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Abstract: In this paper, the concept of Total semirelib graph of a planar graph is in-
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§1. Introduction

The concept of block edge cut vertex graph was introduced by Venkanagouda M Goudar [4 ].

For the graph G(p,q), if B = u1, u2, · · · , ur : r ≥ 2 is a block of G, then we say that the vertex

ui and the block B are incident with each other. If two blocks B1 and B2 are incident with a

common cutvertex, then they are adjacent blocks.

All undefined terminology will conform with that in Harary [1]. All graphs considered here

are finite, undirected, planar and without loops or multiple edges.

The semirelib graph of a planar graph G is introduced by Venkanagouda M Goudar and

Manjunath Prasad K B [5] denoted by Rs(G) is the graph whose vertex set is the union of set

of edges, set of blocks and set of regions of G in which two vertices are adjacent if and only if

the corresponding edges of G are adjacent, the corresponding edges lies on the blocks and the

corresponding edges lies on the region. Now we define the total semirelib graph.

Let M be a maximal planar graph of a graph G. A Smarandachely semirelib M -graph

TM
s (G) of M is the graph whose vertex set is the union of set of edges, set of blocks and set of

regions of M in which two vertices are adjacent if and only if the corresponding edges of M are

adjacent, the corresponding edges lies on the blocks, the corresponding edges lies on the region,

the corresponding blocks are adjacent and the graph G\M . Particularly, if G is a planar graph,

such a TM
s (G) is called the total semirelib graph of G denoted, denoted by Ts(G).

The edge degree of an edge uv is the sum of the degree of the vertices of u and v. For the

planar graph G, the inner vertex number i(G) of a graph G is the minimum number of vertices
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not belonging to the boundary of the exterior region in any embedding of G in the plane. A

graph G is said to be minimally nonouterplanar if i(G)=1 as was given by Kulli [4].

§2. Preliminary Notes

We need the following results to prove further results.

Theorem 2.1([1]) If G is a (p,q) graph whose vertices have degree di then the line graph L(G)

has q vertices and qLedges, where qL = −q +
1

2

∑

d2
i edges.

Theorem 2.2([1]) The line graph L(G) of a graph is planar if and only if G is planar, ∆(G) ≤ 4

and if degv = 4, for a vertex v of G, then v is a cutvertex.

Theorem 2.3([2]) A graph is planar if and only if it has no subgraph homeomorphic to K5 or

K3,3.

Theorem 2.4([3]) A graph is outerplanar if and only if it has no subgraph homeomorphic to

K4 or K2,3.

§3. Main Results

We start with few preliminary results.

Lemma 3.1 For any planar graph G, L(G) ⊆ Rs(G) ⊆ Ts(G).

Lemma 3.2 For any graph with block degree ni, the block graph has





ni

2



 edges.

Definition 3.3 For the graph G the block degree of a cutvertex vi is the number of blocks

incident to the cutvertex vi and is denoted by ni.

In the following theorem we obtain the number of vertices and edges of a Total semirelib

graph of a graph.

Theorem 3.4 For any planar graph G, the total semirelib graph Ts(G) whose vertices have

degree di, has q + r + b vertices and
1

2

∑

d2
i +

∑

qj edges where r and b be the number of

regions and blocks respectively.

Proof By the definition of Ts(G), the number of vertices is the union of edges, regions and

blocks of G. Hence Ts(G) has ( q + r + b) vertices. Further by the Theorem 2.1, number of

edges in L(G) is qL = −q +
1

2

∑

d2
i . Thus the number of edges in Ts(G) is the sum of the

number of edges in L(G), the number of edges bounded by the regions which is q, the number

of edges lies on the blocks is
∑

qj and the number the sum of the block degree of cutvertices
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which is
∑

(ni

2 ) by the Lemma 3.2. Hence

E[Ts(G)] = −q +
1

2

∑

d2
i + q +

∑

qj +
∑

(ni

2 ) =
1

2

∑

d2
i +

∑

qj +
∑

(ni

2 ). 2
Theorem 3.5 For any edge in a plane graph G with edge degree ei is n, the degree of the

corresponding vertex in Ts(G) is i). n if ei is incident to a cutvertex and ii). n+1 if ei is not

incident to a cutvertex.

Proof Suppose an edge ei ∈ E(G) have degree n. By the definition of total semirelib graph,

the corresponding vertex in Ts(G) has n-1. Since edge lies on a block, we have the degree of

the vertex is n− 1 + 1 = n. Further, if ei 6= bi ∈ E(G) then by the definition of total semirelib

graph, ∀ei ∈ E(G), ei is adjacent to all vertices ej of Ts(G) which are adjacent edges of ei of

G. Also the block vertex of Ts(G) is adjacent to ei. Clearly degree of ei is n+ 1. 2
Theorem 3.6 For any planar graph G with n blocks which are K2 then Ts(G) contains n

pendent vertices.

Theorem 3.7 For any graph G, Ts(G) is nonseparable.

Proof Let e1, e2, · · · , en ∈ E(G), b1 = e1, b2 = e2, · · · , bn = en be the blocks and

r1, r2, · · · , rk be the regions of G. By the definition of line graph L(G), e1, e2, · · · , en form

a subgraph without isolated vertex. By the definition of Ts(G), the region vertices are adjacent

to these vertices to form a graph without isolated vertex. Since there are n blocks which are

K2, we have each b1 = e1, b2 = e2, · · · , bn = en are adjacent to e1, e2, · · · , en. Hence semirelib

graph Rs(G) contains n pendent vertices. By the definition of total semirelib graph, the block

vertices are also adjacent. Hence Ts(G) is nonseparable. 2
In the following theorem we obtain the condition for the planarity on total semirelib graph

of a graph.

Theorem 3.8 For any planar graph G, the Ts(G) is planar if and only if G is a tree such that

∆(G) ≤ 3.

Proof Suppose Rs(G) is planar. Assume that ∃vi ∈ G such that degvi ≥ 4. Suppose

degvi = 4 and e1, e2, e3, e4 are the edges incident to vi. By the definition of line graph,

e1, e2, e3, e4 form K4 as an induced subgraph. In Ts(G), the region vertex ri is adjacent with all

vertices of L(G) to form K5 as an induced subgraph. Further the corresponding block vertices

b1, b2, b3, · · · , bn−1 of of blocks B1, B2, B3, · · · , Bn in G are adjacent to vertices of K4 and the

corresponding blocks are adjacent. Clearly Ts(G) forms graph homeomorphic to K5. By the

Theorem 2.3, it is non planar, a contradiction.

Conversely, Suppose degv ≤ 3 and let e1, e2, e3 be the edges of G incident to v. By the

definition of line graph e1, e2, e3 form K3 as a subgraph. By the definition of Ts(G), the region

vertex ri is adjacent to e1, e2, e3 to form K4 as a subgraph. Further, by the Lemma 3.2, the

blocks b1, b2, b3, · · · , bn of T with n vertices such that b1 = e1, b2 = e2, · · · , bn−1 = en−1 becomes

p−1 pendant vertices.By the definition of Ts(G), these block vertices are adjacent. Hence Ts(G)

is planar. 2
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In the following theorem we obtain the condition for the outer planarity on total semirelib

graph of a graph.

Theorem 3.9 For any planar graph G, Ts(G) is outer planar if and only if G is a path P3.

Proof Suppose Ts(G) is outer planar. Assume that G is a tree with at least one vertex

v such that degv = 3. Let e1, e2, e3 be the edges of G incident to v. By the definition of line

graph e1, e2, e3 form K3 as a subgraph.In Ts(G), the region vertex ri is adjacent to e1, e2, e3 to

form K4 as induced subgraph. Further by the lemma 3.2, b1 = e1, b2 = e2, · · · , bn−1 = en−1

becomes n-1 pendant vertices in Rs(G). By the definition of Ts(G), i[Rs(G) ≥ 1], which is

non-outer planar ,a contradiction.

Conversely, Suppose G is a path P3. Let e1, e2 ∈ E(G). By the definition of line graph

L[P3](G) = P2. Further by definition of Ts(G), b1 = e1, b2 = e2 forms and the vertices of line

graph form C4 . Further the region vertex r1 is adjacent to all the vertices of Ts(G) which is

outer planar. 2
In the following theorem we obtain the condition for the minimally non outer planar on

total semirelib graph of a graph.

Theorem 3.10 For any planar graph G, Ts(G) is minimally non-outer planar if and only if G

is P4.

Proof Suppose Ts(G) is minimally non-outer planar. Assume that G 6= P4.Consider the

following cases.

Case 1 Assume that G = K1,n for n ≥ 3. Then there exist at least one vertex of degree at

least 3. Suppose degv = 3 for any v ∈ G. By the definition of line graph, L[K1,3] = K3. By the

definition of Ts(G),these vertices are adjacent to a region vertex r1, which form K4. Further the

block vertices form K3 and it has e1, e2, e3 as its internal vertices. Clearly, Ts is not minimally

non-outer planar, a contradiction.

Case 2 Suppose G 6= K1,n. By the Theorem 3.9, Ts(G) is non-outer planar,a contradiction.

Case 3 Assume that G = Pn,for n ≥ 5. Suppose n = 5. By the definition of line

graph,L[P5](G) = P4 and e2, e3 are the internal vertices of L(G). By the definition of Ts,

the region vertex r1 is adjacent to all vertices of L(G) to form connected graph. Further the

block vertices are adjacent to all vertices of L(G). Clearly the vertices e2, e3 becomes the inter-

nal vertices of Ps. Clearly i[Ts] = 2, which is not minimally nonouterplanar, a contradiction.

Conversely, suppose G = P4 and let e1, e2, e3 ∈ E(G). By the definition of line graph,

L[P4] = P3. Let r1 be the region vertex in Ts(G) such that r1 is adjacent to all vertices of

L(G). Further the blocks bi are adjacent to the vertices ej for i = j. Clearly i[Ts(G)] = 1.

Hence G is minimally non-outer planar. 2
In the following theorem we obtain the condition for the non Eulerian on total semirelib

graph of a graph.

Theorem 3.11 For any planar graph G, Ts(G) is always non Eulerian.
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Proof We consider the following cases.

Case 1 Assume that G is a tree. In a tree each edge is a block and hence b1 = e1, b2 =

e2, · · · , bn−1 = en−1∀en−1 ∈ E(G) and ∀bn−1 ∈ V [Ts(G)]. In Ts(G), the degree of a block

vertex bi is always even, but the pendent edges of G becomes the odd degree vertex in Ts(G),

which is non Eulerian.

Case 2 Assume that G is K2 -free graph. We have the following subcases of Case 2.

Subcase 1 Suppose G itself is a block with even number of edges. Clearly each edge of G is of

even degree. By the definition of Ts(G), both the region vertices and blocks have even degree.

By the Theorem 2.3, ei = bi ∈ V [Ts(G)] is of odd degree, which is non Eulerian. Further if G is

a block with odd number of edges, then by the Theorem 3.3, each ei = bi ∈ V [Ts(G)] is of even

degree. Also the block vertex and region vertex bi, ri are adjacent to these vertices. Clearly

degree of bi and ri is odd, which is non Eulerian.

Subcase 2 Suppose G is a graph such that it contains at least one cutvertex. If each edge is

even degree then by the sub case 1, it is non Eulerian. Assume that G contains at least one

edge with odd edge degree. Clearly for any ej ∈ E(G), degree of ej ∈ V [Ts(G)] is odd, which

is non Eulerian. Hence for any graph G Ts(G) is always non Eulerian. 2
In the following theorem we obtain the condition for the hamiltonian on total semirelib

graph of a graph.

Theorem 3.12 For any graph G, Ts(G) is always hamiltonian.

Proof Suppose G is any graph. We have the following cases.

Case 1 Consider a graph G is a tree. In a tree, each edge is a block and hence b1 = e1, b2 =

e2, · · · , bn−1 = en−1∀en−1 ∈ E(G) and ∀bn−1 ∈ V [Ts(G)]. Since a tree T contains only ne

region r1 which is adjacent to all vertices e1, e2, · · · , en−1 of Ts(G). Also the block vertices are

adjacent to each vertex ei which corresponds to the edge of G and it is a block in G. Clearly

r1, e1, b1, b2, e2, e3, b3, · · · , r1 form a hamiltonian cycle. HenceTs(G) is hamiltonian graph.

Case 2 Suppose G is not a tree. Let e1, e2, · · · , en−1 ∈ E(G), b1, b2, · · · , bi be the blocks

and r1, r2, · · · , rk be the regions of G such that e1, e2, · · · , el ∈ V (b1), el+1, el+2, · · · , em ∈
V (b2), · · · , em+1, em+2, · · · , en−1 ∈ V (bi). By the Theorem 3.3, V [Ts(G)] = e1, e2, · · · , en−1 ∪
b1, b2, · · · , bi ∪ r1, r2, · · · , rk. By theorem 3.7, Ts(G) is non separable. By the definition,

b1e1, e2, · · · , el−1r1b2 · · · r2emb3 · · · ek+1, ek+2, · · · , en−1bkrkelb1 form a cycle which contains all

the vertices of Ts(G). Hence Ts(G) is hamiltonian. 2
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