D - Form of SMARANDACHE GROUPOID

Deviregi Tabubdare
Head Dept. of Mathematics NALBARI COLLEGE Nalbari : Assam : India

Abstract :

The set of p different equivalence classes is $\mathbb{Z} p=\{[0],[1],[2], \cdots---[k] \cdots---[p-1]\}$
For convenience, we have omitted the brackets and written k in place of [k]. Thus

$$
\mathrm{Zp}=\{0,1,2, \cdots-\cdots \mathrm{k}-\cdots---1\}
$$

The elements of $Z p$ can be written uniquely as m - adic numbers. If $r=\left(a_{n-1} a_{n-2}-\cdots a_{1} a_{0}\right)_{m}$ and $s=\left(b_{n-1} b_{n-2} \cdots \cdots-b_{1} b_{0}\right)_{m}$ be any two elements of Z_{p}, then $r \Delta s$ is defined as $\left(\left|a_{n-1}-b_{n-1}\right|\left|a_{n-2}-b_{n-2}\right|-\cdots-\left|a_{1}-b_{1}\right|\left|a_{0}-b_{0}\right|\right)_{m}$ then $(Z p, \Delta)$ is a groupoid known as SMARANDACHE GROUPOID. If we define a binary relation $r \cong s \Leftrightarrow r \Delta C(r)=s \Delta C(s)$, where $C(r)$ and $C(s)$ are the complements of r and s respectively, then we see that this relation is equivalence relation and partitions Z_{p} into some equivalence classes. The equivalence class
$D_{\operatorname{sux}\left(Z_{p}\right)}=\left\{r \in Z_{p}: r \Delta C(r)=\operatorname{Sup}(Z p)\right\} \quad$ is defined as D - form. Properties of SMARANDACHE GROUPOID and D - form are discussed here.

Key Words : SMARANDACHE GROUPOID, complement element and D - form.

1. Introduction :

Let m be a positive integer greater than one. Then every positive integer r can be written uniquely in the form $r=a_{n-1} m^{n-1}+a_{n-2} m^{n-2}+\cdots+a_{1} m+a_{0}$ where $n \geq 0, a_{i}$ is an integer, $0 \leq a_{1}<m$, m is called the base of r, which is denoted by $\left(a_{n-1} a_{n-2}--a_{1} a_{0}\right)_{m}$. The absolute difference of two integers $r=\left(a_{n-1} a_{n-2} \cdots-\cdots a_{1} a_{0}\right)_{m}$ and $s=\left(b_{n-1} b_{n-2}-\cdots b_{1} b_{0}\right)_{m}$ denoted by $r \Delta s$ and defined as
$r \Delta s=\left(a_{n-1}-b_{n-1}| | a_{n-2}-b_{n-2}|\cdots| a_{1}-b_{1}| | a_{0}-b_{0} \mid\right)_{m}$
$=\left(c_{n-1} c_{n-2}-\cdots--c_{1} c_{0}\right)_{m}$, where $c_{i}=\left|a_{i}-b_{i}\right|$ for $i=0,1,2 \cdots-n-1$.
In this operation, $r \Delta s$ is not necessarily equal to $|r-s|$ i.e. absolute difference of r and s.
If the equivalence classes of Z_{p} are expressed as m - adic numbers, then $Z p$ with binary operation Δ is a groupoid, which contains some non-trivial groups. This groupoid is defined as SMARANDACHE GROUPOID. Some properties of this groupoid are established here.

2. Preliminaries :

We recall the following definitions and properties to introduce SMARANDACHE GROUPOID

Definition 2.1(2)

Let p be a fixed integer greater than one. If a and b are integers such that $a-b$ is divisible by p, then a is congruent to b modulo p and indicate this by writting $a \equiv b(\bmod p)$. This congruence relation is an equivalence relation on the set of all integers.

The set of p different equivalence classes is $\mathbb{Z} p=\{0,1,2,3, \cdots-p-1\}$
Proposition 2.2 (1)

$$
\text { If } a \equiv b(\bmod p) \quad \text { and } \quad c \equiv d(\bmod p)
$$

Then

$$
\text { i) } a+p=b+{ }_{p} d
$$

ii) $a \times_{p} c=b \times_{p} d$

Proposition 2.3 (2)
Let m be a positive integer greater than one. Then every integer r can be written uniquely in the form

$$
\begin{aligned}
r & =a_{n-1} m^{n-1}+a_{n-2} m^{n-2}+\cdots-\cdots+a_{1} m+a_{0} \\
& =\sum_{i=0}^{n-1} a_{i} m^{i} \text { for } i=0,1,2, \cdots,-\cdots-1
\end{aligned}
$$

Where $n \geq 0, \quad a_{i}$ is an integer $0 \leq a_{i}<m$. Here m is called the base of r, which is denoted by $\left(a_{n-1} a_{n-2} \ldots \quad \ldots \quad a_{1} a_{0}\right)_{m}$.

Proposition 2.4
If $r=\left(\begin{array}{llllll}a_{n-1} a_{n-2} & \ldots & \ldots & a_{1} a_{0}\end{array}\right)_{m}$ and $s=\left(b_{n-1} b_{n-2} \ldots \quad \ldots \quad b_{1} b_{0}\right)_{m}$ then
i) $r=s$ if and only if $a_{i}=b_{i}$ for $i=0,1,2, \cdots, n-1$.
ii) $r<s$ if and only if $\left(\begin{array}{llllll} & a_{n-1} & a_{n-2} & \ldots & a_{0}\end{array}\right)_{m}<\left(b_{n-1} b_{n-2} \ldots \quad \ldots \quad b_{1} b_{0}\right)_{m}$
iii) $r>s$ if and only if $\left(\begin{array}{llllll}a_{n-1} a_{n-2} \ldots & \ldots & a_{1} a_{0}\end{array}\right)_{m}>\left(b_{n-1} b_{n-2} \ldots \quad \ldots \quad b_{1} b_{0}\right)_{m}$

3. Smarandache groupoid :

Definition 3.1
Let $r=\left(\begin{array}{lllllllll}a_{n-1} a_{n-2} & \ldots & a_{i} & \ldots & a_{1} a_{0}\end{array}\right)_{m}$ and $s=\left(\begin{array}{llll}b_{n-1} b_{n-2} & \ldots & b_{i} & \ldots\end{array} b_{i} b_{0}\right)_{m}$, then the absolute difference denoted by Δ of r and s is defined as

$$
r \Delta s=\left(c_{n-1} c_{n-2} \cdots c_{i}---c_{1} c_{0}\right)_{m}, \quad \text { where } c_{i}=\left|a_{i}-b_{i}\right| \text { for } i=0,1,2 \cdots-1 .
$$

Here, $r \Delta s$ is not necessarily equal to $|r-s|$. For example

$$
5=(101)_{2} \text { and } 6=(110)_{2} \text { and } 5 \Delta 6=(011)_{2}=3 \text { but }|5-6|=1 .
$$

In this paper, we shall consider $5 \Delta 6=3$, not $5 \Delta 6=1$.

Definition 3.2

Let $(\mathbb{Z} p,+p)$ be a commulative group of order $p=m^{n}$. If the elements of $\mathbb{Z} p$ are
expressed as m - adic numbers as shown below :

$$
\begin{aligned}
0 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 00
\end{array}\right)_{\mathrm{m}} \\
1 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 01
\end{array}\right)_{\mathrm{m}} \\
2 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 02
\end{array}\right)_{\mathrm{m}} \\
\ldots & \ldots \\
\ldots & \ldots
\end{aligned} \ldots
$$

The set $\mathbb{Z} p$ is closed under binary operation Δ. Thus $(\mathbb{Z} p, \Delta)$ is a groupoid. The elements

$$
00)_{\mathrm{m}} \text { and }(\mathrm{m}-1 \mathrm{~m}-1
$$

$\mathrm{m}-1 \mathrm{~m}-1)_{\mathrm{m}}$ are called infimum and supremum of $\mathbf{Z} p$.
The set H_{1} of the elements noted below :

$$
\left.\begin{array}{rl}
0 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 00
\end{array}\right)_{\mathrm{m}} \\
1 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 01
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m} & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 1 & 0
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}+1 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 1 & 1
\end{array}\right)_{\mathrm{m}} \\
\ldots & \ldots \\
\ldots & \ldots
\end{array}\right] .
$$

$$
\text { is a proper subset of } \mathbb{Z} \text { p. }
$$

(H_{1}, Δ) is a group of order 2^{n} and its group table is as follows :

Δ	0	1	m	$\mathrm{~m}+1$	\ldots	\ldots	α	β	γ	δ
0	0	1	m	$\mathrm{~m}+1$	\ldots	\cdots	α	β	γ	δ
1	1	0	$\mathrm{~m}+1$	m	\ldots	\cdots	β	α	δ	γ
m	m	$\mathrm{~m}+1$	0	1	\cdots	\cdots	γ	δ	α	β
$\mathrm{~m}+1$	$\mathrm{~m}+1$	m	1	0	\cdots	\cdots	δ	γ	β	α
\cdots										
\cdots										
α	α	β	γ	δ	\cdots	\cdots	0	1	m	$\mathrm{~m}+1$
β	β	α	δ	γ	\cdots	\cdots	1	0	$\mathrm{~m}+1$	m
γ	γ	δ	α	β	\cdots	\cdots	m	$\mathrm{~m}+1$	0	1
δ	δ	γ	β	α	\cdots	\cdots	$\mathrm{~m}+1$	m	1	0

Table-1
Similarly the proper sub-sets

$$
\left.\begin{array}{rl}
\mathrm{H}_{2} & =\{0,2,2 \mathrm{~m}, 2(\mathrm{~m}+1) \\
\mathrm{H}_{3} & =\{0 \\
\ldots, 3,3 \mathrm{~m}, 3(\mathrm{~m}+1) & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \alpha, 3 \beta, 3 \gamma, 3 \delta\}
\end{array}\right\}
$$

are groups of order 2^{n} under the operation absolute difference. So the groupoid (Zp, Δ) contains mainly the groups $\left(\mathrm{H}_{1}, \Delta\right),\left(\mathrm{H}_{2}, \Delta\right),\left(\mathrm{H}_{3}, \Delta\right) \quad \ldots . \quad \ldots\left(\mathrm{H}_{\mathrm{m}-1}, \Delta\right)$ and this groupoid is defined as SMARANDACHE GROUPOID. Here we use S.Gd. in place of SMARANDACHE GROUPOID.

Remarks 3.2
i) Let $(\mathbf{Z} p,+p)$ be a commutative group of order p, where $m^{n-1}<p<m^{n}$, then $(Z p, \Delta)$ is not groupoid.
For example $\left(\mathbf{Z}_{5},+5\right)$ is a commutative group of order 5 , where $2^{2}<p<2^{3}$.
Here $\mathbf{Z}_{5}=\{0,1,2,3,4\}$ and

$$
\begin{array}{ll}
0=\left(\begin{array}{lll}
0 & 0 & 0
\end{array}\right)_{2} & 4=\left(\begin{array}{lll}
1 & 0 & 0
\end{array}\right)_{2} \\
1=\left(\begin{array}{llll}
0 & 0 & 1
\end{array}\right)_{2} & 5=\left(\begin{array}{lll}
1 & 0 & 1
\end{array}\right)_{2} \\
2=\left(\begin{array}{llll}
0 & 1 & 0
\end{array}\right)_{2} & 6=\left(\begin{array}{lll}
1 & 1 & 0
\end{array}\right)_{2} \\
3=\left(\begin{array}{llll}
0 & 1 & 1
\end{array}\right)_{2} & 7=\left(\begin{array}{llll}
1 & 1 & 1
\end{array}\right)_{2}
\end{array}
$$

A composition table of \mathbf{Z}_{5} is given below :

Δ	0	1	2	3	4
0	0	1	2	3	4
1	1	0	3	2	5
2	2	3	0	1	6
3	3	2	1	0	7
4	4	5	6	7	0

Table - 2
Hence \mathbb{Z}_{s} is not closed under the operation Δ. i.e. $\left(\mathbb{Z}_{s}, \Delta\right)$ is not a groupoid ii) S . Gd is not necessarily associative.

$$
\text { Let } \begin{aligned}
& 1=\left(\begin{array}{llll}
00 & \ldots & \ldots & 01
\end{array}\right)_{m} \\
& 2=\left(\begin{array}{llll}
00 & \ldots & \ldots & 02
\end{array}\right)_{\mathrm{m}} \text { and } \\
& 3=\left(\begin{array}{llll}
00 & \ldots & \ldots & 03
\end{array}\right)_{\mathrm{m}} \text { be three elements of }(Z p, \Delta) \text {, then } \\
& \quad(1 \Delta 2) \Delta 3=2 \text { and } \\
& \quad 1 \Delta(2 \Delta 3)=0 \\
& \text { i.e. } \quad(1 \Delta 2) \Delta 3 \neq 1 \Delta(2 \Delta 3) .
\end{aligned}
$$

iii) S Gd is commutative.
iv) S. Gd has identity element $0=\left(\begin{array}{llll}00 & \ldots & \ldots & 0\end{array}\right)_{m}$
v) Each element of S. $G d$ is self inverse i.e. $\forall p \in \mathbb{Z} p, \quad p \Delta p=0$.

Proposition 3.3

If (H, Δ) and (K, Δ) be two groups of order 2^{n} contained in $S . G d .(Z p, \Delta)$, then H is isomorphic to K .

Proof is obvious.

4. Complement element in S. Gd. (Zp, Δ).
 Definition 4.1

Let $(\mathbb{Z} p, \Delta)$ be a S. $G d$., then the complement of any element $p \in \mathbb{Z} p$ is equal to $p \Delta \operatorname{Sup}(\mathbb{Z} p)=p \Delta m^{n}-1$ i.e. $C(p)=m^{n}-1 \Delta p$. This function is known as complement function and it satisfies the following properies.
i) $C(0)=m^{n}-1$
ii) $C\left(m^{n}-1\right)=0$
ii) $C(C(p))=p \quad \forall \quad p \in \mathbb{Z} p$
iv) If $p \leq q$ then $C(p) \geq C(q)$

Definition 4.2

An element p of a $S . G d . Z p$ is said to be self complement if $p \Delta \sup (Z p)=p$ i.e. $C(p)=p$.
If m is an odd integer greater than one, then $\frac{m^{2}-1}{2}$ is the self complement of $(\mathbb{Z} p, \Delta)$.
If m is an even integer, then there exists no self complement in $(\mathbb{Z} p, \Delta)$.

Remarks 4.3

i) The complement of an element belonging to a S . Gd . is unique.
ii) The S. Gd. is closed under complement operation.

5. A binary relation in S. Gd.

Definition 5.1

Let $(\mathbb{Z} p, \Delta)$ be a S. $G d$. An element p of $\mathbb{Z} p$ is said to be related to $q \in \mathbb{Z} p$ iff $p \Delta C(p)=q \Delta C(q)$ and written as $p \equiv q \Leftrightarrow p \Delta C(p)=q \Delta C(q)$.

Proposition 5.2

For the elements p and q of $S . G d .(\mathbb{Z}, \Delta), \quad p \cong q \Leftrightarrow C(p) \cong C(q)$.
Proof: By definition

$$
\begin{aligned}
p \equiv q & \Leftrightarrow p \Delta C(p)=q \Delta C(q) . \\
& \Leftrightarrow C(p) \Delta p=C(q) \Delta q \\
& \Leftrightarrow C(p) \Delta C(C(p))=C(q) \Delta C(C(q)) \\
& \Leftrightarrow C(p) \equiv C(q)
\end{aligned}
$$

Proposition 5.3

Let $(\mathbb{Z} p, \Delta)$ be a $S . G d$, then a binary relation $p \cong q \Leftrightarrow p \Delta C(p)=q \Delta C(q)$ for
$p, q \in \mathbb{Z}$, is an equivalence relation.
Proof: Let $(\mathbb{Z} p, \Delta)$ be a S. Gd. and for any two elements p and q of \mathbb{Z}, let us define a binary relation $p \equiv q \Leftrightarrow p \Delta C(p)=q \Delta C(q)$.
This relation is
i) reflexive for if p is an arbitrary element of $\mathbb{Z} p$, we get $p \Delta C(p)=p \Delta C(p)$ for all $p \in \mathbb{Z} p$. Hence $p \equiv p \quad \Leftrightarrow p \Delta C(p)=p \Delta C(p) \quad \forall p \in \mathbb{Z} p$.
ii) Symmetric, for if p and q are any elements of $\mathbb{Z} p$ such that

$$
\begin{aligned}
p \equiv q, \quad \text { then } p \cong q & \Leftrightarrow p \Delta C(p)=q \Delta C(q) \\
& \Leftrightarrow q \Delta C(q)=p \Delta C(p) \\
& \Leftrightarrow q \equiv p
\end{aligned}
$$

iii) transitive, for p, q, r are any three elements of $\mathbb{Z} p$ such that

$$
\begin{aligned}
& \quad p \cong q \text { and } q \cong r \text {, then } \\
& p \equiv q \Leftrightarrow p \Delta C(p)=q \Delta C(q) \text { and } \\
& q \cong r \Leftrightarrow q \Delta C(q)=r \Delta C(r) . \\
& \text { Thus } p \Delta C(p)=r \Delta C(r) \Leftrightarrow p \cong r \\
& \text { Hence } p \cong q \text { and } q \cong r \text { implies } p \cong r
\end{aligned}
$$

6. D - Form of S. Gd.

Let $(Z \mathrm{p}, \Delta)$ be a $\mathrm{S} . \mathrm{Gd}$. of order m^{n}. Then the equivalence relation referred in the proposition 5.3 partitions $Z p$ into mutually disjoint classes.

Definition 6.1

If r be any element of $S . G d .(Z p, \Delta)$ such that $r \Delta C(r)=x$, then the equivalence class generated by x is denoted by Dx and defined by

$$
D x=\{r \in \mathbb{Z} p: r \Delta C(r)=x\}
$$

The equivalence class generated by $\sup (\mathbb{Z} p)$ and defined by

$$
D_{\text {sup } \mathcal{Z} p}=\{r \in \mathbb{Z} p: r \Delta C(r)=\sup (\mathbb{Z} p)\} \quad \text { is called the } D-\text { form of }(\mathbb{Z} p, \Delta)
$$

Example 6.2

Let $\left(\mathbb{Z}_{9},+9\right)$ be a commutative group, then $\mathbb{Z}_{9}=\{0,1,2,3,4,5,6,7,8\}$. If the elements of \mathbb{Z}_{φ} are written as 3 -adic numbers, then

$$
\mathbb{Z}_{9}=\left\{(00)_{3},(01)_{3},(02)_{3},(10)_{3},(11)_{3},(12)_{3},(20)_{3},(21)_{3},(22)_{3}\right\} \quad \text { and }
$$

$\left(Z_{9}, \Delta\right)$ is a $\mathrm{S} . \mathrm{Gd}$. of order $3^{2}=9$. Its composition table is as follows :

Δ	0	1	2	3	4	5	6	7	8
0	0	1	2	3	4	5	6	7	8
1	1	0	1	4	3	4	7	6	7
2	2	1	0	5	4	3	8	7	6
3	3	4	5	0	1	2	3	4	5
4	4	3	4	1	0	1	4	3	4
5	5	4	3	2	1	0	5	4	3
6	6	7	8	3	4	5	0	1	2
7	7	6	7	4	3	4	1	0	1
8	8	7	6	5	4	3	2	1	0
Table -3									

Here $\quad 0 \Delta \mathrm{C}(0)=0 \Delta 8=8$
$1 \Delta C(1)=1 \Delta 7=6$
$2 \Delta C(2)=2 \Delta 6=8$
$3 \Delta C(3)=3 \Delta 5=2$
$4 \Delta C(4)=4 \Delta 4=0$
$5 \Delta \mathrm{C}(5)=5 \Delta 3=2$
$6 \Delta C(6)=6 \Delta 2=8$
$7 \Delta C(7)=7 \Delta l=6$
$8 \Delta C(8)=8 \Delta 0=8$
Hence $\mathrm{D}_{8}=\{0,2,6,8\}=\left\{(00)_{3},(02)_{3},(20)_{3},(22)_{3}\right\}$
$D_{6}=\{1,7\}$
$D_{2}=\{3,5\}$
$\mathrm{D}_{0}=\{4\}$
The self complement element of $\left(\mathbb{Z}_{9}, \Delta\right)$ is 4 and D - form of this S. $G d$. is $\{0,2,6,8\}=D_{8}$ Here $\mathbb{Z}_{9}=D_{0} \cup D_{2} \cup D_{6} \cup D_{8}$.

Proposition 6.3

Any two equivalence classes in a $S . \mathrm{Gd} .(\mathbb{Z} p, \Delta)$ are either disjoint or identical.
Proof is obvious.
Proposition 6.4
Every $S . G d .(Z p, \Delta)$ is equal to the union of its equivalence classes.
Proof is obvious.
Proposition 6.5
Every D - form of a $\mathrm{S} . \mathrm{Gd} .(\mathbb{Z}, \Delta)$ is a commutative group.
Proof: Let $\left(Z_{p}, \Delta\right)$ be a S. $G d$. of order $P=m^{2}$. The elements of D - form of this groupoid are as follows.

$$
\begin{aligned}
0 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 00
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}-1 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & 0 \mathrm{~m}-1
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}^{2}-\mathrm{m} & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & \mathrm{~m}-10
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}^{2}-1 & =\left(\begin{array}{lllll}
00 & \ldots & \ldots & \mathrm{~m}-1 \mathrm{~m}-1
\end{array}\right)_{\mathrm{m}} \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\ldots & \ldots \\
\mathrm{~m}^{\mathrm{n}-1}-\mathrm{m} & =\left(\begin{array}{lllll}
0 \mathrm{~m}-1 & \ldots & \ldots & \mathrm{~m}-10
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}^{\mathrm{n}-1}-1 & =\left(\begin{array}{lllll}
0 \mathrm{~m}-1 & \ldots & \ldots & \mathrm{~m}-1 \mathrm{~m}-1
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}^{\mathrm{n}}-\mathrm{m} & =\left(\begin{array}{lllll}
\mathrm{m}-1 \mathrm{~m}-1 & \ldots & \ldots & \mathrm{~m}-10
\end{array}\right)_{\mathrm{m}} \\
\mathrm{~m}^{\mathrm{n}}-1 & =\left(\begin{array}{lllll}
\mathrm{m}-1 \mathrm{~m}-1 & \ldots & \ldots & \mathrm{~m}-1 \mathrm{~m}-1
\end{array}\right)_{\mathrm{m}}
\end{aligned}
$$

$$
\therefore D_{m^{n}-1}=\left\{0, \mathrm{~m}-1, \mathrm{~m}^{2}-\mathrm{m}, \mathrm{~m}^{2}-1, \cdots, \cdot, \mathrm{~m}^{\mathrm{n}-1}-\mathrm{m}, \mathrm{~m}^{\mathrm{n}-1}-1, \mathrm{~m}^{\mathrm{n}}-\mathrm{m}, \mathrm{~m}^{\mathrm{n}}-1\right\}
$$

Here $\left(D_{m^{n}-1}, \Delta\right)$ is a commutative group and its table is given below:

Δ	0	$m-1$	$m^{2}-m$	$m^{2}-1$	\ldots	$m^{n-1}-m$	$m^{n-1}-1$	$m^{n}-m$	$m^{n}-1$
0	0	$m-1$	$m^{2}-m$	$m^{2}-1$	\ldots	$m^{n-1}-m$	$m^{n-1}-1$	$m^{n}-m$	$m^{n}-1$
$m-1$	$m-1$	0	$m^{2}-1$	$m^{2}-m$	\ldots	$m^{n-1}-1$	$m^{n-1}-m$	$m^{n}-1$	$m^{n}-m$
$m^{2}-m$	$m^{2}-m$	$m^{2}-1$	0	$m-1$	\ldots	$m^{n}-m$	$m^{n}-1$	$m^{n-1}-m$	$m^{n-1}-1$
$m^{2}-1$	$m^{2}-1$	$m^{2}-m$	$m-1$	0	\ldots	$m^{n}-1$	$m^{n}-m$	$m^{n-1}-1$	$m^{n-1}-m$
--					\ldots		\cdots		---
$m^{n-1}-m$	$m^{n-1}-m$	$m^{n-1}-1$	$m^{n}-m$	$m^{n}-1$	\ldots	0	$m-1$	$m^{2}-m$	$m^{2}-1$
$m^{n-1}-1$	$m^{n-1}-1$	$m^{n-1}-m$	$m^{n}-1$	$m^{n}-m$	\ldots	$m-1$	0	$m^{2}-1$	$m^{2}-m$
$m^{n}-m$	$m^{n}-m$	$m^{2}-1$	$m^{n-1}-m$	$m^{n-1}-1$	\ldots	$m^{2}-m$	$m^{2}-1$	0	$m^{2}-1$
$m^{n}-1$	$m^{n}-1$	$m^{n}-m$	$m^{n-1}-1$	$m^{n-1}-m$	\ldots	$m^{2}-1$	$m^{2}-m$	$m-1$	0

Table-4

Remarks 6.6
Let (\mathbb{Z}, Δ) be a S. Gd. of order m^{n}.
The equivalence relation $p \cong q \Leftrightarrow p \Delta C(p)=q \Delta C(q)$ partitions $Z p$ into some equivalence classes.
i) If m is odd integer, then the number of elements belonging to the equivalence classes are not equal. In the example 6.2, the number of elements belonging to the equivalence classes $D_{0}, D_{2}, D_{6}, D_{8}$ are not equal due to $m=3$.
ii) If m is even integer, then the number of elements belonging to the equivalence classes are equal.

For example, $\mathbb{Z}_{16}=\{0,1,2, \ldots \ldots, 15\}$ be a commutative group. If the elements of Z_{16} are expressed as 4 - adic numbers, then $\left(Z_{16}, \Delta\right)$ is a S . Gd. The composition table of $\left(\mathbb{Z}_{16}, \Delta\right)$ is given below:

Δ	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
0	0	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
1	1	0	1	2	5	4	5	6	9	8	9	10	13	12	13	14
2	2	1	0	1	6	5	4	5	10	9	8	9	14	13	12	13
3	3	2	1	0	7	6	5	4	11	10	9	8	15	14	13	12
4	4	5	6	7	0	1	2	3	4	5	6	7	8	9	10	11
5	5	4	5	6	1	0	1	2	5	4	5	6	9	8	9	10
6	6	5	4	5	2	1	0	1	10	5	6	7	8	9	10	11
7	7	6	5	4	3	2	1	0	7	6	5	4	11	10	9	8
8	8	9	10	11	4	5	6	7	0	1	2	3	4	5	6	7
9	9	8	9	10	5	4	5	6	1	0	1	2	5	4	5	6
10	10	9	8	9	6	5	4	5	2	1	0	1	6	5	4	5
11	11	10	9	8	7	6	5	4	3	2	1	0	7	6	5	4
12	12	13	14	15	8	9	10	11	4	5	6	7	0	1	2	3
13	13	12	13	14	9	8	9	10	5	4	5	6	1	0	1	2
14	14	13	12	13	10	9	8	9	6	5	4	5	2	1	0	1
15	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0

Table-5

Here $\quad 0 \Delta C(0)=15=15 \Delta C(15)$

$$
1 \Delta C(1)=13=14 \Delta C(14)
$$

$$
2 \Delta C(2)=13=13 \Delta C(13)
$$

$$
3 \Delta C(3)=15=12 \Delta C(12)
$$

$$
4 \Delta C(4)=7=11 \Delta C(11)
$$

$$
5 \Delta C(5)=5=10 \Delta C(10)
$$

$$
6 \Delta C(6)=5=9 \Delta C(9)
$$

$$
7 \Delta C(7)=7=8 \Delta C(8)
$$

Hence $D_{15}=\{0,3,12,15\}$, $D_{13}=\{1,2,13,14\}$
$D_{7}=\{4,8,7,11\}$,
$D_{5}=\{5,6,9,10\}$
The number of elements of the equivalence classes are equal due to $m=4$, which is even integer.

Acknowledgement:

I wish to express my gratitude to Prof. Sashi Sarma, Nalbari and Sjt. Panchanan Sarma, Bidyapur, Nalbari for their encouragement in preparing this paper.

References:

1. David M. Burton - Elementary number theory 2nd edition, University book stall New Delhi (1994).
2. Mc Coy, N.H.- Introduction to Modern Algebra Boston Allyu and Bacon INC (1965)
3. Talukdar, D \& Das N.R.- Measuring associativity in a groupoid of natural numbers The Mathematical Gazette Vol. 80. No.- 488 (1996), 401-404
4. Talukdar, D - - Some Aspects of inexact groupoids J. Assam Science Society 37(2) (1996), 83-91
5. Talukdar, D - A Klein 2^{n} - group, a generalization of Klein 4 group GUMA BulletinVol. 1 (1994), 69-79
6. Hall, M - The theory of groups
Macmillan Co. 1959.
