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On some numerical functions

Marcela Popescu, Paul Popescu and Vasile Seleacu
Department of mathematics
University of Craiova
13,A.1.Cuza st., Craiova, 1100, Romania

In this paper we prove that the following numenical functions:

1. Fs: N* = N, Fs(z) = E S{g?), where p; are the prime natural numbers which

are not greater than z and 1( ) is the number of them,

2.0: N = N, 8(z) =L S(p) , where p; are the prime natural numbers which
pilz
divide z,

3.§:N* > N,8(z) =3 S(s7), whete piare the prime natural numbers which are

pitz
smaller than z and do not divide z,

which involve the Smarandache function, does not verify the Lipschitz condition. These
results are useful to study the behaviour of the numerical functions considered above.

Proposition 1 The function Fs: N* = N, Fe(zj =T S(pF), where p; and 7(z) have

the signifience from chove, does not verify the szschz 2 condition.
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Proof Let K > 0 be a given real number, z = p be a prime natural number, which

verify p > | \/—-Hj and y = p— 1. It is easy to see that 7(p) = x(p — 1) + 1, for every
prime natural number p, since the prime natural numbers which are not greater than p
are the same as those of (p — 1) in addition to p. We have:

Fs(e) - Fsy)l = Fs(z) - Fs(z = 1) =
= [S() + S(E) = -+ + (o)) = 5] -
SE)+ S+ S| =




= S(R) - S@ )|+ +
But S(57) > S(o7™") for every i € 1,7(p — 1) , therefore we have
Fs(z) - Fs(y)i 2 S(°).
Becanse S(p?) = p? , for every prime p, it follows:
Fs(z)- Fs(u) 2S(F)=p*>K=K-1=K(p-(p-1))= K|z ~y|.

We have proved that for every real X > 0 there exist the natural numbers z = p and
y = p—1, chosen as above, so that {Fs(z) - Fs(y)i > K iz — y|, therefore Fs does not
verify the Lipechitz condition.

(7)) = SW))] = S

!
i
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Remark 1 Another proof, longer and more technical, can be made using a rezult which
asserts that the Smarandache function S also does not verify the Lipschitz condition. We
kave chosen this proof because it is more simple and free of another results.

Proposition 2 The function § : N* = N, 6(z) =% S(pf) , where p; are the prime
pilz
natural numbers which divide z, does not verfy the Lipschitz condition.

Proof. Let K >0 be a given-lrea.l namber, z > 2 be a natural number which has the
prime factonization

- . ar
= p‘l p"i ‘r

and y = - px where p; > max {2, K} is & prime natural number which does not divide z.
We have:

8(a) - 800} = [0 (857 --o0) -8 (225 o0 i) | =
S(9%) + S(5) + -+ S(s%) - S(s%) - S(58,) =+ - S(#1,) - S(aH)|.
But z < z- g = y which implies that S(p7 ) < S(pf ), for j = 1,7 so that
8(2) - 8(y)] = [S(eh) - S(27)] + [S(et,) - S(65)] +
+[S(1) - S5 +SGh) =
= [S(E™) - S(E )] + [Se5™) - (3] +

+[S(E™) - S(9%)] + S(s1):



In (1] it is proved the following formula which gives a lower and an upper bound for
S{p"), wher 7 1s a prime natural number and - is a natural number:

~/ PN

(p=r=1<Ss"1 <z (1)

Using this formula, we have:

P, .
because gx > 2> ——, (Viy =1,r.
iy

Then, we have:

883 2 S 2 (o= 1) 3 5 >> (m= 1oz K= Ko s-2)= Kz 3

-\ 7 J
Therefore we have proved that for every real number K > 0 there exist the natural

numbers z,y such that: 6(z) - d(y)} > K 'z — y| which shows that the function § does
not verfy the Lipschitz condition.

Proposition 3 The function 9 : N* — N, 5(zy = T S(p7), where 5 zre the prime

P-cof. Let K > 0 be a given real number. Then for = > % and y =2z, using the
Tchmaf theorem we know that between = and y there exists a prime natural number
5. It is clear that p does not dividez and 2z. thus ;(,i contains, in the sum, besides all
the terms of 5(z), also S(p¥) as a term. We have:

= §(22) - 3(z) > =)= $(p*) - §(z) = S(p¥) >

therefore the fanction 7 also does not verify the Lipschitz condition.
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PROPERTIES OF THE NUMERICAL FUNCTION F
by L. Bilicenoiu, V. Seleacu, N. Virlan

Departament of Mathematics, University of Craiova
Craiova (1100), ROMANIA

In this paper are studied some properties of the numerical function
Fo(x))N-{0,1} >N F(x)= X S,(x), where S,(x)=8(p*) is the Smarandache

O<psx
p pnme

function defined in [4].
Numerical example: Fi(5) = S(2%)+ S(3) +S(5°); F5(6) = S(2°) +5(3%) + S(5°).
It is known that: (p-Dr+1<S(p") < prso(p-1)r <S(p") < pr.
Than -

X(py+ Potee+ Pury — (X)) < Fs(X) S x(Py + Pote--+ Priry) (M
Where 7(x) is the number of prime numbers smaller or equal with x.

PROPOSITION I The sequence T(x)=1 logF(x) + f_‘, F% has limit - .
i=2 L'l
Proof. The inequality Fs(x) > x(py++-++Pyy — #(x)) implies —logFs(x)<
<-logx(p1+p2+--~+p,(x)—n(x))<-logx(;z(x)pl—n(x)):-logx—logzz‘(x)—log(p,-—l).
Than for x=i the inequality (1) become:

i(py+-+ Doy — A1) < F5(0) Si(p1+---+ Pyyyy) 50

1 1 1 I
Fo()) g tpay-aD) i) - @) im) (- D)

-
Than 7(x) <1-log(x) - log n(x) ~log(p - 1)+ in(i)(p - 1)
1

=2 = T(x)=1-logx—-log m(x)+ i

=2 17(i)
= fim T(x) < 1 - lim logx-lim logz(x) + lm % 7,% —l-w-w+L=—w.
x—»0 xw® X~ x=® 23 I

PROPOSITION 2. The equation F5(x) = Fg(x +1) has no solution for x eN-{0,1}.



Proof. First we consider that x+1 is a prime number with x > 2. In the particular case
x =2 weobtain F;(2)=S(2*)=4; F.(3)=S5(2>)+S(3’)=4+9=13. So F(2)<F,(3).
Next we shall write the inequalities:

B+ Py = 7(0) < F5(X) S X(Prvspy) @
(x + DD+ + Doy + Prixey = HxX+ 1) < Fs(x+1) < (x+ DD+ + Doty + Paeeny)

Using the reductio ad absurdum method we suppose that the equation F;(x) = F5(x +1)
has solution. From (2) resuits the inequalities

(x+D)(P+ T Dy + Prgay — X+ 1)) < Fs(x+1) < x(p++Pyyy) (3)
From (3) results that:
X(P+ e+ Day) =~ (X + D+ F Do) + Py — (X +1)) >0

X(Prt+ T Pany) = X (Pt + Pagey) = XD ewy + X (X + 1) P " Pux) ~ Pax+nt

+a(x+1)>0.

But P4 > #(x+1) so the diference from above is negative for x>0, and we

obtained a contradiction. So F;(x) = F;(x +1) has no solution for x +1 a prime number.
Next, we demonstrate that the equation F;(x)= F;(x+1) has no solution for x and
x + 1 both composite numbers.

Let p be a prime number satisfing conditions p>§ and p<x-1. Such p exists

according to Bertrand's postulate for every x € N —{0,1}. Than in the factorial of the number
p(x —1), the number p appears at least x times.

So, we have S(p*) < p(x-1).
But p(x-1) <px+p-x (ifp>§) and px+p-x=(p-D(x+1)+1<S(p™).

Therefore 3 p < x -1 so that S(p") < S(p™*).
Than F5(x)=S(py)+--+S(p*)+--+S(py))
Fs(x+1) = S(p™ )+ +S (™) +---+S(pi3)) > Fy (x)
In conclusion Fg(x+1)> F5(x) for x and x+1 composite numbers. If x is a prime
number 7(x) = a(x + 1) and the fact that the equation F;(x) = F;(x+1) has no solution has

the same demonstration as above.
Finally the equation F(x) = F;(x+1) has no solution for any x e N - {0,1}.

PROPOSITION 3. The function F;(x) is strictly increasing function on its domain of
definition.
The proof. of this property is justified by the proposition 2.

PROPOSITION 4. Fy(x+y) > Fs(x)+Fs(y) Vx,y eN-{0,1}.

Proof. Let x,y e N—{0,1} and we suppose x < y. According to the definition of F;(x)
we have:
7



Flx+y) =S )+ +5(p) + S0 )+ +S(pe ) + (4)

"‘S(P:(:-y)ﬂ )+ "‘*‘S(P;(:yq-y))

F(x)+ E() = S(p0)++8(Daeyet) + S8+ +S (D)) + S(Prsy) +--+S (D)
But from (1) we have the following inequalities:
A=(x+ )P+ + Doy T Pzt + " FPpxayy = MX+Y)) < F(x+y) <
S YN F Patay ¥ Pyt + Praeyy) &)
and

x(Px*"'“"Pa(x)"ﬂ(x))+}’(P1+"'*pn(x)+"'+P;qx)+""’”P;a(y)‘77(}’)) < F(x)+F(y)<

S xX(P+ e FPyx) t V(D + F Doy F Pyt 7 )= B )]
We proof'that B< A.

B<A & x(pl+"'+pzz(x))+y(pl+“'+pﬂ(x))+y(pz(x)+l+"'+p)x(y)))<
x(P1+"'+P;z(x))+}’(P1+"'*Px(x))+x(Pn(x)+1+"‘+Pz(x+y))—xﬂ'(x+)’)+
Y (Praye1 t 0 F Pan)) F Y Doyt Vo F Parayy )~ y(X + y)

x(p;z(x)+l +'“+p,1(x+y) - ﬂ(x +))) +}’(P;¢(y)1.1 +"—“‘-pz(x+y) - ”(x +y)) > 0
But pg,.,) 2 7(x + y) so that the inequality from above is true.

CONSEQUENCE: Fy(xy)> F;(x)+F;(y) Vx,yeN-{0,1}
Because xand y e N - {0,1} and xy > x + y than Fo(xy) > Fo(x+y) > Fs(x) + F;(y)

F(n)

a

PROPOSITION 5. We try to find lim

0~ n

Wehave F(n) = 3 S(p7) and:
O<p,sn

pi=prime

PPt tPan = Mn)  F(n) _ PitPrt ot P

n"'l na na—l
If @ <1 than
lim nl—a(pl-i-----i-pﬂ(n)—ﬂ'(n)):x).x=+w - lim F.Si’:) =+
n—rwx P> n
If =1 than
im i i F5()
hm n™%(pyte+ Py = (1)) =l (P44 gy = (1)) = +0 = lim ~25% = +o0



We consider now a > 1.

a(n) a(n)

2 p -~ n(n) X p
We try to find lim “=l———— and lim “=L— appling Stolz - Cesaro:
- n—w n n—x N

a(n)
Leta,= Y p-m(n) and b,=n*"
i=1

n

x(n+l) m(n)
X p-an+l)- ¥ p+a(n) (n+1)* ! -pn*!
4y — 4, =1 =1 . . .
Than : = = - = <if (n+1) is a prime .
b - b, (n+1)*" -n® _
0, otherwise
=) a-1
Let ¢,= X p, and d, =n"".
=1
w(n+1) (n) n+l
c —c 2 p-Xp p (n+1)*-p*!
Than 2 = —=L___=l_ - 2ol <=4 (n+1)isaprime
d,-d, (n+1)*" —n° (n+1)* " -n” .
‘ 0, otherwise
First we consider the limit of the function.
. X . 1
lim ———— = lim = —a5-=-0 for a-2>1
e (x+ 1) —-x oo (- D(x+1)T" -x97]
We used the 'Hospital theorem:
In the same way we have
x+1
im =0 for a>3.
—o(x+1)* - x
So, for @ > 3 we have:
+ Pyteeet —mn
lim At ajvl”(") n) =0 and
X n
+ Dyt
lim 2522 TP o g i £
X—>w n X n

Finally lim

xw N

F(n) 0 for a>3
e for a<l
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ON A LIMIT OF A SEQUENCE OF THE
NUMERICAL FUNCTION

by Vasile Seleacu, Narcisa Virlan

Departament of Mathematics, University of Craiova
Craiova (1100), ROMANIA

In this paper is studied the limit of the following sequence:

n n 1
=1-1
I'(n) cg Us(n)+i§k§l0's(ﬂx)

We shall demonstrate that lim 7(n) = —«.

n-—»w

We shal consider define the sequence p, = 2,p, =3,..., p, =the nth prime number and
the function og:N" > N, o,(x) = ZS (d), where S is Smarandache Function.

For example: o(18) = S(1)+S(2)+S(3)+S(6)+S(9)+S(18) 0+2+3+3+6+6=20

We consider the natural number p, where p, is a prime number. It is known that
(p-Dr+1<S(p")<pr so S(p)>(p-Dr.

Next, we can write O'(p)—?b(p) > Z(p—l)s (p-1)——

5=0
k(k+1) Vi E{l,_“’m}, Yk E{l,...,n}-

r(r +1)

os(pf) > (p,-1)
1 2
<
os(pf) (p-Dk(k+1)

This involves that:

Ms

m n 1 m n 2 n 2
1§1k§1 O’S(p,k) < 1§1k§1 (p—Dk(k+1) (1=1 p -1 ) (kzl k(k—l))

o5(k)>0, Vk22 and pi<p ifa<m and b<n and pf::pg ifa=c and b=d.
But o5(p;,) > (Pm—l)@ implies that ~logos(p)) < —log(p, - )”(”+1)

because log x is strictly increasing from 2 to +x.
Next, using inequality (1) we obtain

I(p,) = 1-logos(p,) + ZZ = < l—log(p,,—l)"(n+l)+
=1k=1 O5(p) 2

11



(2 1 V(= 2
*(351 Pk“l) (51 k<k+1))

But 5‘: 2 = 2Pn = T(pi)<l+log2-2logp, ~log(p,-1)+
=1 k(k+1) p,+1

. 2p, i 1

pm+1 k=1 pk—l

T(pi=) < l+log2+2( logp,,,+z ) 2Pn i ! —ZZ ——log(p,,,-l)

k-lk p +1 k=1 pk—l k=1

We have 3 <&

e have —

k=1 Pk"l k=i k
So: T(pﬁ-)<1+log2+2(—logpm+pi 1)4—22 _Pm —log(p, -1)
k=1 k =k p,+

Da Pm
And then lim T(p?*) < 1+log2+2 lim (~log g+ 3 ~)~ lim 2(: i) Ll
myeo m>e k=t k° mo| \i=1 k) p,+1

Pa
—hmlog(p,,,-—l) 1+log2+2 lxm ( logp,,fz —)— 2 (Z l) -
o= p.+1 k=1 K

- lim log(p,—1)=1+log2+2y—0-==-x.
p.—)@
. = 1
It is known that Lim (—Iogpm+z;)=7 (Euler's  constant) and
k=1

D
2 =]
lim -y —i=0.
p.—m(p,,,ﬂ 5’1 k)

In conclusion lim 7'(n) = -x.
n—reo
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ON SOME SERIES INVOLVING
SMARANDACHE FUNCTION
by

Emil Burton

The study of infinite series involving Smarandache function is

one of the most interesting aspects of analysis.

In this brief article me give only a bare introduction to it.

First we prove that the series Sk converges and has

£+ (kH) !

the sum o€ e—éu-%

[
2" 21

S(m) is the Smarandache function: S(m) = min {keN;m|k!)

1 b
Let us denote 1+—+-" ...+ = by E,. We

TREY Y show that

Eml—g-< 2:-T§igl— <-% as follows:
X

\ n
S(k) < k implies that Z_(_Sj_k)_ < Z——k— -

13



On the other hand k22 implies that S(k) > = and
consequently:

S (k) 3 1,1 * =g -3
Y Tt L TeoT TR T BT

a

It follows that En,l—é < 2 (k)

= 1 and therefore
2 £ (k+1) ! 2

E Sk i5a convergent series with sum aei— e-é, 1
<=2 {k+1)! ¢ 2 2

REMARK: Some of inequalities S(k) s k are strictly and

x2S5(k)+1 , S(k) »2 . Hence oe]e-%,%
S(k) ; =~ S(k) :
We can also check that —_—, * and -, reN,
;, (k-r)! reN & (k+I)!
are both convergent as follows:
i S(k) 52 -z, rri r+2, o r+(n-r)
£ (k-I)! (k-1) ! r)' or 1r 2t (n-r)!
Y S eI ) 1,2, n-r \ _
-G E ) e ) T e B

: - S
which that A
,; (k+ !

converges.

—~ S{k) .
Also we have _2A\R o, reN .
" ,Z; (k+1)!

t
Let us define the set M, = {meN:m = %,neN,n 2 3} .

If meM, it is obvious that

n!
a! m 2
S(m) =n, m= Z—. MEM, = =
(m) 2 ¥ S{m) ! n!
= m - k
——— = XD b) ————— = OO
So, a; S(m ! and therefore IZ:Z Sk !
neEM, keN
A problem: test the convergence behaviour of the series
Y
= S(k)!
keN

14
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SOME PROPERTIES OF SMARANDACHE FUNCTICONS CF THE TYPE I

by
Balacenoiu Ion and Seleacu Vasile
Depar tment =f mathematics
University of Craiova

We consider the consiructicen of Smarandache functions
of the type I Sp Cpém‘, p primd which are defined in (11

and (2] as follows:

s . N—n" . SCkd) =1 ; SCkd = max < S_Ci.kd>
\g] 1 n X P. 3
1535:‘ ]
11 iz lr
for a"=p, B, .- P,

In this paper there are presented some properties of

these functions. Wwe shall study the monotonicity of each

function Sn and also the monctonicity of some subsequences of

the sequence ( Sﬂ)n - N. .

1.Proposition. The function Sn is monotonous increasing for every
positiv integer n.

Proof. The function S1 is abvicusly monotonous increasing.

Let k‘< kz where ﬁ ,§ < m’. Supposing that n is a prime number

k k
and taking accont that CS%kz))! = multiple nt = multiple n z,

16



1t results that Sanils S Ckz). therefore S is monoctoncus increa-—
™ o]

sing. Let San1) = 1g?§k < Sijlj.k!D} = Sp ilm'kzj
SthZD = ig?gr < Sijlj.kz)} = Sp flc'kz)
Because S Ci .kD2 <SS Ci .k2 < S (Ci.k2
p, m 1 P, m 2 P, v 2

it results that Sanx) < Sanz) so Sh is monotoncus increasing.

2.Proposition. The sequsnce of functions CSpL)LéN’ is monotonous

increasing, for every prime number p.

”»
Proof.For any two nombers ii,ize N , ix< iz and for any neN

we have

S (n) =S Ci.nm €£SCi.n)= S C(nd therefocre S =S . .
i P 1 p 2 i i i
p t p 2z P p 2z
Hence the sesquence < Spt }tem* is monotonous increasing for every
prime number p.

3.Proposition. Let p and g two given prime numbers. If p<{g then

»
S Ck> ¢ S (k2 » x €« N
P q
Proof. Let the sequence of coefficients (see (21> a:p:a;p:...,a:p:.
*»
Every k. € N can be uniquely written as
kK =t aP+ea®Pe . .+ ta® c1d
1 a 2 a-1 e 1

17



where O < t < p-1,for i =1,s-1 ,and O < t's < p

-

The procedure of passing from k to k+1 in formule C1D is

€ t.’ 1S increasing with a unity.

Cul if t. can not i1ncrease with a unity,then t is

-1

increasing with a unity and t.. = 0

Civ2 1f neithe Ls,nor t.. are not increasing with a unity

then t is increasing with a unity and ¢t =t = 0
-2 ] e—-1

The procedure is continued in the same way until we obtain the
expresion of k+1.

Dencting AkCSp) = Ska*-l) - Ska) the leap of the function Sp

when we pass from k to k+1 corresponding to the procedure

described above. We find that

- in the case (v AiSp) = p

- in the czase (i AESpD = O

-~ in the case (iib A"CSP) = 0

n
I+t is abvi 1 that: SInd) = nd + SC1
is viously seen a o n kE,A" np A
n

Analogously we write San) = ¥ Akqu) + Sq(l)

k=1

Taking into account that SpCl) p<qgq= Sq(l) and using the
procedure of passing from k to k+1 we deduce that the number
of leaps with zero value of Sp is greater then the number of
leaps with zero value of Sq, respectively the number of leaps with

value p of Sp is less then the number of leaps of Sq with value
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g i1t result that

1ol n
ACS D + S C1D < ACS I + S 12 2>
ki k p p E:z k q q

Hence San) < San) , n e fN.

As an example we give a table with Sz and Sa for 0<(n<2l
k 1 2 3 4 S B5 7 8 91011 12 13 14 151868 17 18 19 20
the leap 2 0 2 2 0 0 2 2 0 2 2 0 0 0 2 0 2 2 &2
SzCk) 2 4 4 8 8 8 81012 12 14 16 16 18 18 18 18 20 22 24
the leap 3 3 0 3 3 30 3 3 3 0 0 3 23 2 0 2 23 82
SBCk) 2 B8 9 S 1215 18 18 21 24 27 27 27 30 33 368 38 39 42 4S5
Hence SzCk) < Saﬁc) for k =1,2,...,20.

4.Remark. For any monotcnous increasing sequence of prime numbers

P, < P, < ... < P < L it results that
Sl < S < S < ... <5 <
P, P, . P.
_ ot i i
If n=p, P, <o Py and P, < P, < ..<pt then
Sn Ck2 = 1g%§t( Sp@k) > = Sp&k) = Sp Cik2

J t t

5. Proposition.ylf p and q are prime numbers and p.i < g then SpL(Sq.

Proof. Because p.i < g it results
S (1) £ p.i < = S (12 3
p P 9 q
and S k2 = S Cikd> £ i S CkD
P P P

From (3 passing from k to k+l, we deduce

AkC Spv‘.) < i Ak CSPD : C4>

Taking into account the proposition 3. from (42 it results that

when wo pass from k to k+l we obtain

19



n n
(S i1 > £ (s > =< 1. < d i (s 23 £ (S 2 (=)
KOO S AE5,05 L IE a0, ST A,

Because we have
n

n
= X < i
Spv.C nd Spv.( 12 + AkC Spv.) < SPLC 12 + 1 T AkC Sp)

k=2 k=1
and
™
Snd = S (1D + A CS D
] q k? k q
=1
from (3D and (3 it results Sp&ro < San) , n e m'

8.Proposition. If p is a prime number then Sh < Sp for svery

n<p
Prz2f.If n 1s a prime number from n < p, using the proposition 3
it results S;Ck) < S;Ck) for k e N.. If n is a composed, that

L b
is n=p " . . . p' then SCkd = max ¢ SiCk)> = S_iCkD.
v ' 1<jSt P, P

Because n < p it results p T e p and using the proposition 8
r g

t
and knowing that i’pr < p:} P it results that Sp%ﬁk) < Ska)
r

therefore for k e N SthD < SPCk)
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SOME PROBLEMS ON SMARANDACHE FUNCTION

by

Charles Ashbacher

In this paper we shall investigate some aspects involving

Smarandache function, S:N'--5N', S(n) = min {m | n divide m!}.

1. THE MINIMUM OF S(n)/n
Which is minimumum of S(n)/n if n > 1?
1.1. TBEOREM:
a) S(n)/n has no minimum for n > 1.
. b) 1lim S(n)/n as n goes to infinity does not exist.
Proof:

a) Since S(n) > 1 for n»>1 it follows that S(n)/n > 0. Assume
that S{(n)/n has a minimum and let the rational fraction be
represented by r/s. By the infinitude of the natural numbers, we
can find a number m such 2/m < r/s. Using the infinitude of the
primes, we can find a prime number p > m. Therefore, we have the

sequence

2/p<2/m< r/s
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We have S(p-'p) = S(p®) = 2p. It is known that S(p-p)=2p. The

ratio of S(p’)/(p:p) is then

2p/ (p?) =2/p

And this ratio is less than r/s, contradicting the assumption

of the minimum.

b) Suppose lim S(n)/n exists and has value r. Now choose, e > 0
and e < 1/p where p is a twenty digit prime. Since S{p) = p,
S(p)/p = 1.

However, S(p-p) = 2p, so the ratio S(n)/n = 2p/(p-p) = 2/p. Since

p is a twenty digit prime,

| S(p)/p - S(ppP)/(pP) | > e by choice of e .

so the limit does not exist.

2. THE DECIMAL NUMBER WHOSE DIGITS ARE THE VALUES OF SMARANDACHE
FUNCTION IS IRRATIONAL.
Unsolved -problem number (8) in [1] is as follows:
Is r = 0,0234537465114..., where the sequence of digits is
S{(n), n 2 1, an irrational number?
The number r is indeed irrational and this claim will be
proven below.

The following well-known results will be used.
DIRICHLET’S THEORENM:

Ifd>1and a # 0 are integers that are relativey prime, then

the arithmetic progression
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a, a, +d, a + 24, a + 34d,...

contains infinitely many primes.

Prodf of claim:

Assume that r as defined above is rational. Then after some m
digits, there must exist a series of digits t,, t;, &3, ..., Ly

such that

r =0,023453746114...5C.5,6,5,65. .. €,

where s is the m-th digit in the decimal expansion.
Now, construct the repunit number consisting of 10n 1's.
a = 11111 ... 111
10n times
and let 4 = 1000 ... 00
10n + 1 0’s
Since the only prime factors of 4 are 2 and 5, it is clear
that a and d are relatively prime and by Dirichiet’s Theorem, the
sequence
a, a+d, a+ 24, ...
must contain primes. Given the number of 1’s in a and the fact that
S(p) = p, it follows that the sequence of repeated digits in r must
consist entirely of 1’s.

Now, construct the repdigit number constructed from 10n 3's

a =3333...333

10n times
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and using
d = 10000...00
10n + 1 0’'s
we again have a and d relatyvely prime. Arguments similar to those
used before forces the conclusion that the sequence of repeted
digits must consist entirely of 3's.
This is of course impossibile and therefore the assumption of

rationality must be false.

3. ON THE DISTRIBUTION OF THE POINTS OF S(n)/n IN THR

INTERVAL (0,1).

The following problem is listed as unsolved problem number (7)

in [1]

Are the points p(n) =S(n)/n uniformly distributed in the

interval (0,1)?
The answer is no, the interval (0.5,1.0) contains only a
finite number of points p(n).

3.1. LEMMA:

sH , 5@
D k pk01

For p prime and k>0.
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Proof:
It is well-known that S(p*=j-p where Jjs<k

Therefore, forming the expressions

SehH _Jp_ _J
p* p* p<
Skt _ mp _ m
pk*l X

where m must have one of the two values
With the restrictions on the values of m and p,

{7, j+1}
it is clear

that
J,1
. p
which implies that

pk pk+l
which is the desired result. Equality occurs only when p=2, j=1 and

m=2.

3.2. LEMMA:
The interval (0.5,1.0) contains only a finite number of points

p(n), where

p(n)=-§%§l and n is a power of a prime.

Proof:

S(p) =1 outside the interval.

If n=p 5

Start with the smallest prime p=2 and move up the powers of 2
S(22) _ 4.4
(2-2) 4

S(222)
(2:22)

4
8
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S(2222) _ 6 _
_— L =___<0. N
(2222) 16 >

And applying the previous lemma, all additional powers of 2

will yield a value less than 0.5.

Taking the next smallest prime p=3 and moving up the powers

of 3
S(33) _6
(3:3) 9
$(333) _ 9
2:1335) - 2 ¢g.
333y 327 <9

and by the previous lemma, all additional powers of 3 also yield a
value less than 0.5.

Now, if p>3 and p is prime

Sep) .2 g 5
(pp) P .
so all other powers of primes yield values less than 0.5 and we are

done.
3.3. THEOREM:
The interval (0.5,1.0) contéins only a finite numbér of points
pi{n) where
p(n)=<§%§l
Proof:

It is well-known that if

n=p; p; Dy ’...D," . then

S(n) =max(S(P:*)}
Applying the well-known result with the formula for p(n)
S(p;) 1

a
pi* [lp5
J=2

which is clearly less than

pln)=
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0

a
p:)
&y
1

Theorefore, applying Lemma 2, we get the desired results.

3.4. COROLLARY:
The points p(n)=S(n)/n are not evenly distributed in the

interval (0,1).

4. THE SMARANDACHE FUNCTION DOES NOT SATYSFY A LIPSCHITZ

CONDITION

Unsolved problem number 31 in [1] is as follows.
Does the Smarandache function veryfy a Lipschitz condition? In

other words, is there a real number L such that

| stm) - S(n) | sL|m-n| forallmn in {0,1,2.3,...}.

4.1. THEOREM
The Smarandache function does not verify a Lipschitz
condition.

Proof:

Suppose that Smarandache function does indeed satisfy a

Lipschitz condition and let L be the Lipschitz constant.

Since the numbers of primes is infinite, is possible to fiind

a prime p such that

27



p—(p+1)/2)L

Now, examine the numbers (p-1) and (p+1l). Clearly, at least
one must not be a power of two, so we choose that one call it m.
Factoring m into the product of all primes equal to 2 and
everything else, we have
m = 2kn

Then S(m) = max {S(2%), S(n)} and because s(2k) < 2k .
we have
m
S(m) < -2-
And so,
|s(p) - Sim|> |p - ‘—2“1 > L
Since |p - m| =1 by choice of m, we have a violation of the

Lipschitz condition, rendering our original assumption false.

Therefore, the Smarandache function does not satisfy a

Lipschitz condition.

S. ON THE SOLVABILITY OF THE EXPRESSION S(m) =nl

One of the unsolved problems in [1] involves a relationship
between the Smarandache and factorial functions.

Solve the Diophantine Equation
S(m) = n!

where m and n are positive integers.
This equation is always solvable and the number of solutions
is a function of the number of primes less than or equal to n.

5.1. LEMMA: Let be a prime. Then the range of the sequence
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S(p) 7 S(p.p) 7 S(p'p.p) LA

will contain all positive integral multiples of p.
Proof: It has already been proven [2] that for all integers

k > 0, there exists ancther integer m > 0, such that

S(p*X)k = mp where m< k

and in particular

S(p) =p

Sc the only remaining element of the proof is to show that m
takes on all possible integral values greater than 0.

Let p be an arbitrary prime number and define the set
M = { all positive integers n such that there is no positive
integer k such that S(p") = mp } |
and assume that M is not empty.

Since M is non-empty subset of the natural numbers, it must
have a least element. Call that least element m. It is clear that
m> 1.

Now, let j be the largest integer such that
S(p?) = (m-1)p

and consider the exponent j + 1.

By the choise of j, it follows that either
1) S(p?*Y) =mp
or

2) S{(pi*t) = np wheren > m

in the first case, we have a contradiction of our choise of m,
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so we proceed to case (2).

Hﬁwever, it is a direct consequence of the definiticn of prime
numbers that if ((m - 1)-p)! contains j instances of the prime p,
then m-p is the smallest number such that (m-p)! contains more than
j instances of p. Then, using the definition of Smarandache
function where we choose the smallest number having the required
number of instances we have a contradiction of case (2).

Therefore, it follows that there can be no least element of
the set M, so M must be empty.

5.2.THEOREM: Let n be any integer and p a prime less than or

equal to n. Then, there is some integer k such that

S(p*) = n!

Therefore, each equation of the form S(m) = n! has at least 'p
solutions, where "p ié the number of primes less than or equal
to n.
Proof:
Since n! is an integral multiple of p for p any prime less
than or equal to n, this is a direct consequence of the lemma.
Now that the question is known to have multiple solutions, the
next logical question is to determine how many solutions there are.
5.3. DEFINITION: Let NSF(n) be the number of integers m, such

that S(m) = n!.

From the fact hat s{n) = max {S(p;’)} , we have the following
obvious result.
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Corollary:

Let n be a positive integer, g a prime less than or equal to

n and k another positive integer such that S(g% = n! . Then, all

numbers having the prime factorization form p = gD Doy .. pr

where sS(g% > S(p:!) will also be solutions the equation S(m) = n!

To proceed further, we need the following two obvious lemmas.
5.4. LEMMA: If p is a prime and m and n nonnegative integers m >
n, then S{p") = S(p™) .
5.5. LEMA: If p and g are primes such that p < g and k > 0, then
S(p") < S(g“).
The following theorem gives an initiail indication regarding
how fast NSF(n) grows as n does. |
5.6. THEOREM: Let g be a prime numker and k an exponent such that
S(q*) = n! Let p“py...,p,beithe list of primes less than g. Then
the number of solutions to the equation S{m) = n! where m contains

exactly k instances of the prime g is at least (k +1)'.
Proof: Applyng the two lemmas, the numbers m = p.'p,’ps’...ps qk

where all of exponents on the primes p; are at most solutions to the
equation. Since each prime pi can have (k + 1), {0,1,2,...,k}
different values for the exponent, simple counting gives the
result.

Since this procedure can be repeated for each prime less than
or equal to n, we have an initial number of solutions given by the

formula
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2
Y (ken)itt el
-2
where s is the number of primes less then or equal to n, k is the

integer such that

s(psH) =

And even this is a very poor lower bound on the number of
solutions for n having any size.

S.7. COROLARY: Let q be a prime such that for some k S(g*) = n!.
Then if p is any prime such that there is some integer j such that
S(p) < S(g“), then the product of any solution and p any power less
than or equal to j will also be a solution.

Proof: Clear.

If q is the largest prime less than or equal to n, it is easy
to show for "large" n that there are primes p > n > q that satisfy
rhe above conditions. If p.is any prime, then by Bertrand’s
Postulate, another prime r can be found in the interval p > r > 2p.
Since g < n < 2n < n! forn > 2 and S(p) = p, we have one such
prime. Expanding this reasoning, it folows that the number of such
primes is at least j, where j is the largest exponent of 2 such
that @2 s n!, or put another way, the largest power of 2 that is
less than or equal to n!/qg.

Since there are so many solutions to the equation S(m) = n!,
it is logical to consider the order of growth of the number of
solutions rather than the actual number.

It is well known that the number of primes less than or equal
to n is asymptotic to the ratio n/ln(n). Now, let p be the largest

prime less than n. As n gets larger, it is clear that the factor m
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such that mp = n! grows on the order of a factorial. Since m s K,
where k is the exponent on the power p, it follows that the number
grows on the order of the product of factorials. Since the number
of items in the product depends on the number of primes g such that
g <mp = n!, it follows that this number also grows on the order of
a factorial.

Putting it all together, we have the following behavior of
NSF (n) .

NSF (n) grows on the order of product of items all on the order
of the factorial of n, where the number of elements in the product
also grows on the order of a factorial of n.

Cleary, this function grows at an astronomical rate.

6 .THE NUMBER OF PRIMES BETWEEN S(n) and S(n+l)

I read the letter by I.M.Radu that appeared in [3] stating
that there is always a prime between S(n) and S(n+l) for all
numbers 0<n<4801, where S(n) is the Smarandache function.

Since 1 have a computer program that computes the values of
S(n), I decided to investigate the problem further. The serch was

conducted up through n<1,033,197 and for instances where there is

no prime p, where S(n)<psS(n+1) . They are as follows:
n=224=2-22227 S(n)-=8 n=225=3-355 S(n) =10

n=2057=11-11-17 S5(n) =22 n=2058=2:3777 S(n) =21
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n1=265225=55-103103 S{(n) =206 n=265226=2-13"101-101 S(n) =202

n=843637=37-151'151 S(n) =302

n=843638=219-149-149 S(n) =298

As can be seen, the first two values contradict the assertion
made by I.M.Radu in his letter. Notice that the last two cases

involve pairs of twin primes. This may provide a clue in the search

for additional solutions.

7. ADDITIONAL VALUES WHERE THE SMARANDACHE FUNCTION SATISFIES TEE
FIBONACCI RELATIONSEIP S(n)+S(n+l)=S(n+2)

In [4] T.Yau poses the following problem:

For what triplets n, n+l1 and n+2 does the Smarandache function

satisfy the Fibonacci relationship
S(n)+S(n+1) = S(n+2) ?
Two sciutions
5(9) +5(10) = S(11) 6+5 =11

5(119) +5(120) = 5(121) 17+5 = 22
were found, but no general solution was given.

To furcther investigate this problem, a computer program was
written that tested all values for n up to 1,000,000. Additional
solutions were found and all known solutions with their prime

factorizations appear in the table below.

5(9) +5(10) = 5(11) 9 =3-3 10

25 11 =11

S(118) + S(120) = S(121) 119 = 7-17 120

2-2-2-3:5 121 = 11-11
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S(4900) + S(4901) = S(4902); S(26243) + S(26244) = S(26245)
§$(32110) + S(32111) = S(32112); S({64008) + S(64009) = S(64010);

S(368138) + S(368139) = S(368139); S(415662) + $(415663) =
S(415664) ;

T am unable to discern a pattern in these numbers that would
lead to a proof that there is an infinite family of solutions.

pPerhaps another reader will be able to do so.

8. WILL SOME PROBLEMS INVOLING THE SMARANDACHE FUNCTION ALWAYS

REMAIN UNSOL 7ED?

The most unsolved problems of the same subject are related to

the Smarandache function in the Analytic Number Theory:

§:7---N , S(n) is defined as the smallest integer such

that S{(n)! is divisible by n.

The number of these unsolved problems concerning the function
is equal to... an infinity!! Therefore, they will never be all
solved!

One must be very careful in using such arguments when dealing
with infinity. As is the case with number theoretic functions, a
result in one area can have many aplications to other problems. The
most celebrated recent instance is the "prof" of "Fermat'’s Last
Theorem". In this case a result in elliptical functions has the
proof as a consequence.

Since S(n) is still largely unexplored, it is quite possible
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that the resolution of one problem leads tc the resclution of many,

perhaps infinitely many, others. If that is indeed the case, then

all problems may eventually be resolved.

1.
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ABOUT THE SMARANDACHE SQUARE'S
COMPLEMENTARY FUNCTION

Ion Bilicenoiu, Marcela Popescu and Vasile Seleacu

Departament of Mathematics, University of Cralova
13, ALIL.Cuza st., Craiova (1100}, ROMANIA

DEFINITION 1. Let a:N* — N’ be a numerical function defined by a(n) = k where k

is the smallest natural number such that nk is a perfect square: nk =s*, seN', which is
called the Smarandache square's complementary function.

PROPERTY 1 Foreveryne N'a(nz) =1 and for every prime natural number a(p)=p.

PROPERTY 2. Let n be a composite natural number and n= p:" . p;:" p:”,

14

0<p, <P, < <P A Tysenn eN it'’s prime factorization. Then

1if g is an odd natural number

a(n)zpf‘l.pfz---pf"' whereﬂ,jz j=r’:-

0ifa, is an even natural number

If we take into account of the above definition of the function a4, it is easy to prove both
the properties.

a(n)

n

<1, foreveryn N where a is the above defined function.

PROPERTY 3. - <
n

Proof. It is easy to see that 1 < a(n) <n forevery n € N, so the property holds.

CONSEQUENCE. 5 3(n)

nzl N

diverges.

PROPERTY 4. The function aN" - N’ is multiplicative:
a(x-y)=a(x)-a(y) for every x,y &N’ whith (x,y) =1

Proof For =1=y wehave (x,y)=1 and a(l-1) =a(l)-a(l). Let
x=pt-pot ~p.r and y= qjyl’1 q/7--q;”  be the prime factorization of x and y,
respectively, and x -y # 1. Because (x,y)=1wehavep, #q; for every h—l r and & —1 s.

Then,
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1if o, is odd

a(x):pf’l.pf’l...pf" whereﬁ,,= nJ.:i—,;v
0if g iseven
Lif y, isodd

ia(y):qjll qinqi” where é:,. = , k 23 and

. B, B & 5, &
a(y)=p* ol P 4 g7 g =a(x)-a(y)

Property 5. If (x,y)=1. x and y are not perfect squares and x,y>1 the equation
a(x)=a(y) has not natural solutions.
Proof It is easy to see that x=y Let x=[]p™ and y=]]q}*. (where
A=1 k=1
P, *#9,, Vh=1Lrk=1s be their prime factorization.
Then a(x) =[] p™* and a(y)=[]4** . where B, for h=1r and 5 for k =15
=1

k=1

have the above signi;iecance, but there exist at least B, =0 and &, # 0. (because x and y are
not perfect squares). Then a(x) za(y) .

Remark. If x=1 from the above equation it results a(y) =1, so y must be a a perfect
square (analogously for y=1).

Consequence. The equation a(x) = a(x +1) has not natural solutions, because for x>1 x
and x+1 are not both perfect squares and (x, x+1)=1.

Property 6. We have a(x-y')=a(x), forevery x,yeN .

Proof. If (x, y)=1, then (x,y*)=1 and using property 4 and property 1 we have
a(x-y*)=a(x)-a(y’)=a(x). If (x,y)1 we can write: x:i{p:"-f_'ld:“ and

=I£I ﬂk'ﬁdﬂl where , 2d . ¢d,,P‘ zq,, Vh:l,_r’ k:ﬁ,t:i,—n, but this
y=1lg, -1l4a, by, 9 > Py “p

F 4 Ty 2
lmplies (IF_IP:& li[q]z:,‘t , Izld:'g’zn ): 1 and
P =1 =1
[I:Ip:‘ , f[qj:" ) =1> a(xyz) = a(r’-[p:'i . lilqj;’lt . I:Id;:l.*z’u )=
=1 k=1 A=l k=t t=1

Mo [1a ol TTa™ )= [Te> ol ITar )o{ 1)

k=l
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s ol 1) o ) et e

2 2 1 if o, +2y, is odd
d™ d¥ = ( 1:) — b -
a[l;l : ) H ¢ . Where B, 0 if a, +2y, is even

{1 if a, is odd

0 if o, is even

1 if n is even

C |. Forevery xeN" and neN, "= .
onsequence orevery xeN and n a(x") {a(x) £ 1 is odd

-

Consequence 2. If . m_z where Z isa simplified fraction, then a(x)=a(y). It is easy
n n

to prove this, because x=4km* and y=kn® and using the above property we have:
a(x)=a(km*) =a(k) =a(kn*)=a(y).

Property 7. The sumatory numerical function of the function a s

Fln)= H(H(a o, +n+ 0

—_—) where  the prime factorization of n is

n= p’l . p‘z R pq" and H(a) is the number of the odd numbers which are smaller than o.

Proof. The sumatory numerical function of a is defined as F(n)= Za(d) because

din

(p, 1'1 p,t)=l  we cari use the property 4 and we obtain:
=2

F(n)= Za(d )|'|  Dla(d,)| and so on, making a finite number of steps we obtain

dllp dzfp:z...p:‘

F(n)= H F( p:" ) . But we observe that

J=1

E(p+1)+1 if a is an even number

F(p%)=
([%:l+l)(p+l) if o is anodd number

where p is a prime number.
If we take into account of the definition of H(a) we find

o if a is even L+ (< 1)"
H(a)= a2 so we can write F(p*)=H(a) (p+))+—— ,
|: ]+1 if o is odd 2

£ N

therefore: F(n)=[ [(H(a,)(p, +1) +%9—.
J=t

In the sequel we study some equations which involve the function a .

39



1) Find the solutions of the equation: xa(x)=m, where x, meN".

If m is not a perfect square then the above equation has not solutions.

If misa perfect square, m=z',z €N’, then we have to give the solutions of the
equation xa(x) =z’

Letz=p’-p¥---p™ be the prime factorization of z. Then xa(x) = p,f“‘ p;“’ p,.“' ,
SO taking account of the definition of the function a, the equation has the followmg solutions:

D=t p (because a(r”’) =D, xV=pT.pep™ (because
a(x,‘") 2.) xD=pin.piatpin.. pin (because  a(x’)=p.) ..,
L2
x) = pi*-pr... pi! (because  a(x{")=p,), then x? = ,
P, P,
h#Ehs Jih E{il ----- ik}r 1= ch (because a(x(@)):p,‘ 'pi,, ), and, in an analogue way,
— z Y T
x?, tel,C} has as values —————, where i, j..J, efiy...i,}
Py " Pi, P,
2 2
Ji® ok ® Jyfs # iy andsoon, x¥=—32 =% _; S0 the above equation has

P,p,p, =
1+C, +C+- —C; =2" different solutions where k is the number of the prime divisors of
m.

2) Find the solutions of the equation: xa(x)+ ya(y)=za(z), x,y,zeN".
Proof. We note xa(x) = m?, ya(y)= n® and za(z) =52, X, Y,Z € N° and the equation
m+n =5, mnseN ™

has the following solutions: m=u’-v’ , n=2uv, s=u*+v’ , u>v>0, (4v)=land u
and v have different evenes.

If (m,n,s) as above is a solution, then (am,an,as), a €N is also a solution of the
equation (*).

If (m,n,s) is a solution of the equation (*), then the problem is to find the solutions of
the equation xa(x)=m’ and we see from the above problem that there are 2% solutions
(where k, is the number of the prime divisors of m), then the solutions of the equations
ya(y)=n’ and respectively za(z) = s, so the number of the different solutions of the given
equations, is 2%-2%.2% =2%"%"% (where k, and k; have the same signifience as &, , but
concerning n and s , respectively).

For a>1 we have xa(x)=a’m’, ya(y)=a’n’, za(z)=a’s’ and, using an
analogue way as above, we find 2% different solutions, where k, i =13 is the
number of the prime divisors of cum, an and as, respectively.

Remark . In the particular case v=2, v=1 we find the solution ( 3,4,5 ) for (*). So we
must find the solutions of the equations xa(x)=3’a’, ya(y)=2'a’® and za(z)=5%a’
for @ €N". Suppose that o has not 2,3 and 5 as prime factors in this prime factorization
a =p:’ -py---p,*. Then we have:
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Yo Fo Fd 3o A

xa(x)=32a23xe{3zal, LT , R R RETS ,
Py by Py P, R Py Py Pyp---Py
: 3 3 3
32a’3 az’3 d’.'.’3 az’ al ’...’ az ’...’ 3 d ’-.-’ d ’3a}
Py Py Py Pq pﬂk—l "Dy P,l---P,k_l p:z"'pik

T 2 2 2 2 4
ya(y)=42az:y€{4za"4a‘7...74a‘7 4a2 ,“.’ 4¢ ’...’ 4az ,...’ J >
. Dy Py Py Py Piy Py Py Py Pp--- Py
8 8a& 8« 8 &
42a ’8 az’ al 0, , @ e, TR 8 az JEEEN 8 az ’Sa}
pﬂ p‘k pfl.pfl p‘k—I.pik pq"'p.'k_l pfz"'pik
2 2 2 2 2
za(y)=52a’:>ze{52az,5a2,...,5Cf, Y& e, Sa e, sa e, S ,
Py Py Py Py Pi_y Py Py Py Pp---Py
5
Sqs@if S Sd  sd | sd s ’Sa}
Py Pe PPy PunPi PiPay PoeePy

So any triplet (x,,y,,z,) with x,,y, and z, arbitrary of above corresponding values, is a
solution for the equation (for example (9,16,25), i> a solution).

Definition. The triplets - which are the solutions of the equation
xa(x)+ya(y)=za(z), x,y,zeZ” we call MIV numbers.

3) Find the natural numbers x such that a(x) is a three - comnered, a squared and a
pentagonal number.

Proof. Because 1 is the only number which is at the same time a three - cornered, a
squared and a pentagonal number, then we must find the solutions of the equation a(x)=1,
therefore x is any perfect square.

1

+ = , x,y,2eN".
xa(x) ya(y) za(z)

4) Find the solutions of the equation:

Proof. We have xa(x)=m’,ya(y)=n*,za(z)=s", mn,seN".

. 1 1 1 .
The equation —+-—=— has the solutions:
m  n -

m=t(u* +v*)2uv
n=tu* +v)Yu -v*)

s=t(u* -v*)2uv,
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u>v, (u,v)=l, u and v have different eveness and f eN", so we have
xa(x) = (& +v* ) 4u*V?
ya(y) = £ +v' Y@ - vy
za(z)=1(u’ -v*)?4w’v*  and we find x. y and z in the same way which is
indicated in the first problem.
For example, if v=2, v=1, =1 we have
m=20, n=15, s=12, so we must find the solutions of the following equations:

xa(x)=20"=2*-5 > x e{2’-5* =200, 2*-5=180, 2*-5=40, 2*.5* = 400}
ya(y) =15 =325 = y €{15,45,75,225}
za(z) =122 =2*.3* =z {24,48,72,144}

Therefore for this particular values of u, v and t we find 4-4-4=2%.22.22 =25=¢64
solutions. (because k, =k. =k, =2)

5) Find the solutions of the equation: a(x) +a(y)+a(z) =a(x)a(y)a(z), x,y,zeN".

Proof. If a(x)=m, a(y)=n and a(z)=s. the equstion m+n+s=m-n-s,
m,n,s €N" has a solutions the permutations of the set {1,2,3} so we have:

a(x) = 1=> x must be a perfect square, therefore x=u>, u N’
a(y)=2=>y=2v*, veN’
a(z)=3=>:=3, teN.

Therefore the solutions are the permutation of the sets {#*,2v*,3r*} where u,v,f N".
6) Find the solutions of the equation 4a(x)+ Ba(y)+Ca(z)=0, 4,B,CeZ" .

Proof. If we note a(x)=u,a(y) = v,a(z) =1 we must find the solutions of the equation
Au+Bv+Ct=0.
Using the method of determinants we have:

4 B (|
A B (=0, Ym,nscZ= A(Bs~Cn)+B(Cm- As)+C(An-Bm)=0, and it
m n s

is known that the only solutions are w=Bs-Cn
v=Cm- As
t=An-Bm, Vmn,sel

so, we have a(x)=Bs-Cn
a(y)=Cm- As
a(z)= An-Bm and now we know to find x, y and z.

Example. If we have the following equation: 2a(x)-3a(y)-a(z) =0, usind the above
result we must find (with the above mentioned method) the solutions of the equations:
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a(x)=-3s+n

a(y)y=—-m-2s

a(z)=2n+3m, mn and seZ.

For m=-1, n=2,s5=0: a(x)=2,a(y)=1, a(z)=1 so, the solution in this case 18
(2a?,p%,v?), «,B,y €Z°. For the another values of m,n,s we find the corresponding
solutions.

'7) The same problem for the equation Aa(x)+Ba(y)=C, 4,B,C€L.

Proof. Aa(x)+Ba(y)-C=0< Ada(x)+Ba(y)+(-C)a(z)=0 with a(z)=1 so
we must have 4n —Bm=1.1f n, and m, are solutions of this equation (A4n,—Bm, =1) it
remains us to find the solutions of the following equations:

a(x)=Bs+Cn,

a(y)=-Cm,—- As, s€Z , but we know how to find them.

Example. If we have the equation 2a(x)-3a(y) =5, x,y eN" using the above results,
we get: A=2, B=-3, C=-5 and a(z)=1=2n+3m . The solutions are m = 2k+1 and
n=—1-3k, k eZ . For the particular value kK =—1 we have my=—-1 and n, =2 so we find
a(x)=-3+5-2=10-3s and
a(y)=-5(-1)-2s=5-12s.

If 5,=0 wefind a(x)=10>x=104*, u€cZ’

a(y)=5=>y=5", vel  andsoon

8) Find the solutions of the equation: a(x)=ka(y) keN" k>1.

Proof. If k has in his prime factorization a factor which has an exponent > 2, then the
problem has not solutions. ‘
If k=p, -p,---p, and the prime factorizarion of a(y) isa(y)=q,-q,-9q, ,then

we have solutions only in the case p,,p, ,... P, e{qh g0, } .
This implies that a(x)=p, -p, =P, "9, 4,,"""q,, » SO We have the solutions

X = p]l .pa...p'_r .qﬂ .qn...qm . az

y=q,-9,4q, B, a.Bel’.

9) Find the solutions of the equation a(x)=x (the fixed points of the function a).

Proof . Obviously, a(1)=1. Let x>1 andlet x=p™* - p,?---pX*, a, 21, for j= Lr
be the prime factorization of x. Then a(x) = pf" -piE--p) and B, <1for j= 1,7. Because

a(x)=x this implies that o, =8, =1, VJ el,r, therefore x= p, Py " p,» Where

D, J= 1,7 are prime numbers.
J
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SOME REMARKS CONCERNING THE DISTRIBUTION
' JOF THE SMARANDACHE FUNCTION

7/

by :
TOMI’[A TIBERIU FLORIN , STUDENT, 4
UNIVERSITY OF CRAIOVA

The Smarandache function is a numerical function S:N* —N* S(k) representing the
smallest natural number n such that n! is divisible by k. From the definition it results that
S(1)=1.

[ will refer for the beginning the following problem:

"Let k be a rational number, 0 < k < 1. Does the diophantine equation Rl k has
n

always solutions? Find all k such that the equation has an infinite number of solutions in
N*" from "Smarandache Function Journal".

I intend to prove that equation hasn’t always solutions and case that there are an
infinite number of solutions is when k=2 ,r € N* .k € Q and 0 <k < 1 = there are two
r

relatively prime non negative integers p and q such that k=% , pge N* , 0 <q<p. Letn
P p q » pP-.q q=p

be a solution of the equation > _ ¢ Then S—i"—’=£ , (1). Let d be a highest common
n q

divisor of n and S(n) : d = (n, S(n)). The fact that p and q are relatively prime and (1)
implies that S(n) = qd , n=pd = S(pd) = qd (*).

This equality gives us the following result: (qd)! is divisible by pd = [(qd - 1)!-q] is
divisible by p. But p and q are relatively prime integers, so (qd-1)! is divisible by p. Then
S(p)<qd-1.

I prove that S(p) 2 (q - 1)d.

If we suppose against all reason that S(p) < (q - 1)d, it means [( q - 1)d - 1} is
divisible by p. Then (pd)j [ (q - 1)d]! because d | (q - 1)d, so S(pd) S (q - 1)d. This is
contradiction with the fact that S(pd) = qd > (q - 1)d. We have the following inequalities:

(q-1)d<S(p)<qd-1.
S(p+l)sd

For q > 2 we have from the first inequality d S%Ll) and from the second , S0
- q
S(P*‘I)SJSS(P)_
q g-1
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For k=% | q > 2, the equations has solutions if and only if there is a natural number
P

between 221 and ﬂf’%. If there 1sn’t such a number, then the equation hasn’t solutions.
q q- ,
However, if there 1 a number d with Ste=b g s—S-(Ll) , this doesn’t mean that the equation
q q-

has solutions. This condition is necessary but not sufficient for the equation to have
solutions.

For example:

, M=%. In this case the equation hasn’t

3
2 q-1

a)k:%,q=4 , p=5 =

solutions.
b) k:% , =3, p=10; S(10)=5 , §=2$ds§. If the equation has solutions, then we

must have d=2, n=dp=20, S(n)=dq=6. But S(20)=5.
This is a contradiction. So there are no solutions for & =T36'

We can ha'e more then natural numbers between 221 3p4 52 1) For example:
q q-
9, 2= _ 15 3Dy,
q q-1

3() _k hasn’t always solutions.
n

3 — —
k=5§ , q=3, p=2

We prove that the equation

If g 2 2 then the number of solutions is equal with the number of values of d that

verify relation (*). But d can be a nonnegative integer between >2*Y and 52 1) , so d can
q q-

take only a finite set of values. This means that the equation has no solutions or it has only a

finite number of solutions.
We study note case & =L p € N*. In this case he equation has an infinite number of
p

solutions. Let py be a prime number such that p<p, and n=ppy. We have S(n)=S(ppo)=p, so

S(n)=py. Sk 1 , so the equation has an infinite number of solution.
n o p

I will refer now to another problem concerning the ratio 3 "5 there an infinity of
n

l 17 )
natural numbers such that 0 < { (x ) b< g 3(x) » 7" from the same journal.
W)X

[ will prove that the only number x that verifies the inequalities is x=9 : S(9)=6,

.82 { d }={3$=1 and0<lc2 sox=9veriﬁesO<{—x }<{——S(")}.
* 9 3 (S(x)) 6] 2 203 S(x) x

Let x=p{"...p7 be the standard form of x.
S(x):lmka.x S(pg*). We put S(x)=S(p*®) , where p* is one of pf..p* such that
<k<n

S(p®)= max S(pg*).
1<k<n 45



" x ) 2 S(x)-1
» can take one of the following values : . . ey
S(x) & S(x) 5(x) S(x}

because

,

Y ‘ N r
0 < <— ><<S(x)$(WehaveS(x)Sx,so&‘—)sl d{S(x) S(x) ). This means
\S(x)j . X ) x \ X 7 x
.‘E)-l_:s a2> 2 a_ 2
x  S{x) (P >x2p ()

But (ap)! =1-2- .. -p(p*1)...(2p)...(ap) is divisible by p® , so ap=S(p®). From this last
inequality and (2) it follows that aZp2>p2. We have three cases:

[. a=1. In this case S(x)=S(p)=p, x is divisible by p, so % € Z. This is a contradiction.
There are no solutions for a=1.

II. a=2. In this case S(x)=S(p2)=2p, because p is a prime number and (2p)! =1-2- ...
P(~1)-.(2p). s0 S(P?)=2p.

) . :
But{p ?esol> This means < px —r= l::~l<-£- <4 ; p is a prime number =p €
L2 12 2 272 Ty
{2,3}.
If p=2 and px; <4 = x; = 1, but x=4 isn’t a solution of the equation: S(4)=4 and
20
fa)°

- Ifp=3 and px; <4 = x; =1.s0x=p?=9 is a solution of equation.

III. a=3. We have a?p?>p* < a2 > p*1.

For a > 8 we prove that we have p*2>p2, (V) p € N* | p22.
We prove by induction that 281 > (n+1)2.

201 = 2.20-2>2.n2=n2+n2>n2+8n>n2+2n+1=(n+1)2, because n > 8.
We proved that p*-2 22%-1>q2 forany a28,p € N*, p>2.
We have to study the case a € { 3,4,5,6,7}.
a)a=3 = p e {2,3,5,7} . because p is a prime number.

/

If p=2 then S(x)=S(23)=4. But x is divisible by 8, so isz )} { } 0, so x=4 cannot
x

be a solution of the inequation.

£

If p=3 = S(x)=S(33)=9. But!x BUAvT41ble By 27 so {E(%} = g} =0, so x=9 cannot
L X

PR

be a solution of the inequation.

{ Y or M
If p=5 = S()=S(53)=15; ﬁiﬁf - Si") L= 0 x=53x,, x] € N*, (5.x)=1.
L \ 7
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e, T 3 : . L it 12 1
We have 0</ L, <¢{———>. This first inequality implies ¢ bE{—, =%, 50 = <
3 5hx . o33 3
523 = 5%.x <9, but this is impossible.
X
If p=7 = S(x)=S(73)=21, x=73-x; , (7.x))=1, x1 € N*,
T x ) IS0 7%, 7Pk
We have 0 < ¢ ¥ i< §S(x)> :0<<7 x"j> < 23 . But 0 < ¢ } implies
Sl e T U3 ] T N
7Pl (102
(et
3 133
1 (Tx, 5 . :
W have 3 <y T » = 7%.x; <9, but is impossible.
{ J

b)a=4:16 = p e {2,3}.

S(x)

If p=2 = S(x)=S(x2)=6 , x=16-x; , x;e N* , 2x)=1,0 < {__x Ij < =0 <
1S(x) x
4&1 <3
3 8

8 A}
0< {25} =ox,=1 =5x=16.

f To16) (8) . o :
o) _e 3. : . f>=<1—§'>:<f§;=3-z >3 sothe inequality isn’t verified.
Sy, (6, 3, 33 8

If p=3 = S(x)=S(34)=9 , x=34x, , Bx =<l > Ix = g(—x—)=0, so the inequality isn’t
p 4

But

x 16 8°
verified.

For a={5,6,7}, the only natural number p>1 that verifies the inequality a? >p>-2 is 2:

a=5:25>p3 = p=2

o =6:36>p* =p=2

a=7:49>p

In every case x=2%x, , x;€ N* , (x4,2)=1 , and S(x;) < S(2%).

But S(25) =S(26) =S(27)8 , so S(x) = 8 But x is divisible by 8, so {ﬁ} =0 so the

1 )

inequality isn’t verified because O={' S(x ) ¢. We found that there is only x=9 to venify the
X))

. . f 1 (800

nequality 0 < < —\ <

oy 0< (555 < (5

[ try to study some diophantine equations proposed in "Smarandache Function
Journal".

1) I study the equation S(mx)=mS(x), m>2 and x is a natural number.
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Let x be a solution of the equation.

We have S(x)! is divisible by x It is known that among m consecutive numbers, one is
divisible by m, so (S(x)!)is divisible by m, so (S(X)+1XS(x+2)...(S(x)+m) is divisible by
(mx). We know that S(mx) is the smallest natural number such that S(mx)! is divisible by
(mnx) and this implies S(mx)<S(x)+m. But S(mx)=mS(x), so mS(x)<S(x)+me>mS(x)-S(x)-
m +1 £ & (m-1) (S(x)-1)<1. We have several cases:

If m=1 then the equation becomes S(X)=S(x), so any natural number 1s a solution of
the equation.

If m=2, we have S(x) € { 1,2 } implies x € { 1,2} . We conclude that if m=1 then any
natural number is a solution of the equation of the equation; if m=2 then x=1 and x=2 are
only solution and if m 2 3 the only solution of the equation is x=1.

2) Another equation is S(xY)=yX , X, y are natural numbers.

Let (x,y) be a solution of the equation.

(yx)!=1..x(x+1)...(2x)...(yx) implies S(x¥) < yx, so y*<yx, because S(xY)=y*.

Buty>1,s0 y*l<x.

If x=1 then equation becomes S(1) =y, so y=1, so x=y=1 is a solution of the equation.
If x22 then x22%1. But the only natural numbers that verify this inequality are x=y=2:

x=y=2 verifies the equation, so x=y=2 is a solution of the equation.

For x23 we prove that x<2%-1, We make the proof by induction.

If x=3 : 3<23-1=4,

We suppose that k<2k-! and we prove that k+1<2k We have 2k=2.2k>2-k=k+k>k+1, so
the inequality is established and there are no other solutions then x=y=1 and x=y=2.

3) I will prove that for any m,n natural numbers, if m>1 then the equation S(x?)=x™
has no solution or it has a finite number of solutions, and for m=1 the equation has a
infinite number of solutions.

I prove that S(x?)< nx. But x@=5(x") , so x™ < nx.

For m>2 we have x™! < n. If m=2 then x< n, and if m 2 3 then x < ™¥, s0 X can
take only a finite number of values, so the equation can have only a finite number of
solutions or it has no solutions.

We notice that x=1 is a solution of the equation for any m,n natural numbers.
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If the equation has a solution different of 1, we must have x™=5(x") <x1., so m<n

If m=n, the equation becomes xm=1=§(x™) , so X" is a prime number or x" =4, so n=1
and any prime number as well as x=4 is a solution of the equation, or n=2 and the only
solutions are x=1 and x=2.

For m=1 and n > 1, we prove that the equations S( x™)=x, X € N* has an infinite
number of solutions. Let be a prime number, p>n. We prove that )np) is a solution of the
equation, that is S((np)?)=np.

n<p and p is a prime number, so n and p are relatively prime numbers.

n<p implies:

(np)! = 1-2- ... - n(n+1)- ... -(2n)- ... -(pn) is divisible by n2.

(np)! = 1-2- ... - p(p*1)- ... (2p)- ... -(pn) 1s divisible by p=.

But p and n are relatively prime numbers, so (np)! is divisible by (np)®.

If we suppose that S((np)?)<np, then we find that (np-1)! is a divisible by (np)?, so(np-
1)1 is divisible by p%(3). But the exponent of p in the standard form of p in the standard
form of(np 1)! iS'

But p >n, so p2 >np >np-1. This implies :
; |- 1] |

k

p

0 , for any k 2 2. We have:

E
[ d
np—
pP

E=

p-17
! j—n—l.

This means (np-1)! is divisible by p™! | but isn’t divisible by p2 , so this is a
contradiction with (3). We proved that S((np)n)=np, so the equation S(xn)=x has an infinite

number of solutions for any natural number n.
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SOME ELEMENTARY ALGEBRAIC CONSIDERATIONS
INSPIRED BY THE SMARANDACHE FUNCTION
by

E.Radescu, N.Radescu, C.Dumitrescu

It is known that the Smarandache function S:N---N,

S(n)smin{k|n divides k!} satisfies

{i) S is surjective

(ii) S([m,n)}) = max { S(m),S(n)}, where [m,n] is the smallest
common multiple of m and n.

That is on N there are considered both of the divisibility
order s; ( msy n if and only if m divide n ) and the usual order =.
Cf course the algebraic usual operations "+" and "-" play also an
important role in the ‘description of the properties of S.

For instance it is said that [1]:
max { S(k¥),S(n") } = S((kn)®™) s aS(k*)+kS(n®).

If we consider the universal algebra (N,Q), with

0=V, é,}, where V,: (N*)?---N* is given by, m V, a=[m,n], and
&, : (N*)°--=N*, is given by &, ({®h=1=ey, and analogously the

universal algebra (N*,Q/) with Q’={V, ¥,}, where V. (N*)?---N*, is
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defined by mVn=maxim,n}, and ¥, : (N*)°---N* is defined Dy

¥, ({®}) =1=6y, then it results:
1. PROPOSITION. LetN={5-(k)|keN*},wheres- (k) ={xeN*|S(x) =k}. Then

(a) N is countable (cardN*=alef zero) -

(b) on N may be defined an universal algebra, isomorfe with
(N*, Q).
Proof. (b) Let ¢: (N)2---N be defined byw (S7(a), 3=(b))=8"(c) .
where C=S(xVy), with xe38~(a) ,y€S (b) .

Then w is well defined because if x,€S7(a) .y, €S (D) the

S(x,Vay,) =8(x,) VS(y,) =aVb=5tx) VS(y) =8(xVy) =c.

Example.  ($-(23),87(14))=8"(23) because if for instance
x=46€S5-(23)and y=49€S-(14) then 46 V449 =2254 and S5(2254) =23.

In fact, because c=S{xVy)=5(x)VS(y)=aV¥b, it results that

w is defined by

w(s-(a), S (b)) =8 (aVb) -
We define now w,: (N)°---N by o, ({®#})=57(1).
Let us note S-(1) =¢,. Then
vs-(k) eN © (3 (k),e,)=w(e,, S (k))=5"(k) .
Then (N, Q) is an universal algebra if 0={w, w,}.
It may be defined h:N---N* an isomorphism between (N, @) and

(N*, Q) , by h(87(k)) =k.
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We have
VS-(a) , S (b)) eN h(w(38~(a),S (b)) =h(S5 (aVh) =

=aVb=h(8~(a)) Vh(S (b))
that is h is a morphism.

Of course h(w,({®}) =P,({®}) and b is injective.

Indeed, h(S (a)) =h{(S (b)) «a=b and then

"xeS (a) «» S(x) =a=b=x€S (b) =S (a)cS"(b) and analogously

S-(b)<S~(a). so S (a)=S8"(b) -
From the surjectivity of S it results that b is surjective,

because for every keN®* it exists xeN* such that S{x)=k, so
S"(k)»® and h(S~(k)) =k.

Then we have (N, Q) ®(N*, Q") and from the bijectivity of B it

results cardN=cardN*, that is the assertion (a).

Remarks (i) An other proof of Proposition 1 may be made as

follows;

Let P, be the equivalence associated with the function 8
Xpgy e S(x) =S(y) .

Because S is a morphism between (N*, Q) and (N*,Q/) it results

that pg is a congruence and so we can define on %r- the operations

-4

w and w, by
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w: (N'/pg)3--=-N*/p,, (2,9 =xVyy;

wy: (N/pg):-—-N*/pg, @, ({®}) =1.

Moreover, N*'/p.,=N and so it is constructed the universal
algebra (N, 0), with @={w,w,}. That because §:(N*,Q)---(N*, Q/) is
a morphism so by a well known isamorphism theorem it results that (N*/pg) =ImS
so (N,Q)=(N°*,Q) . That is we have a proof for (b), the morphism

being a:N---N*, a(R)=S(x) .
(ii) Proposition 1 is an argument to consider the functions

Spin: N*-==N*, 3L (k) =minS~ (k)
St N*===N*, 5% (k) =max3~(k) (sec [4])

whose properties we shall present in a future note.

(iii) The graph
G ={{x,y)eN*XN* / y = 3(x)}

is a subalgebra of the universal algebra (N*XN°*, Q), where
Q=lw, ), with @: (N*X N*)2---N*XN*, defined by
©((x, 7). (x,5,))=(x, Vdx,,y; Vy,) and o,: (N*xN*)°--~N*x N*, defined
by @, ({®}) =(d, (1®}) , P, ({®))=(1,1) .

Indeed G is a subalgebra of the universal algebra (N*xN*, Q)
if for every (x,,y,),(x,, ¥,) €G it results @ ({x, »,), (x,y,) €C

andw, ({®})eG. But

© (X, 7)., (6.5)) = (0 Vx5, 7 Vy,) = (x, Vyx,, S(x) V8 (X)) = (x, V%,
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and @, {{®) €G if and only if (1,1) €G.

That is (1, S(1)) €6.

In fact the algebraic property is more complete in the sense
that f:A---B is a morphism between the universal algebras(a, Q)
and (B, Q) of the some kind ¢t if and only if the graph P of the
functional relation f is a subalgebra of the universal algebra
(AxB, Q) .

Then the importance of remark (iii) consist in the fact that
it 1s possible to underline some properties of the Smarandache
function starting from the above mentioned subalgebra of the

universal algebra (N°xN*, Q).
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SMARANDACHE FUNCTIONS OF THE SECOND KIND

by Ion Bilicenoiu and Constantin Dumitrescu
Departament of Mathematics, University of Craiova
Craiova (1100), Romania

The Smarandache functions of the second kind are defined in [1] thus:
S¥N' >N, Stm)=S,(k) for neN,

where §, are the Smarandache functions of the first kind (see [3]).

We remark that the function S' has been defined in [4] by F. Smarandache because
st=§.

Let, for example, the following table with the values of S?:

n |1 2 3 4 5 6 7 8 9 10 11 12 13 14
o {1 4 6 6 10 6 14 12 12 10 22 8 26 14

Obviously, these functions S aren't monotony, aren't periodical and they have fixed
points.

1. Theorem. For k,n N istrue S*(n)<n-k.
Proof Let n=p[p;*...p* and S(n):rlrsl‘asyt({SPi(a,)}=S(pf’).

Because  §*(n) = () = max{S, (a)} = S(p7*) < kS () < AS(p") = kS (m)
and S(n)<n, [see([3]], it results:

(1) S¥(my<sn-k for every nmkeN" .
2. Theorem. A/l prime numbers p > 5 are maximal points for S*, and
Sk(p)zp[k—ip(k)], where Osip(k)sli%]

Proof. Let p>5 be a prime number. Because Sp_l(k)<Sp(k), Sp+l(k)<Sp(k) [see

[2]] it results that S*(p-1)<S*(p) and S*(p+1)<S*(p), sothat S*(p) is a relative
maximum value.
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Obviously,

(2) SH(p)=S,(k)=plk-i,(k)] with OS’P”‘)S[L;]'

(3) S¥(p)=pk for p2k.

3. Theorem. The numbers kp, for p prime and p>k are the fixed points of Sk,

Proof. Let p be a prime number, m= p®...p% be the prime factorization of m and
p>max{m,k}. Then pa, <pt<p for ielt, therefore we have:

$*(m- p) = SU(mp)* 1= max{S, ..., (00} = S, ()= kp.

For m=k we obtain:

S*(kp)=kp sothat kp isa fixed point.

4. Theorem. The functions S* have the following properties:

Sk =0 (n***), for £>0

im sup =k.
”"’f n
Proof. Obviously,
k
OSmnS,("LumS(l’f)sumkS“”’:kﬁmS(f)-o for
o nte nso gt o pte e e
S=0 (1), [seef4]}.
Therefore we have S* =0 ('), and:
k
tm sp 5  fim sup ST - i S
nswo n rse n po P
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5. Theorem, [see[l]]. The Smarandache functions of the second kind standardise
(N, ) in (N,<,+) by:

¥, max{$*(a),5%(b)} < S (ab) < S*(a) + 5% ()
and (N', ) in (N' <) by:

5, max{S%(a),5%(b)} < $*(ab) < S*(a)- S*(b) for every a,beN'

6. Theorem. The functions S* are, generally speaking, increasing. It means that:
vneN' 2myeN sothat Ym>m; = S§“(m)=S*(n)
Proof. The Smarandache function is generally increasing, [see [4]], it means that :
(3) vVt eN" Zn(t)eN sothat Vr2r = S(r)2S(¢)

Let t=n* and ro=r(t) so that Vr2r = S(r) 2 S(n*).

Let m,,=[5/5]+1_ Obviously my 2 4/r, & mf2r,and m>my & m" > mf.
Because m 2mf >r, it results S(m*)2S(nf) or S¥(m)=S¥(n).
Therefore

VneN Zmy= {'{/ro ] +1 so that
vmz2m, = S¥(m)= 5“(n) where = rO(nk)
is given from (3).
7. Theorem. The function S* has its relative minimum values for every n = p\, where p
is a prime number and p > max{3,k}.

Proof. Let p!'=p!-p}---pr-p be the canonical decomposition of p!, where
2=p <3=p, <--<p,<p. Because p! is divisible by p;’ it results S(p;f) <p=S(p) for

every j el,—m.
Obviously,

5o = ST(p)*1= max| 5(6).5(s)}
Because S(p'" ) < kS (p?) < kS(p) = kp = S(p*) for k < p, it results that we have

4 SY(p)=S(p*)=hp, for k<p
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Let p!-1=gq}-q7---q be the canonical decomposition for p!-1, then
q,>p for j elr.
It follows S(p!-1) = %{S(q;’ )} =S(qy) with ¢, > p.
)

Because S(gz) > S(p) = S(p!) it results S(p!-1)> S(p!).
Analogous it results S(p!+1)> S(p!).
Obviously

&) SHp-D=S[(p- 1) |2 5(gk) 2 5(gk) > S(PM) = kp

© S*p+D=S[(p+1)*]>k-p

For p2max{3,k} out of (4), (5), (6) it results that p! are the relative minimum
points of the functions S* .
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f 7 15 a prume number, then S(z} = z. thus the point iz, S(p)i belongs 1o the line of
equation y =z ;

If 7 is a composite integer, ; # 4, then i;‘& < £ which means that the point (g, S(g)) is

under the graphic of the line of equation y = £z and above the axe 02z .

a: -
-—

¥

-~
-

wr

LA )
o]

/ -l -z

Thus, for every consecutive integer numbers =,y where z = p is a prime number and
7 = p~1. the lenght AB can be made as great as we need, for z,y sufficiently great.

Remark 2. [n fact we have proved that the fonction f: N* — N defined by f(n) =
Sin) = S(n ~ 1} is unbounded, which imply that the Smarandache’s function is not Lip-
schitz.
In the sequel we study the Lipschitz condition for other fanctions which involve the
Smarandache’s functioa.

Propesition 2 The %ncticn & V' 010 = ¥, Si{n) = 37'75 verify the Lipschits
ssndition. o

Prsof Forevery = > 2 we have S{z) > 2. therefore 0 < 3{5 <: Hwetakez #yin
N\ {0,1}, we have

.1 1,
| —— - -(-—
S(zy Sty —2- 2! -



For z = y we have an equality in the relation above, therefore S; is a funcuion which verify
the Lipschitz conditlon with A = 3 and more, it 1s a contractant function.

Remark 3. In {2 it is proved that T =~ is divergent .
@Y.

Proposition 3 Tic funoiicn 8,0 Nt = VL Syin) = 22 venfy tne Lizscruz condilion.

Provf Forevery ¢,y € N, 1< e <y wehaver =nand y =n—m wherem € N*. In
2] is proved that

I Nin)

—T < <, Vme N0 1}
in = 1) n

Using this we have

1S(zy  Slyyi iS{n)  Sin+mi 1
“)— IR AV 1< 1= \<l<xz yl
z o 2 ne-m tn+m = 1)
therefore
S(ey Sy
; ()_ \j/ S :—g,

» 1
bt J

for z and y as above. For z = y we have an equality in the relation above. It follows that

<, 1s venfy the Lipschitz condition with K = 1.
' |

Remark 4. Using the proof of Propositiz= § proved below, it can be shown that the
Lipschitz constant K = 1 is the best possible. Indeed, takez =n=p-1,m=1
and therefore v = p {with the notations from the proof of Propositicn 8 ), with p a
primenumber. From the proof of Propositicn 5, there 1s a subsequence of prime numbers

‘rnukm such that —”!:—- “=% 0 Fork > | we have, for a Lipschitz constant K of S
ynk .
, ' Sipn) Slpa, - 1) Slon, = 1) k=0
R):“ k) T AT i=1— 3 =1
Pry Doy =1 1 Doy =1

Thus, K > 1
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Proposition 4 Thae furction S; - N 1301 = N Suinio= = ooy wot verify the
Lipschitz rondition,

Procf (Compare with the proof of Prczosries [

We have 1o prove that for every real A" > 0 there existe 2,3 € ¥ such that * S3iz) -
Sﬂ'u >K -yt

Let K > D be a given real number. 2 = ¢ be a pnme number and y = = — 1.Using the
P-czosinize 5 proved below, which asserts that the sequence « —:p——-e + 15 unbunded

.’)ﬂ)

where iP’n>1 15 the pnme numbers sequence), we have, for a prime number » such that
>K~+1:
D"J.

T yoi_ & p~1 p-1 ;
— = o T | — T ~ --1>K+1-1=K=Kjz-
S Sy Sk Sp-1. Sp-1) ==l
]
Proposition 5 l'ff;:n”l>1 is the prime numiers sequence, then the .aequ.ence{;&"—j}vaz2

;3 uvznm nd&d

Prosf Denote ¢, = p, ~ 1 and let =, be the number of the distinct prime numbers
which appear in the prnime factor decomposition of 7, . for n > 2 . We show below that
{7n ) .57 15 a0 unbounded sequence.

Forafixed £ € N*, consider r; Y, o1 - rr and the anthmetic progression {14 7y - m}m>1
From the Dinchlet Theorem {3, pg. 194;, it follows that this sequence contains a sabse-
quence 11 + 7¢ - m‘!m of prime numbers: 5., = | ~7;-m,, therefore 7 m; = py, =1 = gy,
which impl.ies that r, 2 k. It shows that the sequence (r, } a2 1s an unbounded sequence.

Mg, = H 93' then it is known (see ‘41 thau:

=1

Siga)=max S il =8 5¥) < g,
‘qn) tI.IlTE’x_ (v‘~ N ’3'/1 \‘-/ps}j Sa«'nﬁf
=diin

thus




We have:

21 (2)

Tndeed, if o, =1, then u; = 1. [fo, >1, then

y (z, = Dig, = 1) N Ly !
$ = s -2 T
n . . . R
Butvy= [] 73 hasry -1 prime factors and rny, 5, 18 unbounded, then it follows
EINT 3 ) =

F . . o [ )
that {Un},>7 15 unbounded. Using this. 1} and 121, 1t {ollows that the sequence i?ﬁm

is anbounded.
|

n>3

Remark 5. Using the same ideea, the Proposiiion §is true in & more xeneial form:
’ \

! Y } > ; ra | N lod s hem D . .
Fora € 7. the sequence { S22500 s wnhounded, where <oy 1§ the prime
H y r
Tpemal | pamini Fring, .

numbers sequence.
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PROPOSED PROBLEM
by Thomas Martin

Let 77:2" > N Smarandache Function: 77(m) is the smallest integer n such that
n! is divisible by m .
a) Prove that for any number k € R.therc exist a serics {p:}x of positive integer numbers
such that :

L=tim—2— >k

=~ n{p,)
b) Does L:limL diverge to + .
n—e 1(m)
Solution:

a) Let p. be a prime number greater than k. Index ;j is fixed We construct
P.=P,P.for i=123...
Lemma 1. f u < v are prime numbers, then 7(uv) = v.
Of course vi=1-2......u-....v=cf, = ok, .

Hence n(p,)= p,., , forany i=123.. where p,,, is the j +i* prime number.
Then L=p, > k.

b) Because there exists an infinity of primes : 7, 2..,,.-.., greater than k , we find
an infinity of limits for cach {p ()} series, ie. L= p,., or L= p,,; ctc.
Therefore L = lim —— does not exist!

== 17(m)

Reference:
R. Muller, "Smarandache Function Journal”, Vol. 1. Ne. 1, 1990.



PROPOSED PROBLEM

by J. Thompson

Calculate:

ﬂj\1+ - log n(n)J

where 77(n) is Smarandache Funcuon . the smallest integer m , such that m/ is divisible by
n.

Solution:
(&
We know that 1\21/ k —log n | converges to e for n - .
k=t /

It's casy to show that for k=2 , n(k)< k. More, for k a composite number
>10,n(k)<k/2. Also, if p>4 then: n(p)= p if and only if p is prime.

”n

S| 1 )
———log n(n) 2 Z——logn + Z ———3e+®=0

k—lO (k) \k=10k ?=10 k
k=prime
because for any prime number p there exists a composite number p-! such that
1 1
——>—thus:
r-1 p
Zl 1+1 1+1 1+l++l 1+1 1 - 1 —
il L= 5 — ,
w0 kK 10 12 14 15 16 18 11 13" 17 p(n)
kxprme

where p(n) is the greatest prime number less that .
We took out the first nine terms of that scnes the kimit of course didn't chance.

Reference:

Smarandache F., " A function in the number theory”, <Analele Univ. Timisoara>,
fasc. 2, Vol. XVILpp. 163-8, 1979,
see Mathematical Review: 82a:03012.

Current Address:

J. Thompson, Number Theory Association
3985 N. Stone Rd., #246

TUCSON, AZ 85705, USA
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PROPOSED PROBLEM OF NUMBER THEORY

BY PROF. KEN TAUSCHER

Let N be a positif integer. Let n be the function that associates to any non-null
mtegeeresmanutnumbchsuchﬁndﬁ:e minimum value of X from which
n(R)> N forany R > K.

Solution:

Lemma: For any X > ¥! we have n(X) >

Proof by reductio ad absurdum:

I n(X)=A<Y, then A'<T!'< X , whence A! may not be divisible by X.

Reference:
Thomas Martin, Aufgabe 1075, "Elemente der mathematik”, vol. 49, No.
3, 1993.

Current Address:
Ken Tauscher

14 / 162 Excelsior St.
Merrylands 2160

N.S5.W,, Sydney
Almraha
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A GENERALIZATION OF A PROBLEM OF STUPARU
by L. Seagull, Glendale Community College

Let n be a composite integer >= 48. Prove that between n and S(n)
there exist at least 5 prime numbers.

Solution:
T. Yau proved that Smarandache function has the following property:
S(n) <= n/2 for any composite number n >= 10,
because:
if n = pq, with p < g and (p, q) = 1, then:
S(n) = max {S(p), S(qQ)} = S(q) <= q = n/p <= n/2;
if n = p*r, with p prime and r integer >= 2, then:
S(n) <= pr <= (p*r)/2 = n/2.

(Inequation pr <= (p”*r)/2 doesn’t hold:
for p =2 and r = 2, 3;
as well as for p = 3 and r = 2;
but in either case n = p*r is less than 10.
For p =2 and r = 4, we have 8 <= 16/2;
therefore for p = 2 and r >= 5, inequality holds because the right side is
exponentially increasing while the left side is only linearly increasing,

i.e. 2r <= (2*r)/2 for r >= 4 (1)
Similarly for p = 3 and r >= 3,
i.e. 3r <= (3*r)/2 for r >= 3. (2)

Both of these inequalities can be easily proved by induction.
For p =5 and r = 2, we have 10 <= 25/2;

and of course for r >= 3 inequality 5r <= (5%r)/2 will hold.
If p > 7 and r = 2, then p2 <= (pr2)/2,

which can be also proved by induction.)

Stuparu proved, using Bertrand/Tchebychev postulate/theorem, that there
exists at least one prime between n and n/2 {i.e. between n and S(n)}.
But we improve this if we apply Breusch’s Theorem,
which says that between n and (9/8)n there exists at least one prime.
Therefore, between n and 2n there exist at least 5 primes,
pecause (9/8)"5 1.802032470703125... < 2,

while (9/8)"6 2.027286529541016... > 2.

References:
I. M. Radu, "Mathematical Spectrum", Vol. 27, No. 2, p. 43, 1994/5.
D. W. Sharpe, Letters to the Author, 24 February & 16 March, 1995.
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AN IMPORTANT FORMULA TO CALCULATE THE NUMBER OF PRIMES LESS THAN X
by L. Seagull, Glendale Community College

If x >= 4, then:

I
f ! I
: : (x) = / ! k

where S(k) is the Smarandache Function: the smallest integer such that S(k)!
is divisible by k, and | |

] a |

| |

means the integer part of a.

Proof:
Knowing the Smarandache Function has the property that if p > 4 then
S(p) = p if only if p is prime,
and S(k) <= k for any k,
and S{4) = 4 (the only exception from the first rule),
we easily find an exact formula for the number of primes
less or equal than x.
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