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On the F.Smarandache LCM function SL(n)
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Abstract For any positive integer n, the famous F.Smarandache LCM function SL(n) is
defined as the smallest positive integer k such that n | [1,2,-- -, k], where [1,2,--- , k] denotes
the least common multiple of 1,2,--- , k. The main purpose of this paper is using the elemen-
tary methods to study the mean value distribution property of (P(n) — p(n))SL(n), and give
an interesting asymptotic formula for it.
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§1. Introduction and Result

For any positive integer n, the famous F.Smarandache LCM function SL(n) defined as the
smallest positive integer k such that n | [1, 2, ---, k], where [1, 2, ---, k] denotes the least
common multiple of 1, 2, ---, k. For example, the first few values of SL(n) are SL(1) = 1,
SL(2) =2, SL(3) =3, SL(4) =4, SL(5) =5, SL(6) =3, SL(7) =7, SL(8) =8, SL(9) =9,
SL(10) = 5, SL(11) = 11, SL(12) = 4, SL(13) = 13, SL(14) = 7, SL(15) = 5, - . From the
definition of SL(n) we can easily deduce that if n = p7'p5? - - - p&~ be the factorization of n into

primes powers, then
SL(n) = max{py", p3*, ---, p;"}. (1)

About the elementary properties of SL(n), many people had studied it, and obtained some
interesting results, see references [1], [2] and [3]. For example, Murthy [1] porved that if n be
a prime, then SL(n) = S(n), where S(n) be the F.Smarandache function. That is, S(n) =
min{m : n|m!, m € N}. Simultaneously, Murthy [1] also proposed the following problem:

SL(n)=S(n), Sn)#n? (2)

Le Maohua [2] solved this problem completely, and proved the following conclusion:

Every positive integer n satisfying (1) can be expressed as

(ea e’ ]

n=12 or n=7p{'p3?---prp,

where p1, p2, -+, pr, p are distinct primes and aq, as, -+, a, are positive integers satisfying

p>p104172:1’ 2a"'77ﬁ'
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Zhongtian Lv [3] studied the mean value properties of SL(n), and proved that for any fixed

positive integer k and any real number x > 1, we have the asymptotic formula

2 2

772 X k C"l‘Q X
Y SLm) =5+ o
P (n) =15 lnx+i:2 mr (m’““x)’

where ¢; (i =2,3,--- ,k) are computable constants.
Jianbin Chen [4] studied the value distribution properties of SL(n), and proved that for

any real number x > 1, we have the asymptotic formula

, 2[5\ af @’
> (SL(n) = P(n)* = £ ¢ (2) Ttz ¢ (m%) ’

n<x

where ((s) is the Riemann zeta-function, and P(n) denotes the largest prime divisor of n.
Xiaoyan Li [5] studied the mean value properties of P(n)SL(n) and p(n)SL(n), and give

two sharper asymptotic formulas for them, where p(n) denotes the smallest prime divisor of n.
Yanrong Xue [6] defined another new function SL*(n) as follows: SL*(1) = 1, and if

n=p{'ps? - p2r be the factorization of n into primes powers, then

SL*(TZ) :min{p?lv pgz7 Ty pgr}7 (3)

where p; < ps < --- < p, are primes.

It is clear that function SL*(n) is the dual function of SL(n). So it has close relationship
with SL(n). About its elementary property of the function SL*(n), Yanrong Xue [6] proved
the following conclusion:

For any positive integer n, there is no any positive integer n > 1 such that
Z :
*
™ SL*(d)

is an positive integer, where Z denotes the summation over all positive divisors of n.
d|n
In this paper, we shall study the value distribution properties of (P(n) — p(n))SL(n), and

give a sharper asymptotic formula for it. That is, we shall prove the following:
Theorem. For any real number z > 1 and any positive integer k, we have the asymptotic

formula

k ) ;[;3
S (P - p)SLO) = 66) -4 3 e 0 ().
n<lx i— nx n x

where ((s) is the Riemann zeta-function, by = =, b; (i = 2,3,--- , k) are computable constants.

Wl =

§2. Proof of the theorem

In this section, we shall complete the proof of the theorem directly. For any positive integer
n > 1, we consider the following cases:

A:n=mny-p,n <p,and SL(n)=p;
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B:n=ny-p,ng >p,and SL(n)=p;
C:n=m-p* a>2, and SL(n) = p%;
Now, for any positive integer n > 1, we consider the summation:

> (P(n) = p(n))SL(n).

n<x

It is clear that if n € A, then from (1) we know that SL(n) = p. Therefore, by the Abel’s
summation formula (See Theorem 4.2 of [7]) and the Prime Theorem (See Theorem 3.2 of [8]):

k
a; - T x
W(:E)—Z +O<lnk+1x),

— In'x
where a; (i =1,2,...,k) are computable constants and a; = 1.
We have
> (P(n) —p(n))SL(n) = > (P(n)—p(n)SL(n)
n<lx n<lx
n€A n=ni-p,n1<p
SL(n)=p
= > > (Pu-p)—plni-p)p
nlgﬂn1§p§ﬁ
= > > (-pm)p
nlgﬁnlﬁpﬁﬁ
= Y. > =D > pmp, (4)
nlgﬁnlfpfﬁ nlgﬁnlfpfﬁ
while
) 2 [\ [ )
Z Z p° = —r|—) - 2ym(y)dy + O (n3)
x nl nl n
n1 <@ m <p<E n1 <z 1
3k 3
T b; x
- ¥ my it vo( )
eoF [nl — In o n3 - In o

- C(3)-3:3~Z bi +o(,ff1x>, (5)

where ((s) is the Riemann zeta-function, by = =, b; (¢ = 2,3,--- , k) are computable constants.

Note that p(n1) < n1, we have

oY pp = > pm) D p

n1 <vE i <p< <V n<p<E
X x %
= > plm) [w <> */ IW(y)dwO(n?)]
ni ni n
nlfﬁ !
x? z? 9
< Y p(n1)~m<< > mlnx:ou« ). (6)

n1<v n1 <z
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From (4), (5)and (6) we have

kg, 23
Z:(P(”) —p(n))SL(n) =¢(3) - 2® - ; h?a: +0 <lnk+1 x) ; (7)

neA

where by = -, b; (i =2,3,-- ,k) are computable constants.

W =

If n € B, SL(n) = p, then by the Abel’s summation formula and the Prime Theorem, we
can deduce the following:

> (P(n) = p(n))SL(n) = Y (P(n) = p(n)SL(n)

n<xz n<lx
neB n=ns-p,ng>p
SL(n)=p

= > (p—pn))p

ng-p<x
na>p

< 2= > 7

ng-p<w p<xP<n2<%
nz>p

< Z %.pQZ Z zp
p<z p<VT

= =z Z RS z2. (8)
p<VT

If n € C, then SL(n) = p®, o > 2. Therefore, using the Abel’s summation formula and

the Prime Theorem, we can obtain:

> (P(n) = p(n))SL(n) = Y. (P(n) = p(n)SL(n)

n<z n<lz
neC n=m-p%*,a>2
SL(n)=p
= > (P(m-p*)—p(m-p*))p*
m-p*<x
a>2
< Y <Y X
mep* <a po<em< g
a>2 a>2
X
< D Ert= et
p<z p<z
a>2 a>2
- e Y e Yt ®
posz <z%
a>2 p<

a>2
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Now, combining (7), (8) and (9) we may immediately obtain the fowllowing asymptotic

formula:

k ) 23
S (P~ )L =€) -2 3+ 0 ().

where P(n) and p(n) denote the largest and smallest prime divisor of n respectively, ((s) is the

Riemann zeta-function, by = =, b; (i =2,3,--- , k) are computable constants.

This completes the proof of Theorem.
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