On the Difference $\mathbf{S}(\mathbf{Z}(\mathrm{n}))-\mathbf{Z}(\mathbf{S}(\mathrm{n})$

Maohua Le

Abstract: In this paper, we prove that there exist infinitely many positive integers n satisfying $S(Z(n))>Z(S(n))$ or $S(Z(n))<Z(S(n))$.

Key words: Smarandache function, Pseudo-Smarandache function, composite function, difference.

For any positive integer n, let $S(n), Z(n)$ denote the Smarandache function and the Pseudo-Smarandache function of n respectively. In this paper, we prove the following results:

Theorem 1: There exist infinitely many n satisfying $S(Z(n))>Z(S(n))$.
Theorem 2: There exist infinitely many n satisfying $S(Z(n))<Z(S(n))$.
The above mentioned results solve Problem 21 of [1].
Proof of Theorem 1.
Let p be an odd prime. If $n=(1 / 2) p(p+1)$, then we have
(1) $S(Z(n))=S(Z((1 / 2) p(p+1)))=S(p)=p$
and
(2) $Z(S(n))=Z(S((1 / 2) p(p+1)))=Z(p)=p-1$.

We see from (1) and (2) that $S(Z(n))>Z(S(n))$ for any odd prime p. It is a well-known fact that there exist infinitely many odd primes p. Thus, the theorem is proved.

Proof of Theorem 2.
If $n=p$, where p is an odd prime, then we have
(3) $S(Z(n))=S(Z(p))=S(p-1)<p-1$
and
(4) $Z(S(n))=Z(S(p))=Z(p)=p-1$.

By (3) and (4), we get $S(Z(n))<Z(S(n))$ for any p. Thus, the theorem is proved.

Reference

[1] C. Ashbacher, Problems, Smarandache Notions Journal, 9(1998), 144-151.

Maohua Le

Department of Mathematics
Zhanjiang Normal College
Zhanjiang, Guangdong
P.R. China

