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Abstract 
In this paper the main properties of Smarandache Square Complementary 
function has been analysed. Several problems still unsolved are reported too. 

The Smarandache square complementary function is defined as [4],[5]: 

Ssc(n)=m 

where m is the smallest value such that m· n is a perfect square. 

Example: for n=8, m is equal 2 because this is the least value such that m· n is a perfect square. 

The first 100 values ofSsc(n) function follows: 

n Ssc(n) n Ssc(n) n Ssc(n) n ssc(n) -------------------------------------------------------------------------------1 1 26 26 51 51 76 19 2 2 27 3 52 13 77 77 3 3 28 7 53 53 78 78 4 1 29 29 54 6 79 79 5 5 30 30 5S 55 80 5 6 6 31 31 56 14 81 1. 7 7 32 2 57 57 82 82 8 2 33 33 58 58 83 83 9 1 34 34 59 S9 84 21 10 10 35 35 60 15 85 85 11 11 36 1 61 61 86 86 12 3 37 37 62 62 87 87 13 13 38 38 63 7 88 22 14 14 39 39 64 1 89 89 15 15 40 10 65 65 90 10 16 1 41 41 66 66 91 91 17 17 42 42 67 67 92 23 18 2 43 43 68 17 93 93 19 19 44 11 69 69 94 94 20 5 45 5 70 70 95 95 21 21 46 46 71 71 96 6 22 22 47 47 72 2 97 97 23 23 48 3 73 73 98 2 24 6 49 1 74 74 99 11 25 1 50 2 75 3 100 1 

Let's start to explore some properties of this function. 
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Theorem 1: Ssc(n2) = 1 where n=I,2,3,4 ... 

In fact if k = n2 
is a perfect square by definition the smallest integer m such that m· k is a 

perfect square is m=l. 

Theorem 2: Ssc(P)=p where p is any prime number 

In fact in this case the smallest m such that mop is a perfect square can be only m=p. 

I 1 ifn is even 

Theorem 3: SSC(plf) = I where p is any prime number. 
I p ifn is odd 

First of all let's analyse the even case. We can write: 

" 2 
,,_ 2 2 2_ 2" P -p op ......... p _ p 

" and then the smallest m such that P . m is a perfect square is 1. 

Let's suppose now that n is odd We can Write: 

! 2 ! l J 2 t J 
pIt = p2 . p2 0 ........ p2 • P = P 2 • P = P 2 • P 

If 

and then the smallest integer m such that p 0 m is a perfect square is given by m=p. 

Ssc(pG .q' . SC •....... AX) = podd(G) • qodd(b) • sodd(c) ...... todd(x) 
Theorem 4: where p,q,s, .... f are 

distinct primes and the odd function is defmed as: 

I 1 ifn is odd 
odd(n)= 

I 0 ifn is even 
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Direct consequence of theorem 3. 

Theorem 5: The Ssc(n) function is multiplicative, i. e. if (n,m) = 1 then Ssc(n· m) = Ssc(n) . Sse( m) 

a J d 
Without Joss of generality lefs suppose that n = p . q and m = SC • t where p, q, s, t are distinct 
primes. Then: 

according to the theorem 4. 

On the contrary: 

Ssc(n) = Ssc(pa .l) = podci(a) _qodd(b) 

This implies that: Ssc(n . m) = Ssc(n)· Sse( m) qed 

Theorem 6: If n = pa . q" ......... p' then Ssc(n) = Ssc(pa) . Ssc(p") .......• Sse(p') where pis 

any prime number. 

According to the theorem 4: 

Ssc(n) = podd(a) . podci(h) .......• podd(l) 

and: 

Ssc(pa) = podd{a) 

SsC(p6) = podd(6) 

and so on. Then: 

qed 

Theorem 7: Ssc(n) =n if n is squarefree, that is if the prime factors of n are all distinct. All prime 
numbers, of course are trivially squarefree [3]. 

Without loss of generality let's suppose that n = p. q where p and q are two distinct primes. 
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According to the theorems 5 and 3: 

Ssc(n) = Ssc(p' q) = Ssc(p)' Ssc(q) = p' q = n qed 

Theorem 8: The Ssc(n) function is not additive. : 

In fact for example: Ssc(3+4)=Ssc(7)=7<>Ssc(3)+Ssc( 4)=3+ 1 =4 

Anyway we can find numbers m and n such that the function Ssc(n) is additive. In fact if: 

m and n are squarefree 
k=m+n is squarefree. 

then Ssc(n) is additive. 
In fact in this case Ssc(m+n)=Ssc(k)=k=m+n and Ssc(m)=m Ssc(n)=n according to theorem 7. 

... 1 L-
Theorem 9: _J Ssc(n) diverges 

In fact: 

CI) 1 ... 1 CI) 1 
L >L L:-
n=J Sse( n) p=2 Ssc(p) p=2 P where p is any prime number. 

So the sum ofinverese ofSsc(n) function diverges due to the well known divergence of series [3]: 

II) 1 
L-
p-zP 

Theorem 10: Ssc(n»O where n=J,2,3,4 ... 

This theorem is a direct consequence of Ssc(n) function definition. In fact for any n the smallest m 
such that m· n is a perfect square cannot be equal to zero otherwise m· n =0 and zero is not a 
perfect square. 

Theorem 11: 

fSsc(n) 

n-I n diverges 
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In fact being Ssc(n) ~ 1 this implies that: 

co Ssc(n) co 1 L >L:-
_I n ,,_1 n 

and as known the swn of reciprocal of integers diverges. [3] 

Theorem 12: Ssc(n) ~ n 

Direct consequence of theorem 4. 

Theorem 13: The range of Ssc(n) [unction is the set of squarefree numbers. 

According to the theorem 4 for any integer n the function Ssc(n) generates a squarefree number. 

0< &c(n) ~l 
Theorem 14: n for n>=1 

Direct consequence of theorems 12 and 10. 

Ssc(n) 

Theorem 15: n is not distributed uniformly in the interval]O,I] 

&c(n) =1 
If n is squarefree then Ssc(n)=n that implies n 

, a 6 
If n is not squarefree let's suppose without Joss of generality that n = p . q where p and q are 
primes. 

Then: 

Ssc(n) _ Ssc(pa).Ssc(p") 
n - pll.q" 

We can have 4 different cases. 
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1) a even and b even 

2) a odd and b odd 

Ssc(n) _ Ssc(po).Ssc(pb) _ p.q _ 1 s.!. 
n - pa .qb - pa .qb - pO-1 .qb-I 4 

3) a odd and b even 

4) a even and b odd 

Analogously to the case 3 . 

This prove the theorem because we don't have any point ofSsc(n) function in the interval ]1I4,1[ 

Theorem 16: For any arbitrary real number & > 0, there is some number n>=1 such that: 

Ssc(n) 
-""'--'- < & 

n 

Without loss of generality let's suppose that q = PI . P2 where PI and P2 are primes such that 
1 
- < & and & is any real number grater than zero. Now take a number n such that: 
q 

165 



Ssc(n) = PI· pz = 1 < 1 < & 

n p;l . p;l p'(t-I . p~-I PI· P2 

For a l and az even: 

Ssc(n) 1 1 
--~= < <& 

p'(t • P'? PI . pz n 

For a l odd and az even (orviceversa): 

Ssc(n) Pill 
--....:...-.;...=---'~-= < <& 

p'(t-I • p~ PI . pz 

Theorem 17: SsC(Pk #) = Pk # where Pk # is the product of first k primes (primoriaI) [3]. 

The theorem is a direct consequence of theorem 7 being Pl # a squarefree number. 

Theorem 18: The equation Ssc(n) = 1 has an infinite number of solutions. 
n 

The theorem is a direct consequence of theorem 2 and the well-known fact that there is an 
infinite number of prime numbers [6] 

Theorem 19: The repeated iteration of the Ssc(n) function will terminate always in a fIXed point 
(see [3] for definition of a fIXed point ). 

According to the theorem 13 the application of Sec function to any n will produce always a 
squarefree number and according to the theorem 7 the repeated application of Ssc to this squarefree 
number will produce always the same number. 
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Theorem 20: The diophantine equation Ssc(n)=Ssc(n+ 1) has no solutions. 

We must distinguish three cases: 

1) n and n+ 1 squarefree 
2) n and n+ 1 not squareefree 
3) n squarefree and n+ 1 no square free and viceversa 

Case 1. According to the theorem 7 Ssc(n)=n and Ssc(n+ 1)=n+ 1 that implies 
that Ssc(n)<>Ssc(n+ 1) 

Case 2. Withou toss of generality let's suppose that: 

n = pQ .q6 

n+l= pQ.q" +1=s& ·t d 

where p,q,s and t are distinct primes. 

According to the theorem 4: 

Ssc(n) = Ssc(pQ .q') = podd{Q) • qodd(6) 

Ssc(n + 1):::; Ssc(SC ·td ) = sodd{c) • todd(cI) 

and then Ssc(n)<>Ssc(n+ 1) 

Case 3. Without loss of generality let's suppose that n = p. q. Then: 

Ssc(n) = Ssc(p· q) = p.q 

Ssc(n + 1) = Ssc(p' q + 1) = Ssc(sQ . t") = sodd{Q) • toJd(b) 

supposing that n + 1 = p. q + 1 = sQ • t b 

This prove completely the theorem. 
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Theorem 21: ISsc(k) > 6.~ for any positive integer N. 
t=1 1l 

The theorem is very easy to prove. In fact the sum of first N values of Sse function can be separated 
into two parts: 

N N 

LSsc(kl ) + L&c(k2 ) 
.tl~} .tz=l 

where the ftrst sum extend over all kl squarefree numbers and the second one over all k2 not 
squarefree numbers. 
According to the Hardy and Wright result [3], the asymptotic number Q(n) of squarefree numbers 
~ N is given by: 

and then: 

because according to the theorem 7. &c( k}) = k1 and the sum of firSt N squarefree numbers is 
always greater or equal to the number Q(N) of squareftee numbers ~ N , namely: 

Tbeorem22: 
N N2 
LSsc(k) > for any positive integer N. 
tel 2·ln(N) 

In fact: 
N N N N 

ISsc(k) = LSsc(k') + LSsc(p) > L&C(p) 
i-I i'=1 r2 pz2 
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because by theorem 2, Ssc(p)=P. But according to the result of Bach and Shallit [3 J. the sum of 
first N primes is asymptotically equal to: 

and this completes the proof. 

N2 

2·1n(N) 

Theorem 23: The diophantine equations Ssc(n + 1) == Ie and &c(n) == Ie where Ie is any 
Ssc(n) &c(n+l) 

integer number have an infinite number of solutions. 

Let's suppose that n is a perfect square. In this case according to the theorem 1 we have: 

Ssc(n+l) = &c(n+ 1)= Ie 
Ssc(n) 

On the contrary if n+ 1 is a perfect square then: 

Ssc(n) = Ssc(n) = Ie 
Ssc(n+l) 

Problems. 

1) Is the difference ISsc(n+ 1 }-Ssc( n)l bounded or unbounded? 

2) Is the Ssc(n) function a Lipschitz function? 
A function is said a Lipschitz function [3] if: 

I Ssc(m)-Ssc(le) I ~M whereMis any integer 
Im-kl 

3) Study the function FSsc(n)=m. Here m is the number of different integers k such that Ssc(k)=n. 
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4) Solve the equations Ssc(n)=Ssc(n+ I)+Ssc(n+2) and Ssc(n)+Ssc(n+ 1)=Ssc(n+2). Is the number 
of solutions finite or infinite? 

5) Find all the values ofn such that Ssc(n) = Sse(n + I)· Ssc(n + 2) 

6) Solve the equation Ssc(n)· Ssc(n + 1) = Ssc(n + 2) 

7) Solve the equation Sse( n) • Ssc( n + 1) = Sse( n + 2) . Ssc(n + 3) 

8) Find all the values ofn such that S(n)k + Z(n)k = Ssc(nt where Sen) is the Smarandache 
function [1], Zen) the pseudo-Smarandache funtion [2] and k any integer. 

9) Find the smallest k such that between Ssc(n) and Ssc(k+n), for n>1, there is at least a prime. 

10) Find all the values ofn such that Ssc(Z(n))-Z(Ssc(n))=O where Z is the Pseudo Smarandache 
function [2]. 

11) Study the functions Ssc(Z(n», Z(Ssc(n) and Ssc(Z(n»)-Z(Ssc(n». 

12) Evaluate lim Sse(k) where B(k) = ~)n(Ssc(n» 
k_ B(k) IfSk 

13) Are there m, n, k non-null positive integers for which Ssc(m· n) = mk . Ssc(n)? 

14) Study the convergence of the Smarandache Square compolementary harmonic series: 

where a>0 and belongs to R 

15) Study the convergence ofthe series: 
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where xn is any increasing sequence such that lirnxn = C1) 
n-+<» 

16) Evaluate: 

t In(Ssc(k») 

1
· A:-z In(k) 
Im.::.-..::...-~:.--

1J--+;O n 

Is this limit convergent to some known mathematical constant? 

17) Solve the functional equation: 

&c(nY +&c(n)'-1 + ........ +&c(n) = n 

where r is an integer ~ 2. 

18) What about the functional equation: 

&c(n)' +&c(ny-l + ........ +Ssc(n)=k·n 

where r and k are two integers ~ 2 . 

19) Evaluate i)-It. 1 
1-1 &c(k) 

ISsc(n)2 
20) Evaluate .....;n"--_~ 

Ipsc(n{ 
171 



21) Evaluate: 

I." 1 " 1 lIn L..J - L..J 
,,-- 11 Ssc(f(n)) 11 fCSsc(n)) 

for ftn) equal to the Smarandache function Sen) [1] and to the Pseudo Smarandache function Zen) 
[2]. 
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