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On some numerical functions 

Marcela Popescu, Paul Popescu and Vasile Seleacu 
Department of mathematics 

"University of Craiova 
13,A.I.Cuza st., Craiova, 1100, Romania 

In this pa.per we prove that the following numerical functions: 

l!'(%) 
1. Fs: N- - N, Fs(x) = Z S(pf), where Pi are the prime na.tural numbers which 

i=l 
are not greater than x and ~(x) is the number of them, 

2. 8 : N- - N, 8( x) = Z S(pf) , where p, a.re the prime na.tural numbers which 

divide x, 

3. e: N- - N, 8( x) = Z S(pf) , where PiMe the prime na.tul&l numbers which Me 
Pi'l- % 

smaller than x and do not divide x, 

which involve the SmMandache function, does not verify the Lipschitz condition. These 
results are useful to study the beha.viour of the numerical functions considered a.bove. 

",(z) 

Proposition 1 The function Fs: N- - N, Fs(x) = Z S(pf), whe're Pi and ~(x) have 
1=1 

the signifience from a.bove, doel not verify the Lipschi:z condition. 

Proof. Let K > 0 be a. given real number, x = p be a prime natural number, which 

verify p > [.jK + 1} and y = p - 1. It is easy to see that ~(p) = ~(p - 1) + 1, for every 
prime natura.! number p, since the prime natura.! numbers which are not grea.ter than p 
Me the sa.me as those of (p - 1) in addition to p. We ha.ve: 

!Fs(x) - Fs(y)! = Fs(p) - Fs(p - 1) = 

= [SC~) + S(~)"'''' + S(~(p_l)) + S(PP)] -

- [S(~-l) + S(~-l) + ... + S(?~~l))] = 
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= [S(~) - S(rl-1
)] + ... + [S{1'~_l)) - S(1'~~l)] T S{PP)· 

Bll~ S(pf) ~ S(pf-l) for every i E 1, ,-(p - 1) , therefore we have 

!Fs(~) - Fs(y)1 ~ S(PP)· 

Beca.use S(PP) = p2 , for every prime p, it follows: 

iF5{:) - Fs(Y)1 ~ S(pP) = p2 > K = K ·1 = K (p - (p - 1)) = K I: - yj. 

We ha.ve proved tha.~ for every real K > 0 there ex:is~ the na.tural numbers : = P ud 
y = p - 1, choseD IS &hove, so ~hat lFs{:) - Fs(Y)1 > K I: - YI, therefore Fs does no~ 
verify the Lipschitz condition. 

Remark 1 Another prooj, longer and more techn,ca~ can be made uling a rezuli which 
assertl that the Smarandache junction S a.lso does not verify the Lipschitz conditiofL. We 
have choleft thi' proof becaUle it iI more simple and free of another multi. 

Proposition 2 The junction e : .V· -+ N, G( ~) = 2: S(pf) , where P' are the prime 
p,!s 

natural number, which divide:, does not rJerify the Lipschitz cofLditiofL. 

Proof Let K > 0 be &. given' real number, Z > 2 be a. na.tural. Dumber which hu the 
prime facloma.tioD 

ud 11 = :. PTe where PTe > ma.x {2, K} is a. prime n&.tuIILl number which does Dot divide :. 
We have: 

18(:) - 8(Y)1 = 18 (p~l pr; .. , pi;) - B (p~1 pr; ... pi; . PTe) I = 

is(pft) + S(pf,) + ... + S(pf,) - S(P!I) - S(pf,) - ... - S(p!,) - S(pt)l· 

But ~ < : . PTe = 11 which implies tha.t S(Pf
j

) ~ S(pfj)' for j = 1, r so tha.t 

18(:) - 8(Y)1 = [S(P!I) - S(pf\)] + [S(P!,) - S(Pf,)] + ... 

+ [S(pfJ - S(pfJ} + S(pt) = 

= [S(Pft') - S(pf1 )1 + [S(Pf/') - S(Pf,)] + ... 

+ [S(pf/'l) - S(pfJ] + S(pt). 



In )] it is proved the following formula. which gives a. lower a.nd a.n upper bound for 
5(l), wher p is a. prime na.tura.! number and .. is a. na.tura.! number: 

r sing this formula., we heLve: 

Pi· I -

because p~ > 2 ~ p;~~' ~V)j = L r . . } 

Then, we have: 

8(;:;'1- 9(,;,i > 5("1) > (P1c -1)·;;·:;,' »":;" -1).;:;. K = K(-:;r_.::: - :::') = K 'x - '11' 
\ I i:I j t _ ,jI i( _ \ j _ i( ,J. .I( I ... ,~ , i 

Therefore we have proved that for every rea.! number K > 0 there exist the natura.! 
numbers x, y such tha.t: .G( x) - d(y)1 > K' x - y! which shows tha.t the function e does 
not verify the Lipschitz condition. 

Proposition 3 The /'J.nc:icn 9 : .V· - .V, J(;;', = == S(pfl, :un.ere Pi ::re th.e prime 
?i\ .: 

1a.::':':''1.i ~'Umoe:,s :unich lie smaiie" :.~-27l.;; ::onci ::J "!.Qt iiviie:::, ioes not verijy :he Lipschitz 

P"']Qf. Let K > 0 be a glven rea.! number. Then for;; > f and 'j = 2· ::: , using the 
Tchebycheff theorem we know tha.t between: a.nd 'j there exists a prime natural number 
p. It is clear ~ha.t p does not dividex and 2:::, thus ;(y) contains, in the sum, besides a.ll 
the terms of 9(;;), also S(p~) as a. term. We have: 

5(;:;) - 6(;)1 = !8(x) - 8(2:::)1 = 8(2:::) - G(:::) ~ 5(::, - S(p:l) - G(x) = S(p:l) ~ 

~ {p - 1)y .... 1 = (p -1).2::: + 1 ~ x· 2;; -1 = 2;;2 -1 > x· K = K lx - yj 

therefore the function 9 wo does not verify the Lipschitz condition. 
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PROPERTIES OF THE l'4'lJMERICAL FliNCTION Fs 

by I. Blilcenoiu, V. Seleacu, N. Virlan 

Departament of Mathematics, University of Craiova 
Craiova (1100), ROMANIA 

In this paper are studied some properties of the numerical function 
Fs(x):N - {O,I} 4' N Fs(x) = L Sp(x), where 5p(x) = S(p%) is the Smarandache 

O<pS.r 
p pnme 

function defined in [4]. 
Numerical example: Fs(5) = S(25

) ~ 5(35
) + S(55

); Fs(6) = S(26
) + 5(36

) + 5(~). 
It is known that: (p -1)r + 1 $ 5(pr) $ pr so(p -1)r < S(pr) $ pr. 
Than 

(1) 

Where Jr( x) is the number of prime numbers smaller or equal with x. 

. % 1 
PROPOSITION 1: The sequence T( r) = 1 log Fs (x) + L --. has limit - 00. 

i=2 F:(l) 

Proof The inequality Fs(x) > r(P2+···4- P:n..r) - Jr(x» implies -logFs(x) < 
< -logr(A. + P2 + .. ·+P1I(%) - n(r» < -logr(n(r)A. - ;r(r» = -logr -log 1Z'(x) -log(A. -1). 

Than for x=i the inequality (1) become: 

1 1 1 1 
--< < =----
FS(i) i(Pl +"'+P:(I) - Jr(i» i(PIJr(i) - Jr(i» iJr(i)(Pt -1) 

.r 1 
Than T(x)<l-log(x)-logJr(x)-log(A-l)+L -.-.--­

.=2 m(I)(Pt -1) 
.r 1 

A =2 =:- T(x) = l-logx-logJr(x)+ L -.-. 
1=2 lJr(l) 

=:- lim T(x) $ 1 - lim logx-lim 10gJr(x) + lim i: -. _1_. =1-oo-oo+L=-oo. 
;c~"" ;c ..... "" ;c ..... ~ ;c ..... oc 1=2 I Jr( I) 

PRoPOsmON 1. The equation Fs(x) = Fs(x + 1) has no solution for x eN - to, I}. 
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Proof First we consider that x-I is a prime number with x > 2. In the particular case 

x = 2 we obtain Fs(2) = 5(22) = 4; Fs(3) = 5(23
) + 5(33

) = 4 T 9 = l3. So F2 (2) < Fs(3). 
Next we shall write the inequalities: 

(2) 

U sing the reductio ad absurdum method we suppose that the equation Fs (x) = Fs (x + 1) 
has solution. From (2) results the inequalities 

From (3) results that: 

+7Z{x + 1) > 0. 

But Ptr(x+l) > 7Z{x + 1) so the diference from above is negative for x> 0, and we 

obtained a contradiction. So Fs ( x) = Fs ( x + 1) has no solution for x + 1 a prime number. 
Next, we demonstrate that the equation Fs ( x) = Fs (x + 1) has no solution for x and 

x + 1 both composite numbers. 

Let p be a prime number satisfing conditions P > x and P ~ x - I. Such P exists 
2 

according to Bertrand's postulate for every x E ~ - {O, I}. Than in the factorial of the number 

p( x-I), the number p appears at least x times. 

So, we have S(pX) ~ p(x -1). 

But p(x-I) < px+p-x (if p> x) and px+p-x=(p-I)(x+I)+I~S(pX+l). 
2 

Therefore :3 p ~ x -1 so that S(pX) < S(px+l). 

Than Fs(x) = S(pn+···+S(pX)+···+S(p~X» 
Fs(x + 1) = S(ptl)+ ... +S(pX+l)+···+S(p~+;» > Fs(x) 

In conclusion Fs ( x + 1) > Fs (x) for x and x + 1 composite numbers. If x is a prime 

number 7Z{ x) = 7Z{ x + 1) and the fact that the equation Fs ( x) = Fs ( x + 1) has no solution has 

the same demonstration as above. 
Finally the equation Fs (x) = Fs (x + 1) has no solution for any x EN - {O, I} . 

PROPOSITION 3. The function Fs(x) is strictly increasing function on its domain of 

definition. 
The proof of this property is justified by the proposition 2. 

PROPOSITION 4. Fs(x + y) > Fs(x) + Fs(Y) Vx,y EN - {O, I}. 

Proof Let X,Y EN - {O, I} and we suppose x < y. According to the definition of FS(x) 
we have: 
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F( ) S( x+y). S( ,rTY) .... S( X"'Y ). S( .r"'V) X + Y = PI T"'T P:r(x) ' P:r(.r)+!' ... + P:ft~) T (4) 

'S( .r+Y) S( .r+Y ) -r P1f(y)+1 + ... + P1f(x+y) 

But from (1) we have the following inequalities: 

A = (x + Y)(Pt + ... + P:r(.r) + P:r(x)+l + ... +Pn(x+y) - ;r(x + y» < F(x + y) $ 

and 

X(PI + ... + P1f(x) - ;r(x» + Y(PI + ... + P:r(.r) +"'+P:r(X) +"'+Pn(y) - ;r(y» < F(x) + F(y) $ 

$ x(p,.+··· + P1f(X» + yep, + ... + P,t(x) + P1l(x)+i + ... +.' ~.» = B 

We proof that B < A. 

B < A <:::> x(p, + ... + P1l(r» + Y(A + ... + P1l(r» + Y(PJZ(r)+1 + ... + PJZ(y») < 

x(A + ... + P:r(.r» + Y(A+"'~ P1f(.r» + x(P1l(r)+l + ... + P:r(r+y» - xn(x + y) + 

+ Y(P1l(x)+l + ... + P1l(y» + y( P.t(y)+l + ... + P1l(x+y» - y;r(x + y) <:::> 

x(P1l(r)+l+"'+P:r(x+Y) - ;r(x+ y»+ Y(p,t(Y)+i+···· .... P1E{r+y) - ;r(x+ y» > ° 
But P:r(r+y) ~ ;r(x + y) so that the inequality from above is true. 

CONSEQUENCE: FS(XY) > Fs(x) + Fs(Y) 'if x,y eN -'{O,l} 

(6) 

Because x andy eN - {O,l} and xy > x + Y than Fs(XY) > Fs(x + y) > Fs(x) + Fs(Y) 

PROPOsmON 5. We try to find lim FS(n) 
n-+oo na 

We have Fs(n) = L S(pr') and: 
O<p;Sn 
P!=pn1fll! 

A + p,,+"'+P:(n) - ;r(n) 
na- I 

If a= 1 than 

PI + P2+"'+P1r(II) 
na- 1 

lim n1
-

a (A+"'+p1l(II)-;r(n» = lim (Pt+"'+p1f(II)-;r(n» = +co ~ lim Fs(~) =+00 
n-+OO 11-+"" _ n~ 
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We consider now a > 1. 

!!(n) ;'!(n) 

L P, - ;r(n) L P, 
We try to find lim --"I=::.JI~ __ _ 

na- I 
and lim ~ appling Stolz - Cesaro: 

n-+oc na- I 

!!( n) 

Let an = L P, - ;r(n) and bl1 = na
-

1 

1=1 

:,(n+l) !!(n) 
L PI-;r(n+l)- L PI+;r(n) 
1=1 1=1 = 

!!(n) 
Let cn = L Pi and dn = na

-
I

. 
1=1 

!!(n+l) !!(n) 

Than Cn+1 - cn = 
dn+1 -dn 

= P!!(n+I) = L PI-LPI 
1=1 1=1 

(n + l)a-I _ na- I (n + l)a-I - na- I 

First we consider the limit of the function. 

n 
(n + l)a-l _ na - I 

if (n + 1) is a prime 

0, otherwise 

n+1 
if 

(n + l)a-1 _ na- I 

(n + I) is a prime 

0, otherwise 

lim x 
r-+co (x + It-I - x a- I I· 1 Co = 1m = 0 lor a - 2 > 1 

HCO ( a-l)[ (x + l)a-2 - x a- 2 ] 

We used the l'Hospital theorem: 
In the same way we have 

lim x + 1 = 0 for a > 3. 
r-+co (x + l)a-I - x a- I 

So, for a > 3 we have: 

. PI+P2+"'+P!!(n)-;r(n) and 
hm a-I = 0 
r-+co n 

r PI + P2 + ... + P!!(n) - 0 
1m a-I - . 

r-+co n 

Finally lim F (:) = { 0 
r-+"" n +00 

So lim F(n) = o. 
r-+co na 

for a> 3 

for a ~ 1 
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ON A LIMIT OF A SEQUENCE OF THE 
NUMERICAL FUNCTION 

by Vasile Seleacu, Narcisa VarIan 

Departament of Mathematics, University of Craiova 
Craiova (1100), ROMANIA 

In this paper is studied the limit of the following sequence: 

n n 1 
T(n) == I-log O"s(n) + I I ....K 

i=IIe=IO"S (Pi ) 

We shall demonstrate that lim T (n) == -x;. 

We shal consider define the sequence PI == 2,P2 = 3, ... ,Pn =the nth prime number and 

the function O"s:N* ---)0 N, O"s(x) == I5(d), where 5 is Smarandache Function. 
d'x 
d>O 

For example: O"s(18) = 5(1) + 5(2) + 5(3) + 5( 6) + 5(9) + 5(18) == 0+2+3+3+6+6=20 

We consider the natural number p;, where Pm is a prime number. It is known that 

(p-l)r+I5,5(pr)5,pr so 5(p'»(p-l)r. 

Next, we can write 

Ie k(k+l) 
O"S(Pi) > (Pi -I) , Vi E {1, ... ,m}, 'Ilk E {I, ... ,n}. 

2 
1 2 

-----;-- < -----
O"s(p;) (Pi -l)k(k + I) 

This involves that: 

O"s(k»O, Vk?2 andp!5,p: ifa5,m and b5,n and p~==p: ifa==c and b=d. 

But O"s(P:) > (Pm-l)n(n2+1) implies that -logO"s(p:) < -IOg(Pm-l)n(n2+1) 

because log x is strictly increasing from 2 to +X). 

Next, using inequality (I) we obtain 

T(Pmn) -_ 1 I (n) ~ ~ 1 1 I ( l)n(n+l) - ogO"s Pm + L... L... Ie < - og Pm - 2 + 
l=lle=! O"S(Pi ) 
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But ~ 2 = 2p", ~ T(P!-)<1+log2-210gp",-log(p",-I)+ 
Ie":l k(k+l) p",+1 

+ 2p", i _1_ 
p", + 1 1e=1 P1c - 1 

T(P!·) < I+Iog2+2(-IOgPm+ ~ .!.)+ 2P"'i _I __ 2~ .!.-log(p",-I) 
hi k Pm + 1 hi P1c - 1 t=1 k 

", 1 p- 1 
We have r --:5: r -. 

b\ Pt - I 1c=1 k 

( P",l) P.l(P, ) So: T(JJ!·)<I+log2-2 -logPm+ r - +2r- -"'--1 -log(p",-l) 
1e=1 k Jc=lk Pm + 1 

P. 1 [ (P. 1) 1 ] And then lim T(rm·):5:1+iog2+2lim(-logp",+L -)- lim 2 L - -- -
..--. ",........, t=1 k ",........ hi k Pm + 1 

. . P. 1 . [ 2 (P. 1)] -lim log(p", -1) =1 + log 2 + 2 hm (-log Pm + r -)- lim -- L - -
m-+«> P .. ~«> 1c=1 k P.~ p", + 1 t-I k 

- lim log(p", -1) = 1 + log 2 + 2y-0-x = -:c. 
P.~ . 

It IS known that lim (-IOgPm + I .!.) = y (Eulers constant) 
P .. -.ao hi k 

and 

. (2 P.l) lim --'L - =0. 
P.~ac p", + 1 Jc=1 k 

In conclusion lim T(n) = -co. _00 

[I) F. Smarandache 

[2) 

[3) Pal Gronas 
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ON SOME SERIES INVOLVING 

SMARANDACHE FUNCTION 

by 

Emil Burton 

The study of infinite series involving Smarandache function is 

one of the most interesting aspects of analysis. 

In this brief article me give only a bare introduction to it. 

First we prove that the series E S(k) 
(kH) ! 

converges and has 

the sum OE]e- 2 ~r 
2' 2 l 

K=2 

S (m) is the Smarandache function: S(m) = min {kEN;.mlk!} 

Let us denote 

ic=2 

n 
~ S(k) < 1 
L.J (k+1)! 2 

n k E--,------;--,---
k=2 (k+1)! 

S(k) ~ k implies that 

1:' 1 1+-+-+ ... +-
1! 2! n! 

by En' We show that 

as follows: 

n 

E 
k=2 

S(k) 
(k+1) ! 

13 

n k 
~ E .....,....,...---,-­

k=2 (k+l)! 
= 

= 

1 
2 

1 
2! 

1 
(n+l) ! 

1 < 1 
(k+l) ! 2 



On the other hand 

consequently: 

k~2 implies that 

r. S (k) n 1 

~ (k+l)! > ~ (k+:)! = 
- ~ -
~+-==-+ + ~ I 
3! 4! ... n+l' 

5 
n 

S(k) 1 It follows that E -- < E < and 
::+1 2 

k-2 (k+l) ! 2 

L S(k) is convergent series with a Ef a sum 
ic=Z (k+l) ! L 

S (k) > -

5 
= E~.,-­.• ~ 2 

therefore 

e- 2 1 -2 I 2 

REMARK: Some of inequalities S(k) ~ k are strictly and 

k ~ S(k) +1 , S(k) ~ 2 . Hence OE]e-~1 ~[ . 

and 

We can also check that S{k} 
(k-I) ! 

rENe and S(k} 
(k+r) ! 

rEN, 

are both convergent as follows: 

t S(k) 
k=r (k-r)! 

Zl 

~ L k 
k=r (k-r)! 

I I + 1 r + 2 _r-:+--,-( n_--:-I __ } = -+--+--+ ... + 
O! l! 2! (n- I) ! 

= r(-2-+~+ ... + 
O! 1! 

+ -~-+ + .:.. . (1 2 
(n-r) ! ) I! 2! ... 

n-r ) ( ) = IEn_r + En- r - 1 n-I ! 

n 

We get L 
ie-r 

converges. 

Also we have 

S{k) 
(k-r) ! 

S(k) 
(k+r) ! 

< 00 I 

which 

IEN . 

Let us define the set ~ = {mEN: m = ~! I neN, n ~ 3} . 

If mEM.z it is obvious that 
n! 

SCm) = n, m= n! mEM.z - m 2 -. = 
2 SCm} ! n! -L m =:xl 

So, m=3 S{m)! 
lDEHz 

A problem: test 

L 
k=2 
kEN 

1 
S(k) ! 

and therefore 

the convergence 

,. 

L k = 00 

k=2 S(k}! 
kEN 

behaviour of the series 
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SOME ?ROPERTI ES OF SMARANDACHE FUNCT! ONS OF TnE TYPE ! 

by 

aalaceno~u Ion and Seleacu Vasile 

Depar~men~ of ma~hema~ics 

Universi~y of Cralova 

We consider ~he cons~ruc~ion of Smarandache func~ions 

-of ~he ~ype I S C peiN • p pr i m) 

P 
which are defined in (1) 

and [2] as follows: 

S !N-~lN- S (Ie) "" 1 S (Ie) = max { S (i .Ie)} 
n 1. 1"1 

1.~j~r 
p J 

J 

1. i i 
for ~ 

, Z r 
= P, Pz Pr 

In ~his .paper ~here are present.ed some pi"' oper t.i es of 

t.hese functions. fie shall s~udy ~he monot.oniclt.y of each 

function and also the mono~onicity of some subsequences of 

t.he sequence ( S ) IN-' 
1"\ 1"1 • 

1. Propos! tion. The function Sn is monotonous increasing for every 

positiv integer n. 

Proof. The func~ion S is abviously monot.onous increasing. , 

Le~ Ie < Ie 
1 Z 

tN-, where 1e,Ie e Supposing that n is a prime number 
1 Z 

and t.aking accont. t.ha~ CS(1e ))! = mult.iple 
n z 

16 

lc lc 
1 Z 

n - multiple n 



It. result.s t.hat. S (k )!S S (k ), t.herefore S is monot.onous increa-

sing. Let. 

Because 

l"I 1 n Z n 

so: ) = 
n 1 

SO: ) = 
n Z 

S (i .k) 
Pm m 1 

1~1~1c 
{ S (i . k )} = S (i 

P. J 
J 

1~~r 
{ S (i .k 

P j J 

!S S (i . k ) ~ 
Pm m Z 

Z 

1 P m 

)} = S (i 
P t 

S (i.k) 
P t t Z 

t 

. k ) 
m 1 

.k ) 
Z 

it. result..s t.hat. S (k) !S S (k) 
l"I 1 l"I Z 

so Sis monot.onous i ncr easi ng. 
n 

2. Proposition. The sequence of funct..ions (Sp~ )i~- is monot.onous 

increasing, for every prime number p. 

Proof. For any t..wo nombers IN
-

i ,i e 

we have 

S 
i 

P 1 

( n) = S (i . n) 
p 2. 

1 Z 

~ S Ci . n) = 
p Z 

S . (n) 
1 

p Z 

i < i and for 
2. Z 

t.herefore S. 
1 

P t 

any 

!SS. 
1 

P z 

n~-

Hence t..he sequence { Sp~ }i~- is monot.onous increasing for every 

pr i me number p. 

3. Proposition. Let p and q t.wo given prime numbers. If p<q t..hen 

S (k) < S (k) 
P q -k E IN 

Proof. Let.. t..he sequence of coefficient.s (see (2]) 
<p> <p> a ,a ,. 
2. Z 

• Every k e IN can be uniquely writ..t..en as 

17 

+ t. a (P> 
8 2. 

< p) ,a , . 
8 

(1) 



where 0 S t S p-l,for .. i = 1,s-1 ,and o ::s t. S p, 
s 

The p~ocedu~e of passing from k t.o k+1 in formule (1) is 

C~I.) 

t. 
• 

if 

is increasing wit.h a un~t.y. 

t. can not. • 
lncrease wit.h a unit.y,t.hen 

increaslng wit.h a unit.y and t. == 0 • 

t. is .-1 

(~,,~) 1 f nei t.he t. , nor t. are not. i ncreasi ng wi t.h a uni t. y 
S .-1 

t.hen t. is increaslng wit.h a unit.y and t. = t. = 0 .-z • 8-1 

The procedure is cont.inued in t.he same way unt.il w. obt.ain t.he 

expresion of k+l. 

Denot.ing = S Ck+l) - S (Ie) t.he leap of t.he funct.ion S 
p p p 

when we pass from Ie t.o Ie +1 corresponding t.o t.h. procedure 

described above. W. find t.hat. 

-' in t.h. 

in t.h. 

in t.h. 

It. is abviously seen t.hat.: 

Analogously we writ.e 

case (,,) A~Sp) ~ I' 

cas. (;, .. ) A~Sp) :a 0 

case e i. i.i.> AIcCSp) • 0 

Sen) == E,\Cn) + SCi) 
P lc=1 P P 

Sen) = 
q 

+ S (1) 
q 

Taking int.o account. t.hat. S (1) == P < q s S C1) and using t.he 
p q 

procedure of passing from k t.o k+l we deduce t.hat. t.he number 

of leaps wit.h zero value of S is great.er t.hen t.h. n~ of 
p 

leaps wit.h zero value of S • respect.ively t.he number of' l.aps wit.h 
q 

val ue p of Sis 1 ess t.hen t.he number of leaps of S wi t.h val ue 
p q 

18 



q ~~ resul~ ~ha~ 

E 
lc=1 

~ CS ) 
lc p 

+ 

Hence S Cn) < S Cn) 
p q 

SCi) 
p 

n e 

< 

• LN. 

E ~ CS ) 
lc q 

k=1 

+ SCi) 
q 

(2) 

As an example we give a table ... i~h S and S for 0<n<21 
z a 

k 1 2 3 4 9 6 7 8 9 10 11 12 13 14 19 16 17 18 19 20 

~he leap 2 0 2 2 0 0 2 2 0 2 2 0 0 0 2 0 2 2 2 

s CJc) 
z 

2 4 4 6 8 9 8 10 12 12 14 16 16 16 16 18 18 20 22 24 

the leap 330 3 3 303 330 0 3 3 3 0 3 3 3 

S Ck) 
3 

3 6 9 9 12 19 18 18 21 24 27 27 27 30 33 36 36 39 42 49 

Hence S Ck) < S Ck) 
z a for k = 1, 2, . . . ,20. 

4. Remark. For any mono~onous increasing sequence of prime numbers 

i~ resul~s ~ha~ 

< S < ... 
P z 

If \. I. \. and < < .. <p n = Pi P z P l Pi P z l then 

S Ck) = 1~~l ( S 1.0:) } = S i.Ck) = S Cik) 
n P j Pl Pt 

5. Proposition. If P and q are prime numbers and p.i < q then S i.<S . 
P q 

Proof. Because p.i < q i~ results 

and 

From 

S .. C k) = SCi k) ~ 
P P 

S .. C 1) ~ p. i < q .. S (1) 
p q 

i S Ck) 
P 

(3) passing from k to k+l, we deduce 

S i.) 
P 

(3) 

(4) 

Taking into account the proposition 3. from (4) it results that 

... hen ... 61 pass from k to k+l "'61 ob~ain 
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'" 
., 

~(Spi ) ~ i ~(Sp ) ~ i. P < q and iE 41lc (S p ) ~ E ~(SqJ (5) 

k:1 1e:1 

Because ..... have 
n n 

S \.Cn) = S \.(1) + 1: "\: C S i.) ~ S \.(1) + ~ r ,,\:CS ) p P 1e=1 P P Ie:! P 
and 

n 

S (n) = S (1) + E .1Jc (S ) q q 
lc=1 q 

from (3) and (5) ~~ resul~s S t.Cn) ~ S (n) n • [N-
p q 

6. Propos! tion. I~ P is a prima number t.han S < S ~or every ,., p 

n < p 

Pr~~f.lf n ~s a prime number from n < P. using t.he proposit.ion 3 

-it. result.s S (Ie) < S (Ie) for Ie e IN • If n is a. composed, ~ha~ 
1'\ p 

is ~hen S (Ie) = 
1'\ 

max < S ~.C Ie) } 
P J 

J 

= S i.Ck). 
PJ 

Because n < P i~ result.s 
r 

P
r 

< p and using ~h. proposit.ion S 

i. 

and knowing t.hat. i P ~ P r < pit. :-esul ~s t.ha.t. 
r r r 

S i. C Ie) ~ S C Ie) 
pI" r p 

t.herefore ~or Ie • IN- S (Ie) < S (Ie) 
n p 

R_j_r.n.c.s 

(13 Balacenoiu I , Smarandache Numerical Funct.ions in Smarandacha 

Func~ion Journal nr. 4 / lQQ4. 

(c:) Smaranda.che F .• A funct.ion in ~he number t.heory ... An. Un1v. 

Ti mi soar a" vol XVI I I , f asc 1. pp -rg-88. 



SOME PROBLEMS ON SMARANDACHE FUNCTION 

by 

Charles Ashbacher 

In this paper we shall investigate some aspects involving 

Smarandache function, S:~--~~, S(n) = min {m I n divide m!}. 

1. THE MINIMUM OF S(n)/n 

Which is minimumum of S(n)/n if n > I? 

1.1. THEOREM: 

a) S(n)/n has no minimum for n > 1. 

b) lim S(n)!n as n goes to infinity does not exist. 

Proof: 

a) Since S (n) 

that S(n)/n has 

> 1 for n>l it follows that S(n)/n > O. Assume 

a minimum and let the rational fraction be 

represented by r/s. By the infinitude of the natural numbers, we 

can find a number m such 2/m < r/s. Using the infinitude of the 

primes, we can find a prime number p > m. Therefore, we have the 

sequence 

2/p < 2/m < r/s 
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We have S(P'p) = S(p2) = 2p. It is known that S(p·p)=2p. The 

ratio of S(p;)/(P'p) is then 

2pl (p2) = 2/p 

And this ratio is less than rls, contradicting the assumption 

of the minimum. 

b) Suppose lim S(n)/n exists and has value r. Now choose, e > 0 

and e < l/p where p is a twenty digit prime. Since S(p) = p, 

S (p) Ip = l. 

However, S(p'p) = 2p, so the ratio S(n)/n = 2p/(p'p) = 2/p. Since 

p is a twenty digit prime, 

I S(p) /p - S(P'p) / (P'p) I > e by choice of e . 

so the limit does not exist. 

2. THE DSCDIAL HtJDD DOSS DIGITS ARB TBB VALUJIS OF SD.RAlII)ACIm 

FtJNCTIOB IS IRRATIOHAL. 

Unsolved-problem number (8) in [lJ is as follows: 

Is r = 0,0234537465114 ... , where the sequence of digits is 

S{n), n ~ I, an irrational number? 

The number r is indeed irrational and this claim will be 

proven below. 

The following well-known results will be used. 

DIRICHLET'S TBBORD: 

If d > 1 and a ~ 0 are integers that are relativey prime, then 

the arithmetic progression 
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a, a, + d, a + 2d, a + 3d, ... 

contains infinitely many primes. 

Proof of claim: 

Assume that r as defined above is rational. Then after some m 

digits, there must exist a series of digits t 1 , t 2 , t 3 , ••• , tn' 

such that 

where s is the m-th digit in the decimal expansion. 

Now, construct the repunit number consisting of 10n l's. 

a = 11111 111 

10n times 

and let d - 1000 ... '00 

10n + 1 O's 

Since the only prime factors of dare 2 and 5, it is clear 

that a and d are relatively prime and by Dirichlet's Theorem, the 

sequence 

a, a + d, a + 2d, 

must contain primes. Given the number of l's in a and the fact that 

S(p) = p, it follows that the sequence of repeated digits in r must 

consist entirely of l's. 

Now, construct the repdigit number constructed from 10n 3's 

a = 3333 ... 333 

10n times 
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and using 

d • 10000 ... 00 

10D + 1 O's 

we again have a and d relatyvely prime. Arguments similar to those 

used before forces the conclusion that the sequence of repeted 

digits must consist entirely of 3's. 

This is of course impossibile and therefore the assumption of 

rationality must be false. 

3. ON THB DISTRIBUTION OP THE POINTS OP S (D) ID IN '1'BB 

D1TBJtVAL ( 0 , 1) • 

The following problem is listed as unsolved problem number (7) 

in [1] 

Are the points p(n):: S(n) In uniformly distributed in the 

interval (O,l)? 

The answer is no, the interval ( 0 .5, 1.0) contains only a 

finite number of points p(n) . 

3 . 1. LBllMA: 

For p prime and k>O. 



Proof: 

It is well-known that S(Pk) = j'P where j:!> k . 

Therefore, forming the expressions 

where m must have one of the two values {j, j+l} . 

With the restrictions on the values of m and p, it is clear 
that 

-; 1 
-"'-~-

r..' P 
which implies that 

s(pk) S(pk+l) 
-"'---'- ~ , 

P k pK+l 

which is the desired result. Equality occurs only when p=2, j=l and 

m=2. 

3.2. LEMMA: 

The interval (0.5,1.0) contains only a finite number of points 

p (n), where 

Proof: 

If n=p 

p(n) = S(n) and n is a power of a prime. 
n 

S(p) = 1 , outside the interval. 
p 

Start with the smallest prime p=2 and move up the powers of 2 

S ( 2 '2) =.! = 1 
(2'2) 4 

4 
8 
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S ( 2 '2 '2 '2) _ 6 .. 
...:;...,.:.....--~~--<O.:> . 

( 2 '2 '2 '2 ) 16 

And applying the previous lemma, all additional powers of 2 

~ill yield a value less than 0.5. 

Taking the next smallest prime p=3 and moving up the powers 

of 3 

S(3'3 ) 
(3'3 ) 

6 
9 

S(3'3'3) 9 
-7:--::--:--:-- = - < 0 . 5 

(3'3'3) 27 

and by the previous lemma, all additional powers of 3 also yield a 

value less than 0.5. 

Now, if p>3 and p is prime 

S(P'p) = ~ < 0.5 
(P'p) P 

so all other powers of primes yield values less than 0.5 and we are 

done .. 

3.3. TlIEOR.DI: 

The interval (0.5,1.0) contains only a finite number of points 

pen) where 

Proof: 

p (n) = Sen} 
n 

It is well-known that if 

S(n} =ma~ds(p:') } 

then 

Applying the well-known result with the formula for pen) 

which is clearly less than 
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Theorefore, applying Lemma 2, we get the desired results. 

3.4. COROLLARY: 

The points p (n) =S (n) In are not evenly distributed in the 

interval (0,1). 

4 . THE SHARANDACHE FUNCTION DOES NOT SATYSFY A LIPSCHITZ 

CONDITION 

Unsolved problem number 31 in [1] is as follows. 

Does the Smarandache function veryfya Lipschitz condition? In 

other words, is there a real number L such that 

I S (m) - S (n) I ~ Lim - n ! for all m, n in {a, 1,2,3, ... } . 

4 . 1. THEOREM 

The Smarandache function does not verify a Lipschitz 

condition. 

Proof: 

Suppose that Smarandache function does indeed satisfy a 

Lipschitz condition and let L be the Lipschitz constant. 

Since the numbers of primes is infinite, is possible to fiind 

a prime p such that 
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p - (p + 1) /2 > L 

Now, examine the numbers (p-l) and (p+l). Clearly, at least 

one mUst not be a power of two, so we choose that one call it m. 

Factoring m into the product of all primes equal to 2 and 

everything else, we have 

m "" 2 lc·n 

Then S (m) "" max (S (2k) , S (n) } and because S (2lc) ~ 2lc • 

we have 

S(m) 

And so, 

m s -
2 

I S(p) - S(m) I > Ip - .E! I > L 
2 

Since Ip - ml =: by choice of m, we have a violation of the 
Lipschitz condition, rendering our original assumption false. 

Therefore, the Smarandache funotion does not satisfy a 

Lipschitz condition. 

s. ON TBB SOLVAB%L%TY OF TBB EXPRESSION S(m) aDI 

One of the unsolved problems in [1] involves a relationship 

between the Smarandache and factorial functions. 

Solve the Diophantine Equation 
S(m) = n! 

where m and n are positive integers. 

This equation is always solvable and the number of solutions 

is a function of the number of primes less than or equal to n. 

5.1. LBMKA: Let be a prime. Then the range of the sequence 
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S(p) ,S(p·p) ,S(p·p·p) , ... 

will contain all positive integral multiples of p. 

Proof: It has already been proven [2] that for all integers 

k > 0, there exists another integer m > 0, such that 

5 (p k) k = mp where m 5: k 

and in particular 

S(p) = p 

So the only remaining element of the proof is to show that m 

takes on all possible integral values greater than O. 

Let p be an arbitrary prime number and define the set 

M = { all positive integers n such that there is no positive 

integer k such that S (pk) = mp } 

and assume that M is not empty. 

Since M is non-empty subset of the natural numbers, it must 

have a least element. Call that least element m. It is clear that 

m > 1. 

Now, let j be the largest integer such that 

5 (p J) = (m - 1) .p 

and consider the exponent j + 1. 

By the choise of j, it follows that either 

1) S(pj+l) = m·p 

or 

2) S(pj+l) = n·p where n > m 

in the first case, we have a contradiction of our choise of m, 
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so we proceed to case (2)_ 

However, it is a direct consequence of the definition of prime 

numbers that if (m - 1) -p) ~ contains j instances of the prime P, 

then mop is the smallest number such that (m-p)! contains more than 

j instances of p _ Then, using the definition of Smarandache 

function where we choose the smallest number having the required 

number of instances we have a contradiction of case (2)_ 

Therefore, it follows that there can be no least element of 

the set M, so M must be empty_ 

S.2.TBBORBK: Let n be any integer and p a prime less than or 

equal to n. 7hen, there is some integer k such that 

S(p X) = n! 

Therefore, each equation of the form S(m} = n! has at least 'p 

solutions, where .p is the number of primes less than or equal 

to n. 

Proof: 

Since n! is an integral multiple of p for p any prime less 

than or equal to n, this is a direct consequence of the lemma. 

Now that the question is known to have multiple solutions, the 

next logical question is to determine how many solutions there are. 

5.3. DBPrNITION: Let NSF(n) be the number of integers m, such 

that S (m) = n! _ 

From the fact hat S (n) = max {S(p;!)} ,we have the following 

obvious result. 
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Corollary: 

Let n be a positive integer, q a prime less than or equal to 

nand k another positive integer such that S(qk) = n! . Then, all 

where S(qk) > S(p;i) will also be solutions the equation S(m) = n! 

To proceed further, we need the following two obvious lemmas. 

5.4. LEMMA: If p is a prime and m and n nonnegative integers m > 

5.5. LEMA: If p and q are primes such that p < q and k > 0, then 

The following theorem gives an initial indication regarding 

how fast NSF(n) grows as n does. 

5.6. THEOREM: Let q be a prime numt~r and k an exponent such that 

S(cf) = n! Let P!,pz, ... ,Pr be the lis': of primes less than q. Then 

the number of solutions to the equation S(m) = n! where m contains 

exactly k instances of the prime q is at least (k +l)r. 

Proof: Applyng the two lemmas, the numbers m - a 1 a l a] 4 r k - Pl P2 P3 .. 'P r q 

where all of exponents on the primes Pi are at most solutions to the 

equation. Since each prime pi can have (k + 1), {O,l,2, ... ,k} 

different values for the exponent, simple counting gives the 

result. 

Since this procedure can be repeated for each prime less than 

or equal to n, we have an initial number of solutions given by the 

formula 
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5 

E 
.:.-2 

(k·+l)i-l + 1 
1 

where s is the number of primes less then or equal to n, k is the 

integer such that 

s(pfJ) = n! 

And even this is a very poor lower bound on the number of 

solutions for n having any size. 

5.7. COROLARY: Let q be a prime such that for some k S{cf) = n!. 

Then ~f P is any prime such that there is some integer j such that 

S (pi) < S (ct), then the product of any solution and p any power less 

than or equal to j will also be a solution. 

Proof: Clear. 

If q is the largest prime less than or equal to n, it is easy 

to show for "large" n that there are primes p > n > q that satisfy 

the above conditions. If p. is any prime, then by Bertrand's 

Postulate, another prime r can be found in the interval p > r > 2p. 

Since q < n < 2n < n! for n > 2 and S(p) = p, we have one such 

prime. Expanding this reasoning, it folows that the number of such 

primes is at least j, where j is the largest exponent of 2 such 

that q"2 5 nl, or put another way, the largest power of 2 that is 

less than or equal to n!/q. 

Since there are so many solutions to the equation S(m) = n!, 

it is logical to consider the order of growth of the number of 

solutions rather than the actual number. 

It is well known that the number of primes less than or equal 

to n is asymptotic to the ratio n/ln{n). Now, let p be the largest 

prime less than n. As n gets larger, it is clear that the factor m 
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such that mp = n! grows on the order of a factorial. Since m s k, 

where k is the exponent on the power p, it follows that the number 

grows on the order of the product of factorials. Since the number 

of items in the product depends on the number of primes q such that 

q < mp = n!, it follows that this number also grows on the order of 

a factorial. 

Putting it all together, we have the following behavior of 

NSF(n) . 

NSF(n) grows on the order of product of items all on the order 

of the factorial of n, where the number of elements in the product 

also grows on the order of a factorial of n. 

Cleary, this function grows at an astronomical rate. 

6.THE NUMBER OF PRIMES BETWEEN S{n) and S(n+l) 

I read the letter by I.M.Radu that appeared in (3] stating 

that there is always a prime between S (n) and S (n+l) for all 

numbers O<n<4801, where Sen) is the Smarandache function. 

Since 1 have a computer program that computes the values of 

S(n), I decided to investigate the problem further. The serch was 

conducted up through n<1,033,197 and for instances where there is 

no prime p, where Sen) ~p~S(n+1) . They are as follows: 

n=224=2'2'2'2'2'7 S(n) =8 n=225 =3'3'5'5 Sen) =10 

n=2057 =11'11'17 S(n) =22 n=2058=2'3'7'7'7 Sen) =21 
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n=265225=5'S':03'103 S(n) '"'206 n=265226=2'13'lOl'101 Sen) =202 

n=843637 =37·lSl·~.51 Sen} =302 

n=843638 =2'19'149'149 Sen) =298 

As can be seen, the first two values contradict the assertion 

made by I.M.Radu in his letter. Notice that the last two cases 

involve pairs of twin primes. This may provide a clue in the search 

for additional solutions. 

7. ADDITIONAL VALOBS WBBRB THE SKARAHDAClIB PUNCTION SATISFIBS THE 

FIBONACCI RELATIONSHIP S(n)+S(n+l).S(n+2) 

In [4] T.Yau poses the following problem: 

For what triplets n, n+1 and n+2 does the Smarandache function 

satisfy the Fibonacci relationship 

S(n)+S{n+1) = S(n+2) ? 

Two sciutions 

S(9) +S{10) = S(ll) 6+5 = 11 

S(119)+S(120) =S(121) 17+5=22 

were found, but no general solution was given. 

To further investigate this problem, a computer program was 

written that tested all values for n up to 1,000,000. Additional 

solutions were found and all known solutions with their prime 

factorizations appear in the table below. 

S(9} +S(10) =: S(ll} 9 = 3'3 10 = 2'5 11:: 11 

S(119) + S(120) =: S(121) 119 = 7·17 120 = 2·2·2·3·5 121 = 11·11 
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8(4900) + 8(4901) = 8(4902) i 8(26243) + 8(26244) = 8(26245) 

8(3211b) + 8(32111) = 8(32112} i 8(64008) + 8(64009) = 8(64010) i 

8 (368138) + 8 (368139) = 8 (368139) i 8 (415662) + 8 (415663) = 
8 (415664) i 

I am unable to discern a pattern in these numbers that would 

lead to a proof that there is an infinite family of solutions. 

Perhaps another reader will be able to do so. 

8. WILL SOME PROBLEMS INVOLING THE SMARANDACHE FUNCTION ALWAYS 

REMAIN UNSOL7ED? 

The most unsolved problems of the same subject are related to 

the Smarandache function in the Analytic Number Theory: 

s:z---N , 8(n) is defined as the smallest integer such 

that 8(n)! is divisible by n. 

The number of these unsolved problems concerning the function 

is equal to... an infinity!! Therefore, they will never be all 

solved! 

One must be very careful in using such arguments when dealing 

with infinity. As is the case with number theoretic functions, a 

result in one area can have many aplications to other problems. The 

most celebrated recent instance is the "prof" of "Fermat's Last 

Theorem". In this case a result in elliptical functions has the 

proof as a consequence. 

8ince 8(n} is still largely unexplored, it is quite possible 
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~hat the resolution of one problem leads to the resolution of many, 

perhaps infinitely many, others. If that is indeed the case, then 

all problems may eventually be resolved. 
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ABOUT THE SMARANDACHE SQUAREtS 

COMPLEMENTARY FUNCTION 

Ion BIHlcenoiu, )1arcela Popescu and VasHe Seleacu 

Departament of Mathematics, University of Craiova 

13, Al.I.Cuza st., Craiova (1100), ROMANIA 

DEFINITION 1. Let a:N· ~ N· be a numerical function defined by a(n) = k where k 

is the smallest natural number such that nk is a perfect square: nk =;., s E N*, which is 

called the Smarandache square's complementary function. 

PROPERTY l.For every n EN· a(n2) = 1 andfor every prime natural number a(p)=p. 

PROPERTY 2. Let n be a composite natural number and n = Piat( . Pi
at2 

.•• Pi
at

, , 
. I 2 , 

prime factorization. Then it's o < Pi < Pi < ... < Pi' az , az , .•• , ai EN 
I . 2 ,I 2 , 

{ 

1 if az . is an odd natural number 

a(n) = .JJ/I • n f3i2 ••• ..J3;,. where R =) J' - 1 r 
PzI rl2 Pi, PI) 

- , . 

o if a j . is an even natural number 
) 

If we take into account of the above definition of the function a, it is easy to prove both 

the properties. 

PROPERTY 3 . ..!. ~ a(n) ~ 1, for every n EN· where a is the above definedfunction. 
. n n 

Proof It is easy to see that 1 ~ a( n) ~ n for every n EN·, so the property holds. 

CONSEQUENCE. L a(n) diverges. 
n~l n 

PROPERTY 4. The function a: N· ~ N* is multiplicative: 

a(x· y) = a(x)· a(y) for every x,y EN" whith (x,y) = 1 

Proof For x = 1 = Y we have (x,y) = 1 and a(1·1) = a(1) ·a(1). Let 

x = Pi~tl . pj~i2 ... pt, and y = qS:1 . qS2J2 
•• ·qS:' be the prime factorization of x and y, 

respectively, and X· y:;:. l. Because (x,y) = 1 we have Pin:;:' %1; for every h = 1,r and k = 1,s. 

Then, 
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/J, . /J, J_ 

a(x) = p ~ .1:."1 ... p;' where f3. = j = I r 
{

I if ai is odd 

1~ '2 ',. I J ,~ , 

. .5.5.5 
a(y) = q JI .q J1 ••• q 13 

11 12 J. 

o if ~ is even 
J 

{

I if Y
J 

is odd 

where tS
jk 

= t , k = l,s 

o if Y
lk 

is even 

and 

Property 5. If (x,y) = 1. x and y are not perfect squares and x,y> J !he equation 
a(x)=a(y) has not natural solutions. 

r • 

Proof It is easy to see that x * y. Let x = ITp;:- and y = IT qI.Ja, (where 
k=l t=l 

P * q , 'i h = 1, r, k = 1, s be their prime factorization. 
'. )t 

Then a(x) = tIPI~ and a(y) = tIl'" . where fJ.h for h = l,r and tSjj: for k = l,s 
Ir=l t=l 

have the above signifiecance, but there exist at least 13. * 0 and 5
J
• * o. (because x and y are • • 

not perfect squares). Then q(x) ~ a(y) . 

Remark. If x= 1 from the above equation it results a(y) = 1, so y must be a a perfect 
square (analogously for y=1). 

Consequence. The equation a( x) = a( x + 1) has not natural solUtions, because for x> 1 x 
and x+ 1 are not both perfect squares and (x, x+ 1)= 1. 

Property'. We/7tn1e a(x·Y)=a(r), for every x,ye~. 
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{

I if a/ is odd 

= 0 if a/: is even 

• { 1 if n is even 
Consequence 1. For every x EN and n EN, a(xn) = .. dd' 

a(x) If n IS 0 

, 
Consequence 2. If ~ = m: where m is a simplified fraction, then a(x)=a(y). It is easy 

y n n 

to prove this, because x = km 2 and y = 1m 2 and using the above property we have: 

a(x) = a(km2) = a(k) = a(lm2) = a(y). 

Property 7. The sumatory numerical function of the function a is 

Ie 1 . ( 1) [J.,} 
F(n) = n(H(a, )(Pi + 1)+ T - ) where the prime factorization of n is 

}} 2 
1=1 

n = p[J.~ . p[J.'2 ..... P[J.,t and H(a) is the number of the odd numbers which are smaller than a. 
~ '2 .. 

Proof The sumatory numerical function of a is defmed as F(n) = La(d), because 
dill 

k . 

(pl~ll, n Pi;lt )= 1 we can 
1=2 

use the property 4 and we obtain: 

F(n) = (,~~a(d,) K,J:~d2») and so on, making a finite number of steps we obtain 

<-

F(n) = n F(p,:'}) . But we observe that 
1=1 

a is an even number 

where p is a prime number. 
If we take into account of the definition of H(a) we fmd 

H(a) = {[a2~]+ifl' a is even 
if a is odd 

so we can write 
1+(-1)" 

F(pa.) = H(a)·(p+ 1)+-::""-2--'--

Ie 1 +( It) 
therefore: F(n) = n (H(a i )(p, + 1) + -

1=1 }} 2 

In the sequel we study some equations which involve the function a . 
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1) Find the solutions of the equation: xa(x)=m, where x,m EN". 

If m is not a perfect square then the above equation has not solutions. 
If m is a perfect square, m = Z2,Z EN", then we have to give the solutions of the 

equation xa (x) = Z2. 

Let z = PI~' . P/~: ... P:- be the prime factorization of z. Then xa(x) = P/~a.1 . p~a.l ... PI~at , 

so taking account of the definition of the function a, the equation has the following solutions: 
riO) = p~al . p~a.l ... P/~a.t (because a( r~())) = I), Xii) = P/~a.,. -I . p~a.l ... P,";t (because 

a(x1(1) = Pi)' XP=P/~a.I·PI~al-l.p,=:, ... p,~at (because a(x;l» = Pi,), ... , 

X(l) = p2a.,. .p2a., ... p:za..-! 
" '1 '2 't 

(because a( r~l» = P., ), then 
.,.2 

r(ll =_"' __ 
t 

P'J/. 'Pi~ 

jl *- j2' jl,j2 E{il, .. ·,i,,}, t = I,e; (because a(r~2» = P'A 'Pi" ), an~ in an analogue way, 

has as values 
:l 

where 
Pin' Pill . Pin 
i Z2 

jl ~ j2,j2 *- j),j) *- j\, and so on, rll") = = -= Z. So the above equation has 
P, . Pi, ... Pi. Z 

1 + e; + C; + .. -C: = 2" different solutions where k is the number of the prime divisors of 
m. 

2) Find the solutions of the equation: xa(r) + ya(y) = za(z), r,y,z e~. 

Proof We note ra(x) = m2
, ya(y) = n2 and za(z) = S2, x,y,z eN· and the equation 

(*) 

has the following solutions: m = u2 
- v2 

, n=2uv, s = u 2 + v2 
, U > v > 0, (u,v)=l and u 

and v have different evenes. 

If (m,n,s) as above is a solution, then (am,an,ru), a eN· is also a solution of the 
equation (*). 

If (m,n,s) is a solution of the equation (*), then the problem is to find the solutions of 
the equation xa(r) = m2 and we see from the above problem that there are 2kt solutions 
(where kt is the nwnber of the prime divisors of m), then the solutions of the equations 
ya(y) = n2 and respectively za(z) = s2 ,so the number of the different solutions of the given 
equations, is 2"1·2"1·2'" = 2"1+",-1-, (where k-:. and k3 have the same signifience as *1 ' but 
concerning n and s, respectively). 

For a>1 we have xa(r)=a.2~, ya(y) = a.2n2
, za(z)=a1r ~ using an 

analogue way as above, we fmd 2"I-C:-C, different solutions, where kp i = 1,3 is the 
number of the prime divisors of am, an and as, respectively. 

Remark. In the particular case u=2, v=l we find the solution ( 3,4,5) for (.). So we 

must find the solutions of the equations xa(x) = 32a 2
, ya(y) = 24a 1 and za(z) = 52

(12, 

for a EN". Suppose that a has not 2,3 and 5 as prime factors in this prime factorization 
ex = pa.,. . P':! ... pt". Then we have: 

" ., ! 
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So any triplet (xo,y~,zQ) with xa,Yo and z~ arbitrary of above corresponding values, is a 
solution for the equation (for example (9,16,25), i:> a solution). 

Definition. The triplets· which are the solutions of the equation 

xa(x)+ ya(y) = za(z), x,y,z EZ· we call MIV numbers. 

3) Find the natural numbers x such that a(x) is a three· cornered, a squared and a 
pentagonal number. 

Proof Because 1 is the only number which is at the same time a three - cornered, a 
squared and a pentagonal number, then we must find the solutions of the equation a(x)=I, 
therefore x is any perfect square. 

4) Find the solutions of the equation: _1_+_1_=_1_ x,y,z EN· 
xa(x) ya(y) za(z)' 

Proof We have xa(x) = m2 ,ya(y) = n2 ,za(z) = 52, m,n,s EN·. 

Th .11 Ih h}' e equatIOn -, + -2 = -:;- as t e so utIOns: 
m" n 5· 

m = I(U: + v 2 )2uv 

5 = t(u2 
- v2 )2uv, 
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u>v, (u, v)= 1, u and v have different eveness and t e N°, so we have 
xa(x) = 12(U:' +V2 )24u2y2 
ya(y) = I:(UZ +V2)2(UZ _y2): 

za(z) = 12(U2 - V2)24u2V2 and we fmd x, y and z in the same way which is 
indicated in the first problem. 

For example. if u=2, v=I, t=1 we have 
m=20, n=15, F12, so we must fmd the solutions of the following equations: 

Therefore for this particular values of u, v and t we find 4·4·4 = 22 ,22 .22 = 26 = 64 
solutions. (because k j = k: = k) = 2 ) 

5) Find the solutions of the equation: a(x) +a(y) +a(z) = a(x)a(y)a(z), x,y,z eN" , 

Proof. If a(x)=m,a(y)=n and a(z)=s. the equation m+n+s=m·n·s, 
m,n,s eN" has a solutions the permutations of the set {I,2,3} so we have: 

a( x) = 1 ~ x must be a perfect square, therefore x = u2
, U E ~ 

a(y)=2~y=2y2, veN" 
a(z)=3~z=312, lEN". 

Therefore the solutions are the permutation of the sets {u2 ,2v2 ,3/2} where u,v,1 eN", 

6) Find the solutions of the equation Aa(x) + Ba(y) + Ca(z) = 0, A.B,e eZ" . 

Proof If we note a(x) = u,a(y) = v,a(z) = I we must find the solutions of the equation 
Au + Bv -+ Ct = 0 . 

Using the method of determinants we have: 

A B C/ 
A B cl=o, ~m,n.5eZ~A(Bs-Cn)+B(Cm-As)+C(An-Bm)=0, and it 

m n 51 
is known that the only solutions are U = Bs - Cn 

v=Cm-As 

so, we have a(x) = Bs-Cn 
a(y) = Cm- As 

t = An - Bm, lim,n,s eZ 

a(z) = An - Bm and now we know to find x. y and z. 

Example. If we have the following equation: 2a(x)-3a(y)-a(z) = 0, mind the above 
result we must find (with the above mentioned method) the solutions of the equations: 
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a(x) = -3s+n 
a(y) = -m- 2s 
a(z)=2n+3m, m,n and SEZ. 
For m = -1, n = 2, S = 0 : a(x) = 2, a(y) = 1, a(z) = 1 so, the solution in this case is 

(2a 2 ,~2, y2), a,~, y EZ·. For the another values of m,n,s we find the corresponding 
solutions. 

7) The same problem for the equation Aa(x) + Ba(y) = C, A,B,C EZ. 

Proof Aa(x) + Ba(y) -c = 0 <=> Aa(x) + Ba(y) + (-C)a(z) = 0 with a(z) = 1 so 
we must have An - Bm = 1. If no and rna are solutions of this equation (Ano - Bmo = 1) it 
remains us to find the solutions of the following equations: 

a(x) = Bs + Cno 
a(y) = -emo - As, S E Z , but we know how to find them. 

Example. Ifwe have the equation 2a(x)-3a(y) = 5, x,y EN· using the above results, 
we get: A=2, B = -3, C = -5 and a(z) = 1 = 2n + 3m. The solutions are m = 2k + 1 and 
n = -1- 3k, k E Z . For the particular value k = -1 we have "'0 = -1 and no = 2 so we fmd 
a(x)=-3+5·2=10-3s and 
a(y) = -5(-I)-2s= 5-2s. 

If So = 0 we find a( x) = 1 0 ~ x = 10u2
, U E Z· 

a(y) = 5 ~ Y = 5v2
, V EZ· and so on. 

8) Find the solutions of the equation: a(x) = ka(y) kEN- k > 1. 

Proof If k has in his prime factorization a factor which has an exponent ~ 2, then the 
problem has not solutions. 

If k = PI . Pi ... PI and the prime factorizarion of a(y) is a(y) = qJ .. qJ .... qJ. , then 
1 1 ,. 1 1 • 

we have solutions only in the case Pi , Pi , ... Pi !jt {q} , q}. , ... , qJ. }. -
1 1 l' 1 1 • 

This implies that a(x) = Pi . Pi..· .. Pi .qJ .. q} ... q} , so we have the solutions 
1·~ l' 1 2 Ii: 

9) Find the solutions of the equation a(x)=x (the fixed points of the function a). 

Proof. Obviously, a(I)=l. Let x> 1 and let x = p;1t . p:;Z ... p:", alj ~ 1, for j = 1,7 

be the prime factorization of x. Then a( x) = ~iJ .11.;2 ... p:." and ~Ij ~ 1 for j = 1,7. Because 

a (x)=x this implies that a i) = ~IJ = 1, \lj E 1,7, therefore x = Pi" . Piz ••. PI,.' where 

Pi., j = l,r are prime numbers. 
J 
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S9ME REMARKS CONCER...~L~G THE DISTRIBUTION 
. /OF THE SMARA'JDACHE FUNCTION 

/ 

by 
TOMITA TIBERIU FLORIN, STUDENT, r , 

lJNIVERSITY OF CRAIOV A 

The Smarandache function is a numerical function S:N* ~N* S(k) representing the 

smallest natural number n such that n! is divisible by k. From the definition it results that 

S(l)=1. 

I will refer for the beginning the following problem: 

"Let k be a rational number, 0 < k ~ 1. Does the diophantine equation Sen) = k has 
n 

always solutions? Find all k such that the equation has an infinite number of solutions in 

N*tI from "Smarandache Function Journal". 

I intend to prove that equation hasn't always solutions and case that there are an 

infmite number of solutions is when k =..!. , r E N* • k e Q and 0 < k :s;; 1 ~ there are two ,. 
relatively prime non negative integers p and q such that k = i., P.q e N* , 0 < q 5 p. Let n 

. p 

be a solution of the equation S(n) =k. Then Sen) =£. • (1). Let d be a highest common 
n n q 

divisor of n and S(n) : d = (n, S(n». The fact that p and q are relatively prime and (1) 

implies that S(n) = qd ,n = pd => S(pd) = qd (*). 

This equality gives us the following result: (qd)! is divisible by pd ~ [(qd - l)!'q] is 

divisible by p. But p and q are relatively prime integers, so (qd-l)! is divisible by p. Then 

S(P):S;; qd - 1. 

I prove that S(p) ~ (q - l)d. 

If we suppose against all reason that S(P) < (q - 1)d, it means [( q - l)d - l]l is 

divisible by p. Then (pd)1 [ (q - l)d]! because d I (q - l)d, so S(pd) ~ (q - 1)<1 This is 

contradiction with the fact that S(pd) = qd > (q - 1 )d. We have the following inequalities: 

(q - l)d :s;; S(P) :s;; qd - 1. 

For q ~ 2 we have from the first inequality d5; S(p) and from the second S(p+l) sd ,so 
q-l q 

S(p+l) sds S(p). 
q q-l 



For k = i.. , q ~ 2, the equations has solutions if and only if there is a natural number 
p 

between S(p .... 1) and S(p). If there isn't such a number, then the equation hasn't solutions. 
q q-l 

Howev~r, if there i a number d with S(p~l) 5.d5. S(p) ,this doesn't mean that the equation 
q q-l 

has solutions. This condition is necessary btlt not sufficient for the equation to have 

solutions. 

For example: 

a) k=±S ' q =4 ,p=5 => S(p .... l) =~=-23 , S(p) =~. In this case the equation hasn't 
q... q-l 3 

solutions. 

b) k= 1~ ,q=3, p=lO; S(lO)=5, %=25.d5.f. If the equation has solutions, then we 

must have d=2, n=dp=20, S(n)=dq=6. But S(20)=5. 

This is a contradiction. So there are no solutions for h = ~. 
10 

We can ha.e more then natural numbers between S(p+l) and S{p). For example: 
q q-l 

k=~ =3 =29 S(P-..l)=l0 S(P)=14,S. 
29 ,q ,p 'q , q - 1 

We prove that the equation Sen) = k hasn't always solutions. 
n 

If q ~ 2 then the number of solutions is equal with the number of values of d that 

verify relation (*). But d ca~ be a nonnegative integ~r between S(p + 1) and S{p) , so d can 
q q-l 

take only a finite set of values. This means that the equation has no solutions or it has only a 

finite number of solutions. 

We study note case k =.!. , p e N*. In this case he equation has an infInite number of 
p 

solutions. Let Po be a prime number such that P<Po and n=ppo. We have S(n)=S(ppo)=p, so 

S(n)=po. Sen) = Po =.!., so the equation has an infinite number of solution. 
n PPo p 

I will refer now to another problem concerning the ratio Sen) "Is there an infInity of 
n 

( X I r Sex) i 
natural numbers such that 0 < ~ -- ~ < ~ -- ~ ?" from the same journal. 

~S(x») ,x J 

I will prove that the only number x that verifies the inequalities is x=9 : S(9)=6, 

Sex) = ~ = 3., {_x_} = ~ ~ ~ = ~ and 0 < -.!..< 3., so x=9 verifies 0 < {_x_} < {S(X)}. 
x 9 3 S(x) L 6 j 2 2 3 Sex) x 

Let x= pfl ... P:' be the standard form of x. 

S(x)=maxS(pft ). We put S(x)=S(pa) , where pa IS one of l1a1 ... p:' such that 
IskslI 

S(pa) = max S{pft). 
IskslI 
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r 1 . 1 2 S(xl-l b . 
~ --> can take one of the fol owmg values : , ... ,-- ecause 
,S(r) J S(x) S(x) Sex} 

o < :_r_: < ; S(r) l ( We have S(x) 5: x , so Sex) ~ 1 and ; S(r) 1 ::; S(r) ). This means 
S(r) , r: x, x) X 

.... ) ... ,I ... 

Sex) ~ _1_ = S(pa)2 >X ~ po.. (2) 
x Sex) 

But (ap)! =1·2· ... ·#1) ... (2p) ... (ap) is divisible by po., so ap~S(po.). From this last 

inequality and (2) it follows that a 2p2>p2. We have three cases: 

I. a=l. In this case S(x)=S(p)=p, x is divisible by p, so ~ e Z. This is a contradiction. 
p 

There are no solutions for a= 1. 

II. a=2. In this case S(x)=S(pl)=2p, because p is a prime number and (2p)! =1·2· .... 

p(p-I ) ... (2p), so S(p2)=2p. 
r px,; r 1 1. ; px, 1 1 1 2 

But ~-. r E~ 0,-(. This means i-' r= -~-<- < 4 ; p is a prime number:)p E 
l 2) l 2) l 2) 2 2 !'Xl 

{2,3 }. 

If p=2 and px I < 4 :) Xl = 1 , but x=4 isn't a solution of the equation: S( 4)=4 and 
r41 
i->=O. 
~4J 

Ifp=3 and PXr< 4:) Xl = 1 . so x=pk9 is a solution of equation. 

III. a=3. We have a 2p2>pa. (:::) a 2 > po.-l. 

For a ~ 8 we prove that we have· pa.-2>p2, (V') p E N* ,p ~ 2. 

We prove by induction that 2n-l > (n+I)2. 

2n-1 = 2· 2n-2~·nkn4n2~48n>nz.... 2n+ 1 =( n"!-I)2, because n ~ 8. 

We proved that pa.-2 ~o.-l~a2 ,for any a ~ 8, peN·, p ~ 2. 

We have to study the case a e { 3,4,5,6,7}. 

a) a=3 ~ p e { 2,3,5,7} , because p is a prime number. 

If p=2 then S(x)=S(23)=4. But x is divisible by 8, so I2..-} = {=-} = 0, so x=4 cannot 
lS(x) 4 

be a solution of the inequation. 

= 0 , so x=9 cannot 

be a solution of the inequation. 
( x ') r S(r) 1 

Ifp=5 ~ S(x)=S(53)=15; i-~ = {-~ = 0 x=53'XI ,xl eN·, (5,xl)=1. 
lS(x)J ,r j 
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r .... 1: ...., (2 r '\ 

We have O<~ 5- . x, r« _,_3_ r. This first inequality implies ~ ~ E < ~ ~ ~ so.!. < 
. 3 . i 5- . x, . . 3 . 3' 3 . ' 3 

\.. : ..J \... ) + => 52 ,xl < 9, but this is impossible. 
5 ,xl 

Ifp=7 => S(x)=S(73)=21, x=73. Xl ,(7,XI)=1, xl E N*. 
(.. X I. i Sex) i~. 0 ~(7 2 . x, : ( 72 

, 

h 0 < 
_ _ 3_ . But 0 < ) _. x; i l'mpll'es We ave < <--~< <-- => < --';' ,? 

lS(x)J l x ) ~ 3 J 7
2

'XI l 3 J 

2 I 
W have .!. ~ 7 3' x, ~ => 72 ,xl < 9, but is impossible. 

3 ) 

b) a=4 : 16 => P E {2,3}. 

If p=2 => S(x)=S(x2)=6 , x=16,xI , Xl E N* , (2,xI)=1 , 0 < ~_x_~ <S(x) => 0 < 
lS(X)j x 

( , ( I (I 
Sex) 6 3 i X I . 16. j 8 I 2 2 3 h' 1'" 'fi d But - = - = - . ~ -- ;. = ~ - ;. = ~ - > = -. - > - so t e mequa lty lsn t ven Ie . 

x 16 8' lS(x)j l 6 j L3j 3 3 8' 

If p=3 => S(x)=S(34)=9 , x=34,xl ' (3,xl)=l => 91x => S;X) = 0, so the inequality isn't 

verified. 

For a={ 5,6,7}, the only natural number p> 1 that verifies the inequality a 2 >pa.-2 is 2: 

a =5 :25 > p3 ~ p=2 

a =6 : 36 > p4 =>p=2 

a =7: 49> p 

In every case x=2a.,xl , Xl e N* , (xl,2)=1 , and S(xl) ~ S(2a.). 

But S(25) =S(26) =S(27)8 , so Sex) = 8 But x is divisible by 8, so {_X_} = 0 so the 
Sex) 

( , 
inequality isn't verified because 0= ~ _x_ ~. We found that there is only x=9 to verify the 

lS(x») 

. . r x 1 (S(x) I 
mequahty 0 < ~ --( < ~-- ~ 

lS(x») l x J 

I try to study some diophantine equations proposed m "Smarandache Function 

Journal". 

1) I study the equation S(rnx)=mS(x), m2:2 and x is a natural number. 
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Let x be a solution of the equation. 

We have S(x)! is divisible by x It is known that among m consecutive numbers, one is 

divisible by m, so (S(x)!)is divisible by m. so (S(x)+ t )(S(x+2) ... (S(x)+m) is divisible by 

(rnx). We know that S(rnx) is the smallest natural number such that S(rnx)! is divisible by 

(rnx) and this implies S(rnx)SS(x)-!-m. But S(mx)=mS(x), so mS(x)~S(x)+me>mS(x)-S(x)­

m·l ~ <=> (m-I) (S(x)-l)~l. We have several cases: 

If m=t then the equation becomes S(X)=S(x), so any natural number is a solution of 

the equation. 

Ifm=2. we have S(x) E { 1,2 } implies x e { 1.2} . We conclude that ifm=l then any 

natural number is a solution of the equation of the equation; if m=2 then x=l and x=2 are 

only solution and ifm ~ 3 the only solution of the equation is x=l. 

2) Another equation is S(xY)=yx, x, y are natural numbers. 

Let (x,y) be a solution of the equation. 

(yx)!=1...x(x+l) ... (2x) ... (yx) implies SexY) ~ yx. so yX~YXl because S(xY)=yx. 

But y ~ 1. so yx-l~. 

Ifx=} then equation becomes S(l) = y, so y=1, so x=y=l is a solution of the equation. 

If ~ then ~x-l. But the only natural numbers that verify this inequality are x=y=2: 

x=y=2 verifies the equation, so x=y-=2 is a solution of the equation. 

For x~ we prove that x<2x-l.We make the proof by induction. 

Ifx=3 : 3<23-1=4. 

We suppose that k<2k-1 and we prove that kTI <2k.We have 2b 2·2k:>2·k=k+k>k+l, so 

the inequality is established and there are no other solutions then x=y= 1 and x=y=2. 

3) I will prove that for any m.n natural numbers, if m>l then the equation S(xn)=xm 

has no solution or it has a finite number of solutions, and for m-l the equation has a 

infiriite number of solutions. 

I prove that S(xn)~ nx. But x1ll=S(xn) • so xm ~ nx. 

For ~ we have xm-l ~ n. If m=2 then ~ n. and if m ~ 3 then x ~ --(;, so x can 

take only a finite number of values, so the equation can have only a finite number of 

solutions or it has no solutions. 

We notice that x=1 is a solution of the equation for any m,n natural numbers . ... 



If the equation has a solution different of 1, we must have xI11=S(xn) ~n., so m~ 

If m=n, the equation becomes xffi=tl=S(xn) , so xn is a prime number or xn =4, so n=1 

and any prime number as well as x=4 is a solution of the equation, or n=2 and the only 

solutions are x= 1 and x=2. 

For m= 1 and n ~ 1, we prove that the equations S( Xffi)=X, x E N"* has an infinite 

number of solutions. Let be a prime number, p>n. We prove that )np) is a solution of the 

equation, that is S((np)n)=np. 

n<p and p is a prime number, so nand p are relatively prime numbers. 

n<p implies: 

(np)! = 1·2· .... n(n+l)- ... ·(2n)· ... ·(pn) is divisible by nn. 

(np)! = 1·2· .... p(p+l)· ... ·(2p)· ... ·(pn) is divisible by pn. 

But p and n are relatively prime numbers, so (np)! is divisible by (np)ll. 

Ifwe suppose that S((np)n)<np, then we find that (np-I)! is a divisible by (np)n, so(np-

1) 1 is divisible by pnc3). But the exponent of p in the standard fonn of p in the standard 

fonn of(np-l)! is: 
r ~ ~ -
Inp-ll ;np-ll 

E = I -- 1+ r -0- i+ .. , pi: p- I 
L J L J 

But p >n, so p2 >np >np-l. This implies: 
r l 
i np-ll 
I -Ic- ! = 0 , for any k ~ 2. We have: 
I p I 
l. j 

r -, np-ll 
E=I--:=n-l. 

i p i 
L ...J 

This means (np-I)! is divisible by pn-l , but isn't divisible by pn , so this is a 

contradiction with (3). We proved that S((np)n)=np, so the equation S(xn)=x has an infInite 

number of solutions for any natural number n. 
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SO .. ~L~ARY ALGEBRAIC CONSIDERATIONS 

INSPIRED BY THE SXARANDACBE FONCTION 

by 

E.Radescu, N.Radescu, C.Dumitrescu 

It is known that the Smarandache function S: N" - -~fiII", 

S{n).min{kln divides k!} satisfies 

(i) S is surjective 

(ii) S([m,n]) • max { S(m),s(n)}, where [m,n] is the smallest 

common multiple of m and n. 

That is on N" there are considered both of the divisibility 

order Sd ( mSd n if and only if m divide n ) and the usual order s. 

Of course the algebraic :.lsual operations "+" and n." play also an 

important role in the·description of the properties of S. 

For instance it is said that :1]: 

max { S (kll) , S (nD) } :5 S ( (kn) Iul) :s nS (kll) +kS (nD) • 

If we consider the universal algebra (~,Q), with 

C-{Yd,clJO }' where Yt1 : (N*)2---N* is given by, m V. n-[m,n] I and 

4ao :{N·):)---N*, is given by 4ao({~})=l=ev<l and analogously the 

l;niversal algebra (N*, Q') with Q'=N, "-o}, where V: (N*)2 __ -N*, is 
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defined by mVn=max{m,n}, and "0: (N*)o---N* is defined by 

"0 ({.,}) =l=ey, then it results: 

1.PROPOSITION. LetN={S-(k) Ik€N*},whereS-(k) ={x€N*IS(x) =k}. Then 

(a) N is countable (cardN*=alefzero). 

(b) on N may be defined an universal algebra, isomorfe with 

(N* , Of) 

Proof. (b) Let (i): (N)2---N be defined bY(i) (S-(a) , S-(b» =S-(c) , 

where C=S(xVQY), with x€S-(a) ,y€S-(b). 

Then w is well defined because if x1€S-(a) 'Y1ES-(b) the 

S(1S.VdYl) =S(1S.)VS(Y1) =aVb=S~x)VS(y) =S(xVQY) =c. 

Example. (i)(S-(23),S-(14»=S-(23) because if for instance 

x=46 €S- (23) and y=49 €S- (14) then 46 Vd49 =2254 and 8(2254) =23. 

In fact, because c=S(xVQY) =S(x) VS(y) =aVb, it results that 

w is defined by 

(i) (S-(a) , 8-(b) ) =S-(aVb) . 

We define now (i)o: (N)()---N by c..>o({~}) =8-(1) 

Let us note 8- (1) = e(,,). Then 

T/S-(k) EN (i) (S-(k) , ef») =6)( e(,,), S-(k» =S-(k) 

Then (N, 0) is an universal algebra if Q={CI),6)oL 

It may be defined h: N---N* an isomorphism between (N, 0) and 

(N* , a/), by h (S- (k) ) =k. 
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We have 

VS-(a) ,S-(b) EN h(6l(S-(a) ,S-(b» =h(S-(aVb) = 

=aVb=h(S-(a» Vh(S-(b) ) 

that is h is a morphism. 

Of course h(CI)o({.}) ="o({~}) and h is injective. 

From the surjectivity of S it results that h is surjective, 

because for every kEN- it exists xEN* such that Sex) -k, so 

Then we have (N, Q) ac (N*, Q') and from the bijectivity ot h it 

results cardN-cardN·, that is the assertion (a). 

Remarks (i) An other proof of Proposition 1 may be made as 

follows; 

Let Ps be the equivalence associated with the function S 

Because S is a morphism between (~, Q) and (:Nt, ell) it results 

that Ps is a congruence and so we can define on ~ the operations 
P. 

w and w. by 
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CAl: (Nt / Ps) 2--~N* Ips' CAl (~, 9) =:xV tP' i 

CAlo : (N-/ps) 2--~N*/ps' CAl o ({~}) =1. 

Moreover, N*/Ps=N and so it is constructed the universal 

algebra (N, C), with Q ={6), <.». That because S: (N*, C) --~ (N*, 0 /) is 

a rrorphign so by a well known isarorphign theorem it results that (N* / P s) t:z ImS 

so (N, a) co: eN-, a/> . That is we have a proof for (b), the morphism 

being CI: N--~N* , u (x) =S(x) . 

(ii) Proposition 1 is an argument to consider the functions 

~: N*--~N*, s.;fn (k) =minS- (k) 

~:N*--~N*, ~(k) =maxs-(k) (sec [4]) 

whose properties we shall present in a future note. 

(iii) The graph 

G = {(x,y) €N* XN* I y = Sex)} 

is a subalgebra of the universal algebra (Nt XNt, Q), where 

Q={{,), 6)o}, with fA): (Nt X Nt) 2 __ ~N- XN*, defined by 

CAl «.~;'Yl) , (X2,Y2 ) ) = (.x:.. Vfb;.'Yl VYa) and CAlo: (N*xN*) o--.. N·x N-, defined 

by CAlo({~})=(4to{{«-})'''o({~}»=(l,l). 

Indeed G is a subalgebra of the universal algebra (N*xN*,Q) 

if for every (1C:t, Yl ) , (X2, Y2) € G it results fA) «.x:.., Yl ), (X'z, Ya ) € G 

andfA)o({~})€G. But 

CAl «Xl'Yl ), (Xa,Y2 » = (Xl Vd X2'Y1 VY2 ) = (Xl VdX'z, S(1C:t) V S (X:l» = (.x:.. VdXa. 
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and C&}()(flJ}) €G if and only if (1,1) €G. 

Tha tis (1, S ( 1) ) € G . 

In fact the algebraic property is more complete in the sense 

that f:A---B is a morphism between the universal algebras (A, Q) 

and (B, Q) of the some kind ~ if and only if the graph P of the 

functional relation f is a subalgebra of the universal algebra 

(AxB, Q). 

Then the importance of remark (iii) consist in the fact that 

it is possible to underline some properties of the Smarandache 

function starting from the above mentioned subalgebra of the 

uni versal algebra (N· x N·, 0) . 
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SMARANDACHE FUNCTIONS OF THE SECOND KIND 

by Ion Bilicenoiu and Constantin Dumitrescu 
Departament of Mathematics, University of Craiova 

Craiova (J 100). Romania 

The Smarandache functions of the second kind are defined in [1] thus: 

where S" are the Smarandache functions of the first kind (see [3]). 

We remark that the function SI has been defined in [4] by F. Smarandache because 
SI = S. 

Let, for example, the following table with the values of S2: 

n 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Sl(,,) 1 4 6 6 10 6 14 12 12 10 22 8 26 14 

Obviously, these functions SIc aren't monotony, aren't periodical and they have fixed 
points. 

1. Theorem. For k ,n EN· is true SIc (n) ~ n· k. 

Because Slc(n) = S(~) = = {SPt (ajk)} = S(p:,Ic) ~ kS(p~) ~ kS(p;J) = kS(n) 

and S(n) ~ n, [see [3]], it results: 

(1) Sic (n) ~ n· k for every n,k EN". 

2. Theorem. All prime numbers p ~ 5 are maximal points for Sic, and 

Proof Let p ~ 5 be a prime number. Because Sp-1(k) <Sp(k), Sp+l(k) <Sp(k) [see 

[2]]itresultsthatSIc (p-l)<SIc(p) and S"(p+l)<S"(p), sothat SIc(p) isareIative 
maximum value. 
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Obviously, . 

(2) SIt(p)=Sp(k)=p{k-ip(k)) with OSip(k)S[k;l]. 

(3) Slt(p)=pk for p~k. 

3. Theorem. The munbers kp. for P prime and p>k are the fixed points of Sit. 

Proof Let P be a prime number. m = p:l ... P~' be the prime factorization of m and 

p> max {m,k}. Then P;~ S p,a, < p for i E 1,t, therefore we have: 

For m=Ic we obtain: 

sit (kp ) = kp so that kp is a fixed point 

4. Tbeorem. The junctions Sit have the following properties: 

Proof. Obviously, 

lim sup Sit (n) = k. 
,........, n 

lim sup Sit (n) = lim sup S(~) = lim S(I) = k 
_GO n ,..... n p-+oo p 

, po-. 
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5. Theorem, [see(l]]. The Smarandache functions oj the second kind standardise 
(N",.) in (N",~,+) by: 

and (N°,·) in (N° ,~,.) by: 

L4: max{Sk(a),Sk(b)} ~ Sk(ab) ~ Sk(a)·Sk(b) for every a,b EN" 

6. Theorem. The functions Sic are, generally speaking, increasing. It means that: 

Proof The Smarandache function is generally increasing, [see [4]], it means that: 

Let t = nk and ro = ro (t) so that V r ~ ro ~ S (r) ~ S (nk ) . 

Let 1710 = [ ~] + 1. Obviously '710 ~ if;:; ~ ~ ~ ro and m ~"'o <=> ,,{ ~ ~ . 
Because ,,{ ~ ~ ~ ro it results S( mk) ~ S(nk) or Sk (m) ~ Sk (n). 

Therefore 

'.-I ~"...., r'l] 1 
v nEe" :::J"'o = l 'V rO ~ so that 

is given from (3). 

7. Theorem. The junction sk has its relative minimum values jor every n = pI, where P 

is a prime number and P ~ max {3, k }. 

Proof Let p! = p;! . p~2 ... P':: . P be the canonical decomposition of pI, where 

2 = PI < 3 = P2 < ... < Pm < p. Because p' is divisible by P'f it results S(pJ) ~ P = S(p) for 

every j E I,m. 
Obviously, 

Because S{p;'/J ) ~ kS (p; ) < kS (p) = kp = S(pic) for k ~ p, it results that we have 

(4) Sic (pI) = S(pk) = kp, for k ~ P 
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Let p!-l = ~I ·fji···q;' be the canonical decomposition for p!-l, then 

qj > p for j el,t. 

It follows S(p!-I) = max { S(q)} = S(q';) with q", > p. 
lSJ~ 

Because S(q';) > S(p) = S(p!) it results S(p!-l) > S(p!). 
Analogous it results S(p!+ 1) > S(p!). 
Obviously 

For p ~ max {3, k } out of (4), (5), (6) it results that p! are the relative minimum 
points of the functions st . 
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THE PROBLEM OF' LIPSCHITZ CONDITION 

:v!arcela Popescll and Palll Popescu 
University of Craiova, Deparlmenl of .\1athemattcs 

l.l,A1 Cuza st ., e rajava, 11 00 , Romania 

In our pa.per we prove that the 5marandacht' hlnctif) o .r;;, does Of) t verify the Lipschitz 
co ndition, giving an answer to a problem proposed in :2] ilnd we inv~u~lI.te also tbe 
possibility tha.t some other functioDIi , wh ich involve the func tien S, venfy v f Dot \"erify 
lhe Lipschitz conditicn. 

Proposition 1 The ju,wio n {rt - S{n)} does rwt ') o: ri/y ehe Lirw:hitz cv ",Jition, w'~ere 
S(n) i, t -..' smallest ir.t e~t' r!'?l. s!lch t~ ,!t m' is divisib le cy n. (S :5 ,died the Smarandache 
function. ) 

P-,.j. A function j : .If <; R - R ~ LipscbllZ iff tb. followin~ condition bolds: 

(3)K > O,(V)r ,y E M::>I fi r ) - f(y) 1$ K 1 r - y 1 

(K is called a. Lipschitz cons\&ot ). 
w. b.ve to prove tbat for every real K > 0 tber •• xisle r,y E N' sucb tb.t 1 f( t ) ­

; lY) I> K i x - y 1 . 
LI!~ K > 0 be a. given real Dumber. Let x = ? > .3K + 2 he a. prime number &ad cODllider 

y = p + 1 which is & composite nnmber. heeig even. Since t = p is a. prime number we 

b.,. Sip) = p. Using II] w. h.ve max ;$I n)/n l = 1/3 , tb •• llil = 'Ie:.'l $ i 
.. €N ' . '1 ;~ V P 

which implies tbot Sip + 1) 5 tip + 1) < p = Sip). IV. b ... 

. 2 3K+Z - Z 
I S(P) - S(P+ l ) l = p - S(p "'1 1 ~ P - 3 (P+ l » 3 = K 

• 

Remark 1. The ideea. of the proof k; based on the fvllowing obse rV&tions: 
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Ifp is a. prime number. then S(p\ =;;. thus the point ip,S(PIl belongs to the line of 
equation ~ = :: ; 

If q is a composite integer, ~ # 4, then S~i. $ t which means that the POInt ~q, S(q)) is 

under the graphic of the lin.: vf ~quati(Jn ~ = tx a.nd &bove the a.xe 0; , 

.(p ';'1,5(; ~ 1)) 

.,. .. 

Thus. for eVery consecutive integer numbers ~,y where t = pis & prime Dumber and 
y = p -1. the leught AE ,--an be made !is great as we need, for :, y sl1fticieDdy 8leu. 

Rem,,' 2. In fact we han proved tbat the function f : N8 - N defined by f(n) = 
Sir..) ..:. S(>;, - 1): is unbollDded. which imply that tht: Smarandache's fUDc~ion is Dot Lip­
schitz. 

In the sequel we study the Lipschitz condition for other functions which involve the 
Smar&Dda.che', fanc~ioB. 

Proposition 2 
':Jniition. 

Tt.e .. !' .. ,", .• ~ •••• '~:, S· . . Vi .f\ l~ _ v ".(",) - ~ 'U."t.. 'h- L,'''.ch,·u 
• ••• - '. , 'J': .', - l '. - ')f, It 1 '" 0J;i • ~ r" 

P!,l)of. For every : ~2 we have S(: 1 ~ 2. therefore 0 < sf:) $ 1 If we take t ~ ~ ill 
N \ {O.1}, we have 

1 1 1 1 I - - -, < - < -'IX -y' C( ... ) ~(.\1:-2-2 I 
~ *, -.::J: 
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For x = y we ha.ve an equa.lity in the rela.tlOn a.bove, therefor\! S: is a. function which verify 
the Lipschitz condition with K = i a.nd more, it is a. contractant function 

Rema.rk 3. In ~2: it is proved that )' ~ is divergent. 
~ . ...... )' n. 

'1.>: 

P~o'Jj, For every ;c, 'd E .v, 1 < :.; < ~ we have J: =,~ and y = n - rt~ whre m E N*. In 
'21 is proved that 

1 ,~'I n.1 -. , V \' 1 ---, :s --' :s 1, I.V'1l E.:. \ iO, 1; . 
! ': - 1 \: " 

Using this we have 

therefore 
:S(x) Sly) 
; ____ \ _J ~ ,= _ ;'! 

X ; 

for x and y as a.bove. For x = y we have an equality in the relation above. It follows tha.i 
~2 is verify the Lipschitz condition with K = 1 . 

• 

Remark 4. Using the proof of Propositi:" .... 5 proved below, it ca.n be shown tha.\ the 
Lipschitz consta.nt K = 1 is the best possible. Indeed, take x = 11. = P - 1 , m = 1 
a.nd therefore 'j = p (with the notations from the proof of P.,.opositic'". 8 ), with p CIt 

primenumber. From the proof of PrOpOSltl::n. 5, there IS a subsequence of prime numbers 

{Pnt}k>l such tha.t 5~ ..... _~:: ~~ 0 . For ~ ~ 1 we ha.ve, for a. Lipschitz consta.Dt K of 52 
- Y"t • 

Thus, K ?= 1 
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Proposition 4 The f7J.ncric .. 53 V , '0 '1' u .. \. '" . ( ~ .:, 
L ~"sl'~;tz 1'1),"";f!',~" -I' ~... -' - .... - •. 

P~~,;f. (Compa.re with the proof of p .. ~,~ ;j!::~;, : , 

We have to prove that for every real K > 0 there Histe :, yEN· sucb that ' Sit x) -
,·;,','>R" ~-": ..... !i,~. .... '1!' 

Let K > 0 be a gircn real numbl:r, : = ~ be: a pnmt: numb~r a.nd ~ := -: - lXsing the 

P-:';:;ji:i;-: 5 proved below. which asserts that the sequence < ,J"-',< ~ is unbunded 
... "'\P~-"! I -t>2 

~ where {p} n>l is the prune numbers licquencej, we ha.v~\ (.)[ a. pnme number p such th&t 

Sr 1
,( > K: 1 : 

P-l} 

• 

Proposition 5 If {Pn} "~l il the ;Jrime ,::n: ~~~s squefJ,ce, then the 3equence {sGJ',,::1)} ,,~~ 
is u'tooti.:!ded. 

P~ccf. Denote -;'1. = F", - 1 and let ~n be the number of the distinct prime numben 
which appea.r lD the prime factor decomposltIon of 114 ' for n ~ '2 ' We show below thAt 
{~n} '1.>2 is a.n unbounded sequence, 

Fo~ a fixe<it EN·, consider"k d~ ;-'~" ~!c and tbe arithmetic progressIOD {1 +"k' m}m>l' 
From the Dirichlet Theorem [3, pg.194j, it follows tha.t 'his sequence contains & soble- -
quence '.1 ..... Tic' mdl>l of prime numbers: .J"i.1 ; t ..... Jfic·ml ,therefore :ric ,me = p",-l = q", 
which implies tha.t r,,~~ Ie. It shows that tbe ~eqUt'nc~ ~r"}!t~2 is an unbounded sequence. 

~" 
If q'1. = n PS: then it is known (see :·t~ I tha\: 

\=1 

,'_ ' ~ .' ~.;.. ': ~ - " ' ",'.:I. J '\ < ' ~.11n;-ma.x (- :.J: -~:''" CX.'P~, , ) \-;--r I.. \,,;. / i \ ";1 J - ., ~ 
-4, fl 

thus 

(1) 
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We ha.ve: 

(2) 

Tndeed, if '.:tJ = 1, then ~LJ = 1 If et J > 1 , then 

I' :, - l\i:1 - 1) ,., - 1 1 '., > ',0 J ,,) • > t'_J __ > _ , 
J - 'j, - '2 - '2 , 

'" But 1./'1 = n Fe: has r'l - I prime factors a.nd ; r''I} ".>2 is unbounded, then it follows 
1=1,1#; -

that {Vn } '1>_2 is unbounded CSln~ thIS, I 1,1 and 121, It follows that the sequence ~ -3Jl...q ,\ 
- i. 5lq,.) J "~1 

is unbounded, 

• 

Rema.rk 5, Using thtl sa.me ideea., the P;,,';pu;;tziun 5 is trUt in a. m,)re ,\(,<::Utla.1 form: 
( , 

Fc" " E Zit,>' .,'d' ."1'p i ?,,"'a " :s _ '"'..~:;".;.:':d.e:i., ,he-,; ,r t:i ~h!: prime 
; ..it .1" ..... "'t""' ..... ·~"'- :.S1p!'":._a);~ _,.» .1..1 . . ",. .. r'nJ~>. 

fir. -_'" 

numbers uquence, 
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and 

and 

"SMARANDACHE NUMBERS": 
[M0453] , 

S(n), for n = 1,2,3, ... , 

"SMARANDACHE QUOTIENTS": for each integer n > 0, 
find the smallest k such that nk is a factorial; 
[MI669]; 

"SMARANDACHE DOUBLE FACTORIALS": F(n) is the 
smallest integer such that F(n)!! is divisible by 
n; [A7922] in the electronic version. 



PROPOSED PROBLEM 

by Thomas Martin 

Let TJ:Z· ~ N Smarandache Function: TJ(m) is the smallest in~ n such that 
I . ..&. ':"':1..lc by n. 1SUl~ m. 

a) Prove that for any number k E R .there exist a series {p: L ofpositive integer numbers 

suchthat: 

L li p, k 
= '~TJ(P,) > 

b) Does L = lim --'!!..- diverge to +00 . 
"-17(m) 

Solution: 
a) Let p. be a prime number greater than Ie. Indcx j is fixed. We construct , 

P, = PIPI+. , for j = l,2,3 .... 

Lemma 1. If u < y arc prime numbers, then TJ( U\1) = y. 
Of,.,.,"""- .. I -1.2. .u.. .. = ~.H = ~.H 
~~ r. - ••••••• • ••• ".. '-"'",." '-""t£. 

Hence TJ(p,) = p 1+' , for any i = 1,2,3... where P 1+' is the j + ida prime number. 
Then L = p} > Jc. 

b) Because there exist! an infinity of primes : P J • P J+l ••••• , greater than Ie , we find 

an infinity oflimits for each {p'(})}j series, Le. L = Pl+l or L = P}+2 etc. 

Therefore L = lim --'!!..- docs not exist! 
--TJ(m) 

Rererence: 
R. Muller, "Smaraadadle Function lownal", Vol. 1. ~o. 1, 1990. 



PROPOSED PROBLEM 

by J. Thompson 

Calculate: 
( ~ 1 \ 

~1+ ~ ry(k) -log ry(n) j 
where ry(n) is Smarandache FWlction : the smaIlest integer m , such that ml is divisible by 
n. 

Solution: 

We know that (ill k -log n I converges to e for n ~ <X). 

\t-=1 / 

Irs easy to show that for k 22 , q(k)::; k. More, for k a composite number 
210, 1](k)::; k 12. Also, if p > 4 then: 1](p) = p if and only if p is prime. 

" 1 (" 1 ) 1 L---Iog q(n) 2 L--logn + L ,,-- )e+co=c.o 
t-=10 1]( k) '\c=10k h10 k 

h.p"",. 

because for any prime number p there exists 3 composite number p-J such that 
1 1 

--> - thus: 
p-l p 

1 1 1 1 1 1 1 1 1 1 1 - 1 " ..... 
h7o= k = 10 + 12 + 14 + 15 + 16 + 18 + ... + -;; > 11 + 13 + 17 + ... + p( n) ) ex! 

Ic~p"",. 

where p( n) is the greatest prime number less that n . . 
We took out the first nine terms of that series, the limit of course didn't chance. 

Reference: 
Smarandache F., " A ftmction in the number theory", <Analele Univ. Timisoara>, 

fasc. 2, VoL XVll,pp. 163-8, 1979; 
see Mathematical Review: 82a:03012. 

Current Address: 
1. Thompson, Number Theory Association 
3985 N. Stone Rd., #246 
meSON, AZ 85705, USA 
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PROPOSED PROBLEM OF NUMBER THEORY 

BY PROF. KEN TAUSCHER 

Let N be a positif integer. Let T'I be the function that associates to any non-null 
integer P the smallest number Q such find the minimwn value of K from which 
,,(R) > N for any R > K. 

SoIutioo: 
Lemma: For any X > Y! we have 77(X) > Y. 
Proof by reductio ad absurdum: 
If ,,(X) = A ~ Y, then A! ~ Y! < X , whence A! may not be divisible by X. 

Refereace: 
Thomas Marlin, Aufgabe 1015, "Elemento del' mathematik", vol. 49, No. 

3,1993. 

Current Address: . 
Ken T auschcr 
14 / 162 Excelsior St. 
Mcrrylands 2160 
N.S. W., Sydney 
Aumalia 
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A GENERALIZATION OF A PROBLEM OF STUPARU 
by L. Seagull, Glendale Community College 

Let n be a composite integer >= 48. Prove that between nand S(n) 
there exist at least 5 prime numbers. 

Solution: 
T. Yau proved that Smarandache function has the following property: 

S(n) <= n/2 for any composite number n >= 10, 
because: 
if n = pq, with P < q and (p, q) = 1, then: 

S(n) = max {S(p), S(q)} = S(q) <= q = nip <= n/2; 
if n = pAr, with p prime and r integer >= 2, then: 

S(n) <= pr <= (pA r )/2 = n/2. 

(Inequation pr <= (pA r )/2 doesn't hold: 
for p = 2 and r = 2, 3; 

as well as for p = 3 and r = 2; 
but in either case n = pAr is less than 10. 
For p = 2 and r = 4, we have 8 <= 16/2; 
therefore for p = 2 and r >= 5, inequality holds because the right side is 
exponentially increasing while the left side is only linearly increasing, 
i.e. 2r <= (2 Ar)/2 for r >= 4 (1) 
Similarly for p = 3 and r >= 3, 
i.e. 3r <= (3 Ar)/2 for r >= 3. (2) 
Both of these inequalities can be easily proved by induction. 
For p = 5 and r = 2, we have 10 <= 25/2; 
and of course for r >= 3 inequality 5r <= (5 Ar)/2 will hold. 
If P >= 7 and r = 2, then p2 <= (pA2)/2, 
which can be also proved by induction.) 

Stuparu proved, using Bertrand/Tchebychev postulate/theorem, that there 
exists at least one prime between nand n/2 {i.e. between nand S(n)}. 
But we improve this if we apply Breusch's Theorem, 
which says that between nand (9/8)n there exists at least one prime. 
Therefore, between nand 2n there exist at least 5 primes, 
oecause (9/8)A5 = 1.802032470703125 ... < 2, 

while (9/8)A6 = 2.027286529541016 ... > 2. 

References: 
1. M. Radu, "Mathematical Spectrum", Vol. 2 7, No.2, p. 43, 1994/5. 
D. W. Sharpe, Letters to the Author, 24 February & 16 March, 1995. 
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AN IMPORTANT FORMULA TO CALCULATE THE NUMBER OF PRIMES LESS THAN X 
by L. Seagull, Glendale Community College 

If x >= 4, then: 

\ 
(x) = / 

x 

k-2 

S (k) 

-k-

where S(k) is the Smarandache 
is divisible by k, and 

a 

means the integer part of a. 

Proof: 

- 1 

Function: 
I 
I 
I 

the smallest integer such that S(k)! 

Knowing che Smarandache Function has the property that if p > 4 then 
S(p) - P if only if p is prime, 
and S(k) <- k for any k, 
and S(4) - 4 (the only exception from the first rule), 
we easily find an exact formula for the number of primes 
less or equal than x. 
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