Long Dominating Cycles in Graphs

Yongga A
(Department of Mathematics of Inner Mongolia Normal University, Huhhot 010022, P.R.China)
Zhiren Sun
(Department of Mathematics of Nanjing Normal University, Nanjing 210097, P.R. China)

Abstract

Let G be a connected graph of order n, and $N C 2(G)$ denote $\min \{|N(u) \cup N(v)|$: $\operatorname{dist}(u, v)=2\}$, where $\operatorname{dist}(u, v)$ is the distance between u and v in G. A cycle C in G is called a dominating cycle, if $V(G) \backslash V(C)$ is an independent set in G. In this paper, we prove that if G contains a dominating cycle and $\delta \geq 2$, then G contains a dominating cycle of length at least $\min \{n, 2 N C 2(G)-1\}$ and give a family of graphs showing our result is sharp, which proves a conjecture of R. Shen and F. Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces.

Key words: Dominating cycle, neighborhood union, distance.
AMS(2000): 05C38, 05C45.

§1. Introduction

All graphs considered in this paper will be finite and simple. We use Bondy \& Murty [1] for terminology and notations not defined here.

Let $G=(V, E)$ be a graph of order n and C be a cycle in $G . C$ is called a dominating cycle, or briefly a D-cycle, if $V(G) \backslash V(C)$ is an independent set in G. For a vertex v in G, the neighborhood of v is denoted by $N(v)$, and the degree of v is denoted by $d(v)$. For two subsets S and T of $V(G)$, we set $N_{T}(S)=\{v \in T \backslash S: N(v) \cap S \neq \emptyset\}$. We write $N(u, v)$ instead of $N_{V(G)}(\{u, v\})$ for any $u, v \in V(G)$. If F and H are two subgraphs of G, we also write $N_{F}(H)$ instead of $N_{V(F)}(V(H))$. In the case $F=G$, if no ambiguity can arise, we usually omit the subscript G of $N_{G}(H)$. We denote by $G[S]$ the subgraph of G induced by any subset S of $V(G)$.

For a connected graph G and $u, v \in V(G)$, we define the distance between u and v in G, denoted by $\operatorname{dist}(u, v)$, as the minimum value of the lengths of all paths joining u and v in G. If G is non-complete, let $N C(G)$ denote $\min \{|N(u, v)|: u v \notin E(G)\}$ and $N C 2(G)$ denote $\min \{|N(u, v)|: \operatorname{dist}(u, v)=2\}$; if G is complete, we set $N C(G)=n-1$ and $N C 2(G)=n-1$.

In [2], Broersma and Veldman gave the following result.
Theorem $\mathbf{1}([2])$ If G is a 2-connected graph of order n and G contains a D-cycle, then G has a D-cycle of length at least $\min \{n, 2 N C(G)\}$ unless G is the Petersen graph.

For given positive integers n_{1}, n_{2} and n_{3}, let $K\left(n_{1}, n_{2}, n_{3}\right)$ denote the set of all graphs

[^0]of order $n_{1}+n_{2}+n_{3}$ consisting of three disjoint complete graphs of order n_{1}, n_{2} and n_{3}, respectively. For any integer $p \geq 3$, let \mathcal{J}_{1}^{*} (resp. \mathcal{J}_{2}^{*}) denote the family of all graphs of order $2 p+3$ (resp. $2 p+4$) which can be obtained from a graph H in $K(3, p, p)($ resp. $K(3, p, p+1))$ by adding the edges of two triangles between two disjoint triples of vertices, each containing one vertex of each component of H. Let $\mathcal{J}_{1}=\{G: G$ is a spanning subgraph of some graph in $\left.\mathcal{J}_{1}^{*}\right\}$ and $\mathcal{J}_{2}=\left\{G: G\right.$ is a spanning subgraph of some graph in $\left.\mathcal{J}_{2}^{*}\right\}$. In [5], Tian and Zhang got the following result.

Theorem 2([5]) If G is a 2-connected graph of order n such that every longest cycle in G is a D-cycle, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)\}$ unless G is the Petersen graph or $G \in \mathcal{J}_{1} \cup \mathcal{J}_{2}$.

In [4], Shen and Tian weakened the conditions of Theorem 2 and obtained the following theorem.

Theorem $3([4])$ If G contains a D-cycle and $\delta \geq 2$, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)-3\}$.

Theorem $4([6])$ If G contains a D-cycle and $\delta \geq 2$, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)-2\}$.

In [4], Shen and Tian believed the followings are true.
Conjecture 1 If G satisfies the conditions of Theorem 3, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)-\epsilon(n)\}$, where $\epsilon(n)=1$ if n is even, and $\epsilon(n)=2$ if n is odd.

Conjecture 2 If G contains a D-cycle and $\delta \geq 2$, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)\}$ unless G is one of the exceptional graphs listed in Theorem 2. And the complete bipartite graphs $K_{m, m+q}(q \geq 1)$ show that the bound $2 N C 2(G)$ is sharp.

In this paper, we prove the following result, which solves Conjecture 1 due to Shen and Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces (see [3] for details).

Theorem 5 If G contains a D-cycle and $\delta \geq 2$, then G contains a D-cycle of length at least $\min \{n, 2 N C 2(G)-1\}$ unless $G \in \mathcal{J}_{1}$.

Remark The Petersen graph shows that our bound $2 N C 2(G)-1$ is sharp.

§2. Proof of Theorem 5

In order to prove Theorem 5, we introduce some additional notations.
Let C be a cycle in G. We denote by \vec{C} the cycle C with a given orientation. If $u, v \in V(C)$, then $u \vec{C} v$ denotes the consecutive vertices on C from u to v in the direction specified by \vec{C}. The same vertices, in reverse order, are given by $v \overleftarrow{C} u$. We will consider $u \vec{C} v$ and $v \overleftarrow{C} u$ both as paths and as vertex sets. We use u^{+}to denote the successor of u on \vec{C} and u^{-}to
denote its predecessor. We write $u^{+2}:=\left(u^{+}\right)^{+}$and $u^{-2}:=\left(u^{-}\right)^{-}$, etc. If $A \subseteq V(C)$, then $A^{+}=\left\{v^{+}: v \in A\right\}$ and $A^{-}=\left\{v^{-}: v \in A\right\}$. For any subset S of $V(G)$, we write $N^{+}(S)$ and $N^{-}(S)$ instead of $(N(S))^{+}$and $(N(S))^{-}$,respectively.

Let G be a graph satisfying the conditions of Theorem 4, i.e. G contains a D-cycle and $\delta \geq 2$. Throughout, we suppose that
$-G$ is non-hamiltonian and C is a longest D-cycle in G,
$-|V(C)| \leq 2 N C 2(G)-2$,
$-R=G \backslash V(C)$ and $x \in R$, such that $d(x)$ is as large as possible.
First of all, we prove some claims.
By the maximality of C and the definition of D-cycle, we have
Claim $1 \quad N(x) \subseteq V(C)$.
Claim $2 N(x) \cap N^{+}(x)=N(x) \cap N^{-}(x)=\emptyset$.
Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of $N(x)$, in cyclic order around \vec{C}. Then $k \geq 2$ since $\delta \geq 2$. For any $i \in\{1,2, \ldots, k\}$, we have $v_{i}^{+} \neq v_{i+1}$ (indices taken modulo k) by Claim 2. Let $u_{i}=v_{i}^{+}, w_{i}=v_{i+1}^{-}$(indices taken modulo k), $T_{i}=u_{i} \vec{C} w_{i}, t_{i}=\left|T_{i}\right|$.

Claim $3 N_{R}\left(y_{1}\right) \cap N_{R}\left(y_{2}\right)=\emptyset$, if $y_{1}, y_{2} \in N^{+}(x)$ or $y_{1}, y_{2} \in N^{-}(x)$.In particular, $N^{+}(x) \cap$ $N\left(u_{i}\right)=N^{-}(x) \cap N\left(w_{i}\right)=\emptyset$.

For any $i, j \in\{1,2, \ldots, k\}(i \neq j)$, we also have the following Claims.
Claim 4 Each of the followings does not hold:
(1) There are two paths $P_{1}\left[w_{j}, z\right]$ and $P_{2}\left[u_{i}, z^{-}\right],\left(z \in v_{j+1} \vec{C} v_{i}\right)$ of length at most two that are internally disjoint from C and each other ;
(2) There are two paths $P_{1}\left[w_{j}, z\right]$ and $P_{2}\left[u_{i}, z^{+}\right]\left(z \in v_{j+1} \vec{C} v_{i}\right)$ of length at two that are internally disjoint from C and each other ;
(3) There are two paths $P_{1}\left[u_{i}, z\right]$ and $P_{2}\left[u_{j}, z^{+}\right]\left(z \in u_{j}^{+} \vec{C} v_{i}\right)$ of length at most two that are internally disjoint from C and each other, and similarly for $P_{1}\left[u_{i}, z\right]$ and $P_{2}\left[u_{j}, z^{-}\right]\left(z \in u_{i}^{+} \vec{C} v_{j}\right)$.

Claim 5 For any $v \in V(G)$, we have $d_{R}(v) \leq 1$.
If not, then by Claim 1, there exists a vertex, say v, in C such that $d_{R}(v)>1$. Let $x_{1}, x_{2} \in N_{R}(v)$, then $\left|N\left(x_{1}, x_{2}\right)\right| \geq N C 2(G)$.

First, we prove that $\left|N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)\right| \leq 2$. Otherwise, let y_{1}, y_{2} and y_{3} be three distinct vertices in $N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)$. By Claim 2, we know $y_{i} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ or $y_{i} \in N\left(x_{2}\right) \cap N^{+}\left(x_{1}\right)$ for any $i \in\{1,2,3\}$. Thus, there must exist i and $j(i \neq j, i, j \in\{1,2,3\})$ such that $y_{i}, y_{j} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ or $y_{i}, y_{j} \in N\left(x_{2}\right) \cap N^{+}\left(x_{1}\right)$. In either case, it contradicts Claim 3. So we have that $\left|N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)\right| \leq 2$.

Now we have

$$
\begin{aligned}
|V(C)| & \geq\left|N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right)\right| \\
& \geq 2\left|N\left(x_{1}, x_{2}\right)\right|-2 \\
& \geq 2 N C 2(G)-2
\end{aligned}
$$

so $V(C)=N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right)$ by assumption on $|V(C)|$, and in particular, $N\left(x_{1}, x_{2}\right) \cap$ $N^{+}\left(x_{1}, x_{2}\right)=\left\{y_{1}, y_{2}\right\}$.Therefore $y_{1} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ and $y_{2} \in N^{+}\left(x_{1}\right) \cap N\left(x_{2}\right)$.

Now, we prove that $d_{R}\left(v^{+}\right) \leq 1, d_{R}\left(v^{-}\right) \leq 1$. If not,suppose $d_{R}\left(v^{-}\right)>1$, let $z_{1}, z_{2} \in$ $N_{R}\left(v^{-}\right)$, by Claim 1 and $V(C)=N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right), N\left(z_{1}, z_{2}\right) \subseteq N^{+}\left(x_{1}, x_{2}\right)$, so we have $x_{1}\left(\right.$ or $\left.x_{2}\right) \in N\left(v^{-2}\right)$. Using a similar argument as above, we have $z_{1}\left(\right.$ or $\left.z_{2}\right) \in N\left(v^{-3}\right)$, which contradicts Claim 3. Thus, we have $d_{R}\left(v^{-}\right) \leq 1$; similarly, $d_{R}\left(v^{+}\right) \leq 1$.

Now, we consider $N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$.Since $\operatorname{dist}\left(x_{2}, v^{-}\right)=\operatorname{dist}\left(x_{1}, v^{+}\right)=2$ and $\left|N\left(x_{2}, v^{-}\right)\right| \geq N C 2(G),\left|N^{-}\left(x_{1}, v^{+}\right)\right|=\left|N\left(x_{1}, v^{+}\right)\right| \geq N C 2(G)$. We prove that $\mid N_{C}\left(x_{2}, v^{-}\right) \cap$ $N_{C}^{-}\left(x_{1}, v^{+}\right) \mid \leq 1$. Let $z \in\left\{N_{C}\left(x_{2}, v^{-}\right) \cap N_{C}^{-}\left(x_{1}, v^{+}\right)\right\} \backslash\left\{y_{1}^{-}\right\}$.

We consider following cases.
(i) Let $z \in y_{1}^{+} \vec{C} y_{2}^{-2}$, if $z x_{2} \in E(G)$ and $x_{1} z^{+} \in E(G)$, or $z x_{2} \in E(G)$ and $v^{+} z^{+} \in E(G)$, or $v^{-} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, each case contradicts Claim 3; if $v^{-} z \in E(G)$ and $v^{+} z^{+} \in$ $E(G)$, then $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} z^{+} v^{+} \vec{C} z v^{-} \overleftarrow{C} y_{2} x_{2} v x_{1}$ is a D-cycle longer than C, a contradiction
(ii) Let $z \in y_{2}^{+} \vec{C} y_{1}^{-2}$, if $x_{2} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, or $x_{2} z \in E(G)$ and $v^{+} z^{+} \in$ $E(G)$, both contradict Claim 3; if $v^{-} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, it contradicts Claim 3; if $v^{-} x_{1} \in E(G)$ and $z^{+} v^{+} \in E(G)$, then $C^{\prime}=x_{1} y_{1} \vec{C} v^{-} z \overleftarrow{C} v^{+} z^{+} \vec{C} y_{1}^{-} x_{2} v x_{1}$ is a D-cycle longer than C, for $z \in v \vec{C} y_{1}^{-}$; and $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} v^{+} z^{+} \vec{C} v^{-} z \overleftarrow{C} y_{2} x_{2} v x_{1}$ is a D-cycle longer than C for $z \in y_{2} \vec{C} v^{-}$.

So, we have $\left|N_{C}\left(x_{2}, v^{-}\right) \cap N_{C}^{-}\left(x_{1}, v^{+}\right)\right| \leq 1$. Moreover, $y_{1}, y_{2}^{-} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. Otherwise, if $y_{1} \in N\left(v^{-}\right)$, then $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} y_{1} v^{-} \overleftarrow{C} y_{2} x_{2} y_{1}^{-} \overleftarrow{C} v x_{1}$ is a D-cycle longer than C. By Claim 2, $y_{1} \notin N\left(x_{2}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$, so we have $y_{1} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. By Claims 1 and 3 we have $y_{2}^{-} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. Thus, we have

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(x_{2}, v^{-}\right) \cup N_{C}^{-}\left(x_{1}, v^{+}\right)\right|+2 \\
& \geq\left|N_{C}\left(x_{2}, v^{-}\right)\right|+\left|N_{C}^{-}\left(x_{1}, v^{+}\right)\right|-1+2 \\
& =\left|N\left(x_{2}, v^{-}\right) \backslash N_{R}\left(x_{2}, v^{-}\right)\right|+\left|N\left(x_{1}, v^{+}\right) \backslash N_{R}\left(x_{1}, v^{+}\right)\right|+1 \\
& \geq 2 N C 2(G)-2+1 \\
& =2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. So, we have $d_{R}(v) \leq 1$, for any $v \in V(G)$.
Claim $6 \quad t_{i} \geq 2$.
If $t_{i}=1$ for all of i, then $N_{R}\left(u_{i}\right)=\emptyset$ for all of i (if not, let $z \in N_{R}\left(u_{i}\right)$ for some i, by Claim 1 and Claim $5 N(z) \subseteq V(C)$ and $u_{j} z \in E(G)$ for some j. then, $z \in N_{R}\left(u_{i}\right) \cap N_{R}\left(u_{j}\right)$, a contradiction). Then $N\left(u_{i}\right) \cap N^{+}\left(u_{i}\right)=\emptyset$ (otherwise, $y \in N\left(u_{i}\right) \cap N^{+}\left(u_{i}\right)$, then $C^{\prime}=$
$x v_{i+1} \vec{C} y^{-} u_{i} y \vec{C} v_{i} x$ is a D-cycle longer than $\left.C\right)$. Moreover, we have $N(x) \cap N^{+}(x)=\emptyset$ by Claim $2, N^{+}(x) \cap N\left(u_{i}\right)=N^{+}\left(u_{i}\right) \cap N(x)=\emptyset$ by Claim 3. Hence, $N\left(x, u_{i}\right) \cap N^{+}\left(x, u_{i}\right)=\emptyset$. So we have

$$
|V(C)| \geq\left|N\left(x, u_{i}\right) \cup N^{+}\left(x, u_{i}\right)\right| \geq 2\left|N\left(x, u_{i}\right)\right| \geq 2 N C 2(G)
$$

a contradiction. So we may assume $t_{i}=1$ for some i, without loss of generality, suppose $t_{1}=1$ and $N_{R}\left(w_{k}\right) \neq \emptyset$. Let $y \in N_{R}\left(w_{k}\right)$, choose $y_{1} \in N(y)$ such that $N(y) \cap\left(y_{1}^{+} \vec{C} w_{k}^{-}\right)=\emptyset$. Using a similar argument as above and $d_{R}\left(u_{1}\right) \leq 1$, by Claim 5 , we have

$$
|V(C)|=\left|N_{C}\left(x, u_{1}\right) \cup N_{C}^{+}\left(x, u_{1}\right)\right| \geq 2 N C 2(G)-2
$$

So $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{+}\left(x, u_{1}\right)$. Similarly, we know that $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Moreover, $u_{1} w_{k}^{-} \in E(G)$. If $\left|y_{1}^{+} \vec{C} w_{k}^{-}\right|=1$, then $C^{\prime}=x v_{2} \vec{C} y_{1} y w_{k} w_{k}^{-} u_{1} v_{1} x$ is a D-cycle longer than C, a contradiction. So we may assume that $\left|y_{1}^{+} \vec{C} w_{k}^{-}\right| \geq 2$.

Now, we consider $N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Since $\operatorname{dist}\left(y, y_{1}^{+}\right)=\operatorname{dist}\left(x, u_{1}\right)=2, \mid N\left(y, y_{1}^{+} \mid \geq\right.$ $N C 2(G),\left|N^{-}\left(x, u_{1}\right)\right|=\left|N\left(x, u_{1}\right)\right| \geq N C 2(G)$. Moreover, we have $v_{1}, v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$ and $N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \subseteq\left\{w_{k}\right\}$. In fact, $v_{1} \notin N\left(y, y_{1}^{+}\right)$by Claims 3 and 5 , if $v_{1} \in$ $N^{-}\left(x, u_{1}\right)$, then $v_{1}^{+} x \in E(G)$ or $v_{1}^{+} u_{1} \in E(G)$, which contradicts to Claims 2 and 3 . So $v_{1} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$;if $v_{2} \in N_{C}\left(y, y_{1}^{+}\right)$, then $v_{2} y^{+} \in E(G)$ by Claim 5, which contradicts to Claim 4. If $v_{2} \in N_{C}^{-}\left(x, u_{1}\right)$ then $v_{2}^{+} \in N\left(x, u_{1}\right)$, which contradicts to Claims 2 and 3. So $v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Suppose $z \in N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \backslash\left\{w_{k}\right\}$. Now, we consider the following cases.
(i) $z \in v_{2} \vec{C} y_{1}^{-}$. If $y z \in E(G)$ and $x z^{+} \in E(G)$, then, it contradicts to Claim 3. Put

$$
C^{\prime}= \begin{cases}y z \overleftarrow{C} v_{2} x v_{1} u_{1} z^{+} \overleftarrow{C} w_{k} y & \text { if } y z \in E(G) \text { and } u_{1} z^{+} \in E(G) ; \\ x z^{+} \vec{C} y_{1} y w_{k} \overleftarrow{C} y_{1}^{+} z \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+} z \in E(G) \text { and } x z^{+} \in E(G) ; \\ x v_{2} \vec{C} z y_{1}^{+} \vec{C} w_{k} y y_{1} \overleftarrow{C} z^{+} u_{1} v_{1} x & \text { if } y_{1}^{+} z \in E(G) \text { and } u_{1} z^{+} \in E(G)\end{cases}
$$

(ii) $z \in y_{1} \vec{C} w_{k}^{-}$, then $z \in N\left(y_{1}^{+}\right)$since $N(y) \cap\left(y_{1}^{+} \vec{C} w_{k}^{-}\right)=\emptyset$. Let $z y_{1}^{+} \in E(G)$ and $z^{+} \in$ $N_{C}\left(x, u_{1}\right)$. Since $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$, So $y_{1}^{+} \in N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. If $u_{1} y_{1}^{+} \in$ $E(G)$ then $C^{\prime}=x v_{2} \vec{C} y_{1} y w_{k} \overleftarrow{C} y_{1}^{+} u_{1} v_{1} x$ is a D-cycle longer than C, a contradiction; if $x y_{1}^{+} \in$ $E(G)$, then it contradicts with Claim 3. Then, $y_{1}^{+} \in N^{-}\left(x, u_{1}\right)$. If $x z^{+} \in E(G)$ and $y_{1}^{+2} x \in$ $E(G)$, then it contradicts to Claim 3; Put

$$
C^{\prime}= \begin{cases}x y^{+2} \vec{C} z y_{1}^{+} \overleftarrow{C} u_{1} z^{+} \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+2} x \in E(G) \text { and } u_{1} z^{+} \in E(G) \\ x v_{2} \vec{C} y_{1}^{+} z \overleftarrow{C} y_{1}^{+2} u_{1} \overleftarrow{C} z^{+} x & \text { if } y_{1}^{+2} u_{1} \in E(G) \text { and } x z^{+} \in E(G) \\ x v_{2} \vec{C} y_{1}^{+} z \overleftarrow{C} y_{1}^{+2} u_{1} z^{+} \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+2} u_{1} \in E(G) \text { and } u_{1} z^{+} \in E(G)\end{cases}
$$

In any cases, C^{\prime} is a D-cycle longer than C, a contradiction. Therefore, $v_{1}, v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup$ $N_{C}^{-}\left(x, u_{1}\right), N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \subseteq\left\{w_{k}\right\}$. Hence, we have

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x_{1}, u_{1}\right)\right|+2 \\
& \geq\left|N_{C}\left(y, y_{1}^{+}\right)\right|+\left|N_{C}^{-}\left(x_{1}, u_{1}\right)\right|-1+2 \\
& =\left|N\left(y, y_{1}^{+}\right) \backslash N_{R}\left(y, y_{1}^{+}\right)\right|+\left|N\left(x_{1}, u_{1}\right) \backslash N_{R}\left(x_{1}, u_{1}\right)\right|+1 \\
& \geq 2 N C 2(G)-2+1 \\
& =2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$.
Claim 7 If $\bigcup_{i=1}^{k} N_{R}\left(y_{i}\right) \neq \emptyset$, then $N_{R}\left(y_{i}\right) \neq \emptyset$ for all $i \in\{1,2, \ldots, k\}$, where $y_{i}=u_{i}\left(w_{i}\right.$, respectively).

If not, without loss of generality, we assume that $N_{R}\left(u_{1}\right) \neq \emptyset$ and $N_{R}\left(u_{k}\right)=\emptyset$. Suppose $x_{1} \in N_{R}\left(u_{1}\right)$ and $y \in N\left(x_{1}\right)\left(y \neq u_{1}\right)$. Then $\operatorname{dist}\left(x_{1}, y^{+}\right)=\operatorname{dist}\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{+}\right)\right| \geq$ $N C 2(G),\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$.
Case $1 N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)=\emptyset$.
If not, we may choose $y, y \in N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)$, such that $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. We define a mapping f on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{k} \vec{C} y^{-} \\ v^{+} & \text {if } v \in y \vec{C} w_{k-1} ; \\ y^{-} & \text {if } v=v_{k}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|=\left|N_{C}\left(x, u_{k}\right)\right|=\left|N\left(x, u_{k}\right)\right| \geq N C 2(G)$ by Claim 1 and the assumption $N_{R}\left(u_{k}\right)=\emptyset$. Moreover, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}\right\}$. In fact, suppose that $z \in f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \backslash\left\{w_{k}, u_{1}\right\}$. Obviously, $z \neq v_{1}, y^{-}$by Claims 2 and 4 . Now we consider the following cases.
(i) If $z \in u_{k} \vec{C} w_{k}^{-}$, then $z \in N_{C}^{-}\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}u_{k} z^{+} \vec{C} v_{1} x v_{k} \overleftarrow{C} u_{1} x_{1} z \overleftarrow{C} u_{k} & \text { if } x_{1} z \in E(G) \\ u_{k} z^{+} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} z \overleftarrow{C} u_{k} & \text { if } y^{-} z \in E(G)\end{cases}
$$

(ii) If $z \in u_{1}^{+} \vec{C} y^{-2}$, then $z y^{-} \in E(G)$ since $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z y^{-} \overleftarrow{C} z^{+} x v_{1} \overleftarrow{C} y x_{1} u_{1} & \text { if } x z^{+} \in E(G) \\ u_{1} \vec{C} z y^{-} \overleftarrow{C} z^{+} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1} & \text { if } u_{k} z^{+} \in E(G)\end{cases}
$$

(iii) If $z \in y^{+} \vec{C} v_{k}$, we put

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z^{-} x v_{1} \overleftarrow{C} z x_{1} u_{1} & \text { if } x z^{-} \in E(G) \text { and } x_{1} z \in E(G) ; \\ u_{1} \vec{C} y^{-} z \vec{C} v_{1} x z^{-} \overleftarrow{C} y x_{1} u_{1} & \text { if } x z^{-} \in E(G) \text { and } y^{-} z \in E(G) ; \\ u_{1} \vec{C} z^{-} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} z x_{1} u_{1} & \text { if } u_{k} z^{-} \in E(G) \text { and } x_{1} z \in E(G) ; \\ u_{1} \vec{C} y^{-} z \vec{C} v_{k} x v_{1} \overleftarrow{C} u_{k} z^{-} \overleftarrow{C} y x_{1} u_{1} & \text { if } u_{k} z^{-} \in E(G) \text { and } y^{-} z \in E(G)\end{cases}
$$

In any cases, C^{\prime} is a D-cycle longer than C, a contradiction. Therefore, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap$ $N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}\right\}$. By Claims 2 and 4 , we have $u_{1} \notin N\left(x, u_{k}\right)$ and $v_{1} \notin N\left(x_{1}, y^{-}\right)$. Then $v_{1} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{-}\right)$. Hence, by Claim 6 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+1 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+1 \\
& \geq 2 N C 2(G)-2 .
\end{aligned}
$$

So, we have $V(C)=N_{C}\left(x_{1}, y^{-}\right) \cup f\left(N_{C}\left(x, u_{k}\right)\right) \cup\left\{v_{1}\right\}, N_{C}\left(x_{1}, y^{-}\right) \cap f\left(N_{C}\left(x, u_{k}\right)\right)=$ $\left\{w_{k}, u_{1}\right\}$. Hence, $y^{-} w_{k} \in E(G)$ and $u_{k} u_{1}^{+} \in E(G)$ since $t_{i} \geq 2$.

Now, we prove that $N_{R}\left(y^{-}\right)=\emptyset$. If not, there exist $y_{1} \in N_{R}\left(y^{-}\right), z \in N_{C}\left(y_{1}\right)\left(z \neq y^{-}\right)$by Claim 1 and $\delta \geq 2$.

Subcase $1 N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$.
If not, we choose $z \in N\left(y_{1}\right)$, such that $N\left(y_{1}\right) \cap\left(z^{+} \vec{C} y^{-2}\right)=\emptyset$. Therefore we can define a mapping f_{1} on $V(C)$ as follows:

$$
f_{1}(v)= \begin{cases}v^{-} & \text {if } v \in u_{k}^{+} \vec{C} z^{+} \\ v^{+} & \text {if } v \in z^{+2} \vec{C} w_{k-1} \\ z^{+2} & \text { if } v=v_{k} \\ z^{+} & \text {if } v=u_{k}\end{cases}
$$

Using an argument as above, we have $\mid f_{1}\left(N_{C}\left(x, u_{k}\right) \mid \geq N C 2(G)\right.$. Moreover, we have $z^{+}, v_{1}, y \notin$ $N_{C}\left(y_{1}, z^{+}\right) \cup f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$ and $N_{C}\left(y_{1}, z^{+}\right) \cap f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{z^{+2}, y^{-}, w_{k}\right\}$. Clearly, $z^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right)$. If $z^{+} \in f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$, then, $u_{k} \in N_{C}\left(x, u_{k}\right)$, a contradiction. $y_{1} v_{1} \notin E(G)$ by Claim 5. If $v_{1} z^{+} \in E(G)$, since $y, z^{+} \in N^{+}\left(y_{1}\right)$, the two paths $y x_{1} u_{1}$ and $z^{+} v_{1}$ contradict with Claim 4; By Claims 2 and 4 , we have $y \notin N\left(y_{1}, z^{+}\right)$, if $y \in f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$ then $y^{-} \in N_{C}\left(x, u_{k}\right)$, by Claim $3 y^{-} \notin N(x)$, so $y^{-} \in N\left(u_{k}\right)$, then $C^{\prime}=x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} u_{k} \vec{C} v_{1} x$ is a D-cycle longer than C, a contradiction. So we have $z^{+}, v_{1}, y \notin N_{C}\left(y_{1}, z^{+}\right) \cup f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$. Suppose $s \in N_{C}\left(y_{1}, z^{+}\right) \cap f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{z^{+2}, y^{-}, w_{k}\right\}$.

Now, we consider the following cases.
(i) $s \in y^{+} \vec{C} v_{k}$. If $y_{1} s \in E(G)$ and $x s^{-} \in E(G)$ then it contradicts with Claim 4. We put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} s y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \overleftarrow{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{-} \in E(G) \\ x s^{-} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+} s \vec{C} v_{1} x & \text { if } z^{+} s, x s^{-} \in E(G) \\ x v_{k} \overleftarrow{C} s z^{+} \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{1} x_{1} y \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{-} \in E(G)\end{cases}
$$

(ii) $s \in u_{k} \vec{C} w_{k-1}$. We have $s \in N^{-}\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$.Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+}{ }_{s} \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{+} \in E(G)\end{cases}
$$

(iii) $s \in u_{1} \vec{C} y^{-2}$. If $y_{1} s, x s^{+} \in E(G)$ then contradicts to Claim 4. If $y_{1} s, u_{k} s^{+} \in E(G)$, then

$$
C^{\prime}=x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} s y_{1} y^{-} \overleftarrow{C} s^{+} u_{k} \vec{C} v_{1} x
$$

is a D-cycle longer than C, a contradiction. If $s \in z^{+} \vec{C} y^{-}$, we put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} z^{+} s \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{1} x_{1} y \vec{C} v_{1} x & \text { if } z^{+} s, s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, s^{-} u_{k} \in E(G)\end{cases}
$$

If $s \in u_{1} \vec{C} z$, we put

$$
C^{\prime}= \begin{cases}x s^{+} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+} s \overleftarrow{C} u_{1} x_{1} y \vec{C} v_{1} x & \text { if } z^{+} s, x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} s z^{+} \vec{C} y^{-} y_{1} z \overleftarrow{C} s^{+} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{+} \in E(G)\end{cases}
$$

In any cases, C^{\prime} is a D-cycle longer than C, a contradiction. Hence, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(y_{1}, z^{+}\right)\right|+3 \\
& \geq\left|f_{1}\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(y_{1}, z^{+}\right)\right|-3+3 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$,
Subcase $2 N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$.
If not, we may choose $z \in N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)$, such that $N\left(y_{1}\right) \cap\left(y \vec{C} z^{-}\right)=\emptyset$. Therefore, we can define a mapping f_{2} on $V(C)$ as follows:

$$
f_{2}(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} y^{-2} \cup z^{-} \vec{C} w_{k-1} ; \\ v^{-} & \text {if } v \in y^{+} \vec{C} z^{-2} \cup u_{k}^{+} \vec{C} v_{1} \\ z^{-} & \text {if } v=v_{k} ; \\ v_{1} & \text { if } v=u_{k} ; \\ z^{-2} & \text { if } v=y ; \\ u_{1} & \text { if } v=y^{-}\end{cases}
$$

Using a similar argument as above, we have $\left|f_{2}\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$. We consider $N_{C}\left(y_{1}, z^{-}\right) \cup$ $f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, then $v_{1}, u_{1}^{+} \notin N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, and $N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq$ $\left\{y^{-}, w_{k}\right\}$. In fact, $v_{1} \notin N\left(y_{1}, z^{-}\right)$by Claims 4,5 ; if $v_{1} \in f_{2}\left(N\left(x, u_{k}\right)\right)$ then $u_{k} \in N\left(x, u_{k}\right)$, a contradiction; if $u_{1}^{+} \in N\left(z^{-}\right)$, then the paths $y x_{1} u_{1}$ and $z^{-} u_{1}^{+}$contradict with Claim 5; if $u_{1}^{+} \in f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, then $u_{1} \in N\left(x, u_{k}\right)$, a contradiction. So we have $v_{1}, u_{1}^{+}, \notin N_{C}\left(y_{1}, z^{-}\right) \cup$ $f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$. For $s \in N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{y^{-}, w_{k}\right\}$, we consider the following cases.
(i) If $s \in u_{1} \vec{C} y$. We have $s \in N\left(z^{-}\right)$since $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \vec{C} y^{-} y_{1} z \vec{C} v_{1} x & \text { if } s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} s z \overleftarrow{C} y x_{1} u_{1} \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } s^{-} u_{k} \in E(G)\end{cases}
$$

(ii) If $s \in u_{k} \vec{C} v_{1}$, then $s^{+} \in N\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } z^{-} s \in E(G) ; \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s \in E(G)\end{cases}
$$

(iii) If $s \in y \vec{C} z^{-2}$, then we have $s \in N\left(z^{-}\right)$since $N\left(y_{1}\right) \cap\left(y \vec{C} z^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x_{1} y \vec{C} s z^{-} \overleftarrow{C} s^{+} x v_{1} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} & \text { if } x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{-} s^{+} u_{k} \vec{C} v_{1} x & \text { if } u_{k} s^{+} \in E(G)\end{cases}
$$

(iv) If $s \in z^{-} \vec{C} v_{k}$. If $y_{1} s, x s^{-} \in E(G)$ then it contradicts to Claim 4. We put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} s y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{-} \in E(G) \\ x s^{-} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \vec{C} v_{1} x & \text { if } z^{-} s, s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} s z^{-} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{-} s, s^{-} u_{k} \in E(G)\end{cases}
$$

In any cases, C^{\prime} is a D-cycle longer than C, a contradiction. Therefore, we have v_{1}, u_{1}^{+}, \notin $N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, and $N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. So

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)\right|+2 \\
& \geq\left|N_{C}\left(y_{1}, z^{-}\right)\right|+\left|N_{C}\left(x, u_{k}\right)\right|-2+2 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. Hence, $N\left(y_{1}\right) \backslash\left\{y^{-}\right\} \subseteq\left(u_{k} \vec{C} u_{1}\right)$.
Subcase $3 N\left(y_{1}\right) \cap\left(u_{k} \vec{C} u_{1}\right)=\emptyset$.
If not, we may choose $z \in N\left(y_{1}\right) \cap\left(u_{k} \vec{C} u_{1}\right)$, such that $N\left(y_{1}\right) \cap\left(z^{+} \vec{C} u_{1}\right)=\emptyset$. We define a mapping f_{3} on $V(C)$ as follows:

$$
f_{3}(v)= \begin{cases}v^{-} & \text {if } v \in y^{+} \vec{C} v_{k} \cup u_{k}^{+} \vec{C} z^{+} \\ v^{+} & \text {if } v \in z^{+2} \vec{C} y^{-2} \\ z^{+} & \text {if } v=u_{k} \\ v_{k} & \text { if } v=y \\ z^{+2} & \text { if } v=y^{-}\end{cases}
$$

Using a similar argument as above, we have $\left|f_{3}\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$. Moreover, $z^{+}, u_{1}^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right)\right), N_{C}\left(y_{1}, z^{+}\right) \cap f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. In fact, clearly, $z^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right)$, if $z^{+} \in f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$, then $u_{k} \in N_{C}\left(x, u_{k}\right)$, a contradiction; if $u_{1}^{+} \in N_{C}\left(y_{1}, z^{+}\right)$, then $u_{1}^{+} \in N\left(z^{+}\right)$since $N_{C}\left(y_{1}\right) \cap\left(y^{-2} \vec{C} u_{k}\right)=\emptyset$, so $C^{\prime}=x_{1} y \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1}^{+} z^{+} \vec{C} u_{1} x_{1}$ is a D-cycle longer than C, a contradiction; if $u_{1}^{+} \in f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$ then $u_{1} \in N_{C}\left(x, u_{k}\right)$, a contradiction; so we have $z^{+}, u_{1}^{+} \notin N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$. Suppose $s \in N_{C}\left(y_{1}, z^{+}\right) \cap$ $f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{y^{-}, w_{k}\right\}$. Now, we consider the following cases.
(i) If $s \in v_{k} \vec{C} z^{+}$, then We have $s^{+} u_{k} \in E(G)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \overleftarrow{C} s^{+} u_{k} \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } z^{+} s \in E(G)\end{cases}
$$

(ii) If $s \in z^{+2} \vec{C} w_{k}^{-}$, then we have $s^{-} u_{k}, s z^{+} \in E(G)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=N\left(y_{1}\right) \cap$ $\left(z^{+} \vec{C} v_{1}\right)=\emptyset$. Put

$$
C^{\prime}=x v_{k} \vec{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{k} s^{-} \overleftarrow{C} z^{+}{ }_{s} \vec{C} v_{1} x
$$

(iii) If $s \in u_{1} \vec{C} y^{-2}$, then we have $s z^{+} \in E(G)$ since $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} v_{1} x & \text { if } x s^{-} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \overleftarrow{C} s^{-} u_{k} \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} v_{1} x & \text { if } u_{k} s^{-} \in E(G)\end{cases}
$$

(iv) If $s \in y \vec{C} v_{k}$, then we have $s z^{+} \in E(G)$ since $N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{+} \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} s^{+} u_{k} \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } u_{k} s^{+} \in E(G)\end{cases}
$$

In any cases, C^{\prime} is a D-cycle longer than C, a contradiction. Therefore we have $N_{C}\left(y_{1}, z^{+}\right) \cap$ $f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. So we have

$$
\begin{aligned}
|V(C)| & \geq \mid N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right) \mid+2\right. \\
& \geq \mid N_{C}\left(y_{1}, z^{+}\left|+\left|N_{C}\left(x, u_{k}\right)\right|-2+2\right.\right. \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. Hence, $N\left(y_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$.
Thus, $N\left(y_{1}\right)=\left\{y^{-}\right\}$, which contradicts to $\delta \geq 2$. Therefore, we know that $N_{R}\left(y^{-}\right)=\emptyset$.
So we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+1 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+1 \\
& =\left|N\left(x, u_{k}\right) \backslash N_{R}\left(x, u_{k}\right)\right|+\left|N\left(x_{1}, y^{-}\right) \backslash N_{R}\left(x_{1}, y^{-}\right)\right|-1 \\
& =\left|N\left(x, u_{k}\right)\right|+\left|N\left(x_{1}, y^{-}\right)\right|-1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So we have $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)=\emptyset$, hence, $N\left(x_{1}\right) \subseteq u_{k} \vec{C} u_{1}$.
Case $2 N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$.
Otherwise, since $v_{1} x_{1} \notin E(G)$, we can choose $y, y \in u_{k} \vec{C} w_{k}$, such that $N\left(x_{1}\right) \cap\left(y^{+} \vec{C} v_{1}\right)=$ \emptyset. Therefore, we can define a mapping g on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{-} & \text {if } v \in u_{1}^{+} \vec{C} y ; \\ v^{+} & \text {if } v \in y^{+} \vec{C} w_{k} ; \\ y^{+} & \text {if } v=u_{1}, \\ y & \text { if } v=v_{1} .\end{cases}
$$

Using a similar argument as before, we have $\left|g\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G), y^{+} \notin g\left(N_{C}\left(x, u_{k}\right)\right) \cup$ $N\left(x_{1}, y^{+}\right)$and $g\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{+}\right) \subseteq\left\{u_{1}\right\}$. Hence, by Claim 6 we have

$$
\begin{aligned}
|V(C)| & \geq\left|g\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{+}\right)\right|+1 \\
& \geq\left|g\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N\left(x_{1}, y^{+}\right)\right|-1+1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So $N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$. Then $N\left(x_{1}\right)=\left\{u_{1}\right\}$, which contradicts to $\delta \geq 2$.
Claim 8 If $x_{1} \in N_{R}\left(u_{1}\right)$ and $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right) \neq \emptyset$, then $\left|\left\{u_{k} u_{1}^{+}, y^{-} w_{k}\right\} \cap E(G)\right|=1$ for $y \in N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)$ with $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$.

First we have $d\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$.Let $u_{k} u_{1}^{+} \notin E(G)$. Now we define a mapping f on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{k}^{+2} \vec{C} v_{1} \cup u_{1}^{+2} \vec{C} y^{-} \\ v^{+} & \text {if } v \in y \vec{C} w_{k-1} \\ y^{-} & \text {if } v=u_{k} \\ y & \text { if } v=v_{k} \\ u_{1} & \text { if } v=u_{k}^{+} \\ v_{1} & \text { if } v=u_{1}^{+} \\ u_{k} & \text { if } v=u_{1}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|=\left|N_{C}\left(x, u_{k}\right)\right| \geq N C 2(G)-1$ by Claim 5. Moreover using a similar argument as in Claim 7, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}, y\right\}$. But we have $y^{-}, v_{1}, u_{k} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{-}\right)$by the choice of y Claims 2 and 4 , respectively. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+3 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-3+3 \\
& \geq 2 N C 2(G)-2
\end{aligned}
$$

So $V(C)=f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right) \cup\left\{v_{1}, y^{-}, u_{k}\right\}$ by the assumption on $|V(C)|$, and in particular, $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x_{1}, y^{-}\right)=\left\{w_{k}, u_{1}, y\right\}$. Therefore, $y^{-} w_{k} \in E(G)$. Using a similar argument as above, we have if $y^{-} w_{k} \notin E(G)$, then $u_{k} u_{1}^{+} \in E(G)$.

Claim 9 There exists a vertex x with $x \notin V(C)$ such that $N_{R}\left(u_{i}\right)=N_{R}\left(w_{i}\right)=\emptyset$.
We only prove $N_{R}\left(u_{i}\right)=\emptyset$. If not, we may choose $x \notin V(C)$ such that $\min \left\{t_{i}\right\}$ is as small as possible. By Claim 7, without loss of generality, suppose that $t_{k}=\min \left\{t_{i}\right\}$ for the vertex x. Let $x_{1} \in N_{R}\left(u_{1}\right), x_{2} \in N_{R}\left(u_{k}\right)$. By Claims 2 and $3, x \neq x_{1}, x_{2} ; x_{1} \neq x_{2}$. And by Claim 5 and the choice of x, we have $N\left(x_{i}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$, for $i=1,2$. Since $\delta \geq 2$, $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right) \neq \emptyset$. Choose $y \in N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{k}\right)$ such that $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$, then $d\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$. By Claim 8 , we have $u_{k} u_{1}^{+}$or $y^{-} w_{k} \in E(G)$.

First we prove that $N\left(x_{2}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. If not, we may choose $z \in y^{+} \vec{C} v_{k}^{-}$such that $N\left(x_{2}\right) \cap\left(z^{+} \vec{C} v_{k}\right)=\emptyset$ by Claim 5. Then $d\left(x_{2}, z^{+}\right)=2$ and $\left|N\left(x_{2}, z^{+}\right)\right| \geq N C 2(G)$. Now we define a mapping f on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{1}^{+} \vec{C} y^{-} \cup z^{+2} \vec{C} v_{k} ; \\ v^{+} & \text {if } v \in y \vec{C} z^{-} \cup u_{k} \vec{C} w_{k} ; \\ y & \text { if } v=z ; \\ v_{k} & \text { if } v=z^{+} ; \\ u_{k} & \text { if } v=v_{1} ; \\ y^{-} & \text {if } v=u_{1} .\end{cases}
$$

Then $\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right)\right|=\left|N_{C}\left(x_{2}, z^{+}\right)\right| \geq N C 2(G)-1$ by Claim 5. Moreover using a similar argument as in Claim 7, we have $f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{u_{1}, y\right\}$. But $y^{-}, v_{k}, v_{1} \notin$ $f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cup N\left(x_{1}, y^{-}\right)$, otherwise, $u_{1} z^{+} \in E(G)$ or $y^{-} v_{k} \in E(G)$ or $z^{+} w_{k} \in E(G)$ by Claim 5, and hence the D-cycle

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z x_{2} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} z^{+} u_{1} & \text { if } u_{1} z^{+} \in E(G) ; \\ u_{1} x_{1} y \vec{C} v_{k} y^{-} \overleftarrow{C} u_{1}^{+} u_{k} \vec{C} u_{1} & \text { if } y^{-} v_{k} \in E(G) ; \\ x v_{k} \overleftarrow{C} z^{+} w_{k} \overleftarrow{C} u_{k} x_{2} z \overleftarrow{C} v_{1} x & \text { if } z^{+} w_{k} \in E(G)\end{cases}
$$

is longer than C, a contradiction. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+3 \\
& \geq\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+3 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$. So we have $N\left(x_{2}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. Hence $N\left(x_{2}\right)\left(u_{1}^{+} \vec{C} y^{-}\right) \cup\left\{u_{k}\right\}$.

Now, we prove that $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. In fact, we may choose $z \in u_{1}^{+} \vec{C} y^{-2}$ with $z \in N\left(x_{2}\right)$ such that $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} z^{-}\right)=\emptyset$. (Since $x_{2} y^{-} \notin E(G)$, otherwise, $C^{\prime}=$ $u_{1} \vec{C} y^{-} x_{2} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1}$ is a D-cycle longer than C, a contradiction.) Then $d\left(x_{2}, z^{-}\right)=2$ and $\left|N\left(x_{2}, z^{-}\right)\right| \geq N C 2(G)$. We define a mapping g on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{-} & \text {if } v \in z^{+} \vec{C} v_{k} \\ v^{+} & \text {if } v \in u_{k} \vec{C} z^{-2} \\ v_{k} & \text { if } v=z \\ u_{k} & \text { if } v=z^{-}\end{cases}
$$

Then we have $\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right)\right| \geq N C 2(G)-1$ by Claim 5 . Moreover using a similar argument as in Claim 7, we have $g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{u_{1}\right\}$. But $v_{1}, u_{k} \notin g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cup N\left(x_{1}, y^{-}\right)$, otherwise since $u_{k} \notin g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cup N\left(x_{1}, y^{-}\right), w_{k} z^{-} \in E(G)$ by Claims 2 and 4 , and hence the D-cycle $u_{1} \vec{C} z^{-} w_{k} \overleftarrow{C} u_{k} x_{2} z \vec{C} v_{k} x v_{1} u_{1}$ is longer than C, a contradiction. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cap N\left(x_{1}, y^{-}\right)\right|+2 \\
& \geq\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right)\right|+\left|N\left(x_{1}, y^{-}\right)\right|-1+2 \\
& \geq 2 N C 2(G)-1
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$. So we have $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$.
Therefore, $N\left(x_{2}\right)=\left\{u_{k}\right\}$, which contradicts to $\delta \geq 2$.
Claim 10 For any $x \notin V(C), t_{i} \geq 3$.
Otherwise, there exists a vertex $x, x \notin V(C)$, such that $\min \left\{t_{i}\right\}=2$ by Claim 6. Note that the choice of the vertex x in Claim 9, we have $N_{R}\left(u_{i}\right)=N_{R}\left(w_{i}\right)=\emptyset$ for the vertex x. Without loss of generality, suppose $t_{1}=2$, then $N_{C}^{-}\left(u_{1}\right) \cap N_{C}\left(w_{1}\right)=\left\{u_{1}\right\}$ by Claim 4, $N(x) \cap N^{+}(x)=\emptyset$ by Claim 2, and $N_{C}^{-}\left(u_{1}\right) \cap N(x)=N^{-}(x) \cap N_{C}\left(w_{1}\right)=\emptyset$ by Claim 3. Hence, $N_{C}^{-}\left(x, u_{1}\right) \cap N_{C}\left(x, w_{1}\right)=\left\{u_{1}\right\}$. We also have $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, w_{1}\right)\right| \geq$ $N C 2(G)$ since $d\left(x, u_{1}\right)=d\left(x, w_{1}\right)=2$. Then

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}^{-}\left(x, u_{1}\right) \cup N_{C}\left(x, w_{1}\right)\right| \\
& \geq\left|N_{C}^{-}\left(x, u_{1}\right)\right|+\left|N_{C}\left(x, w_{1}\right)\right|-1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$.
By Claim 10, we have $|V(C)|=k+\sum_{i=1}^{k} t_{i} \geq 4 k$. Thus we get the following.
Claim 11 For any $x, x \notin V(C)$,

$$
d(x) \leq \frac{|V(C)|}{4} \leq \frac{2 N C 2(G)-2}{4}=(N C 2(G)-1) / 2
$$

Claim $12 u_{i}^{+} u_{j} \notin E(G)$, for the vertex x as in Claim 9.
In fact, if $u_{i}^{+} u_{j} \in E(G)$, then the cycle $u_{i}^{+} \vec{C} v_{j} x v_{i} \overleftarrow{C} u_{j} u_{i}^{+}$is a longest D-cycle not containing u_{i}, by Claim 9 . Thus $d\left(u_{i}\right) \leq(N C 2(G)-1) / 2$ by Claim 11 . So we have

$$
N C 2(G) \leq\left|N\left(x, u_{i}\right)\right| \leq d(x)+d\left(u_{i}\right) \leq N C 2(G)-1,
$$ a contradiction. We choose x as in Claim 9, and define a mapping f on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} v_{k}^{-} \\ v^{-} & \text {if } v \in u_{k}^{+} \vec{C} v_{1} \\ u_{1} & \text { if } v=v_{k} \\ v_{1} & \text { if } v=u_{k}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$ by Claim 10. Moreover, we have $\left.f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x, u_{1}\right)_{\left\{v_{2}\right.}, v_{3}, \ldots, v_{k}, w_{k}\right\}$. By Claims 2, 4, and 12, we also have $u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right)$. Therefore, we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right)\right|+k-2 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x, u_{1}\right)\right|-k+k-2 \\
& \geq 2 N C 2(G)-2 .
\end{aligned}
$$

So

$$
V(C)=f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right) \cup\left\{u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+}\right\}
$$

by the assumption on $|V(C)|$, and in particular,

$$
f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x, u_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{k}, w_{k}\right\}
$$

Then $u_{1} w_{k}, u_{k} w_{k-1} \in E(G)$.
Claim $13 k=2$.
If there exists $v \in V(C) \backslash\left\{v_{1}, v_{k}\right\}$, by partition of $V(C)$, we have $v^{+2} \in f\left(N_{C}\left(x, u_{k}\right)\right) \cup$ $N_{C}\left(x, u_{1}\right) \cup\left\{u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+}\right\}$. If $v^{+2} \in N_{C}\left(x, u_{1}\right)$, then $v^{+2} u_{1} \in E(G)$, and the cycle $u_{1} v^{+2} \vec{C} v_{1} x$ $v \overleftarrow{C} u_{1}$ is a D-cycle not containing v^{+}by Claim 9 . Thus $d\left(v^{+}\right) \leq(N C 2(G)-1) / 2$ by Claim 11 So we have

$$
N C 2(G) \leq\left|N\left(x, v^{+}\right)\right| \leq d(x)+d\left(v^{+}\right) \leq N C 2(G)-1
$$

a contradiction.So $v^{+} \in N\left(x, u_{k}\right)$, which contradicts to Claims 2,3. Hence we have $k=2$.
Claim 14 Each of the followings does not hold:
(1) There is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} u_{1} \in E(G)$ and $u^{-} u_{2} \in E(G)$.
(2) There is $u \in u_{2} \vec{C} v_{1}$, such that $u^{-} u_{1} \in E(G)$ and $u^{+} u_{2} \in E(G)$.
(3) There is $u \in u_{2} \vec{C} v_{1}$, such that $u^{+} w_{1} \in E(G)$ and $u^{-} w_{2} \in E(G)$.
(4) There is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} w_{2} \in E(G)$ and $u^{-} w_{1} \in E(G)$.

If not, suppose there is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} u_{1} \in E(G)$ and $u^{-} u_{2} \in E(G)$. We define a mapping h on $V(C)$ as follows :

$$
h(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} u^{-} u_{2} \cup u^{+} \vec{C} w_{1} ; \\ v^{-} & \text {if } v \in u_{2}^{+} \vec{C} v_{1} ; \\ u^{+} & \text {if } v=v_{2} ; \\ v_{1} & \text { if } v=u_{2} ; \\ u_{1} & \text { if } v=u ; \\ u & \text { if } v=u_{2}^{+} .\end{cases}
$$

Then $\left|h\left(N_{C}\left(x, u_{2}\right)\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$. Moreover we have $u_{1} \notin N\left(x, u_{1}\right) \cup$ $h\left(N\left(x, u_{2}\right)\right)$, and $N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \subseteq\left\{v_{2}, u^{+}\right\}$. In fact, clearly $u_{1} \notin N\left(x, u_{1}\right)$, if $u_{1} \in$ $h\left(N\left(x, u_{2}\right)\right)$, then $u \in N\left(x, u_{2}\right)$, a contradiction. Let $s \in N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \backslash\left\{v_{2}, u^{+}\right\}$, if $s \in u_{1}^{+} \vec{C} v_{2} \cap N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \backslash\left\{v_{2}, u^{+}\right\}$then $s u_{1} \in E(G)$ and $s^{-} u_{2} \in E(G)$; or if
$s \in u_{2} \vec{C} w_{2} \cap N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right)$, then $s u_{1} \in E(G)$ and $s^{+} u_{2} \in E(G)$, both cases contradict to Claim 3. So $u_{1} \notin N\left(x, u_{1}\right) \cup h\left(N\left(x, u_{2}\right)\right), N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \subseteq\left\{v_{2}, u^{+}\right\}$. Hence

$$
\begin{aligned}
|V(C)| & \geq\left|h\left(N_{C}\left(x, u_{2}\right)\right) \cup N_{C}\left(x, u_{1}\right)\right|+1 \\
& \geq\left|h\left(N_{C}\left(x, u_{2}\right)\right)\right|+\left|N_{C}\left(x, u_{1}\right)\right|-2+1 \\
& \geq 2 N C 2(G)-1
\end{aligned}
$$

a contradiction. Similarly, (2), (3) and (4) are true.
Claim $15 \quad N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{1}^{-}\right)=N\left(u_{1}\right) \cap\left(u_{2} \vec{C} w_{2}^{-}\right)=\emptyset$.
If not, we may choose $z \in N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{1}^{-}\right)$, such that $N\left(u_{2}\right) \cap\left(u_{1} \vec{C} z^{-}\right)=\emptyset$. then $u_{1} z \in E(G)$ (if not, $u_{1} z \notin E(G)$ then $u_{2} z^{-} \in E(G)$ by partition of $V(G)$, which contradicts the choice of z) and $N\left(u_{1}\right) \cap\left(z^{+} \vec{C} w_{1}\right)=\emptyset$ (if not, we may choose $s \in N\left(u_{1}\right) \cap\left(z^{+} \vec{C} w_{1}\right)$, such that $N\left(u_{1}\right) \cap\left(z^{+} \vec{C} s^{-}\right)=\emptyset$ since $z^{+} u_{1} \notin E(G)$. So $s^{-} u_{1} \notin E(G)$, by partition of the $V(C)$, $s^{-2} u_{2} \in E(G)$. Which contradicts Claim 14) Moreover $u_{1}^{+} \vec{C} z \subseteq N\left(u_{1}\right)$, and $z \vec{C} v_{2} \subseteq N\left(u_{2}\right)$. Similarly, we have $y \in u_{2} \vec{C} w_{2}$, such that $u_{2} y, u_{1} y \in E(G)$ and $N\left(u_{1}\right) \cap\left(u_{2} \vec{C} y^{-}\right)=N\left(u_{2}\right) \cap$ $\left(y^{+} \vec{C} w_{2}\right)=\emptyset, y \vec{C} v_{1} \subseteq N\left(u_{1}\right)$ and $u_{2}^{+} \vec{C} y \subseteq N\left(u_{2}\right)$.

Now we define a mapping g on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{+} & \text {if } v \in v_{2} \vec{C} w_{2}^{-} \\ v^{-} & \text {if } v \in u_{1} \vec{C} w_{1} \\ v_{2} & \text { if } v=w_{2} \\ w_{1} & \text { if } v=v_{1}\end{cases}
$$

Using similar argument as above, consider $N\left(x, w_{1}\right) \cup g\left(N\left(x, w_{2}\right)\right)$, there exists $u \in V(C)$, such that $w_{1} u, w_{2} u \in E(G)$. Without loss generality, we may assume $u \in u_{1} \vec{C} w_{1}$, Moreover then $N\left(w_{2}\right) \cap\left(u^{+} \vec{C} w_{1}\right)=N\left(w_{1}\right) \cap\left(u_{1} \vec{C} u^{-}\right)=\emptyset$, and $v_{1} \vec{C} u \subseteq N\left(w_{2}\right), u \vec{C} v_{2} \subseteq N\left(w_{1}\right)$. Let $u \neq z$. If $u \in z \vec{C} w_{1}^{-}, u^{-} u_{2} \in E(G)$ by partition of $V(C)$ since $u u_{1} \notin E(G)$, which contradicts to Claim 4 ; if $u \in u_{1} \vec{C} z$, then $C^{\prime}=x v_{2} w_{1} u \vec{C} w_{1}^{-} u_{2} \vec{C} w_{2} u^{-} \overleftarrow{C} v_{1} x$ is a D-cycle longer than C, a contradiction. If $u=z$, since $z^{+2} u_{1} \notin E(G), z^{+} u_{2} \in E(G)$ by partition of $V(C)$, which contradicts to Claim 4. Hence $N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{2}^{-}\right)=\emptyset$. Similarly $N\left(u_{1}\right) \cap\left(u_{2} \vec{C} w_{1}^{-}\right)=\emptyset$.

By Claim 15 we have
Claim 16 If there exists $z \in v_{1} \vec{C} v_{2}$, such that $u_{2} z \in E(G)$, then $u_{1} z \in E(G)$ and $u_{1}^{+} \vec{C} z \subseteq$ $N\left(u_{1}\right), z \vec{C} w_{1} \subseteq N\left(u_{2}\right)$. similarly if there exists $z \in v_{2} \vec{C} v_{1}$, such that $u_{2} z \in E(G)$, then $u_{1} z \in E(G)$ and $u_{2}^{+} \vec{C} z \subseteq N\left(u_{2}\right), z \vec{C} w_{2} \subseteq N\left(u_{1}\right)$.

Proof of Theorem 5

Now we are going to complete the proof of Theorem 5. We choose x as in Claim 9. By Claim 13, we know that $k=2$.

First we prove that there exists $u \in V(C)$ such that $u_{1}, u_{2} \in N(u)$. If there is not any $u \in V(C) \backslash\left\{v_{2}, w_{1}, u_{2}^{+}\right\}$such that $u_{2} u \notin E(G)$, then $w_{1}^{-} u_{1} \in E(G)$ (if not, $w_{1}^{-2} u_{2} \in E(G)$ by
partition of $V(C))$. If $u_{1} w_{1} \notin E(G)$ then $u_{2} w_{1}^{-} \in E(G)$, so we have $u_{1}, u_{2} \in N\left(w_{1}^{-}\right)$; if there is $u \in V(C)$, such that $u_{2} u \in E(G)$ then, by Claim $16, u_{1} u \in E(G)$, hence $u_{1}, u_{2} \in N(u)$.

By Claim 16, clearly, there are not $z \in u_{1} \vec{C} w_{1}, y \in u_{2} \vec{C} w_{2}$, such that $y z \in E(G)$.
So we have $G \in \mathcal{J}_{1}$. The proof of Theorem 5 is finished.

Acknowledgment

We were helped in completing this paper by conversations with Prof.F.Tian and L.Zhang.

References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York(1976).
[2] H.J. Broersma and H.J. Veldman, Long dominating cycles and paths in graphs with large neighborhood unions, Journal of Graph Theory 15(1991), 29-38.
[3] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ2006.
[4] R.Q.Shen and F.Tian, Long dominating cycles in graphs, Discrete Mathematics, Vol.177(1997), 287-294.
[5] F. Tian and L.Z.Zhang Long dominating cycle in a kind of 2-connected graphs, Systems Science and Mathematical Science 8(1995), 66-74.
[6] Z.R.Sun, Long dominating cycle in graphs (Submitted).

[^0]: ${ }^{1}$ Received August 6, 2007. Accepted September 8, 2007
 ${ }^{2}$ Supported by the National Science Foundation of China(10671095) and the Tian Yuan Foundation on Mathematics.

