# THE AVERAGE SMARANDACHE FUNCTION <br> Florian Luca <br> Mathematical Institute, Czech Academy of Sciences <br> Žitná 25, 11567 Praha 1 <br> Czech Republic 

For every positive integer $n$ let $S(n)$ be the minimal positive integer $m$ such that $n \mid m$ !. For any positive number $x \geq 1$ let

$$
\begin{equation*}
A(x)=\frac{1}{x} \sum_{n \leq x} S(n) \tag{1}
\end{equation*}
$$

be the average value of $S$ on the interval $[1, x]$. In [6], the authors show that

$$
\begin{equation*}
A(x)<c_{1} x+c_{2} \tag{2}
\end{equation*}
$$

where $c_{1}$ can be made rather small provided that $x$ is enough large (for example, one can take $c_{1}=.215$ and $c_{2}=45.15$ provided that $x>1470$ ). It is interesting to mention that by using the method outlined in [6], one gets smaller and smaller values of $c_{1}$ for which (2) holds provided that $x$ is large, but at the cost of increasing $c_{2}$ ! In the same paper, the authors ask whether it can be shown that

$$
\begin{equation*}
A(x)<\frac{2 x}{\log x} \tag{3}
\end{equation*}
$$

and conjecture that, in fact, the stronger version

$$
\begin{equation*}
A(x)<\frac{x}{\log x} \tag{4}
\end{equation*}
$$

might hold (the authors of [6] claim that (4) has been tested by Ibstedt in the range $x \leq 5 \cdot 10^{6}$ in [4]. Although I have read [4] carefully, I found no trace of the aforementioned computation!).

In this note, we show that $\frac{x}{\log x}$ is indeed the correct order of magnitude of $A(x)$.

For any positive real number $x$ let $\pi(x)$ be the number of prime numbers less then or equal to $x$,

$$
\begin{gather*}
B(x)=x A(x)=\sum_{i \leq n \leq x} S(n)  \tag{5}\\
E(x)=2.5 \log \log (x)+6.2+\frac{1}{x} \tag{6}
\end{gather*}
$$

We have the following result:
Theorem.

$$
\begin{equation*}
.5(\pi(x)-\pi(\sqrt{x}))<A(x)<\pi(x)+E(x) \quad \text { for all } x \geq 3 \tag{7}
\end{equation*}
$$

Inequalities (7), combined with the prime number theorem, assert that

$$
.5 \leq \liminf _{x \rightarrow \infty} \frac{A(x)}{\frac{x}{\log x}} \leq \limsup _{x \rightarrow \infty} \frac{A(x)}{\frac{x}{\log x}} \leq 1
$$

which says that $\frac{x}{\log x}$ is indeed the right order of magnitude of $A(x)$. The natural conjecture is that, in fact,

$$
\begin{equation*}
A(x)=\frac{x}{\log x}+O\left(\frac{x}{\log ^{2} x}\right) \tag{8}
\end{equation*}
$$

Since

$$
\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right)<\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \quad \text { for } x \geq 59
$$

it follows, by our theorem, that the upper bound on $A(x)$ is indeed of the type (8). Unfortunately, we have not succeeded in finding a lower bound of the type (8) for $A(x)$.

## The Proof

We begin with the following observation:

## Lemma.

Suppose that $n=p_{1}^{\alpha_{1}} \ldots p_{k}^{\alpha_{k}}$ is the decomposition of $n$ in prime factors (we assume that the $p_{i}$ 's are distinct but not necessarily ordered). Then:
1.

$$
\begin{equation*}
S(n) \leq \max _{i=1}^{k}\left(\alpha_{i} p_{i}\right) \tag{9}
\end{equation*}
$$

2. Assume that $\alpha_{1} p_{1}=\max _{i=1}^{k}\left(\alpha_{i} p_{i}\right)$. If $\alpha_{1} \leq p_{1}$, then $S(n)=\alpha_{1} p_{1}$.
3. 

$$
\begin{equation*}
S(n)>\alpha_{i}\left(p_{i}-1\right) \quad \text { for all } i=1, \ldots, k \tag{10}
\end{equation*}
$$

## Proof.

For every prime number $p$ and positive integer $k$ let $e_{p}(k)$ be the exponent at which $p$ appears in $k$ !.

1. Let $m \geq \max _{i=1}^{k}\left(\alpha_{i} p_{i}\right)$. Then

$$
e_{p_{i}}(m)=\sum_{s \geq 1}\left\lfloor\frac{m}{p_{i}^{s}}\right\rfloor \geq\left\lfloor\frac{m}{p_{i}}\right\rfloor \geq \alpha_{i} \quad \text { for } i=1, \ldots, k
$$

This obviously implies $n \mid m!$, hence $m \geq S(n)$.
2. Assume that $\alpha_{1} \leq p_{1}$. In this case, $S(n) \geq \alpha_{1} p_{1}$. By 1 above, it follows that in fact $S(n)=\alpha_{1} p_{1}$.
3. Let $m=S(n)$. The asserted inequality follows from

$$
\alpha_{i} \leq e_{p_{i}}(m)=\sum_{s \geq 1}\left\lfloor\frac{m}{p_{i}^{s}}\right\rfloor<m \sum_{s \geq 1}^{\infty} \frac{1}{p_{i}^{s}}=\frac{m}{p_{i}-1}
$$

## The Proof of the Theorem.

In what follows $p$ denotes a prime. We assume $x>1$. The idea behind the proof is to find good bounds on the expression

$$
\begin{equation*}
B(x)-B(\sqrt{x})=\sum_{\sqrt{x}<n \leq x} S(n) \tag{11}
\end{equation*}
$$

Consider the following three subsets of the interval $I=(\sqrt{x}, x)$ :

$$
\begin{aligned}
& C_{1}=\{n \in I \mid S(n) \text { is not a prime }\} \\
& C_{2}=\{n \in I \mid S(n)=p \leq \sqrt{x}\} \\
& C_{3}=\{n \in I \mid S(n)=p>\sqrt{x}\}
\end{aligned}
$$

Certainly, the three subsets above are, in general, not disjoint but their union covers I. Let

$$
D_{i}(x)=\sum_{n \in C_{i}} S(n) \quad \text { for } i=1,2,3
$$

Clearly,

$$
\begin{equation*}
\max \left(D_{i}(x) \mid i=1,2,3\right) \leq B(x)-B(\sqrt{x}) \leq D_{1}(x)+D_{2}(x)+D_{3}(x) \tag{12}
\end{equation*}
$$

We now bound each $D_{i}$ separately.
The bound for $D_{1}$.
Assume that $m \in C_{1}$. By the Lemma, it follows that $S(m) \leq \alpha p$ for some $p^{\alpha} \| m$ and $\alpha>1$. First of all, notice that $S(m) \leq \alpha \sqrt{m}$. Indeed, this follows from the fact that

$$
S(m) \leq \alpha p \leq \alpha p^{\alpha / 2} \leq \alpha \sqrt{m} \quad \text { for } \alpha \geq 2
$$

In particular, from the above inequality it follows that $p \leq \sqrt{m} \leq \sqrt{x}$. Write now $m=p^{\alpha} k$. Since $m \leq x$, it follows that $k \leq x / p^{\alpha}$. These considerations show that

$$
\begin{equation*}
D_{1}(x)<\sum_{p \leq \sqrt{x}} \sum_{\alpha \geq 2}^{\infty} \alpha p \cdot \frac{x}{p^{\alpha}}=x \sum_{p \leq \sqrt{x}} \sum_{\alpha \geq 2}^{\infty} \frac{\alpha}{p^{\alpha-1}}=x \sum_{p \leq \sqrt{x}} \frac{2 p-1}{(p-1)^{2}} \tag{13}
\end{equation*}
$$

In the above formula (13), we used the fact that

$$
\sum_{\alpha \geq 2} \alpha z^{\alpha-1}=\frac{d}{d z}\left(\frac{1}{1-z}\right)-1=\left(\frac{1}{1-z}\right)^{2}-1=\frac{2 z-z^{2}}{(1-z)^{2}} \quad \text { for }|z|<1
$$

with $z=1 / p$. Since

$$
\frac{2 p-1}{(p-1)^{2}} \leq \frac{5}{4 p} \quad \text { for } p \geq 3
$$

it follows that

$$
\begin{equation*}
D_{1}(x)<x\left(3-\frac{5}{8}+\frac{5}{4} \sum_{p \leq \sqrt{x}} \frac{1}{p}\right)=x\left(2.375+1.25 \sum_{p \leq \sqrt{x}} \frac{1}{p}\right) \tag{14}
\end{equation*}
$$

From a formula from [5], we know that

$$
\sum_{p \leq y} \frac{1}{p}<\log \log y+1.27 \quad \text { for all } y>1
$$

Hence, inequality (14) implies

$$
\begin{equation*}
D_{1}(x)<x(2.375+1.25(\log \log \sqrt{x}+1.27))<x(3.1+1.25 \log \log x) \tag{15}
\end{equation*}
$$

## The bound for $D_{2}$

Assume that $S(m)=p$. Then $m=p y$ where $p$ does not divide $y$. Since $m>\sqrt{x}$, it follows that

$$
\frac{\sqrt{x}}{p}<y \leq \frac{x}{p}
$$

Since $p \leq \sqrt{x}$, it follows that at least one integer in the above interval is a multiple of $p$; hence, cannot be an acceptable value for $y$. This shows that there are at most

$$
\left\lfloor\frac{x-\sqrt{x}}{p}\right\rfloor \leq \frac{x-\sqrt{x}}{p}
$$

possible values for $y$. Hence,

$$
\begin{equation*}
D_{2}(x) \leq \sum_{p \leq \sqrt{x}} p \cdot\left(\frac{x-\sqrt{x}}{p}\right) \leq(x-\sqrt{x}) \pi(\sqrt{x}) \tag{16}
\end{equation*}
$$

## Bounds for $D_{3}$

Assume $S(m)=p$ for some $p>\sqrt{x}$. Then, $m=p y$ for some $y<x / p$. Hence,

$$
\begin{equation*}
D_{3}(x)=\sum_{\sqrt{x}<p \leq x} p \cdot\left\lfloor\frac{x}{p}\right\rfloor . \tag{17}
\end{equation*}
$$

Notice that, unlike in the previous cases, (17) is in fact an equality. Since $z \geq\lfloor z\rfloor>$ $.5 z$ for all real numbers $z>1$, it follows, from formula (17), that

$$
\begin{equation*}
.5 x(\pi(x)-\pi(\sqrt{x}))<D_{3}(x)<x(\pi(x)-\pi(\sqrt{x}) . \tag{18}
\end{equation*}
$$

Denote now by

$$
F(x)=3.1+1.25 \log \log (x)
$$

From inequalities (12), (15), (16) and (17), it follows that

$$
\begin{gather*}
.5 x(\pi(x)-\pi(\sqrt{x}))<D_{3}(x)<B(x)-B(\sqrt{x})<D_{1}(x)+D_{2}(x)+D_{3}(x)< \\
x F(x)+(x-\sqrt{x}) \pi(\sqrt{x})+x(\pi(x)-\pi(\sqrt{x}))=x \pi(x)-\sqrt{x} \pi(\sqrt{x})+x F(x) \tag{19}
\end{gather*}
$$

The left inequality (7) is now obvious since

$$
B(x)>B(\sqrt{x})+.5 x(\pi(x)-\pi(\sqrt{x})) \geq 1+.5 x(\pi(x)-\pi(\sqrt{x}) .
$$

For the right inequality (7), let $G(x)=x \pi(x)$. Formula (19) can be rewritten as

$$
\begin{equation*}
B(x)-B(\sqrt{x})<G(x)-G(\sqrt{x})+x F(x) \tag{20}
\end{equation*}
$$

Applying inequality (20) with $x$ replaced by $\sqrt{x}, x^{1 / 4}, \ldots, x^{1 / 2^{\prime}}$ until $x^{1 / 2^{4}}<2$ and summing up all these inequalities one gets

$$
\begin{equation*}
B(x)-B(1)<G(x)+\sum_{i=0}^{s} x^{1 / 2^{i}} F\left(x^{1 / 2^{i}}\right) . \tag{21}
\end{equation*}
$$

The function $F(x)$ is obviously increasing. Hence,

$$
\begin{equation*}
B(x)<1+G(x)+F(x) \sum_{i=0}^{s} x^{1 / 2^{i}} \tag{22}
\end{equation*}
$$

To finish the argument, we show that

$$
\begin{equation*}
x \geq \sum_{i=1}^{s} x^{1 / 2^{i}} \tag{23}
\end{equation*}
$$

Proceed by induction on $s$. If $s=0$, there is nothing to prove. If $s=1$, this just says that $x>\sqrt{x}$ which is obvious. Finally, if $s \geq 2$, it follows that $x \geq 4$. In particular, $x \geq 2 \sqrt{x}$ or $x-\sqrt{x} \geq \sqrt{x}$. Rewriting inequality (23) as
which is precisely inequality (23) for $\sqrt{x}$. This completes the induction step. Via inequality (23), inequality (22) implies

$$
\begin{equation*}
B(x)<1+x \pi(x)+2 x F(x)=1+x \pi(x)+2 x(3.1+1.25 \log \log x) \tag{24}
\end{equation*}
$$

or

$$
A(x)<\pi(x)+\frac{1}{x}+6.2+2.5 \log \log x=\pi(x)+E(x) .
$$

## Applications

From the theorem, it follows easily that for every $\epsilon>0$ there exists $x_{0}$ such that

$$
\begin{equation*}
A(x)<(1+\epsilon) \frac{x}{\log x} \tag{25}
\end{equation*}
$$

In practice, finding a lower bound on $x_{0}$ for a given $\epsilon$, one simply uses the theorem and the estimate

$$
\begin{equation*}
\pi(x)<\frac{x}{\log x}\left(1+\frac{3}{2 \log x}\right) \quad \text { for } x>1 . \tag{26}
\end{equation*}
$$

(see [5]). By (7) and (26), it now follows that (25) is satisfied provided that

$$
\frac{x}{\log x}>\frac{1}{\epsilon}\left(\frac{3}{2 \log ^{2} x}+E(x)\right)
$$

For example, when $\epsilon=1$, one gets

$$
\begin{equation*}
A(x)<2 \frac{x}{\log x} \quad \text { for } x \geq 64 \tag{27}
\end{equation*}
$$

for $\epsilon=.5$, one gets

$$
\begin{equation*}
A(x)<1.5 \frac{x}{\log x} \quad \text { for } x \geq 254 \tag{28}
\end{equation*}
$$

and for $\epsilon=0.1$ one gets

$$
\begin{equation*}
A(x)<1.1 \frac{x}{\log x} \quad \text { for } x \geq 3298109 \tag{29}
\end{equation*}
$$

Of course, inequalites (27)-(29) may hold even below the smallest values shown above but this needs to be checked computationally.

In the same spirit, by using the theorem and the estimation

$$
\pi(x)>\frac{x}{\log x}\left(1+\frac{1}{2 \log x}\right) \quad \text { for } x \geq 59
$$

(see [5]) one can compute, for any given $\epsilon$, an initial value $x_{0}$ such that

$$
A(x)>(.5-\epsilon) \frac{x}{\log x} \quad \text { for } x>x_{0}
$$

For example, when $\epsilon=1 / 6$ one gets

$$
\begin{equation*}
A(x)>\frac{1}{3} \frac{x}{\log x} \quad \text { for } x \geq 59 \tag{30}
\end{equation*}
$$

Inequality (30) above is better than the inequality appearing on page 62 in [2] which asserts that for every $\alpha>0$ there exists $x_{0}$ such that

$$
\begin{equation*}
A(x)>x^{\alpha / x} \quad \text { for } x>x_{0} \tag{31}
\end{equation*}
$$

because the right side of (31) is bounded and the right side of (30) isn't!

## A diophantine equation

In this section we present an application to a diophantine equation. The application is not of the theorem per se, but rather of the counting method used to prove the theorem.

Since $S$ is defined in terms of factorials, it seems natural to ask how often the product $S(1) \cdot S(2) \cdot \ldots \cdot S(n)$ happens to be a factorial.

## Proposition.

The only solutions of

$$
\begin{equation*}
S(1) \cdot S(2) \cdot \ldots \cdot S(n)=m! \tag{32}
\end{equation*}
$$

are given by $n=m \in\{1,2, \ldots, 5\}$.
Proof.
We show that the given equation has no solutions for $n \geq 50$. Assume that this is not so. Let $P$ be the largest prime number smaller than $n$. By Tchebysheff's theorem, we know that $P \geq n / 2$. Since $S(P)=P$, it follows that $P \mid m$ !. In particular, $P \leq m$. Hence, $m \geq n / 2$.

We now compute an upper bound for the order of 2 in $S(1) \cdot S(2) \cdot \ldots \cdot S(n)$. Fix some $\beta \geq 1$ and assume that $k$ is such that $2^{\beta} \| S(k)$. Since

$$
S(k)=\max \left(S\left(p^{\alpha}\right) \mid p^{\alpha} \| k\right)
$$

it follows that $2^{\beta} \| S\left(p^{\alpha}\right)$ for some $p^{\alpha} \| k$.
We distinguish two situations:
Case 1.
$p$ is odd. In this case, $2^{\beta} p \mid S\left(p^{\alpha}\right)$. If $\beta=1$, then $\alpha=2$. If $\beta=2$, then $\alpha=4$. For $\beta \geq 3$, one can easily check that $\alpha \geq 2^{\beta}-\beta+1$ (indeed, if $\alpha \leq 2^{\beta}-\beta$, then one can check that $p^{\alpha} \mid\left(2^{\beta} p-1\right)$ ! which contradicts the definition of $S$ ). In particular, $p^{2^{\beta}-\beta+1} \mid k$. Since $2^{x-1} \geq x+1$ for $x \geq 3$, it follows that $\alpha \geq 2^{\beta-1}+2$. Since $k \leq n$, the above arguments show that there are at most

$$
\frac{n}{p^{2^{\beta}}} \quad \text { for } \beta=1,2
$$

and

$$
\frac{n}{p^{2^{\beta-1}+2}} \quad \text { for } \beta \geq 3
$$

integers $k$ in the interval $[1, n]$ for which $p \mid k, S(k)=S\left(p^{\alpha}\right)$, where $\alpha$ is such that $p^{\alpha} \| k$ and $2^{\beta} \| S(k)$.

## Case 2.

$p=2$. If $\beta=1$, then $k=2$. If $\beta=2$, then $k=4$. Assume now that $\beta \geq 3$. By an argument similar to the one employed at Case 1, one gets in this case that $\alpha \geq 2^{\beta}-\beta$. Since $2^{\alpha} \| k$, it follows that $2^{2^{\beta}-\beta} \mid k$. Since $k \leq n$, it follows that there are at most

$$
\frac{n}{2^{2^{\beta}-\beta}}
$$

such $k$ 's.
From the above anaysis, it follows that the order at which 2 divides $S(1) \cdot S(2)$. $\ldots \cdot S(n)$ is at most

$$
\begin{equation*}
e_{2}<3+n \sum_{\substack{p \leq n \\ p \text { odd }}}\left(\frac{1}{p^{2}}+\frac{2}{p^{4}}+\sum_{\beta \geq 3} \frac{\beta}{p^{2^{\beta-1}+2}}\right)+n \sum_{\beta \geq 3} \frac{\beta}{2^{2^{\beta}-\beta}} . \tag{38}
\end{equation*}
$$

(the number 3 in the above formula counts the contributions of $S(2)=2$ and $S(4)=4$ ). We now bound each one of the two sums above.

For fixed $p$, one has

$$
\begin{equation*}
\frac{1}{p^{2}}+\frac{2}{p^{4}}+\sum_{\beta \geq 3} \frac{\beta}{p^{2^{\beta-1}+2}}=\frac{1}{p^{2}}+\frac{2}{p^{4}}+\frac{3}{p^{6}}+\frac{4}{p^{10}}+\ldots<\sum_{\gamma \geq 1} \frac{\gamma}{p^{2 \gamma}}=\frac{p^{2}}{\left(p^{2}-1\right)^{2}} \tag{39}
\end{equation*}
$$

Hence,

$$
\begin{equation*}
\sum_{\substack{p \geq \leq \\ p \mathrm{ddd}}}\left(\frac{1}{p^{2}}+\frac{2}{p^{4}}+\sum_{\beta \geq 3} \frac{\beta}{p^{2^{\beta-1}+2}}\right)<\sum_{p \text { odd }} \frac{p^{2}}{\left(p^{2}-1\right)^{2}}<.245 \tag{40}
\end{equation*}
$$

We now bound the second sum:

$$
\begin{gather*}
\sum_{\beta \geq 3} \frac{\beta}{2^{2^{\beta}-\beta}}=\frac{3}{2^{5}}+\frac{4}{2^{12}}+\frac{5}{2^{27}}+\ldots<\frac{3}{2^{6}}+\sum_{\beta \geq 3} \frac{\beta}{2^{2+4(\beta-2)}}= \\
\frac{3}{2^{6}}+\frac{1}{4}\left(\sum_{\gamma \geq 1} \frac{\gamma+2}{16^{\gamma}}\right)=\frac{3}{2^{6}}+\frac{1}{4}\left(\frac{15}{16}+\frac{31}{225}\right)<.099 \tag{41}
\end{gather*}
$$

From inequalities (38), (40) and (41), it follows that

$$
\begin{equation*}
e_{2}<3+.344 n \tag{42}
\end{equation*}
$$

We now compute a lower bound for $e_{2}$. Since $e_{2}=e_{2}(m!)$, it follows, from Lemme 1 in [1] and from the fact that $m \geq n / 2$, that

$$
\begin{equation*}
e_{2} \geq m-\frac{\log (m+1)}{\log 2} \geq \frac{n}{2}-\frac{\log (n / 2+1)}{\log 2} \tag{43}
\end{equation*}
$$

From inequalities (42) and (43), it follows that

$$
3+.344 n \geq .5 n-\frac{\log (.5 n+1)}{\log 2}
$$

which gives $n \leq 50$. One can now compute $S(1) \cdot S(2) \cdot \ldots \cdot S(n)$ for all $n \leq 50$ to conclude that the only instances when these products are factorials are $n=$ $1,2, \ldots, 5$

We conclude suggesting the following problem:

## Problem.

Find all positive integers $n$ such that $S(1), S(2), \ldots, S\left(n^{2}\right)$ can be arranged in a latin square.

The above problem appeared as Problem 24 in SNJ 9, (1994) but the range of solutions was restricted to $\{2,3,4,5,7,8,10\}$. The published solution was based on the simple observation that the sum of all entries in an $n \times n$ latin square has to be a multiple of $n$. By computing the sums $B\left(x^{2}\right)$ for $x$ in the above range, one concluded that $B\left(x^{2}\right) \not \equiv 0(\bmod x)$ which meant that there is no solution for such $x$ 'ses. It is unlikely that this argument can be extended to cover the general case. One should notice that from our theorem, it follows that if a solution exists for some $n>1$, then the size of the common sums of all entries belonging to the same row (or column) is $\cong n \pi\left(n^{2}\right)$.

## Addendum

After this paper was written, it was pointed out to us by an annonymous referee that Finch [3] proved recently a much stronger statement, namely that

$$
\begin{equation*}
\lim _{x \rightarrow \infty} \frac{\log (x)}{x} \cdot A(x)=\frac{\pi^{2}}{12}=0.82246703 \ldots \tag{44}
\end{equation*}
$$

Finch's result is better than our result which only shows that the limsup of the expression $\log (x) A(x) / x$ when $x$ goes to infinity is in the interval $[0.5,1]$.

## References

[1] Y. Bugeaud \& M. Laurent, "Minoration effective de la distance $p$-adique entre puissances de nombres algébriques", J. Number Theory 61 (1996), pp. 311-342.
[2] C. Dumitrescu \& V. Seleacu, "The Smarandache Function", Erhus U. Press, 1996.
[3] S.R. Finch, "Moments of the Smarandache Function", SNJ 11, No. 1-2-3 (2000), p. 140-142.
[4] H. Ibsted, "Surfing on the ocean of numbers", Erhus U. Press, 1997.
[5] J. B. Rosser \& L. Schoenfeld, "Approximate formulas for some functions of prime numbers", Illinois J. of Math. 6 (1962), pp. 64-94.
[6] S. Tabirca \& T. Tabirca, "Two functions in number theory and some upper bounds for the Smarandache's function", SNJ 9 No. 1-2, (1998), pp. 82-91.

1991 AMS Subject Classification: 11A25, 11L20, 11L26.

