
A Discrete Model for Histogram Shaping 

S.M.Tabirca I.Pitt D.Murphy 
Department of Computer Science 

National University of Ireland, Cork 
s. tabirca@cs.ucc.ie 

Abstract 

The aim of this article is to present a discrete model for histogram shaping. This is 
an important image transformation with several practical applications. The model that is 
proposed is based on a generalization of the inferior part function. Finally, an algorithm 
based on this model is developed. 
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1 Introduction 

Histogram equalization or histogram flattening is one of the moot important nonlinear point 
operations. This transformation aims to distribute uniformly the gray levels of the input image 
such that the histogram of the output image is flat. Histogram equalization has been studied 
for many years (see [1], [3], [4]) and many practical applications have been proposed so far. A 
direct generalization of this transformation is represented by histogram shaping or histogram 
specification (see [1], [3]). The idea of histogram shaping is to transform the input image 
into one which has histogram of a specific shape. Obviously, when the output shape is flat, 
histogram equalization is obtained. Both histogram equalization and histogram shaping have 
become classical image transformations, therefore it has been quite difficult to find the initial 
reference source. One of the earliest references about is [2]. 

The mathematical model of histogram equalization and shaping is based on stochastic ap­
proach. Let us consider that the input digital image is 1= (fi,j: i = 1,2, ... , nj j = 1,2, .0., m) 
where 

1</,· ·<G - toJ-

represents the gray value of pixel (i, j) 0 The probability or frequency of gray level k E 1, ... , G is 
defined by 

(k) = #{(i,j): I(i,j) = k} k - 1 G (1) Pi , - , ... , , 
m·n 

where #((i,j): I(i,j) = k} gives the number of pixel with the gray level equal to k. Based on 
these probabilities, the digital image f can be considered a discrete random variable 

::: ~(G) ) 

1. Recall that the cumulative probability distribution of PI is 
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(2) 



k 

Pf: {1,2, ... , G} -+ [O,IJ, Pf(k) = L Pf(l). (3) 
l=O 

A more productive approach is to consider the digital image as a continuous random variable Pf : 
[0, (0) -+ [0,11 such that fooo pj(x)dx = 1. In this case the cumulative probability distribution is 

Based. on this continuous model the histogram shaping transformation can be defined more 
easily. Consider that the input digital image f is transformed such that the histogram of the 
output image 9 has a shape given by the cumulative distribution Q : [0,00) -+ [0,1). The 
equation that gives histogram shaping is [3J 

(4) 

The main inconvenience arising form Equation(4) is represented by the inverse function Q-l. 
Firstly, because the calculation of Q-l might not be easier even for simple shapes. Secondly, we 
cannot define Q-l for the discrete case therefore it would be difficult to apply (4) to a discrete 
computation. Perhaps, this is the real reason for seeing no discrete models for histogram shaping. 
In the following we will propose a discrete model for this transformation. 

2 The Superior Smarandache f-Part 

In order to propose an equation for the discrete case, we have to find a. substitute for Q-l. This 
is given by the Superior Smarandache f-Part , which represents a direct generalization of the 
classical ceiling function. Smarandache proposed [5] a generalization of the ceiling function as 
follOwing. Consider that f : Z -+ R an increasing function such that li11ln-+-oof(n) = -00 and 
lim..-+oo/(n) = 00. The Superior Smarandache f-Part associated with f is fn : R -+ Z defined 
by 

fn(x) = k {:} I(k -1) < x S f(k). 

Smarandache studied this function in relation to some functions of Number Theory and proposed 
several conjectures on them [6J. Tabirca also studied the Superior Smarandache f-Part [7] when 
fen) = ~ i G and proposed equations for fn when a = 0,1,2. Tabirca also applied this 
function to static parallel loop scheduling rSI. 

Now, we propose a version of the Superior Smarandache f-Part for our discrete case. Consider 
that r : {I, 2, ... , G} -+ (O,IJ is an increasing function such that r(C) = 1. We also consider 
that this function is extended to 0 with 1(0) = O. The Superior Smarandache f-Part associated 
with I is 10 : (0,11-+ {1, ... ,G} defined by 

jn(x) = k {:} I(k -1) < x S j(k), Vx E [0,1]. (5) 

This function is also extended in 0 by rO(O) = O. 
Some properties of the function 10 are proposed in the following. 

Theorem 1 
fO (f(k» = k, Vk E {I, 2, ... ,G}. (6) 
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Proof The proof is based on the definition of fil and on the double inequality 

f(k - 1) < f(k) ~ f(k) . 

• 
Theorem 2 

x~f(tO(x») <x+s~p(f(k+l)-f(k», 'v'XE(O,I]. (7) 

Proof 
Let us denote k = fO(x). The definition of fO provides f(k - 1) < x ~ f(k). From this 

equation, it directly follows that x ~ f(fD(x». 
The second part of Equation (7) comes from the following implication: 

f(k) < f(k) + x - f(k - 1) =? 

f (to (x») < x+s~p(f(k) - f(k -1» . 

• Based on these properties, the histogram shaping model of the discrete case is proposed. 

3 Histogram Shaping for the Discrete Case 

Consider that the input image f = (fiJ: i = 1,2, ... , n; j = 1,2, ... , m) is transformed into the 
output image 9 = (giJ: i = 1,2, ... , nj j = 1,2, ... , m) such that the histogram of g has a certain 
shape. Let us presume that the shape of the output histogram is given by the discrete random 
variable 

... G ) 

... Ph (G) 
(8) 

where 2:~IPh(k) = 1. 
The general equation of histogram shaping is similar with Equation (4) but pE is used in 

place of PhI. Let consider that the equation of image 9 is 

g(i,j) = pE (Pf(f(i,j»), 'v' (i,j) E {I, ... ,n} x {1,2, ... ,m}. (9) 

We prove that the cumulative probability distribution of 9 is very close to the cumulative 
probability distribution of h. 

Theorem 3 
Pg(k) = PI (pJ (Ph (k))), 'v'k E {I, 2, ... , G}. (10) 

Proof The proof is given by the following transformations: 

k 

Pg(k) = Pr[g(i,j) ~ k] = LPr [pE (PfU(i,j))) = 1] = 
l=1. 
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k 

= LPr[Ph(l-I) < PI(f(i,j) ~ Ph(l)] = 
1=1 

k 

= LPr [pY (Ph(l-I» < PP (PI (f(i,j)) ~ Py (Ph(l))] = 
1=1 

k 

= LPr [{/(i,j) ~ Py (Ph(l»)} - {/(i,j) ~ Py (Ph(I-I))}] = 
1=1 

k 

= L (Pr [/(i,j) ~ Py (Ph(l))] -Pr [/(i,j) ~ Py (Ph(I-I))]) = 
l=1 

k 

= L (PI (pJ (Ph(ln) - Pj (p} (Ph(I-I))) = 
1=1 

= PI (pY (Ph(kn) - PI (pY (Ph (D))) 

Since Pf (pY (Ph(O») = 0 we find that Pg(k) = Pj (p} (Ph(k))) holds . 

• From Theorems 2 and 3 the following equation is directly obtained. 

Ph(k) ~ Pg(k) < Ph(k) + sup (Pf{j + 1) - PjU» , Vk E {O, 1, ... , G -I}. (11) 
j 

Equation (11) provides an estimation of the gap between the quantities Ph(k) and Pg(k). When 
SUPj (Pf{j + 1) - Pj(j» is smaller these two quantities are very close. Although Equa.tion (11) 
does not give a perfect equality we can say that the histogram of the image 9 has the shape very 
close to h. 

The algorithm based on this model firstly finds the functions Pf, Ph and pE. Secondly, 
Equation (9) is applied to obta.in the value g(i,j) for each pair (i,j). A full description of this 
algorithm is presented below. 

Inputs: 
n.m - the image sizes. 
f=(f[i.j]: i=l •...• n; j=l •...• m) - the input image. 
p_h=(p_h[i]: i=l •..•• G) - the desired shape. 

Output: 
g=(g[i.j]: i=l •...• n; j=l •...• m) - the input image. 

double P_h(int k){ 
double s=O; 

} 

if (k<=O II lOG) return 0; 
for(int i=l;i<=k;i++)s=s+p_h[i]; 
return s; 

int P_h_Inv(double x){ 
int k; 
if(x<=O I I x>l) return 0; 
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} 

Figure 1: Lerma's picture 1. 

for(k=OjP_h(k)<=Xjk++)j 
return k-l; 

double P_f(int k){ 

} 

double 8=0, p_f[G]j 
if(k<=O I I k>G) return 0; 
for(int i=l;i<=G;i++)p_f[i]=Oj 
for(int i=l;i<=n;i++)for(int j=l;j<=m;j++)p_f[f[i.j]]=p_f[f[i,j]]+l./(n*m); 
for(int i=1;i<=k;i++)8=s+p_h[i]; 
return s; 

int [] 0 Hist_Shaping(int n, int m. int f DOH 
int g En] Em] j 

} 

for(int i=lji<=n;i++)for(int j=ljj<=m;j++) 
g[i,j] = P_h_Inv(P_f(f[i.j]»j 

return g; 

In order to show that the algorithm performs well we consider an example presented in [I}. 
Histogram shaping can be used to compare two images of the same scene, which have been taken 
under different lighting conditions. When the histogram of the first image is shaped to match 
in the histogram of the S€Cond image, the lighting effects might be eliminated. 

Consider that we have the images presented Figures 1 and 2. They are two different Lenna's 
images where the second one has a poor lighting. Each image also contains the histogram for 
the red channel. The histogram shaping algorithm was applied to transform the second image 

263 



Figure 2: Lenna.'s picture 2. 

according to the histogram of the first image. Figure 3 shows the resulting image which is the 
same as the first image. Moreover, the histograms of the first and third images are very alike 
with similar positions for peaks and valleys. 

4 Conclusions 

This article has introduced a discrete model for the histogram shaping transformation. The 
model that has been proposed uses the Smaranda.che ceiling function and is based on the equation 
g = pR (PIU»· A example has been also presented in order to prove that the method is viable. 
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Figure 3: Lenna's Picture after Histogram Shaping. 
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