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Abstract: Let G be a connected graph of order n, and NC2(G) denote min{|N (u)UN (v)] :
dist(u,v) = 2}, where dist(u,v) is the distance between v and v in G. A cycle C' in G is
called a dominating cycle, if V(G)\V (C) is an independent set in G. In this paper, we prove
that if G contains a dominating cycle and 6 > 2, then GG contains a dominating cycle of
length at least min{n, 2NC2(G) — 1} and give a family of graphs showing our result is sharp,
which proves a conjecture of R. Shen and F. Tian, also related with the cyclic structures of

algebraically Smarandache multi-spaces.
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81. Introduction

All graphs considered in this paper will be finite and simple. We use Bondy & Murty [1] for
terminology and notations not defined here.

Let G = (V, E) be a graph of order n and C be a cycle in G. C is called a dominating
cycle, or briefly a D-cycle, if V(G)\V(C) is an independent set in G. For a vertex v in G, the
neighborhood of v is denoted by N(v), and the degree of v is denoted by d(v). For two subsets
S and T of V(G), we set Np(S) = {v € T\S : N(v) NS # 0}. We write N(u,v) instead of
Ny (gy({u,v}) for any u,v € V(G). If F and H are two subgraphs of G, we also write Np(H)
instead of Ny (p) (V(H)) In the case F' = G, if no ambiguity can arise, we usually omit the
subscript G of Ng(H). We denote by G[S] the subgraph of G induced by any subset S of V(G).

For a connected graph G and u,v € V(G), we define the distance between u and v in
G, denoted by dist(u,v), as the minimum value of the lengths of all paths joining v and v in
G. If G is non-complete, let NC(G) denote min{|N(u,v)| :uv ¢ E(G)} and NC2(G) denote
min{|N (u,v)| : dist(u,v) = 2}; if G is complete, we set NC(G) =n—1and NC2(G) =n—1.

In [2], Broersma and Veldman gave the following result.

Theorem 1([2]) If G is a 2-connected graph of order n and G contains a D-cycle, then G has
a D-cycle of length at least min{n,2NC(G)} unless G is the Petersen graph.

For given positive integers ni,ne and ns, let K(ni,n2,n3) denote the set of all graphs
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of order ny + ng + n3 consisting of three disjoint complete graphs of order n;, ne and ns,
respectively. For any integer p > 3, let J;" (resp. J5°) denote the family of all graphs of order
2p + 3 (resp. 2p+4) which can be obtained from a graph H in K(3,p,p) (resp. K(3,p,p+1))
by adding the edges of two triangles between two disjoint triples of vertices, each containing
one vertex of each component of H. Let J1 = {G : G is a spanning subgraph of some graph in
J} and Jo = {G : G is a spanning subgraph of some graph in J5'}. In [5], Tian and Zhang
got the following result.

Theorem 2([5]) If G is a 2-connected graph of order n such that every longest cycle in G
is a D-cycle, then G contains a D-cycle of length at least min{n,2NC2(G)} unless G is the
Petersen graph or G € J1 U Js.

In [4], Shen and Tian weakened the conditions of Theorem 2 and obtained the following
theorem.

Theorem 3([4]) If G contains a D-cycle and § > 2, then G contains a D-cycle of length at
least min{n,2NC2(G) — 3}.

Theorem 4([6]) If G contains a D-cycle and § > 2, then G contains a D-cycle of length at
least min{n, 2NC2(G) — 2}.

In [4], Shen and Tian believed the followings are true.

Conjecture 1 If G satisfies the conditions of Theorem 3, then G contains a D-cycle of length
at least min{n, 2NC2(G) — e(n)}, where e(n) =1 if n is even, and e(n) = 2 if n is odd.

Conjecture 2 If G contains a D-cycle and § > 2, then G contains a D-cycle of length at
least min{n, 2NC2(G)} unless G is one of the exceptional graphs listed in Theorem 2. And the
complete bipartite graphs Ky, m+q (¢ > 1) show that the bound 2N C2(G) is sharp.

In this paper, we prove the following result, which solves Conjecture 1 due to Shen and
Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces (see [3]
for details).

Theorem 5 If G contains a D-cycle and 6 > 2, then G contains a D-cycle of length at least
min{n, 2NC2(G) — 1} unless G € Ji.

Remark The Petersen graph shows that our bound 2NC2(G) — 1 is sharp.

82. Proof of Theorem 5

In order to prove Theorem 5, we introduce some additional notations.

Let C be a cycle in G. We denote by C the cycle C with a given orientation. If u,v € V(C),
then uz')v denotes the consecutive vertices on C' from u to v in the direction specified by
C. The same vertices, in reverse order, are given by vCu. We will consider uCv and vCu

=
both as paths and as vertex sets. We use u™ to denote the successor of v on C' and u~ to
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denote its predecessor. We write u*? := (u™)" and u=2 := (u™)~, etc. If A C V(C), then
At ={vt v e A} and A~ = {v™ :v € A}. For any subset S of V(G), we write NT(S) and
N~(S) instead of (N(S))™ and (N(S)) ™ ,respectively.

Let G be a graph satisfying the conditions of Theorem 4, i.e. G contains a D-cycle and
0 > 2. Throughout, we suppose that

——G@ is non-hamiltonian and C' is a longest D-cycle in G,
—V(C)] < 2NC2AG) - 2,

——R =G\V(C) and z € R, such that d(z) is as large as possible.
First of all, we prove some claims.

By the maximality of C' and the definition of D-cycle, we have
Claim 1 N(x) C V(C).

Claim 2 N(z)NN™T(z) =N(z)N N (x) = 0.

Let vy, va,...,v; be the vertices of N(z), in cyclic order around C. Then k > 2 since
§ > 2. For any i € {1,2,...,k}, we have v;” # v, (indices taken modulo k) by Claim 2. Let
—
u; = v, w; = v; 1, (indices taken modulo k), T; = u; Cwy, t; = |Tj].

Claim 3 Ng(y1) N Ng(y2) =0, if y1, y2 € NT(x) or y1, y2 € N~ (z).In particular, NT(z) N
N(u;) = N~ (z) N N(w;) = 0.

For any 4,5 € {1,2,...,k}(i # j), we also have the following Claims.
Claim 4 Each of the followings does not hold :

(1) There are two paths P;wj,z] and Pylu;, 27 ], (2 € vj+16’>vi) of length at most two

that are internally disjoint from C' and each other ;

(2) There are two paths P;[w;, 2] and Pslu;, z1] (2 € vj41 81}1) of length at two that are

internally disjoint from C' and each other ;

(3) There are two paths Py [u;, z] and Ps[uj, 2] (z € ujavi) of length at most two that are

internally disjoint from C' and each other, and similarly for Py [u,, 2] and Psluj, z7] (2 € u;ravj)
Claim 5 For any v € V(G), we have dg(v) < 1.

If not, then by Claim 1, there exists a vertex, say v, in C such that dg(v) > 1. Let
21,22 € Nr(v), then |N(z1,x2)] > NC2(G).

First, we prove that |N(x1,22) N NT(z1,22)] < 2. Otherwise, let 41, y2 and y3 be three
distinct vertices in N(x1,22) N Nt (z1,22). By Claim 2, we know y; € N(xzq1) N NT(z3) or
y; € N(x2) N NT (1) for any i € {1,2,3}. Thus, there must exist i and j (i # j,i,7 € {1,2,3})
such that y;,y; € N(z1) N Nt (a2) or y;,y; € N(z2) N NT(z1). In either case, it contradicts
Claim 3. So we have that |N(x1,z2) N N (21, z2)| < 2.
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Now we have

=
38
Vv

|N(I1, IQ) U N+(I1, I2)|
Z 2|N(I1,{E2)|—2
> 2NC2(G) -2,

so V(C) = N(x1,22) UNT(x1,22) by assumption on [V(C)|, and in particular, N(z1,z2) N
N+t (z1,22) = {y1,y2}.Therefore y; € N(x1) N NT(x2) and yo € NT(z1) N N(z2).

Now, we prove that dr(vt) < 1,dr(v™) < 1. If not,suppose dr(v™) > 1, let 21,22 €
Ng(v™), by Claim 1 and V(C) = N(z1,22) U Nt (21, 22), N(21,22) € NT(x1,22), so we have
x1 (or z2) € N(v™2). Using a similar argument as above, we have z; (or z2) € N(v=2), which
contradicts Claim 3. Thus, we have dg(v™) < 1; similarly, dr(vT) < 1.

Now, we consider N(z2,v~) U N~ (z1,v").Since dist(z2,v™) = dist(z1,vT) = 2 and
IN(z2,v7)| > NC2(G), N~ (z1,vT)| = |[N(z1,vT)] > NC2(G). We prove that |[N¢(z2,v7) N
Ng (z1,v7)] < 1. Let 2z € {Ne(z2,v7) N Ng (z1,07) P\ {yy }-

We consider following cases.

(i) Letz ey Cy2 if zzy € E(G) and 2127 € E(G), or za9 € E(G) and vzt € E(Q),
or v z € E(G) and z12" € E(G), each case contradicts Claim 3; if v™2 € E(G) and vt z" €
E(G), then C' = xlyz_(aﬁ +C v gygxgvxl is a D-cycle longer than C,a contradiction.

(ii) Let z € y Cyl , if 23z € E(GQ) and z12T € E(G), or z2z € E(G) and vtzT €
E(G), both contradict Claim 3; if v~z € E(G) and :vlz € E(G), it contradicts Claim 3; if
v~ xy € E(G) and zTvt € E(G), then ' = T141 C’v 2Cvtz +C’y1 xovwy is a D-cycle longer
than C, for z € va)yf; and C' = x1y5 CutztCu szQ:rgvxl is a D-cycle longer than C' for
PSS yga)v_.

So, we have |N¢(x2,v7) N N (21,0 )| <1 Moreover yl,y2 ¢ N(z2,v" ) UN"(z1,0).
Otherwise, if y; € N(v™), then C' = z1y5 C’ylv OyQIle C’vxl is a D-cycle longer than C.
By Claim 2, y; ¢ N(z2) UN~(z1,v"), so we have y; ¢ N(z3,v~) U N~ (z1,v"). By Claims 1
and 3 we have y, ¢ N(x2,v”)U N (x1,v"). Thus, we have

V(C) > [|Ne(za,v7) UNg(z1,07)] +2
> |Ne(az,v7)|+ [Ng(z1,07)] =142
= |N(x2, v )\Ng(z2,v7)| + |N(z1,v")\Ng(21,v7)| + 1
> 2NC2AG) -2+ 1

= 2NC2(G) -1,

a contradiction with |V (C)| < 2NC2(G) — 2. So, we have dr(v) < 1, for any v € V(G).
Claim 6 t; > 2.

If t;, = 1 for all of 4, then Ng(u;) = 0 for all of ¢ (if not, let z € Ng(u;) for some ¢, by
Claim 1 and Claim 5 N(z) C V(C) and ujz € E(G) for some j. then, z € Ng(u;) N Ng(u;),
a contradiction). Then N(u;) N N (u;) = 0( otherwise, y € N(u;) N N*(u;), then C" =
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xviHE’)y*uiyE’)vix is a D-cycle longer than C'). Moreover, we have N(x) N NT(x) = 0 by
Claim 2, N*(z) N N(u;) = N*(u;) N N(x) = 0 by Claim 3. Hence, N(z,u;) N N*(z,u;) = 0.
So we have

[V(C)| > |N(2,u;) UNT(z,u;)| > 2|N(x,u;)| > 2NC2(G),
a contradiction. So we may assume t; = 1 for some i, without loss of generality, suppose t; = 1
and Ng(wy) # 0. Let y € Ng(wy), choose y1 € N(y) such that N(y) N (yfawk_) = (). Using a
similar argument as above and dr(u;) < 1, by Claim 5, we have

[V(C)| = |No(x,u1) UNS (2, u1)| > 2NC2(G) — 2.

So V(C) = Ne(z,u1) U Néf(x,ul). Similarly, we know that V(C') = N¢(x,u1) U N (x,uq).
Moreover, uiw, € E(G). If |yf8w,§| =1, then C' = xvggylywkw,;ulle is a D—cycle longer
than C, a contradiction. So we may assume that |yf6w,§| > 2.

Now, we consider N¢(y,y;) U NG (2, u1). Since dist(y,y;) = dist(z,u1) = 2, |N(y,y | >
NC2(G), N~ (x,u1)| = |N(x,u1)| > NC2(G). Moreover, we have v1,v2 ¢ Ne(y, yi7 )UNG (2, u1)
and Nc(y,yi) N Ng(z,u1) € {wi}. In fact, vi ¢ N(y,y!) by Claims 3 and 5, if v; €
N~ (z,u1), then vz € E(G) or v;ju; € E(G), which contradicts to Claims 2 and 3. So
v1 & Ne(y, yi )UNG (z,u1):if va € Ne(y, 4y ), then vay™ € E(G) by Claim 5, which contradicts
to Claim 4. If vo € N5 (x,u1) then vy € N(x,u1), which contradicts to Claims 2 and 3. So
v2 & Ne(y,y17) U NG (z,u1). Suppose z € Ne(y,y17) N NG (2, u1)\{wy}. Now, we consider the
following cases.

(i) ze€ ’Uga)yl_. If yz € E(G) and 22" € E(G), then, it contradicts to Claim 3. Put

— —
yzCugrviuzt Cwgy if y2z € E(G)andu, 2% € E(G);
C' = xz+8y1ywk<5yf'z<5v1x if y 2 € E(Q) andzz* € E(G);
— +—> <— + . +
2vy C 2y Cwrpyyr CzTugvie  if yi 2z € E(G) and ui 2™ € E(G).

(i) =z € ylaw;, then z € N(y;") since N(y) N (yfaw;) = (. Let zy; € E(G) and 27T €
Ne(z,ur). Since V(C) = Ne(z,u1) U NG (z,u1), So yi € Ne(z,ur) U NG (2, ur). If wyyf €

E(G) then C' = xvggylywkgyf'ulle is a D—cycle longer than C', a contradiction; if zy," €
E(G), then it contradicts with Claim 3. Then, y;7 € N~ (z,u;). If 227 € E(G) and y %z €
(@),

E(G), then it contradicts to Claim 3; Put
:Cy+25>zyf<5ulz+<5le if ¥ %2 € B(G) and uy2t € E(G);
C' = xvga)yfzgyf'zul(aﬁx if y2u; € B(G) and z2t € E(G);
:zrvga)erz(a F20,2+C if 32 E(G) and te BEG
120y u1zt Cuyz if y“uy € E(G) and u1zt € E(G).
In any cases, C’ is a D-cycle longer than C, a contradiction. Therefore, v1,vs ¢ Ne(y, yi U
Ng (z,u1), Ne(y,y) N NG (z,u1) € {wy}. Hence, we have

V(@) > INc(y,y) UNg (w1,u1)] +2

> |Ne(y,yi)| + INGg (z1,u1)| — 1+ 2

= [N, y)\Nr(y, y1)| + [N (z1,u1)\Nr(z1, u1)| +1
> 2NC2(G) -2+ 1

— 2NO2(G) -1,
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a contradiction with |V (C)| < 2NC2(G) — 2.
Claim 7 If Ule Ng(y;) # 0, then Ng(y;) # 0 for all ¢ € {1,2,...,k}, where y; = u; (w;,

respectively).

If not, without loss of generality, we assume that Ng(ui) # () and Nr(ug) = 0. Suppose
x1 € Nr(u1) and y € N(z1) (y # u1). Then dist(z1,y") = dist(z1,y~) = 2 and [N (z1,y™")| >
NC2(G), IN(z1,y7)| = NC2(G).

Case 1 N(z1)N (ufa)vk) = 0.

If not, we may choose y,y € N(x1) N (ufa)vk), such that N(xz1) N (ufa)y’) = 0. We

define a mapping f on V(C) as follows:

vo ifwv e ukay_;
flv)y=19 vt ifve yz')wk_l;
y~  if v =wvg.
Then |f(Ne(x,ur))| = |Ne(z,ur)| = |N(x,ur)] > NC2(G) by Claim 1 and the assumption
Ng(ur) = 0. Moreover, we have f(N¢(z,ur)) N N(z1,y~) C {wg,u1}. In fact, suppose that
z € f(Ne(x,ug)) N N(z1,y~ )\{wk,u1}. Obviously, z # v1,y~ by Claims 2 and 4. Now we

consider the following cases.
— —
(i) If z € up, Cwy,, then z € N (ug) since N(z) N (ur Cwy) = 0. Put

— — — .
upzt Corzv, Curz2Cuy if x12 € E(G);

C'= — — — —
upzt Coyavg Cyziuy Cy~2Cuy,  if y~2z € BE(G).
(19) If z € ufﬁy‘Q, then zy~ € E(G) since N(x1) N (ufﬁy‘) = (. Put

— — —
uy Czy~ CzTav; Cyziug if xz% € E(Q);

C' = — — — —
w1 Czy~ Cztuy, Corav, Cyxiuy  if ugz™ € E(G).

(i73) If z € y*+ Cug, we put

ula)zfxvlgleul ifrz~ € E(G) and z1z € E(G);
o ula)y_za)lez_(ayxlul if 227 € E(G) and y~z € E(G);
ulaz_ukalevkgleul if upz— € E(G) and 21z € E(G);
— — — —
u1 Cy~2Cuogav; Cupz™ Cyxiur i ugz™ € E(G) and y~z € E(G).

In any cases, C is a D-cycle longer than C, a contradiction. Therefore, we have f(N¢(z, ug))N
N(z1,y~) C {wg,u1}. By Claims 2 and 4, we have u; ¢ N(x,ux) and v1 ¢ N(z1,y~). Then
vy € f(Neo(x,ug)) UN(z1,y ). Hence, by Claim 6 we have

V()| > [f(Ne(z,ux))UNeo(z1,y7 )| +1
> |f(Ne(w,uk))| + [Ne(zr,y7 )| —2+1
> 2NCO2(G) - 2.
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So, we have V(C) = Neg(x1,y7) U f(Ne(x,ug)) U {v1}, No(z1,y~) N f(Ne(z, ug)) =
{wy, u1}. Hence, y~wy € E(G) and upu; € E(G) since t; > 2.

Now, we prove that Nr(y~) = 0. If not, there exist y1 € Nr(y~ ),z € No(y1) (= #y~) b
Claim 1 and § > 2.

Subcase 1 N(y;) N (u18y72) =0.

If not, we choose z € N(y;), such that N(y1) N (z+8y_2) = (). Therefore we can define a
mapping f1; on V(C) as follows:

N
v ifveu;Czhy

—
vt ifv ez P2PCwp_r;
22 i =y

2t ifv=wuy.

Using an argument as above , we have | f1 (N (z, ug)| > NC2(G). Moreover, we have 2+, vy, y ¢
Ne(y1,27) U fi(Ne(z,ug)) and Ne(yi,2T) N fi(Ne(z,uk)) € {212, y7,w}. Clearly, 2+ ¢
Ne(y1,27). If 27 € fi(Ne(x,ug)), then, uy € Neo(z,ug), a contradiction. y101 ¢ E(G) by
Claim 5. If v12T € E(G), since y, 2+ € Nt (y;), the two paths yziu; and 2T v, contradict with
Claim 4; By Claims 2 and 4 , we have y ¢ N(y1,2"), ify € fl(Nc(:zz ug)) then Yy~ € No(z,up),
by Claim 3 y~ ¢ N(z), so y~ € N(ug), then C" = zvy nylul Cy e C’le is a D —cycle
longer than C, a contradiction. So we have z*,v1,y ¢ No(y1,27) U fi(Ne(z,ug)). Suppose
s € No(y1,27) 0 fi(Ne(z, k) \{22, 5™, wi}

Now, we consider the following cases.

(1) se y+5}vk. If y15 € E(G) and xs~ € E(G) then it contradicts with Claim 4. We put

— — — — .
zvg Csyry” Curx1yCs~ up Corx if y18,urs” € E(GQ);
, — — — — .
C'=< w57 Cyxiui Czyry~ CzTsCux if 275,257 € E(G);
— — — — — .
v CszT Cy~y12Curz1yC s up Coyr if 27 s,ups™ € E(Q).

(7i) s € ukawk_l. We have s € N~ (uy) since N(z) N (ukawk) = (.Put

, kagyxlulay_ylsguks‘*gle if y1s,ups™ € B(G);
C' = — — — — — .
av, Cyxiuy Czy1y~ CztsCupsT™ Cuoyr if 2T s,ups™ € E(G);

(iii) s € ui Cy=2. If yis, 0™ € E(G) then contradicts to Claim 4. If yis,ups™ € E(G),
then
' = kagyzlula)syly*(aﬁukale

N
is a D—cycle longer than C, a contradiction. If s € 2T Cy~, we put

, xs_gz“‘sa)y_ylz(aulxlya)le if 2%s,s72 € E(G);
C'= — — — — —
2vg Cyziu Czyry~ Cszt Cs u Corz if 27s, s u, € E(G).
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N
If s € u; Cz, we put

, xs"’a}zyly_(az"’s(aulxlya)le if z%s,xsT € E(G);
C'= — — — — — .
v Cyziuy Cszt Cy~y12CsTup Coir if 27s,ups™ € E(G).

In any cases, C' is a D—cycle longer than C, a contradiction. Hence, by Claim 5 we have

V(O

Y

|f1(Ne(z,ux)) U Ne(yr, 27)| +3
|fiNe (@, uk))| + [Ne(yr, 2 1)) = 3+3
> 2NC2(G) -1,

Y

a contradiction. So N(y1) N (ulay*) = (),
Subcase 2 N(y;) N (yz')vk) = 0.

If not, we may choose z € N(y1) N (ya)vk), such that N(y;) N (ya)zf) = (). Therefore, we
can define a mapping f2 on V(C) as follows:

. = —

vt ifvewnCy2Uz” Cw_q;
— —

vT ifveytCz2Un) Cug;
z~ if v=wg;

f2(v) = ,
v if v =wug;
272 ifu=y;
Uy ifv=y~

Using a similar argument as above , we have | fa(No (2, ug))| > NC2(G). We consider N¢ (y1, 2~ )U
f2(Ne(z,ur)), then vi,ul ¢ Neo(y1,27) U fa(Ne(z,ur)), and No(yi,27) N fa(Ne(z,ug)) C
{y~,wi}. In fact, v1 ¢ N(y1,27) by Claims 4, 5 ; if v; € fo(N(z,ug)) then ur € N(z,ur),
a contradiction; if uf € N(z7), then the paths yziu; and z’uiIr contradict with Claim 5; if
uf € fo(Ne(z,ur)), then ug € N(x,ug), a contradiction. So we have vy, u], ¢ Nc(y1,27) U

f2a(Ne(z,ug)). For s € No(y1,27) N fa(Ne (@, ug))\{y—,wr}, we consider the following cases.

()Ifse ulgy. We have s € N(z7) since N(y1) N (ulay_2) = (. Put

— — — —
xs” Cuyr1yCzsCy yr12Cuix if s7x € E(G);

)

C'= — — = — —
v Czyny~ CszCyriu Cs up Corz if s7u, € E(G).

(ii) If s € wp C'vy, then st € N (ug) since N(z)N (ukawk) = (). Put

— — — — — .
v C2y1y~ CugzyCz=sCups™ Cuoiw if 27s € E(Q);

¢’ = — — — —
2vp Cyziu; Cy~y18Cugs™ Corx if y15 € E(G).

— —
(iii) If s € yC' 22, then we have s € N(27) since N(y1) N (yCz=2) = 0. Put

— — — —
21yC sz~ CsTav, Czy1y~ Cuiay if zsT € E(G);

C'= — — — —
2vp Czy1y” CurriyCsz sTup Cow if ugs™ € E(G).
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(i) If s € 276)1);@. If y15, 28~ € E(G) then it contradicts to Claim 4. We put
— — — —
zv Csyry” CurxryCs™ up Corx if y18,urs™ € E(G);
’ — «— — — .
C'=< x5 Czyry Curz1yCz"sCuiz if z27s,s7x € E(G);
— — — — — .
a2vp Csz~ Cyziur Cy~y12C s up Coix if 278, s ug € E(Q).

In any cases, C' is a D-cycle longer than C, a contradiction. Therefore, we have Ul,uf, ¢
Ne(y1,27) U fo(Ne(z,ug)), and Ne(yi,27) N0 f2(Ne (@, ur)) € {y~, wi}. So

[V(C)] > |Nc(yr,27)U fa(Ne(z,up))| + 2
> |Nc(y1,27)| + [Ne(z,up)| —2+2
> 2NC2(G) —1,

a contradiction with |V (C)| < 2NC2(G) — 2. Hence, N(y1)\{y~} C (ukaul)
Subcase 3 N(y;) N (uka)ul) = 0.

If not, we may choose z € N(y;) N (ukgul), such that N(y1) N (z*?ul) = (). We define a
mapping f3 on V(C) as follows:

vT ifove y*?vk U ué@z*;

vt ifue z+25>y_2;
fa() =< =zt if v =,

Uk if v=uy;

22 ifu=y".

Using a similar argument as above , we have |f3(Nc(z,ur))| > NC2(G). Moreover, 2+, uf ¢
Ne(y1,27) U fs(Ne(z,ur)), No(yi, 2%) N fs(Ne(z,ug)) C© {y~,wi}. In fact, clearly, 2™ ¢
Ne(yr, 2 1), if 21 € f3(Ne(z,ug)), then u, € No(x,uy), a contradiction; if uf € No(yi1,27),
then uf € N(z%) since No(y1) N (y’zguk) = 0,80 C" = xlyazylyfgufzﬂLZ’}ulxl is a
D —cycle longer than C, a contradiction; if u] € f3(N¢(z,ux)) then u; € Ne(z,u),a con-
tradiction; so we have zT,uf & Ng(y1,27) U f3(Ne(w,ui)). Suppose s € Ne(yr,zT) N
f3(Ne(z,uk))\{y—, wr}. Now, we consider the following cases.
(i)If s e vk5)2+, then We have sTuy € E(G) since N(z) N (uka)wk) ={. Put

— — — — .
v Cyziu Cy~y1sCupst Corx if y15 € E(G);

C' = — — — — — .
v Cyxius Cy~y12CsTur Csz™Cuyz if 27s € E(G).

(1) If s € z+28w;, then we have s uy,sz™ € E(G) since N(z) N (ukgwk) = N(y1) N
=
(27 Cv1) = 0. Put

, — — «— S 4=
C" = 2vpCyziu1 Cy~ y12Cugs™ CzTsCurx

-2 + : -2y
(133)If s € up Cy~2, then we have sz™ € F(G) since N(y1) N (uy Cy~2) = 0. Put
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— — — —
x5~ Curx1yCzyry~ Cszt Cox if xs~ € E(G);

C'= — — — — — .
av Cyxiuy Cs™up Czyy~ Cszt Cow if ups™ € E(G).

(i) If s € ya)vk, then we have szt € F(G) since N(y;) N (ya)vk) = (.Put

xs*Bz'yly’gulxlyasz*E}le if zsT € E(G);

' = — — — — — .
vy, Cstup Czypy™ CurryCszt Cow if ups™ € E(G).

In any cases, C’ is a D—cycle longer than C, a contradiction. Therefore we have N¢ (y1, 27)N
f3(Ne(z,u)) € {y~,wk}. So we have

[V(C)| > |Ne(yi,2T)U f3(Ne(x, ug)| + 2
> |No(y1, 27| + |[Ne(z,ug)] — 2+ 2
> 2NC2(G) - 1,

a contradiction with |V (C)| < 2NC2(G) — 2. Hence, N(y;) N (ukgvl) = 0.

Thus, N(y1) = {y~}, which contradicts to § > 2. Therefore, we know that Nr(y~) = 0.
So we have
V(@) = [f(Ne(@,ur))UNe(zr,y )| +1
2 [f(No(z,ur))[ + [Ne(z,y7 ) —2+1
= [N(@,ue)\Nr(z, ur)| + [N (z1,5" )\Nr(z1,57)[ - 1
= [N(@,up)| + [N(z1,y7) =1
> 2NC2(G) -1,

a contradiction. So we have N(z1) N (ufﬁvk) = (), hence, N(z1) C ukaul.
Case 2 N(z1)N (ukavl) = 0.
Otherwise, since viz1 ¢ E(G), we can choose y,y € uka)wk, such that N(z1)N (y“‘E'}vl) =
(). Therefore, we can define a mapping g on V(C') as follows:
v ifve ufa)y,
vt ifoe y+5}wk;
if v =wuq,
Y if v=u;.

Using a similar argument as before, we have |g(N¢(z,ux))| > NC2(G), y* ¢ g(Ne(x,uy)) U
N(z1,y") and g(Ne(z,ug)) N N(z1,y+) C {u1}. Hence, by Claim 6 we have

V(C) > lg(No(z,ug)) UN(z1,y")| +1
> |g(Ne(z,up))| + |N(zy,y)| —1+1
> 2NC2(G) - 1,
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a contradiction. So N(z1) N (ukgvl) = (). Then N(z1) = {u1}, which contradicts to § > 2.

Claim 8 If z1 € Ng(uq) and N(z1) N (uf?vk) # 0, then [{upul,y~wr} N E(G)| = 1 for

First we have d(z1,y~) = 2 and [N (z1,y7)| > NC2(G).Let upui ¢ E(G). Now we define
a mapping f on V(C) as follows:

— —

v=  ifveu?Couu?Cy;
. —

vt ifveyCwg_q;

Y if v=uy;

f)=qy ifo=uy

U1 ifvzu:;

vy if v=ul;

up  if v=uq.

Then |f(Nco(z,ur))| = |Ne(z,ur)| > NC2(G) — 1 by Claim 5. Moreover using a similar
argument as in Claim 7, we have f(N¢(z,ur)) N N(z1,y~) € {wg,ur,y}. But we have
y o1, ug € f(Ne(z,ur))UN (21,3~ ) by the choice of y Claims 2 and 4, respectively. Therefore,
by Claim 5 we have

V() = [f(Ne(w,ur))UNe(r,y™ ) +3
> |f(Ne(w,ux))| + |No(z1,y7)[ —3+3
> INC2(G) - 2.

So V(C) = f(Ne(x,uk)) U Ne(x1,y~) U {v1,y~ ,ux} by the assumption on |[V(C)|, and in
particular, f(N¢(z,ux)) N Ne(z1,y~) = {wk, u1,y}. Therefore, y~wy, € E(G). Using a similar
argument as above, we have if y~wy, ¢ F(G), then upuf € E(G).

Claim 9 There exists a vertex z with 2 ¢ V(C) such that Ng(u;) = Nr(w;) = 0.

We only prove Ng(u;) = 0. If not, we may choose z ¢ V(C) such that min{¢;} is as
small as possible. By Claim 7, without loss of generality, suppose that t; = min{¢;} for the
vertex z. Let #1 € Ng(u1),z2 € Ng(ug). By Claims 2 and 3, © # 21,22;71 # x2. And
by Claim 5 and the choice of x, we have N(z;) N (ukgvl) = (,for i = 1,2. Since § > 2,
N(z1)N (ufa)vk) # (). Choose y € N(xz1) N (uka)vk) such that N(z1) N (ufayf) = (), then
d(z1,y~) =2 and |N(x1,y7)| > NC2(G). By Claim 8, we have uiu] or y~wy € E(G).

First we prove that N(z2) N (yavk) = (). If not, we may choose z € y+8vk_ such that
N(z2) N (z*?vk) = ( by Claim 5. Then d(x2,2") = 2 and |N(z2,27)| > NC2(G). Now we
define a mapping f on V(C) as follows:
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— —
v™ ifveuf Cy~ Uzt2Cu;
. — —
vt ifveyCz™ Uu, Cwy;

y ifv=z
v, ifv =2zt

up if v = wq;

y~  ifv=wuy.

Then |f(Nco(z2,21))| = |[Ne(xa,27)] > NC2(G) — 1 by Claim 5. Moreover using a similar
argument as in Claim 7, we have f(N¢(w2,2")) N N(z1,y7) C {ui,y}. But y~,vp,v1 ¢
f(Ne(xa,2T)) U N(z1,y ), otherwise, u1z* € E(G) or y vy € E(G) or ztw, € E(G) by
Claim 5, and hence the D-cycle

— — —
w1 C zwouy, Corzvg, C 2wy if uiz™ € B(G);

, — = 4 = .
C'=q wizyCoy CufupCuy ify v, € E(G);

— — —
v C 2T wy, CugzezCorx if 27wy, € E(G).

is longer than C, a contradiction. Therefore, by Claim 5 we have

V()]

Y

|f(No(z2,27)) U Ne(z1,y7)| +3
|f(No(z2,27))| + |No(z1,y7 )| —2+ 3
> 2NC2(G) - 1,

Y

which contradicts to that |[V(C)| < 2NC2(G) — 2. So we have N(z3) N (yavk) = (). Hence
—
N(z2)uf Cy™) U {ug}.
— —
Now, we prove that N(z2) N (u] C_y)‘) = (. In fact, we may choose z € uf Cy2
with z € N(x3) such that N(xs) N (uf C27) = 0. (Since may~ ¢ E(G), otherwise, ¢’ =
— — —

up Cy~xoug Cvrzv, Cyxiuy is a D-cycle longer than C a contradiction.) Then d(xg,27) = 2
and |[N(zq,z7)| > NC2(G). We define a mapping g on V(C) as follows:

— . =1
v ifv €zt Cuy;
—
vt ifveu,Cz72
v if v = z;

w, ifv=2z".

Then we have |g(N¢(x2,27))| > NC2(G)—1 by Claim 5. Moreover using a similar argument as
in Claim 7, we have g(N¢(z2,27))NN (21,5~ ) € {u1}. But vy, ur ¢ g(Neo (22,27 ))UN (21,97 ),
otherwise since uy ¢ g(Nc(x2,27))UN(21,y7), wgz~ € E(G) by Claims 2 and 4, and hence the
D-cycle uy C’z*wkg ukxgzz’)vkxvlul is longer than C', a contradiction. Therefore, by Claim 5

we have
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V(C) > |g(No(w2,27)) N N(z1,y7 )| +2
> |g(Ne(w2,27))| + |N(x1,y7 )| —1+2
> 2NC2(G) - 1,

which contradicts to that |V (C)| < 2NC2(G) — 2. So we have N (z3) N (ufﬁy‘) = 0.
Therefore, N(z2) = {uy}, which contradicts to § > 2.

Claim 10 For any = ¢ V(C),t; > 3.

Otherwise, there exists a vertex z,z ¢ V(C), such that min{¢;} = 2 by Claim 6. Note
that the choice of the vertex x in Claim 9, we have Ng(u;) = Ng(w;) = 0 for the vertex
x. Without loss of generality, suppose t1 = 2, then N (u1) N No(w) = {u1} by Claim 4,
N(z) N N*(z) = 0 by Claim 2, and N (u1) N N(z) = N~ (z) N Ne(wy) = 0 by Claim 3.
Hence, N (x,u1) N N¢(x,w1) = {u1}. We also have |N¢(z,u1)| > NC2(G) and [No(z,wy)| >
NC2(G) since d(x,u1) = d(z,w;) = 2. Then

V()

Y

ING (z,u1) U Ne(z,wr)]
|Nc (2, u1)| + [Ne(z,wi)| — 1
> INC2(G) -1,

Y

which contradicts to that [V(C)| < 2NC2(G) — 2.
k
By Claim 10, we have |V(C)| =k + > t; > 4k. Thus we get the following.
i=1

Claim 11 For any z,z ¢ V(C),

V(C)| _ 2NC2AG) -2
4 - 4

d(z) < | = (NC2(G) —1)/2.

Claim 12 uu; ¢ E(G), for the vertex z as in Claim 9.

In fact, if ufu; € E(G), then the cycle u;rgvjxviguju;r is a longest D-cycle not containing
u;, by Claim 9. Thus d(u;) < (NC2(G) —1)/2 by Claim 11. So we have

NC2(G) < [N(z,u))| < d(x) + d(u;) < NC2(G) — 1,

a contradiction. We choose z as in Claim 9, and define a mapping f on V(C) as follows:

_
vt ifveu Cog
—
v™ifv € ul Cor;
fv) = ot
uyp  if v = vy
vy if v = uy.
Then |f(N¢(z,ur))| > NC2(G) and |Neo(z,u1)| > NC2(G) by Claim 10. Moreover, we
have f(Nco(z,ux)) N Ne(z,u1)qv2,vs, ..., v, wi}. By Claims 2, 4, and 12, we also have
(z

ug,ud, ... ul | & f(Ne(z,uk)) U Ne (2, ur). Therefore, we have
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V()| = [f(No(w,uk))UNe(z,ur)| +k—2
> [f(Ne(z,ug))| + |Ne(z,ur)| =k +k -2
> INC2A(G) - 2.

So
V(C) = f(Neo(x,ur)) U No(z,ur) U {ug, ug, .. .,u;ctl}

by the assumption on |V (C)|, and in particular,
F(Ne(z,uk)) " Ne(z,ur) = {va,vs, ..., vk, Wk}

Then wywg, upwig—1 € E(G).
Claim 13 £ = 2.

If there exists v € V(C)\{v1,vx} , by partition of V(C), we have v*? € f(Ng(z,uy)) U
=
Ne(z,u)U{ugd ,ud s oou) ) Ifot? € No(z,up), then v2u; € E(G), and the cycle ujvt2C oz
vCuy is a D-cycle not containing v by Claim 9. Thus d(v") < (NC2(G) —1)/2 by Claim 11.

So we have

NC2(G) < |N(z,v")| <d(z) +d(vt) < NC2(G) — 1,
a contradiction.So v+ € N (z,uy), which contradicts to Claims 2,3. Hence we have k = 2.
Claim 14 Each of the followings does not hold :

(1) There is u € ulavg, such that uTu; € E(G) and u~us € E(G).
(2) Thereis u € U26U1, such that u~uy € E(G) and uTus € E(G).
(3) Thereis u € U28U1, such that uTw; € F(GQ) and u~ws € E(G).

There is u € ulavg, such that utwse € E(G) and u~w; € E(G).

3
(4

— — ~— ~—

If not, suppose there is u € ula)vg, such that utu; € E(G) and v us € E(G). We define a
mapping h on V(C) as follows :

+ Cu- +c

v ifveu Cuuy Uu™ Cwy;
. A

v ifv € uy Cuy;

ut if v = v

v1  if v = us;

up  ifv=wu;

u ifv:u;

Then |h(Ne(x,us2))| > NC2(G) and |Ne(x,u1)| > NC2(G). Moreover we have uy ¢ N (2, uq)U
h(N(x,u2)), and N(z,ur) N h(N(x,u2)) C {va,u™}. In fact, clearly u; ¢ N(z,u1), if uy €
h(N(z,u2)), then v € N(z,uz), a contradiction. Let s € N(z,u1) N h(N(x,uz))\{ve,u™},
if s € ufavg N N(z,u1) N A(N(z,u2))\{ve,u"} then su; € E(G) and s~ uy € E(G); or if
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s € uzawg AN (z,u1) Nh(N(z,us3)), then su; € E(G) and sTus € E(G), both cases contradict
to Claim 3. So uy & N(z,u1) Uh(N(z,uz2)), N(z,u1) N h(N(z,us2)) C {ve,u’}. Hence

|V(C)| > |h(Nc(I,u2)) U Nc(w,u1)| +1
> |MNe(z,u2))| + [No(@,ur)] —2+1
> 2NC2(G) -1,

a contradiction. Similarly, (2), (3) and (4) are true.
Claim 15 N(ug)N (ulgwl_) = N(uj) N (’U,QE)’LU;) = 0.

If not, we may choose z € N(uz) N (ulawf), such that N(uz) N (ulaz*) = (). then
u1z € E(G) (if not, u1z ¢ E(G) then uzz~ € E(G) by partition of V(G), which contradicts
the choice of z ) and N (u1)N (z+6w1) = () (if not, we may choose s € N(u1)N (z+5>w1), such
that N(uq) N (z+5>s_) = () since zTu; ¢ E(G). So s"u; ¢ E(G),by partition of the V(C),
s 2us € E(G). Which contradicts Claim 14 ) Moreover ui”a}z C N(u1), and zavg C N(uz).
Similarly , we have y € uzawg,such that usy,u1y € E(G) and N(uy) N (uzay*) = N(ug2) N
(y+6w2) =0, yCuv C N(up) and uga)y C N(ug).

Now we define a mapping g on V(C) as follows:

. - —
vt ifv e v, Cwy;
. —
v-  if v € uy Cwy;
g(v) = ,
vg  if v = we;

wy if v =0y,

Using similar argument as above , consider N(z,wi) U g(N(x, wz)), there exists u € V(C),
such that wyu, weu € E(G) . Without loss generality, we may assume u € ulgwl, Moreover
then N(wsz) N (u*?wl) = N(wp) N (ulgu’) = (), and v Cu C N (ws), uCuy C N(wy). Let
u#z lfue z?w;, u~ug € E(G) by partition of V(C') since uuy ¢ E(G), which contradicts
to Claim 4 ; if u € ulﬁz, then ¢/ = xvgwluﬁwfugawgu_gle is a D-cycle longer than
C, a contradiction. If u = 2, since 2™%u; ¢ E(G), 2z us € E(G) by partition of V(C), which
contradicts to Claim 4. Hence N (uz) N (ulgw;) = (). Similarly N(ui) N (uzawf) =0.
By Claim 15 we have

Claim 16 If there exists z € vlz’)vg, such that usz € E(G), then uyz € E(G) and ufaz C
N(uy), zawl C N(uz). similarly if there exists z € 02601, such that usz € E(G), then
u1z € B(G) and uérg')z C N (uz), zawz C N(uy).

Proof of Theorem 5

Now we are going to complete the proof of Theorem 5. We choose x as in Claim 9. By
Claim 13, we know that k = 2.

First we prove that there exists u € V(C) such that uy,uz € N(u). If there is not any
u € V(C)\{va,w1,us} such that ugu ¢ E(G), then wyu; € E(G) (if not, w *us € E(G) by
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partition of V/(C)). If uyw; ¢ E(G) then ugw; € E(G), so we have uy,us € N(wy ); if there
is u € V(C), such that ugu € E(G) then, by Claim 16, uju € E(G), hence uy,uz € N(u).

By Claim 16, clearly, there are not z € uy 6w1, Yy e U25)w2, such that yz € E(G).

So we have G € J;. The proof of Theorem 5 is finished.
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