of (N(S))+ and (N(S))−,respectively.

Let G be a graph satisfying the conditions of Theorem 4, i.e. G contains a D-cycle and

δ ≥ 2. Throughout, we suppose that

——G is non-hamiltonian and C is a longest D-cycle in G,

——|V (C)| ≤ 2NC2(G)− 2,

——R = G\V (C) and x ∈ R, such that d(x) is as large as possible.

First of all, we prove some claims.

By the maximality of C and the definition of D-cycle, we have

Claim 1 N(x) ⊆ V (C).

Claim 2 N(x) ∩N+(x) = N(x) ∩N−(x) = ∅.

Let v1, v2, . . . , vk be the vertices of N(x), in cyclic order around
−→
C . Then k ≥ 2 since

δ ≥ 2. For any i ∈ {1, 2, . . . , k}, we have v+
i 6= vi+1 (indices taken modulo k) by Claim 2. Let

ui = v+
i , wi = v−i+1 (indices taken modulo k), Ti = ui

−→
Cwi, ti = |Ti|.

Claim 3 NR(y1) ∩NR(y2) = ∅, if y1, y2 ∈ N+(x) or y1, y2 ∈ N−(x).In particular, N+(x) ∩
N(ui) = N−(x) ∩N(wi) = ∅.

For any i, j ∈ {1, 2, . . . , k}(i 6= j), we also have the following Claims.

Claim 4 Each of the followings does not hold :

(1) There are two paths P1[wj , z] and P2[ui, z
−], (z ∈ vj+1

−→
Cvi) of length at most two

that are internally disjoint from C and each other ;

(2) There are two paths P1[wj , z] and P2[ui, z
+] (z ∈ vj+1

−→
C vi) of length at two that are

internally disjoint from C and each other ;

(3) There are two paths P1[ui, z] and P2[uj, z
+] ( z ∈ u+

j

−→
C vi) of length at most two that are

internally disjoint from C and each other, and similarly for P1[ui, z] and P2[uj , z
−] (z ∈ u+

i

−→
C vj).

Claim 5 For any v ∈ V (G), we have dR(v) ≤ 1.

If not, then by Claim 1, there exists a vertex, say v, in C such that dR(v) > 1. Let

x1, x2 ∈ NR(v), then |N(x1, x2)| ≥ NC2(G).

First, we prove that |N(x1, x2) ∩ N+(x1, x2)| ≤ 2. Otherwise, let y1, y2 and y3 be three

distinct vertices in N(x1, x2) ∩ N+(x1, x2). By Claim 2, we know yi ∈ N(x1) ∩N+(x2) or

yi ∈ N(x2) ∩N+(x1) for any i ∈ {1, 2, 3}. Thus, there must exist i and j (i 6= j, i, j ∈ {1, 2, 3})
such that yi, yj ∈ N(x1) ∩ N+(x2) or yi, yj ∈ N(x2) ∩ N+(x1). In either case, it contradicts

Claim 3. So we have that |N(x1, x2) ∩N+(x1, x2)| ≤ 2.
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Now we have

|V (C)| ≥ |N(x1, x2) ∪N+(x1, x2)|
≥ 2|N(x1, x2)| − 2

≥ 2NC2(G)− 2,

so V (C) = N(x1, x2) ∪ N+(x1, x2) by assumption on |V (C)|, and in particular, N(x1, x2) ∩
N+(x1, x2) = {y1, y2}.Therefore y1 ∈ N(x1) ∩N+(x2) and y2 ∈ N+(x1) ∩N(x2).

Now, we prove that dR(v+) ≤ 1, dR(v−) ≤ 1. If not,suppose dR(v−) > 1, let z1, z2 ∈
NR(v−), by Claim 1 and V (C) = N(x1, x2) ∪N+(x1, x2), N(z1, z2) ⊆ N+(x1, x2), so we have

x1 (or x2) ∈ N(v−2). Using a similar argument as above, we have z1 (or z2) ∈ N(v−3), which

contradicts Claim 3. Thus, we have dR(v−) ≤ 1; similarly, dR(v+) ≤ 1.

Now, we consider N(x2, v
−) ∪ N−(x1, v

+).Since dist(x2, v
−) = dist(x1, v

+) = 2 and

|N(x2, v
−)| ≥ NC2(G), |N−(x1, v

+)| = |N(x1, v
+)| ≥ NC2(G). We prove that |NC(x2, v

−) ∩
N−

C (x1, v
+)| ≤ 1. Let z ∈ {NC(x2, v

−) ∩N−
C (x1, v

+)}\{y−1 }.

We consider following cases.

(i) Let z ∈ y+
1

−→
Cy−2

2 , if zx2 ∈ E(G) and x1z
+ ∈ E(G), or zx2 ∈ E(G) and v+z+ ∈ E(G),

or v−z ∈ E(G) and x1z
+ ∈ E(G), each case contradicts Claim 3; if v−z ∈ E(G) and v+z+ ∈

E(G), then C′ = x1y
−
2

←−
Cz+v+−→Czv−←−Cy2x2vx1 is a D-cycle longer than C,a contradiction.

(ii) Let z ∈ y+
2

−→
C y−2

1 , if x2z ∈ E(G) and x1z
+ ∈ E(G), or x2z ∈ E(G) and v+z+ ∈

E(G), both contradict Claim 3; if v−z ∈ E(G) and x1z
+ ∈ E(G), it contradicts Claim 3; if

v−x1 ∈ E(G) and z+v+ ∈ E(G), then C′ = x1y1
−→
C v−z

←−
Cv+z+−→Cy−1 x2vx1 is a D-cycle longer

than C, for z ∈ v−→C y−1 ; and C′ = x1y
−
2

←−
Cv+z+−→Cv−z←−Cy2x2vx1 is a D-cycle longer than C for

z ∈ y2
−→
Cv−.

So, we have |NC(x2, v
−) ∩N−

C (x1, v
+)| ≤ 1. Moreover, y1, y

−
2 /∈ N(x2, v

−) ∪N−(x1, v
+).

Otherwise, if y1 ∈ N(v−), then C′ = x1y
−
2

←−
Cy1v

−←−Cy2x2y
−
1

←−
Cvx1 is a D-cycle longer than C.

By Claim 2, y1 /∈ N(x2) ∪N−(x1, v
+), so we have y1 /∈ N(x2, v

−) ∪N−(x1, v
+). By Claims 1

and 3 we have y−2 /∈ N(x2, v
−) ∪N−(x1, v

+). Thus, we have

|V (C)| ≥ |NC(x2, v
−) ∪N−

C (x1, v
+)|+ 2

≥ |NC(x2, v
−)|+ |N−

C (x1, v
+)| − 1 + 2

= |N(x2, v
−)\NR(x2, v

−)|+ |N(x1, v
+)\NR(x1, v

+)|+ 1

≥ 2NC2(G)− 2 + 1

= 2NC2(G)− 1,

a contradiction with |V (C)| ≤ 2NC2(G)− 2. So, we have dR(v) ≤ 1, for any v ∈ V (G).

Claim 6 ti ≥ 2.

If ti = 1 for all of i, then NR(ui) = ∅ for all of i (if not, let z ∈ NR(ui) for some i, by

Claim 1 and Claim 5 N(z) ⊆ V (C) and ujz ∈ E(G) for some j. then, z ∈ NR(ui) ∩ NR(uj),

a contradiction). Then N(ui) ∩ N+(ui) = ∅ ( otherwise, y ∈ N(ui) ∩ N+(ui), then C′ =
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xvi+1
−→
Cy−uiy

−→
Cvix is a D-cycle longer than C). Moreover, we have N(x) ∩ N+(x) = ∅ by

Claim 2, N+(x) ∩N(ui) = N+(ui) ∩N(x) = ∅ by Claim 3. Hence, N(x, ui) ∩N+(x, ui) = ∅.
So we have

|V (C)| ≥ |N(x, ui) ∪N+(x, ui)| ≥ 2|N(x, ui)| ≥ 2NC2(G),

a contradiction. So we may assume ti = 1 for some i, without loss of generality, suppose t1 = 1

and NR(wk) 6= ∅. Let y ∈ NR(wk), choose y1 ∈ N(y) such that N(y) ∩ (y+
1

−→
Cw−

k ) = ∅. Using a

similar argument as above and dR(u1) ≤ 1, by Claim 5, we have

|V (C)| = |NC(x, u1) ∪N+
C (x, u1)| ≥ 2NC2(G)− 2.

So V (C) = NC(x, u1) ∪ N+
C (x, u1). Similarly, we know that V (C) = NC(x, u1) ∪ N−

C (x, u1).

Moreover, u1w
−
k ∈ E(G). If |y+

1

−→
Cw−

k | = 1, then C′ = xv2
−→
Cy1ywkw

−
k u1v1x is a D–cycle longer

than C, a contradiction. So we may assume that |y+
1

−→
Cw−

k | ≥ 2.

Now, we consider NC(y, y+
1 ) ∪N−

C (x, u1). Since dist(y, y+
1 ) = dist(x, u1) = 2, |N(y, y+

1 | ≥
NC2(G), |N−(x, u1)| = |N(x, u1)| ≥ NC2(G).Moreover, we have v1, v2 /∈ NC(y, y+

1 )∪N−
C (x, u1)

and NC(y, y+
1 ) ∩ N−

C (x, u1) ⊆ {wk}. In fact, v1 /∈ N(y, y+
1 ) by Claims 3 and 5, if v1 ∈

N−(x, u1), then v+
1 x ∈ E(G) or v+

1 u1 ∈ E(G), which contradicts to Claims 2 and 3. So

v1 /∈ NC(y, y+
1 )∪N−

C (x, u1);if v2 ∈ NC(y, y+
1 ), then v2y

+ ∈ E(G) by Claim 5, which contradicts

to Claim 4. If v2 ∈ N−
C (x, u1) then v+

2 ∈ N(x, u1), which contradicts to Claims 2 and 3. So

v2 /∈ NC(y, y+
1 ) ∪N−

C (x, u1). Suppose z ∈ NC(y, y+
1 ) ∩N−

C (x, u1)\{wk}. Now, we consider the

following cases.

(i) z ∈ v2
−→
Cy−1 . If yz ∈ E(G) and xz+ ∈ E(G), then, it contradicts to Claim 3. Put

C′ =





yz
←−
Cv2xv1u1z

+←−Cwky if yz ∈ E(G)andu1z
+ ∈ E(G);

xz+−→Cy1ywk

←−
Cy+

1 z
←−
Cv1x if y+

1 z ∈ E(G) andxz+ ∈ E(G);

xv2
−→
Czy+

1

−→
Cwkyy1

←−
Cz+u1v1x if y+

1 z ∈ E(G) and u1z
+ ∈ E(G).

(ii) z ∈ y1
−→
Cw−

k , then z ∈ N(y+
1 ) since N(y)∩ (y+

1

−→
Cw−

k ) = ∅. Let zy+
1 ∈ E(G) and z+ ∈

NC(x, u1). Since V (C) = NC(x, u1) ∪ N−
C (x, u1), So y+

1 ∈ NC(x, u1) ∪ N−
C (x, u1). If u1y

+
1 ∈

E(G) then C′ = xv2
−→
Cy1ywk

←−
Cy+

1 u1v1x is a D–cycle longer than C , a contradiction; if xy+
1 ∈

E(G), then it contradicts with Claim 3. Then, y+
1 ∈ N−(x, u1). If xz+ ∈ E(G) and y+2

1 x ∈
E(G), then it contradicts to Claim 3; Put

C′ =





xy+2−→Czy+
1

←−
Cu1z

+←−Cv1x if y+2
1 x ∈ E(G) and u1z

+ ∈ E(G);

xv2
−→
C y+

1 z
←−
Cy+2

1 u1
←−
Cz+x if y+2

1 u1 ∈ E(G) and xz+ ∈ E(G);

xv2
−→
C y+

1 z
←−
Cy+2

1 u1z
+←−Cv1x if y+2

1 u1 ∈ E(G) and u1z
+ ∈ E(G).

In any cases, C′ is aD–cycle longer than C, a contradiction. Therefore, v1, v2 /∈ NC(y, y+
1 )∪

N−
C (x, u1), NC(y, y+

1 ) ∩N−
C (x, u1) ⊆ {wk}. Hence, we have

|V (C)| ≥ |NC(y, y+
1 ) ∪N−

C (x1, u1)|+ 2

≥ |NC(y, y+
1 )|+ |N−

C (x1, u1)| − 1 + 2

= |N(y, y+
1 )\NR(y, y+

1 )|+ |N(x1, u1)\NR(x1, u1)|+ 1

≥ 2NC2(G)− 2 + 1

= 2NC2(G)− 1,
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a contradiction with |V (C)| ≤ 2NC2(G)− 2.

Claim 7 If
⋃k

i=1NR(yi) 6= ∅, then NR(yi) 6= ∅ for all i ∈ {1, 2, . . . , k}, where yi = ui (wi,

respectively).

If not, without loss of generality, we assume that NR(u1) 6= ∅ and NR(uk) = ∅. Suppose

x1 ∈ NR(u1) and y ∈ N(x1) (y 6= u1). Then dist(x1, y
+) = dist(x1, y

−) = 2 and |N(x1, y
+)| ≥

NC2(G), |N(x1, y
−)| ≥ NC2(G).

Case 1 N(x1) ∩ (u+
1

−→
Cvk) = ∅.

If not, we may choose y, y ∈ N(x1) ∩ (u+
1

−→
Cvk), such that N(x1) ∩ (u+

1

−→
Cy−) = ∅. We

define a mapping f on V (C) as follows:

f(v) =





v− if v ∈ uk

−→
Cy−;

v+ if v ∈ y−→Cwk−1;

y− if v = vk.

Then |f(NC(x, uk))| = |NC(x, uk)| = |N(x, uk)| ≥ NC2(G) by Claim 1 and the assumption

NR(uk) = ∅. Moreover, we have f(NC(x, uk)) ∩ N(x1, y
−) ⊆ {wk, u1}. In fact, suppose that

z ∈ f(NC(x, uk)) ∩ N(x1, y
−)\{wk, u1}. Obviously, z 6= v1, y

− by Claims 2 and 4. Now we

consider the following cases.

(i) If z ∈ uk

−→
Cw−

k , then z ∈ N−
C (uk) since N(x) ∩ (uk

−→
Cwk) = ∅. Put

C′ =





ukz
+−→Cv1xvk

←−
Cu1x1z

←−
Cuk if x1z ∈ E(G);

ukz
+−→Cv1xvk

←−
Cyx1u1

−→
C y−z

←−
Cuk if y−z ∈ E(G).

(ii) If z ∈ u+
1

−→
Cy−2, then zy− ∈ E(G) since N(x1) ∩ (u+

1

−→
Cy−) = ∅. Put

C′ =





u1
−→
Czy−

←−
Cz+xv1

←−
Cyx1u1 if xz+ ∈ E(G);

u1
−→
Czy−

←−
Cz+uk

−→
Cv1xvk

←−
Cyx1u1 if ukz

+ ∈ E(G).

(iii) If z ∈ y+−→Cvk, we put

C′ =





u1
−→
Cz−xv1

←−
Czx1u1 ifxz− ∈ E(G) and x1z ∈ E(G);

u1
−→
Cy−z

−→
Cv1xz

−←−Cyx1u1 if xz− ∈ E(G) and y−z ∈ E(G);

u1
−→
Cz−uk

−→
Cv1xvk

←−
Czx1u1 if ukz

− ∈ E(G) and x1z ∈ E(G);

u1
−→
Cy−z

−→
Cvkxv1

←−
Cukz

−←−Cyx1u1 if ukz
− ∈ E(G) and y−z ∈ E(G).

In any cases, C′ is a D-cycle longer than C, a contradiction. Therefore, we have f(NC(x, uk))∩
N(x1, y

−) ⊆ {wk, u1}. By Claims 2 and 4, we have u1 /∈ N(x, uk) and v1 /∈ N(x1, y
−). Then

v1 6∈ f(NC(x, uk)) ∪N(x1, y
−). Hence, by Claim 6 we have

|V (C)| ≥ |f(NC(x, uk)) ∪NC(x1, y
−)|+ 1

≥ |f(NC(x, uk))|+ |NC(x1, y
−)| − 2 + 1

≥ 2NC2(G)− 2.
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So, we have V (C) = NC(x1, y
−) ∪ f(NC(x, uk)) ∪ {v1}, NC(x1, y

−) ∩ f(NC(x, uk)) =

{wk, u1}. Hence, y−wk ∈ E(G) and uku
+
1 ∈ E(G) since ti ≥ 2.

Now, we prove that NR(y−) = ∅. If not, there exist y1 ∈ NR(y−), z ∈ NC(y1) (z 6= y−) by

Claim 1 and δ ≥ 2.

Subcase 1N(y1) ∩ (u1
−→
Cy−2) = ∅.

If not, we choose z ∈ N(y1), such that N(y1) ∩ (z+−→Cy−2) = ∅. Therefore we can define a

mapping f1 on V (C) as follows:

f1(v) =





v− if v ∈ u+
k

−→
Cz+;

v+ if v ∈ z+2−→Cwk−1;

z+2 if v = vk;

z+ if v = uk.

Using an argument as above , we have |f1(NC(x, uk)| ≥ NC2(G). Moreover, we have z+, v1, y /∈
NC(y1, z

+) ∪ f1(NC(x, uk)) and NC(y1, z
+) ∩ f1(NC(x, uk)) ⊆ {z+2, y−, wk}. Clearly, z+ /∈

NC(y1, z
+). If z+ ∈ f1(NC(x, uk)), then, uk ∈ NC(x, uk), a contradiction. y1v1 /∈ E(G) by

Claim 5. If v1z
+ ∈ E(G), since y, z+ ∈ N+(y1), the two paths yx1u1 and z+v1 contradict with

Claim 4; By Claims 2 and 4 , we have y /∈ N(y1, z
+), if y ∈ f1(NC(x, uk)) then y− ∈ NC(x, uk),

by Claim 3 y− /∈ N(x), so y− ∈ N(uk), then C′ = xvk

←−
Cyx1u1

−→
Cy−uk

−→
C v1x is a D –cycle

longer than C, a contradiction. So we have z+, v1, y /∈ NC(y1, z
+) ∪ f1(NC(x, uk)). Suppose

s ∈ NC(y1, z
+) ∩ f1(NC(x, uk))\{z+2, y−, wk}.

Now, we consider the following cases.

(i) s ∈ y+−→Cvk. If y1s ∈ E(G) and xs− ∈ E(G) then it contradicts with Claim 4. We put

C′ =





xvk

←−
Csy1y

−←−Cu1x1y
←−
Cs−uk

−→
Cv1x if y1s, uks

− ∈ E(G);

xs−
←−
Cyx1u1

−→
Czy1y

−←−Cz+s
−→
Cv1x if z+s, xs− ∈ E(G);

xvk

←−
Csz+−→Cy−y1z

←−
Cu1x1y

−→
Cs−uk

−→
Cv1x if z+s, uks

− ∈ E(G).

(ii) s ∈ uk

−→
Cwk−1. We have s ∈ N−(uk) since N(x) ∩ (uk

−→
Cwk) = ∅.Put

C′ =





xvk

←−
Cyx1u1

−→
Cy−y1s

←−
Cuks

+−→Cv1x if y1s, uks
+ ∈ E(G);

xvk

←−
Cyx1u1

−→
Czy1y

−←−Cz+s
←−
Cuks

+−→Cv1x if z+s, uks
+ ∈ E(G);

(iii) s ∈ u1
−→
Cy−2. If y1s, xs

+ ∈ E(G) then contradicts to Claim 4. If y1s, uks
+ ∈ E(G),

then

C′ = xvk

←−
Cyx1u1

−→
Csy1y

−←−Cs+uk

−→
Cv1x

is a D–cycle longer than C, a contradiction. If s ∈ z+−→Cy−, we put

C′ =





xs−
←−
Cz+s

−→
Cy−y1z

←−
Cu1x1y

−→
Cv1x if z+s, s−x ∈ E(G);

xvk

←−
Cyx1u1

−→
Czy1y

−←−Csz+−→Cs−uk

−→
Cv1x if z+s, s−uk ∈ E(G).
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If s ∈ u1
−→
Cz, we put

C′ =





xs+
−→
Czy1y

−←−Cz+s
←−
Cu1x1y

−→
Cv1x if z+s, xs+ ∈ E(G);

xvk

←−
Cyx1u1

−→
Csz+−→Cy−y1z

←−
Cs+uk

−→
Cv1x if z+s, uks

+ ∈ E(G).

In any cases, C′ is a D–cycle longer than C, a contradiction. Hence, by Claim 5 we have

|V (C)| ≥ |f1(NC(x, uk)) ∪NC(y1, z
+)|+ 3

≥ |f1(NC(x, uk))| + |NC(y1, z
+)| − 3 + 3

≥ 2NC2(G)− 1,

a contradiction. So N(y1) ∩ (u1
−→
Cy−2) = ∅,

Subcase 2 N(y1) ∩ (y
−→
Cvk) = ∅.

If not, we may choose z ∈ N(y1) ∩ (y
−→
Cvk), such that N(y1) ∩ (y

−→
Cz−) = ∅. Therefore, we

can define a mapping f2 on V (C) as follows:

f2(v) =





v+ if v ∈ u1
−→
Cy−2 ∪ z−−→Cwk−1;

v− if v ∈ y+−→Cz−2 ∪ u+
k

−→
Cv1;

z− if v = vk;

v1 if v = uk;

z−2 if v = y;

u1 if v = y−

Using a similar argument as above , we have |f2(NC(x, uk))| ≥ NC2(G).We considerNC(y1, z
−)∪

f2(NC(x, uk)), then v1, u
+
1 /∈ NC(y1, z

−) ∪ f2(NC(x, uk)), and NC(y1, z
−) ∩ f2(NC(x, uk)) ⊆

{y−, wk}. In fact, v1 /∈ N(y1, z
−) by Claims 4, 5 ; if v1 ∈ f2(N(x, uk)) then uk ∈ N(x, uk),

a contradiction; if u+
1 ∈ N(z−), then the paths yx1u1 and z−u+

1 contradict with Claim 5; if

u+
1 ∈ f2(NC(x, uk)), then u1 ∈ N(x, uk), a contradiction. So we have v1, u

+
1 , /∈ NC(y1, z

−) ∪
f2(NC(x, uk)). For s ∈ NC(y1, z

−) ∩ f2(NC(x, uk))\{y−, wk}, we consider the following cases.

(i) If s ∈ u1
−→
Cy. We have s ∈ N(z−) since N(y1) ∩ (u1

−→
Cy−2) = ∅. Put

C′ =





xs−
←−
Cu1x1y

−→
Cz−s

−→
Cy−y1z

−→
Cv1x if s−x ∈ E(G);

xvk

←−
Czy1y

−←−Csz←−Cyx1u1
−→
Cs−uk

−→
Cv1x if s−uk ∈ E(G).

(ii) If s ∈ uk

−→
Cv1, then s+ ∈ N(uk) since N(x) ∩ (uk

−→
Cwk) = ∅. Put

C′ =





xvk

←−
C zy1y

−←−Cu1x1y
−→
Cz−s

←−
Cuks

+−→Cv1x if z−s ∈ E(G);

xvk

←−
C yx1u1

−→
Cy−y1s

←−
Cuks

+−→Cv1x if y1s ∈ E(G).

(iii) If s ∈ y−→Cz−2, then we have s ∈ N(z−) since N(y1) ∩ (y
−→
Cz−2) = ∅. Put

C′ =





x1y
−→
Csz−

←−
C s+xv1

←−
C zy1y

−←−Cu1x1 if xs+ ∈ E(G);

xvk

←−
C zy1y

−←−Cu1x1y
−→
Csz−s+uk

−→
Cv1x if uks

+ ∈ E(G).
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(iv) If s ∈ z−−→Cvk. If y1s, xs
− ∈ E(G) then it contradicts to Claim 4. We put

C′ =





xvk

←−
Csy1y

−←−Cu1x1y
−→
Cs−uk

−→
Cv1x if y1s, uks

− ∈ E(G);

xs−
←−
Czy1y

−←−Cu1x1y
−→
Cz−s

−→
Cv1x if z−s, s−x ∈ E(G);

xvk

←−
Csz−

←−
Cyx1u1

−→
Cy−y1z

−→
Cs−uk

−→
Cv1x if z−s, s−uk ∈ E(G).

In any cases, C′ is a D-cycle longer than C, a contradiction. Therefore, we have v1, u
+
1 , /∈

NC(y1, z
−) ∪ f2(NC(x, uk)), and NC(y1, z

−) ∩ f2(NC(x, uk)) ⊆ {y−, wk}. So

|V (C)| ≥ |NC(y1, z
−) ∪ f2(NC(x, uk))|+ 2

≥ |NC(y1, z
−)|+ |NC(x, uk)| − 2 + 2

≥ 2NC2(G)− 1,

a contradiction with |V (C)| ≤ 2NC2(G)− 2. Hence, N(y1)\{y−} ⊆ (uk

−→
Cu1).

Subcase 3 N(y1) ∩ (uk

−→
Cu1) = ∅.

If not, we may choose z ∈ N(y1)∩ (uk

−→
Cu1), such that N(y1) ∩ (z+−→Cu1) = ∅. We define a

mapping f3 on V (C) as follows:

f3(v) =





v− if v ∈ y+−→Cvk ∪ u+
k

−→
Cz+;

v+ if v ∈ z+2−→Cy−2;

z+ if v = uk;

vk if v = y;

z+2 if v = y−.

Using a similar argument as above , we have |f3(NC(x, uk))| ≥ NC2(G). Moreover, z+, u+
1 /∈

NC(y1, z
+) ∪ f3(NC(x, uk)), NC(y1, z

+) ∩ f3(NC(x, uk)) ⊆ {y−, wk}. In fact, clearly, z+ /∈
NC(y1, z

+), if z+ ∈ f3(NC(x, uk)), then uk ∈ NC(x, uk), a contradiction; if u+
1 ∈ NC(y1, z

+),

then u+
1 ∈ N(z+) since NC(y1) ∩ (y−2−→Cuk) = ∅, so C′ = x1y

−→
Czy1y

−←−Cu+
1 z

+−→Cu1x1 is a

D –cycle longer than C, a contradiction; if u+
1 ∈ f3(NC(x, uk)) then u1 ∈ NC(x, uk),a con-

tradiction; so we have z+, u+
1 /∈ NC(y1, z

+) ∪ f3(NC(x, uk)). Suppose s ∈ NC(y1, z
+) ∩

f3(NC(x, uk))\{y−, wk}. Now, we consider the following cases.

(i) If s ∈ vk

−→
C z+, then We have s+uk ∈ E(G) since N(x) ∩ (uk

−→
Cwk) = ∅. Put

C′ =





xvk

←−
C yx1u1

−→
Cy−y1s

←−
Cuks

+−→Cv1x if y1s ∈ E(G);

xvk

←−
C yx1u1

−→
Cy−y1z

←−
Cs+uk

−→
Csz+−→Cv1x if z+s ∈ E(G).

(ii) If s ∈ z+2−→Cw−
k , then we have s−uk, sz

+ ∈ E(G) since N(x) ∩ (uk

−→
Cwk) = N(y1) ∩

(z+−→Cv1) = ∅. Put

C′ = xvk

−→
Cyx1u1

−→
Cy−y1z

←−
Cuks

−←−C z+s
−→
Cv1x

.

(iii) If s ∈ u1
−→
Cy−2, then we have sz+ ∈ E(G) since N(y1) ∩ (u1

−→
Cy−2) = ∅. Put
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C′ =





xs−
←−
Cu1x1y

−→
Czy1y

−←−C sz+−→Cv1x if xs− ∈ E(G);

xvk

←−
C yx1u1

←−
Cs−uk

−→
Czy1y

−←−Csz+−→Cv1x if uks
− ∈ E(G).

(iv) If s ∈ y−→Cvk, then we have sz+ ∈ E(G) since N(y1) ∩ (y
−→
Cvk) = ∅.Put

C′ =





xs+
−→
Czy1y

−←−Cu1x1y
−→
Csz+−→Cv1x if xs+ ∈ E(G);

xvk

←−
Cs+uk

−→
Czy1y

−←−Cu1x1y
−→
Csz+−→Cv1x if uks

+ ∈ E(G).

In any cases, C′ is aD–cycle longer than C, a contradiction. Therefore we haveNC(y1, z
+)∩

f3(NC(x, uk)) ⊆ {y−, wk}. So we have

|V (C)| ≥ |NC(y1, z
+) ∪ f3(NC(x, uk)|+ 2

≥ |NC(y1, z
+|+ |NC(x, uk)| − 2 + 2

≥ 2NC2(G)− 1,

a contradiction with |V (C)| ≤ 2NC2(G)− 2. Hence, N(y1) ∩ (uk

−→
Cv1) = ∅.

Thus, N(y1) = {y−}, which contradicts to δ ≥ 2. Therefore, we know that NR(y−) = ∅.
So we have

|V (C)| ≥ |f(NC(x, uk)) ∪NC(x1, y
−)|+ 1

≥ |f(NC(x, uk))|+ |NC(x1, y
−)| − 2 + 1

= |N(x, uk)\NR(x, uk)|+ |N(x1, y
−)\NR(x1, y

−)| − 1

= |N(x, uk)|+ |N(x1, y
−)| − 1

≥ 2NC2(G)− 1,

a contradiction. So we have N(x1) ∩ (u+
1

−→
Cvk) = ∅, hence, N(x1) ⊆ uk

−→
Cu1.

Case 2 N(x1) ∩ (uk

−→
Cv1) = ∅.

Otherwise, since v1x1 /∈ E(G), we can choose y, y ∈ uk

−→
Cwk, such that N(x1)∩(y+−→Cv1) =

∅. Therefore, we can define a mapping g on V (C) as follows:

g(v) =





v− if v ∈ u+
1

−→
Cy;

v+ if v ∈ y+−→Cwk;

y+ if v = u1,

y if v = v1.

Using a similar argument as before, we have |g(NC(x, uk))| ≥ NC2(G), y+ /∈ g(NC(x, uk)) ∪
N(x1, y

+) and g(NC(x, uk)) ∩N(x1, y
+) ⊆ {u1}. Hence, by Claim 6 we have

|V (C)| ≥ |g(NC(x, uk)) ∪N(x1, y
+)|+ 1

≥ |g(NC(x, uk))|+ |N(x1, y
+)| − 1 + 1

≥ 2NC2(G)− 1,
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a contradiction. So N(x1) ∩ (uk

−→
Cv1) = ∅. Then N(x1) = {u1}, which contradicts to δ ≥ 2.

Claim 8 If x1 ∈ NR(u1) and N(x1) ∩ (u+
1

−→
Cvk) 6= ∅, then |{uku

+
1 , y

−wk} ∩ E(G)| = 1 for

y ∈ N(x1) ∩ (u+
1

−→
Cvk) with N(x1) ∩ (u+

1

−→
Cy−) = ∅.

First we have d(x1, y
−) = 2 and |N(x1, y

−)| ≥ NC2(G).Let uku
+
1 /∈ E(G). Now we define

a mapping f on V (C) as follows:

f(v) =





v− if v ∈ u+2
k

−→
Cv1 ∪ u+2

1

−→
C y−;

v+ if v ∈ y−→Cwk−1;

y− if v = uk;

y if v = vk;

u1 if v = u+
k ;

v1 if v = u+
1 ;

uk if v = u1.

Then |f(NC(x, uk))| = |NC(x, uk)| ≥ NC2(G) − 1 by Claim 5. Moreover using a similar

argument as in Claim 7, we have f(NC(x, uk)) ∩ N(x1, y
−) ⊆ {wk, u1, y}. But we have

y−, v1, uk /∈ f(NC(x, uk))∪N(x1 , y
−) by the choice of y Claims 2 and 4, respectively. Therefore,

by Claim 5 we have

|V (C)| ≥ |f(NC(x, uk)) ∪NC(x1, y
−)|+ 3

≥ |f(NC(x, uk))|+ |NC(x1, y
−)| − 3 + 3

≥ 2NC2(G)− 2.

So V (C) = f(NC(x, uk)) ∪ NC(x1, y
−) ∪ {v1, y−, uk} by the assumption on |V (C)|, and in

particular, f(NC(x, uk))∩NC(x1, y
−) = {wk, u1, y}. Therefore, y−wk ∈ E(G). Using a similar

argument as above, we have if y−wk /∈ E(G), then uku
+
1 ∈ E(G).

Claim 9 There exists a vertex x with x /∈ V (C) such that NR(ui) = NR(wi) = ∅.

We only prove NR(ui) = ∅. If not, we may choose x 6∈ V (C) such that min{ti} is as

small as possible. By Claim 7, without loss of generality, suppose that tk = min{ti} for the

vertex x. Let x1 ∈ NR(u1), x2 ∈ NR(uk). By Claims 2 and 3, x 6= x1, x2;x1 6= x2. And

by Claim 5 and the choice of x, we have N(xi) ∩ (uk

−→
Cv1) = ∅, for i = 1, 2. Since δ ≥ 2,

N(x1) ∩ (u+
1

−→
Cvk) 6= ∅. Choose y ∈ N(x1) ∩ (uk

−→
Cvk) such that N(x1) ∩ (u+

1

−→
Cy−) = ∅, then

d(x1, y
−) = 2 and |N(x1, y

−)| ≥ NC2(G). By Claim 8, we have uku
+
1 or y−wk ∈ E(G).

First we prove that N(x2) ∩ (y
−→
Cvk) = ∅. If not, we may choose z ∈ y+−→Cv−k such that

N(x2) ∩ (z+−→C vk) = ∅ by Claim 5. Then d(x2, z
+) = 2 and |N(x2, z

+)| ≥ NC2(G). Now we

define a mapping f on V (C) as follows:
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f(v) =





v− if v ∈ u+
1

−→
Cy− ∪ z+2−→Cvk;

v+ if v ∈ y−→Cz− ∪ uk

−→
Cwk;

y if v = z;

vk if v = z+;

uk if v = v1;

y− if v = u1.

Then |f(NC(x2, z
+))| = |NC(x2, z

+)| ≥ NC2(G) − 1 by Claim 5. Moreover using a similar

argument as in Claim 7, we have f(NC(x2, z
+)) ∩ N(x1, y

−) ⊆ {u1, y}. But y−, vk, v1 /∈
f(NC(x2, z

+)) ∪ N(x1, y
−), otherwise, u1z

+ ∈ E(G) or y−vk ∈ E(G) or z+wk ∈ E(G) by

Claim 5, and hence the D-cycle

C′ =





u1
−→
C zx2uk

−→
Cv1xvk

←−
Cz+u1 if u1z

+ ∈ E(G);

u1x1y
−→
Cvky

−←−Cu+
1 uk

−→
Cu1 if y−vk ∈ E(G);

xvk

←−
Cz+wk

←−
Cukx2z

←−
Cv1x if z+wk ∈ E(G).

is longer than C, a contradiction. Therefore, by Claim 5 we have

|V (C)| ≥ |f(NC(x2, z
+)) ∪NC(x1, y

−)|+ 3

≥ |f(NC(x2, z
+))|+ |NC(x1, y

−)| − 2 + 3

≥ 2NC2(G)− 1,

which contradicts to that |V (C)| ≤ 2NC2(G) − 2. So we have N(x2) ∩ (y
−→
Cvk) = ∅. Hence

N(x2)(u
+
1

−→
Cy−) ∪ {uk}.

Now, we prove that N(x2) ∩ (u+
1

−→
C y−) = ∅. In fact, we may choose z ∈ u+

1

−→
Cy−2

with z ∈ N(x2) such that N(x2) ∩ (u+
1

−→
Cz−) = ∅. (Since x2y

− /∈ E(G), otherwise, C′ =

u1
−→
Cy−x2uk

−→
C v1xvk

←−
Cyx1u1 is a D-cycle longer than C, a contradiction.) Then d(x2, z

−) = 2

and |N(x2, z
−)| ≥ NC2(G). We define a mapping g on V (C) as follows:

g(v) =





v− if v ∈ z+−→Cvk;

v+ if v ∈ uk

−→
Cz−2;

vk if v = z;

uk if v = z−.

Then we have |g(NC(x2, z
−))| ≥ NC2(G)−1 by Claim 5. Moreover using a similar argument as

in Claim 7, we have g(NC(x2, z
−))∩N(x1, y

−) ⊆ {u1}. But v1, uk /∈ g(NC(x2, z
−))∪N(x1, y

−),

otherwise since uk /∈ g(NC(x2, z
−))∪N(x1 , y

−), wkz
− ∈ E(G) by Claims 2 and 4, and hence the

D-cycle u1
−→
Cz−wk

←−
C ukx2z

−→
Cvkxv1u1 is longer than C, a contradiction. Therefore, by Claim 5

we have
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|V (C)| ≥ |g(NC(x2, z
−)) ∩N(x1, y

−)|+ 2

≥ |g(NC(x2, z
−))|+ |N(x1, y

−)| − 1 + 2

≥ 2NC2(G)− 1,

which contradicts to that |V (C)| ≤ 2NC2(G)− 2. So we have N(x2) ∩ (u+
1

−→
Cy−) = ∅.

Therefore, N(x2) = {uk}, which contradicts to δ ≥ 2.

Claim 10 For any x /∈ V (C), ti ≥ 3.

Otherwise, there exists a vertex x, x /∈ V (C), such that min{ti} = 2 by Claim 6. Note

that the choice of the vertex x in Claim 9, we have NR(ui) = NR(wi) = ∅ for the vertex

x. Without loss of generality, suppose t1 = 2, then N−
C (u1) ∩ NC(w1) = {u1} by Claim 4,

N(x) ∩ N+(x) = ∅ by Claim 2, and N−
C (u1) ∩ N(x) = N−(x) ∩ NC(w1) = ∅ by Claim 3.

Hence, N−
C (x, u1)∩NC(x,w1) = {u1}. We also have |NC(x, u1)| ≥ NC2(G) and |NC(x,w1)| ≥

NC2(G) since d(x, u1) = d(x,w1) = 2. Then

|V (C)| ≥ |N−
C (x, u1) ∪NC(x,w1)|

≥ |N−
C (x, u1)|+ |NC(x,w1)| − 1

≥ 2NC2(G)− 1,

which contradicts to that |V (C)| ≤ 2NC2(G)− 2.

By Claim 10, we have |V (C)| = k +
k∑

i=1

ti ≥ 4k. Thus we get the following.

Claim 11 For any x, x /∈ V (C),

d(x) ≤ |V (C)|
4

≤ 2NC2(G)− 2

4
= (NC2(G)− 1)/2.

Claim 12 u+
i uj 6∈ E(G), for the vertex x as in Claim 9.

In fact, if u+
i uj ∈ E(G), then the cycle u+

i

−→
Cvjxvi

←−
Cuju

+
i is a longest D-cycle not containing

ui, by Claim 9. Thus d(ui) ≤ (NC2(G)− 1)/2 by Claim 11. So we have

NC2(G) ≤ |N(x, ui)| ≤ d(x) + d(ui) ≤ NC2(G)− 1,

a contradiction. We choose x as in Claim 9, and define a mapping f on V (C) as follows:

f(v) =





v+ if v ∈ u1
−→
Cv−k ;

v− if v ∈ u+
k

−→
Cv1;

u1 if v = vk;

v1 if v = uk.

Then |f(NC(x, uk))| ≥ NC2(G) and |NC(x, u1)| ≥ NC2(G) by Claim 10. Moreover, we

have f(NC(x, uk)) ∩ NC(x, u1){v2, v3, . . . , vk, wk}. By Claims 2, 4, and 12, we also have

u+
2 , u

+
3 , . . . , u

+
k−1 /∈ f(NC(x, uk)) ∪NC(x, u1). Therefore, we have
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|V (C)| ≥ |f(NC(x, uk)) ∪NC(x, u1)|+ k − 2

≥ |f(NC(x, uk))|+ |NC(x, u1)| − k + k − 2

≥ 2NC2(G)− 2.

So

V (C) = f(NC(x, uk)) ∪NC(x, u1) ∪ {u+
2 , u

+
3 , . . . , u

+
k−1}

by the assumption on |V (C)|, and in particular,

f(NC(x, uk)) ∩NC(x, u1) = {v2, v3, . . . , vk, wk}.

Then u1wk, ukwk−1 ∈ E(G).

Claim 13 k = 2.

If there exists v ∈ V (C)\{v1, vk} , by partition of V (C), we have v+2 ∈ f(NC(x, uk)) ∪
NC(x, u1)∪{u+

2 , u
+
3 , ..., u

+
k−1}. If v+2 ∈ NC(x, u1), then v+2u1 ∈ E(G), and the cycle u1v

+2−→C v1x
v
←−
Cu1 is a D-cycle not containing v+ by Claim 9. Thus d(v+) ≤ (NC2(G)− 1)/2 by Claim 11.

So we have

NC2(G) ≤ |N(x, v+)| ≤ d(x) + d(v+) ≤ NC2(G)− 1,

a contradiction.So v+ ∈ N(x, uk), which contradicts to Claims 2,3. Hence we have k = 2.

Claim 14 Each of the followings does not hold :

(1) There is u ∈ u1
−→
Cv2, such that u+u1 ∈ E(G) and u−u2 ∈ E(G).

(2) There is u ∈ u2
−→
Cv1, such that u−u1 ∈ E(G) and u+u2 ∈ E(G).

(3) There is u ∈ u2
−→
Cv1, such that u+w1 ∈ E(G) and u−w2 ∈ E(G).

(4)There is u ∈ u1
−→
Cv2, such that u+w2 ∈ E(G) and u−w1 ∈ E(G).

If not, suppose there is u ∈ u1
−→
Cv2, such that u+u1 ∈ E(G) and u−u2 ∈ E(G). We define a

mapping h on V (C) as follows :

h(v) =





v+ if v ∈ u1
−→
Cu−u2 ∪ u+−→Cw1;

v− if v ∈ u+
2

−→
Cv1;

u+ if v = v2;

v1 if v = u2;

u1 if v = u;

u if v = u+
2 .

Then |h(NC(x, u2))| ≥ NC2(G) and |NC(x, u1)| ≥ NC2(G). Moreover we have u1 /∈ N(x, u1)∪
h(N(x, u2)), and N(x, u1) ∩ h(N(x, u2)) ⊆ {v2, u+}. In fact, clearly u1 /∈ N(x, u1), if u1 ∈
h(N(x, u2)), then u ∈ N(x, u2), a contradiction. Let s ∈ N(x, u1) ∩ h(N(x, u2))\{v2, u+},
if s ∈ u+

1

−→
C v2 ∩ N(x, u1) ∩ h(N(x, u2))\{v2, u+} then su1 ∈ E(G) and s−u2 ∈ E(G); or if
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s ∈ u2
−→
Cw2 ∩N(x, u1)∩h(N(x, u2)), then su1 ∈ E(G) and s+u2 ∈ E(G), both cases contradict

to Claim 3. So u1 /∈ N(x, u1) ∪ h(N(x, u2)), N(x, u1) ∩ h(N(x, u2)) ⊆ {v2, u+}. Hence

|V (C)| ≥ |h(NC(x, u2)) ∪NC(x, u1)|+ 1

≥ |h(NC(x, u2))|+ |NC(x, u1)| − 2 + 1

≥ 2NC2(G)− 1,

a contradiction. Similarly, (2), (3) and (4) are true.

Claim 15 N(u2) ∩ (u1
−→
Cw−

1 ) = N(u1) ∩ (u2
−→
Cw−

2 ) = ∅.

If not, we may choose z ∈ N(u2) ∩ (u1
−→
Cw−

1 ), such that N(u2) ∩ (u1
−→
Cz−) = ∅. then

u1z ∈ E(G) ( if not, u1z /∈ E(G) then u2z
− ∈ E(G) by partition of V (G), which contradicts

the choice of z ) and N(u1)∩ (z+−→Cw1) = ∅ (if not, we may choose s ∈ N(u1)∩ (z+−→Cw1), such

that N(u1) ∩ (z+−→C s−) = ∅ since z+u1 /∈ E(G). So s−u1 /∈ E(G),by partition of the V (C),

s−2u2 ∈ E(G). Which contradicts Claim 14 ) Moreover u+
1

−→
Cz ⊆ N(u1), and z

−→
Cv2 ⊆ N(u2).

Similarly , we have y ∈ u2
−→
Cw2,such that u2y, u1y ∈ E(G) and N(u1) ∩ (u2

−→
Cy−) = N(u2) ∩

(y+−→Cw2) = ∅, y−→Cv1 ⊆ N(u1) and u+
2

−→
C y ⊆ N(u2).

Now we define a mapping g on V (C) as follows:

g(v) =





v+ if v ∈ v2
−→
Cw−

2 ;

v− if v ∈ u1
−→
Cw1;

v2 if v = w2;

w1 if v = v1.

Using similar argument as above , consider N(x,w1) ∪ g(N(x,w2)), there exists u ∈ V (C),

such that w1u,w2u ∈ E(G) . Without loss generality, we may assume u ∈ u1
−→
Cw1, Moreover

then N(w2) ∩ (u+−→Cw1) = N(w1) ∩ (u1
−→
Cu−) = ∅, and v1

−→
Cu ⊆ N(w2), u

−→
Cv2 ⊆ N(w1). Let

u 6= z. If u ∈ z−→Cw−
1 , u−u2 ∈ E(G) by partition of V (C) since uu1 /∈ E(G), which contradicts

to Claim 4 ; if u ∈ u1
−→
Cz, then C′ = xv2w1u

−→
Cw−

1 u2
−→
Cw2u

−←−Cv1x is a D-cycle longer than

C, a contradiction. If u = z, since z+2u1 /∈ E(G), z+u2 ∈ E(G) by partition of V (C), which

contradicts to Claim 4. Hence N(u2) ∩ (u1
−→
Cw−

2 ) = ∅. Similarly N(u1) ∩ (u2
−→
Cw−

1 ) = ∅.
By Claim 15 we have

Claim 16 If there exists z ∈ v1
−→
Cv2, such that u2z ∈ E(G), then u1z ∈ E(G) and u+

1

−→
Cz ⊆

N(u1), z
−→
Cw1 ⊆ N(u2). similarly if there exists z ∈ v2

−→
Cv1, such that u2z ∈ E(G), then

u1z ∈ E(G) and u+
2

−→
Cz ⊆ N(u2), z

−→
Cw2 ⊆ N(u1).

Proof of Theorem 5

Now we are going to complete the proof of Theorem 5. We choose x as in Claim 9. By

Claim 13, we know that k = 2.

First we prove that there exists u ∈ V (C) such that u1, u2 ∈ N(u). If there is not any

u ∈ V (C)\{v2, w1, u
+
2 } such that u2u /∈ E(G), then w−

1 u1 ∈ E(G) (if not, w−2
1 u2 ∈ E(G) by
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partition of V (C) ). If u1w1 /∈ E(G) then u2w
−
1 ∈ E(G), so we have u1, u2 ∈ N(w−

1 ); if there

is u ∈ V (C), such that u2u ∈ E(G) then, by Claim 16, u1u ∈ E(G), hence u1, u2 ∈ N(u).

By Claim 16, clearly, there are not z ∈ u1
−→
Cw1, y ∈ u2

−→
Cw2, such that yz ∈ E(G).

So we have G ∈ J1. The proof of Theorem 5 is finished.
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