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Editorial

Florentin Smarandache, a mathematician from Eastern
Europe, escaped frem his country because the communist
authorities had prohibited the publication of his research
papers and his participaticn in international_congresses.
After two years of waiting in a political refugee camp in
Turkey, he emigrated to the United States.

As research workers, receiving our cb—worker, we
decided to publish a selection of his papers.

R. Muller, Editor

Readers are encouraged to submit to the Editor
manuscripts concerning this function and/or its

properties, relations, applications, etc.

A profound knowledge of this function would
contribute to the study of prime numbers, in accordance
with the following property: 1If p is a number greater
than 4, then p is prime if and only if n (p) = p.

The manuscripts may be in the format of remarks,
conjectures, (un)solved and/or open problems, notes,

research papers, etc.



INDICATION TO AUTHORS

Authors of papers concerning any of Smarandache type functions
are encouraged to submit manuscripts to the Editors:

Number Theory Company
c/o R. Muller

2220 W. Bloomfield Ave.
Phoenix, AZ 85029, USA

The submitted manuscripts may be in the format of remarks,
conjectures, solved/unsolved or open new proposed problems, notes,
articles, miscellaneous, etc. They must be original work and

camera ready [typewritten/computerized, format: 8.5 x 11 inches (=
21,6 x 28 cm)]. They are not returned, hence we advise the
authors to keep a copy.

The title of the paper should be writing with capital letters.
The author"s name has to apply in the middle of the line, near the
title. References should be mentioned in the text by a number in
square brackets and should be listed alphabetically. Current
address followed by e-mail address should apply at the end of the
paper, after the references.

The paper should have at the beginning an up to a half-page
abstract, followed by the key words.

All manuscripts are subject to anonymous review by two or more
independent sources.



A FUNCTION IN THE NUMBER THEORY

sunmarvy
In this paper I shall construct a function n having

cllowing properties:

ot
e
®
rn

(1) YneZ n=0 (n(n))!=1=5n.
(2) n{n) is the smallest natural number with the
property (1).

We consider: N = (0, 1, 2, 3, ...} and

Lemma 1. Y k, p € N*, p »1, k i1s uniquely written

(e (» (M
under the shape: k = t.‘a_’p + ... F taa;:lwhere an:> =
" i
pTE-1
=— ,1=1,¢,n >n>... >0, >0 and 1 < t, <
p-1
<p-1, J =1,¢-1 , 1 <t, £ P, O, t, € N, 1 = 1,2, & € N=*,

X ¢ . .
Proof. The string (a, ),,- consists of strictly

. : . .. ) (»)
increasing infinite natural numbers and 2, -1 =p - a_,
¥ n e N, p is fixed,
) (®) )
a, =1, a =1+0p, & =1+p+ D% ...
(P (P (P (P)
- N* = *Y) ¥
N U ((a, , a.y) NN ) where [a_, , a_,)
neN=*

AMS (MOS) subject classification (1980): 10AS9
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If r, 0, as

1l is proved.
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If r, =0 =

(P

ny ry, = n, > Ny,

< p - 1 because we

The procedure

number of steps ¢,

have t, < (a

continues similarly.

we achieve r,

o>

()
amZ)

NS

(P}

norp ) k is uniquely written
1

(® . C e
a, + r, (integer divisilon theoren).
1

P,

(p)

aﬁ‘\,,i -1=1<¢<0p and Lemma

[a ,

(P
LIPE 21

1
After a finite

0, as k finite, k € N=*
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and Kk > r, >r, > ... >, = 0 and between 0 and K there
only a finite number of distinct natural numbers.
Thus:
. . . ()
k is uniquely written: Kk = t,a, +r, 12t <p -1,
"y 1
. . s w
. bad = -~
r is uniquely written: I, tzaﬂ2 + r,, N, < 0,
1< tz <p -1
. . f e e . + = t (P} . d —
r,., is uniguely written: r,, = %@, - r, and r, = 0,
n, < n 1< t, <
¢ e-1’ = H= P
. . . 5 (®)
-k is uniquely written under the shape k = t,a,
1
(P
+ ... + t,a
7
with n, >n, > ... >n, > 0; np > 0 because n, € N*, 1 <

<p-1, j =1,8-1, L <t £p, £ 21.

. ' _o® O
LetkeN,k=t1an’ -.-...+t(anz m.thanx =

i

t.

h
P

S

<

(6]}



L, my, S, € N*, L1 =1,2,n >n,> ...
l<g, £p-1, 3=1,2-1, L <% <p.

I construct %I

e Ne oz ) =P,
fip(t,an:p) + ...+ tzaq(:) ) = t1’7;(a,\(:) )
st (anip)) -
NOTE 1.

The function M, is well defined for each
natural number.

Proof

LEMMA 2. VY K € N* = k is uniquely written as k

) (p)
+ ... * tlan

with the conditions from Lemma 1 =- =l t.p
n n
¢ ® , )
T TP o=, (B2, .. T LA, ) and tp -+ ..

N*

.

I
ay
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LEMMA 3. VkeN*,VpeN,p=prime-k=t1an1 +

() . L.
+ ... T ta, with the ceonditions from Lemma 2 = r]p(k) =

o
t
.'
o
o)
v
——
B
T—

o3
t

It is known that /| i

¥ a,, b € N* where through {a] we have written the

-

o’ IDW

1
i
|

integer side of the number «. I shall prove that p's powers

|

sum from the natural numbers which make up the result

n, n,

factors (t,p + ...+ tp ! is > k:

n, n, n, n,
: t.p + ...+ &P : TP : = R n,-1
| P> 1 t o T Po= P + .
: P } o L p !

n,-1
+ g,p

n, n, ny n,
. tp + ... P : t.p : ’ t,p : n,-n,
! P> + ...+ P= t"p + .
{ p" | n, Lon, i

P P
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n, . e
e <P R = & A2
n. . - cep > ‘f : - - = \_Tp -~
c.P T n, n,
n P b
P
N,
r B
+ ~§’i
n, |
P
n,-1
Adding = prg Powers sum is > t. (p too.. +p%
n,-1
¢ (p) )
+ 0y - - « =
Tt (p T pP) = t1anT €, k

THEOREM 1. the function n, p= Prime, defined
previously, has the following Propertijies:

(1) ¥ ke n» (n,(k)) 1 = ¥p¥,

(2) n ﬂ? is the smallest number with the proper+:

(by Lemma 2) is uniquely written, where:



e p -1
= *
n,, &, ¢ N¥, n, > n, > >nl>0,an'_— € N*,
i p-1
i=1,¢, 1<t <p-1,3J=1,2-1 , 1<t <np
n, n, n,
- np(k) = t.p + ... + &,p I note: 2z =<tp +
)
+ ...+ gD

Let us prove that z is the smallest natural number with the

property (1). I suppose by the method of reductio ad

L

absurdum that v € N, v < 2

.{|=.“p'
v < Z =y <z =1= (2 - 1)! = Mp*.
n, n,
z -1=¢tp + +t p, -1;n >n,>...>mn >1and
n. e N, j =1,2 ;
z- n,-1 n, -1 , n,-1 -1
— = tp + + £,.4P + £,p -las|[—} =-1
pf |p3

because p > 2 ,



4 - n,.,-n S
zZ=4i n,=n, e-1 e a
. - = v - —_— = -
f= 4P +oo.. T 5P T 1 as <
n, | 0y
o) P
as p > 2, n, 21,
0,
- -n,- -n. =1 - -3
z-1 , n,-n, i n,.,~n,-1 o t,P 1
.1§_t‘~p Toees T TP T _ =
Np=< . L n,+1
P j<
n,-n,-1 ' ' nH—nz—l
= L,p + ... F LD because
n, n, n,+1
0 < t,p -1l1<p-pP - 1<0p as ¢, < p ;
n,
j' z-1 _ L, . s TP -1, L MR
| . T WP SR I) <M | = %P +
L nz_11 I'lt_1 )
P P
+ - g
... + t,,p"asn,, >n,,
1 n, n,
Z _ . . 5P + ... + &P -l} s
- t1p +! I = 5P .
n, n, ‘ ]
P p
n2 nt nz
Because 0 < t,p + ... +tp -1 < (p-1) p - ... 0+



N, n, n, , n,+1l
s p-yp T rpp -l ed. EoprR T
i=n,
nz-l-l
P n,+t1 n, n,
< (p-1) =p. -1<p -1<p =
p-1
0, T
<SR T - +tp -1,
- [ 0
‘. n, :
p
n, n
. oz=1 . tp +tp -1,
' \‘ =§ i = 0 because:
Lo+l | | n,+1 )
p p
n, n, n,+1 n,+1
0 < t,p + ... TP - 1<0p - 1<p according
to a reasoning similar to the previous one.
adding = p's powers sSum in the natural numbers which
make up the product factors (z-1)! 1is:
n1-l nm—l
t, (p + ... +pY) + ... e (P + ... +pYH +
n,-1 :
+t, (p +...+p°)-l-n£=k-nl<k—l<kbecause

11
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n, > 1 = (z-1) ! = Up*, this contradicts the supposition
nade.

= n,(k) is the smallest natural number with “he
property (n_(k))! = l.pk.

I construct a new function n: zZ\{0} = N defined as

follows:

e )

{ 77(:1)=OI

/ a, a,
Yn=ep, ... p, with € = + 1, pP; = prime,
p; » p; for i » j, e > 1, i=1,s, n(n) =

. = max {n (@) ).

_ D,

\ 1=1,s

\

N

NOTE 2. 1 is well defined and defined overall.

Proof

() VnezZ,n=*»0,ns=+ 1, n is uniquely written,
independent of the order cf the factors, under the shape of

a, 04

s , _ .
n==«cp ... P, with € = + 1 where P; = prime, p. = P, o 2

2 1 (decompose into prime factors in 2 = factorial ring)).

- 3! n (n) = max {n, (@;)) as s = finite and N, . (a;) € N=*
1

1
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and 2 max {n, (@)}

——

i=1,

0

(b) n=+1=3 1! n(n) = 0.

THEOREM 2. The function n previously defined has the
following properties:
(1) (n(n)) t =4 n, ¥Yne z\{(0} ;

(2) n(n) is the smallest natural number with *this

property.
Proof
e, as
(2) n(n) = max {ng (a)}, n=e€-p ...p ",
i=1,s
(n »z 1),
a, ’
(n (e))! =Mp, ,
B,

Supposing max {rzpi ()} = n, ° (aiJ = (n, (&ig)l =

—_— 1

i=1,s

) (aig € N* and because (Pi,p;) =1, 1 = 3
0 'o



"4
o>

. i
= (ny, (e )) L =3p ., §=1,s
i ol }
g
&7 C!s
- - !
(b) n=z1=n(n) =0; 0! =1, 1 =Y¥e «. 1 ="Yn
a1 as
(2) () n» =21 =-n=¢€ p, Ps = n7(n) = max 7
R ~1
i=1l,s
Let nmax (nF,i (cz,-))=rzp‘(a,-o),lsiss;
—— bi
1=1,s °
np*o (afo) is the smallest natural number with the propert

a.
| 10- o
(npi (a; )) e, V{€N,/<np'(ai3-
0 i
0
a. a. a; a
Y1 2Mp.® =~y ! aMe.op | 0 ) i
Y «plo vy ! =M e Py ... P, o Ps =Mn

- np. (a%) is the smallest natural number with the property.
1 ! )

0
() n=4%1=n(n) =0 and it is the smalles+ natural
number = 0 is the smallest natural number with the ‘propert

-~

ol =M (£ 1).



1=
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NOTE 3. The functions n, are increasing, noct
injective, on N* - (p* | k =1, 2, ...} they are surjective.
The functicn n is increasing, it is not injective, it

is surjective on 2 \ (0} —- N \ {1}.

CONSEQUENCE. Let n € N*, n > 4. Then

n = prime = n(n) = n.
Proof
" n
n = prime and n > 5 = n(n) = n, (1) = n.
14 1#
Let n(n) = n and suppcose by absurd that n = prime =
&1 Czs —_—
(a) or n = p, .. P with s > 2, @, € N*, 1 = 1,s ,
n(n) = max (n, (e)) =71, (& ) <o PR
1o
i=1l,s
contradicts the assumption; or
a, @,
(b) n =p, with oy 22 = n(n) =7, (&) £ P& <Py =

because @, > 2 and n > 4 and it contradicts the hypothesis.

Apolication

1. Find the smallest natural number with the property:



n(z 2% « 3% . 78) = max {n,(31), n5(27), n,(13)}.

. ) . (2}
Let us calculate n,(31); we make the string (2, )., =

=1, 3, 7, 15, 31, €3,

31 = 1431 = n,(31) = n,(1-31) = 1-2° = 32.

Let's calculate n.(27) making the string (a:3))n€N, =

=1, 4, 13, 40, ...;27 = 2+13 + 1 = 0@ = ny(2:13 =~ 1-1) =
= 2n5(13) + 1leng(l) = 2¢3% + 1.3 = 54 + 3 = 57.

) . ¢4
Let's calculate n,(13):; making the string (3, ), .y =

=1, 8, 57, ...;13 = 18 + 5+1 = n,(13) = 1:n,(8) + 5-n,(1)

(O]

= 1.72 +# 5.7" = 495 + 35 = 84 = n(+x 2*'.3%7.7"%) = nax (32,
84) = 84 = 84! = M(+ 237.3%.73) and 84 is the smallest
number with this property.

2. Which are the numbers with the factorial ending ir

1000 zercs?

Solution
n = 1099 (n(n))! = M10"% and it is the smallest
number with this property.

n(109%%) = 7(2'%° . 5'%% = max:{n, (1000), ns (1000)} =

= n,(1000) = ny(l-781 + 1156 + 2+31 + 1) = 1.5° = 1.5° +



+ 2.53 + 1.57 = 4005, 4005 is the smallest number with
this property. 4006, 4007, 4008, 4009 verify the property

put 4010 does not kecause 4010! = 400%8! 4010 has 1001 zerocs.

Florentin Smarandache
University of Craiova 17.11.19879

Nature Science Faculty

[Published on "An. Univ. Timiscara ﬁ,seria $t. Matematice,
Vol. XVIII, fasc. 1, pp. 79-88, 1980; See Mathematical

Reviews: 83c : 10008.]
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AN INFINITY OF UNSOLVED PROBLEMS CONCERNING

A FUNCTION IN THE NUMBER THEORY

§1. Abstract

has asserted to an international

’_l.

W. Sierpinsk

ct

for ever and numbersd -ha

th
1

o}
P
v
n
ct
(1Y
(o))

nanki

’.4.

conference tha

en in the long run all these unsolvad

o

unsolved problems, *
problems would be solved.

The purpose of our paper is that'making an infinite
number of unsclved problems to prove his supposition is nc:
true. Moreover, the author considers the unsolved prcblenms
proposed in this paper can never be all solved!

Every period of time has its unsolved problens which
were not previously recommended until recent progress.
Number of new unsolved prcblems are exponentially increasing
in comparison wiﬁh ancient unsolved ones which are solved at
present. Research into one unsélved problem may produce
many new interesting problems. The reader is invited to

exhibit his works about themn.

§2. Introduction

g

We have constructed (*) a function n which asscciates
to each non-null integer n the smallest positive integer
such that m! is a multiple of n. Thus, if n has the

standard form: -



a a
1 r
n=¢€p, p, ., with all p; distinct prines,
all a, € N*, and € = = 1, then n(n) = mnmax {np (a;)}, and
lgigr k
n (1) = 0.
Now, we define the 7, functions: let p be a prime and

a € N*; then n,(a) is the smallest positive integer b such

that b! is a multiple of p?. Constructing the sequence:
k_
w Pl
a = , k=1, 2, ...
p-1

( :
we have n, (akp)) = pX, for all prime p, and all k = 1, 2,

Because any a € N* is uniquely written in the form:

(P} (p}
a = t1an1 + ...+ teane , where n, > n, > ... > n 2> o,

and 1 < t,<p-1 for 3 =0, 1, ..., e -1, and 1 £ £, £ p,

with all n,, from N, the author proved that

€ (p) . & Iy
n, (&) = I &t n, (¢, )= T LHp .
i=1 ! i=1
§3. Some Properties of the Function n
Clearly, the function n is even: n(- n) = n(n),

ne€ 2%*. If n € N* we have:



-1 n(n)
(1) < <1y
(n=1}! n
n(n)
ard is maximum 1if and conly 1£f n 1s prime cr n = 47
n
n(n) . '
is mininum if and only 1if n = k! .
n
Clearly n is not a periodical function. For p prime, the

functions n, are increasing, not injective but on
N* - (p* | k =1, 2, ...) they are surjective. From (1) we

find that n = o(n™%), € > 0, and n = O(n).

The function n 1is generallv increasing on N*, that is:
Y) n € N*, (Z) m, € N*, m, = n), such that for all
0 0

m > my we have n (m) > 7 (n) (and generally decreasing cr

0
Z*): it 1s not injective, but it is surjective on
ZN{0} = N\(1}.

The number n is called a barrier for a number-
theoretic function f(m) if, for all m < n, m + f(m) < n (P.
Erdos and J. L. Selfridge). Dces € n (m) have infinitely

many barriers, with 0 < € < 1? [No, because there is

a my € N such that for all n - 1 > my, we have n (n -1) >

4+

2

> — (n is generally increasing), whence n - 1 + € n (n - 1)
€

>n + 1.]

P

£ 1/n (n) is divergent, because 1/n(n) > 1/5 .
n>2

v



. n
. 2
2 . 21
* procf: Let
= 2 2
1 L________J n
k times k-1 times 2
(2) “ .
a = 2" - 1, where m = 2 ;

[ ——
k-2 times

i

th {Zm)— My = 4-(2) = - =
en n 220 =, (2" =, (1 + 3, ) =n, (L) + 1, (2, ) =

=2 + 2"

§4. Glossarv of Svmbols and Notions

A-seguence: an integer seguence 1 <a <2 < ... s0
that no a, is the sum of distinct members
of the sequence other than a; (R. K. Guy):

Average Order: if f(n) is an arithmetical function and
g(n) is any simple function of n such that
£(1) + ... + £(n) = g(l) + ... + g(n)

we say that f£(n) is of the average order

of g(n):
d(x): number of positive divisors of xi
d,: difference between two consecutive primes:
pxﬂ - px 2 .
x an
Dirichlet Series: a series of the form F(s) = & — /, S
n=1 n®

may be real or complex;



Log x:

Normal Order:

Lipschitz-
Condition:

Multiplicative
Function:

p(x):

x
any function F(s) = % @, u (s) is

considered as a generating function

@,; the most usual form of

u (s) = e + wWhere i is a saguenc

of positive numbers which
steadily to infinity;

Napierian logarithm of X,

u. (s) is:

increases

to base e

cs

.
’

f(n) has the normal order F(n) if f£(n)

approximately F(n) for almost all v

of n, i.e. (2), (V) € > 0,

(L - &).

alu

1
-

as

*F(n) < f£(n) < (1 + €). F(n) for almos=-

all values of n; "almost all" np means

the numbers less than n which do not

pPossess the property (2) is o (x);

a function f verifies the Lipschitz-

condition of order a ¢ (0,

1] if

(F k>0: [£(x)~£(y)] < k [x-y|® ;

if

-
th

s

ad—

@ =1, £ is called a k% Lipschitz-function;

if k <1, £ is called a contractant

L

function;

a function f: N* - ¢ for which f£(1)

and f(m - n) = £(m) - £(n)

largest prime factor of x:

when (m,

n)

1,



Uniformly
Distributed:

Incongruent Roots:

s-additive
seguence:

Q
~

—

3

g*(n):

a set of points in (a, b) is uniformly

- 1 -
nterva. oI

[

distributed 1f every sub-

two integers x, y which satisfy the

]

)
<

]

o
0

L
£l

)

73

(o8
w0

congruence £ (X)

that x = v (med m) 7

a sequence of the form: a, = ... = &
=1l and a,; = 8,4 t .- T 2,4, 0 € N* (R.
Queneau) ;

sum of aliquot parts (divisors of n othe
than n) of n; g(n) - n;

k™ iterate of s(n);

sum of unitary aliquot parts of n;

least number of numbers not exceeding n,
which must contain a k-term arithmetic
progression;

number of primes not exceeding x:
number of priﬁes not exceeding x and
congruent to a, modulo b:

sum of divisors of n; o,(n);

sum of k-th powers of divisors of n;
k-th iterate of o(n);

sum of unitary divisors of n;



a({n)

e

w(n)

(m, n):
{m, n}:
| £1:

f(x) - g(x):
f(x) = o (g(x))
(x) = Otg(x))
£(x) << g(x)

rix):

~e

1

Tuler's totient function; nuxmber cf

t

numbers not exceeding n and prime to n;

k-th iterate of ¢(n);

1 .
— i - h v > -~} >~ - - N
=n [l ( - )y where the p-udub- 1s Sz2axkaen
IS

|

-
i
3

over the distinct prime diviscrs cf n;
number of prime factors of n, counting
repetitions;

number of distihct'prime factors of n;
floor of a; greatest integer not greater
than a;

g.c.d. (greatest common divisor) cf n and
n;

l.c.d. (least common multiple) of m and n
modulus or absclute value of £;

f(x)/g(x) = 1 as x - o; £ is asymptotic t
g:

f(x)/g(x) - 0 as X = «;

there is a constant c such that [f(x)]| <
< ¢cg(x), for any x;

Euler's function of first case (gamma

-»

x
function); I : R*, = R, I'(x) = [ e %
0

dt. We have I'(x+l) = x I'(x). If xe

e N*, I'(x) = (x - 1):



B(x): Fuler's function of second degree (keta

function); 8 : R*, X R* -~ R,
1

g (u, v) =T (a) T (v)/T (u+v) = f &t
0

(1 - g)v! dt;

m(x): M&ébius'! function; 4 ¢ N - N u«(l) = 1;

e

L (n) = (- 1)¢ i1f n is the product of
k > 1 distinct primes; p (n) = 0 in all
other cases;

B(x): Tchebycheff 8-function; 8 : R, — R,

B8 (x) =% leg p
where the summation is taken over all
primes p not exceeding X;
T(x): Tchebycheff's ¥-function; T (x) =
= ¥ A (n), with
n<x
log p, if n is an integer
A (n) = power cf the prime p;
0, in all other cases.

This glossary can be continued with OTHER (ARITHMETICAL)

FUNCTIONS.

§5. General Unsolved Problems Concerning
the Function n

(1) Is there a closed expression for n(n)?

(2) Is there a good asymptotic expression for n(n)?

—
(]
(&)

yes, find 1it.)



(3) For a fixed nen-null integer @, does n(n) divide n-
m? (Particularly when m = 1.) Of course, for m = 0 1t is
trivial we find n = k!, or n 1s a sguarefree, etc

(4) 1Is n an algebraic function? (If no, is there the
max Card (n € Z2* | (3) p € R (X, Y], p non-null polyncmial,
with p(n, n(n)) = 0 for all these n}?) More generally we
introduce the notion: g is a f£-functiocn if £(x, g(x)) = 0 for

all x, and £ ¢ R {x, v], £ non-null. 1Is n a f-function? (I:Z
no, is there the max Card (n € Z* | (3) £ € R [x, y], £ non-
null, £(n, n(n)) = 0 for all these n}?)

(5) Let A be a set of consecutive integers from N*.

Find max Card A for which n is monotoncous. For example, Caxd
A > 3, because for A = (1, 2, 3, 4, 3} n is 0, 2, 3, 4, 3,
respectively.

(6) A number is called an n-algebraic number of decree n

€ N* 1f it is a root of the polynomial
(p) p,(x) =n(n) x" + n(n - 1) '+ ...+ (1) x' = 0.
An n-algebraic field M is the aggregate of all numbers

A(v)

R_ (v)

n 14

-B(u)
where v is a given n-algebraic number, and A(v), B(v) are
polynomials in v of the form (p)‘with B(v) = 0. Study Y.

(7) Are the points p, = n(n)/n uniformly distributed in
the interwval (0, 1)?

(8) Is 0.0234537465114..., Wwhere the seguence of digits

is n(n), n > 1, an irrational number?
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Is it possible to represent all integer n under the form:
a, as a,

(9) n == n (a,) = n (a;) oo =0 (a) , where
the integers k, a,, ..., @, and the signs are conveniently
chosen?

n(a,) n{a,)
(10) But as n = = a, * + 2, ?
n(a,) n(as) n{ay)
(11) But as n = = a, t a; + ta
*
Find the smallest k for which: (V) n € N* at least one

of the numbers n(n), n(n + 1), ..., n(n = k - 1) 1is:

(12) A perfect square.

(13) A divisor of k".

(14) A multiple of a fixed nonzero integer p.

(15) A factorial of a positive integer.

*

(16) Find a general form of the continued fraction
expansicn of n(n)/n, for all n > 2.

(17) Are there integers m, n, p, 4, with m = n or
p * g, for which: n(m) + n(m+ 1) + ... + n(m + p) = n(n) *
+n7(n + 1) + ... + n(n + q)? .

(18) Are there integers m, n, p, K with m = n and p > 0,

such that:
n(m)2 + n(m + 1)2 + ... + n(m + p)?
=k ?
n(n)?2 + n(n + )2 + ... + n(n + p)?

(19) How many primes have the form:



n(2) n(3) = 23, n{(3) n(6) = 33 are prines.
(20) Prove that n(x") + n(y") = n(z") has an infinity cf

integer solutions, for any n > 1. Look, for example, at the

solution (5, 7, 2048) when n = 3. (On Fermat's last
K
thecrem.) More generally: the diophantine equation ¢
i=1
S m 4
n(x;) = .Z n(y;) has an infinite number of solutions.

j=1
(21) Are there m, n, k non-null positive integers, =m = 1
= n, for which n(m - n) = =* - n(n)? Clearly, n is not
homogenous to degree k.

(22) Is it possible to find two distinct numbers k, n

for which log n(n*) be an integer? (The base is n(k").)
n (k")

(23) Let the congruence be: h (x) = c, AL c,.
x"Y = 0 (mod m). How many incongruent roots has hn, for
some given constant integers n, Cyy eee, Co7

x7/n! . Calculate
0]

(24) We know that e* =

o8

n

x" / n(n)! and evéntually some of their
1

XM s ont,
1 n

™8
™8

n
properties.

(25) Find the average order of n(n).

(26) Find some u_(s) for which F(s) be a generating

function of n(n), and F(s) have at all a simple form.
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. x
particularly, calculate Dirichlec series F(s) = I n(n)/n’,

Z,
b
(t
n
m

R (cr s € C).
(27) Does n(n) have a normal order?

(28) We know that Euler's constant is

1 1

v = lim {l + -+ ... + — - log n.

n—wx |\ 2 n !

. n w

Is lim %1 + T 1/n(k) - log n(n)g a constant? If yes,

n-—w | k=2 i
find it.

(29) Is there an m for which nl(m) = (@, @y ..., 2)

such that the numbers a,, 2,, ..., 3, can constitute a

matrix of p rows and g columns with the sum of elements on
each row and each column is constant? Particularly when the

matrix is square.

(s) s .
(30) Let {x: Jay D€ 2 s-additive sequence. Is 1T

. (s) (s} (3) (s)
possible to have n(x, ) = X ,, 1 = m? But x = n(x

m 7(n)
(31) Does n verify a Lipschitz Condition?
(32) Is n a k-Lipschitz Condition?

(33) Is n a contractant function?



(9]
€«

(34) Is it possible to construct an A-seguence a,, ...,
a, such that n(a,), ..., n(a,) be an A-segquence, tcc? Yes,
for example 2, 3, 7, 31, ... Find such an infinite sasguernce.

*

Find the greatest n such that: if a,, ..., a
constitute a p-sequence then n(a1), .-+, n(a,) ccnstitute a
p-sequence, too; where a p-sequenée means:

(35) Arithmetical procgression.

(36) Geometrical progression.

(37) A complete system of modulo n residues.

Remark: let p be a prime, and p, p?, ..., p° a
gecmetrical progression, then n(pi) =1ip, 1 € (1, 2, ...,
P}, constitute an arithmetical progression of length p. 1In
this case n - «.

(38) Let's use the segquence a =n(n), n>1. Is there
& recurring relation of the form a, = f(a_,, .5, +.-) for
any n?

(39) Are there blocks of consecutive composite numbers
m+ 1, ..., m + n such that n(m + 1), ..., n(m = n) be
composite numbers, too? Find the greatest n.

(40) Find the number of partitions of n as sunm of n(m),

'

MORE UNSOLVED GENERAL PROBLEMS CONCERNING THE FUNCTICN n
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§6. Unsolved Problems Concerninag the Function n and Usirg

the Number Seguences

41-2065) Are there non-null and ncon-prime integers a,,
a1 e @ in the relation P, so that n(a;), n(ay), ---,
n(a,) be in the relation R? Find the greatest n with this

property. (Of course, all a;, are distinct.) Where each ?,

R can represent one of the following numkber seguences:

(1) Abundant numbers; a € N is abundant if o(a) > 2 a.

(2) Almost perfect numbers; a € N, c(a) = 2a - 1.

(3) Amicable numbers; in this case we take n = 2; a, b
are called amicable if a = b and og(a) = o(b) = a + b.

(4) Augmented amicable numbers; in this case n = 2; a,
b are called augmented amicable 1if o(a) = g(b) = a+ b -1
(Walter E. Beck and Rudolph M. Najar) .

n
(3) Bell numbers: bn==k§lS(n, k), where S(n, k) are

stirling numbers of second case.

(6) Bernoulli numbers (Jacques 1lst): B_, the

sl

coefficients of the development in integer sequence of

B

’ - n
£+ L.+ (- L) — e s L

et-1 2 2! 4! (2n) !

for 0 < |t] < 2 m; (here we always take L1/B.]) .



(7) <Catalan numbers: g, 1, ¢, =—'n-1, fcr

n> 2.
(8) Carmichael numbers; an cdd composite number a,

which is a pseudoprime to base b for every b r

[V
'._l
fu
t
’J
<
(0
’_A
'

prime to a, is called a Carmichael number.
(9) Congruent numbers; let n = 3, and the numbers a,
b, ¢; we must have a = b (mod c).
(10) Cullen numbers: C, =n -« 2"+ 1, n > 0.
(11) C,-sequence of integers; the author introduced a

sequence a,, a,, ... so that:

(V) 1 € Nx, (3) j, k e N*x, j = 1 =k = 3, : a. = a (mod a,)

(12) C,-sequence of integers; the author defined other
sequence a,, a,, ... so that:
(V) 1 € N*, (3) j,ksN*,iajukai,:aank (med a;).

(13) Deficient numbers; a € N*, g(a) < 2a.

(14) Euler numbers: the coefficients E, in the

expansion of sec x = I E  x/n!; here we will take 1z 1.
n>o0
(15) Fermat numbers: F, = 22 "+ 1, n>0.
(16) Fibonacci numbers: 'fT = £, =1, £, = £, + £ 5,
n > 3.
2
(17) Genocchi numbers: G, = 2 (2 - 1) B,, where B_ are

Bernoulli numbers; always G, € Z.
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(18) Harmonic mean; in this case every member of the
sequence is the harmonic mean of the preceding members.

(19) Harmonic numbers; a numper n is called harmonic i1
the harmonic mean of all divisors of n 1s an integer (C.
Pomerance).

(20) Heteromeous numbers: h =n (n+ 1), ncE€ N*,

(21) K-hyperperfect numpers; a is k-hyperperfect 1if
a =1+ z d;, where the numeration is taken over all proper
divisors, 1 < d, < a, or Kk g(a) = (kx + 1) a -+ x - 1 (baniel
Minoli and Robert Bear).

(22) Kurepa numbers: In = 0! + 1! + 2! + ... +
+ (n - 1)!

(23) Lucas numbers: L, = 1, L, = 3, L, =L, * L..sv
n > 3.

(24) Lucky numbers: from the natural numbers strike
out all even numbers, leaving the cdd numbers; apart from 1,
the first remaining number is 3; strike out every third
member in the new seguence; the next member remaining is 77
strike out every seventh member in this sequence; next 9

remains; etc. (V. Gardiner, R. Lazarus, N. Metropolis, S.

Ulam). )

(25) Mersenne numbers: M, = 2F - 1.

(26) m-perfect numbers; a is m-perfect if am(a) = 2a
(D. Bode). '

(27) Multiply perfect (or k-fold perfect) numbers; a 1is

k-fold perfect if o(a) = k a.



(28) Perfect numbers; a is perfect if g(a) = 2a.

(29) Polygonal numbers (represented on the perimeter of

a peclygon): p: =k (n - 1).

(30) Polygonal numbers (represented on the closed

) (k-2) n® - (k-4) n
surface of a polygon): P, =

2

(31) Primitive abundant numbers; a2 1s primitive
abundant if it is abundant, but none of its proper divisors
are.

(32) Primitive pseudoperfect numbers; a is primitive
pseudoperfect if it is pseudoperfect, but ncne of its prcper
divisors are.

(33) Pseudoperfect numbers; a is pseudoperfect if it is
equal to the sum of some of its proper divisors (W.
Sierpinski).

(34) Pseudoprime numbers to base b; a is pseudoprime to
base b if a is an odd composite number for which b®' = 1
(mod a) (C. Pomerance, J. L. Selfridge, S. Wagstaff).

l .
(35) Pyramidal numbers: T, =—n(n+ 1) (n+ 2),
. 6

n € N*,
(36) Pythagorian numbers; let n = 3 and a, b, ¢ be

integers; then it must have the relation: a2 = p2 + &2,



(37) Quadratic residues of a fixed prime p: the
nonzero numbers r for which the congruence r = x? (mod p)

has sclutions.

h

(38) Quasi perfect numbers; a is quasi perfect L
g(a) = 2 a + 1.

(39) Reduced anicable numbers; we take n = 2; two

integers. a, b for which og(a) = g(b) = a + b + 1 are called

reduced amicable numbers (Walter E. Beck and Rudolph M.

Najar) .

(40) Stirling numbers of first case: s(0, 0) =1, and

s(n, k) is the coefficient of % from the develcpment
X (x - 1) ... (x -n+ 1).
(41) Stirling numbers of second case: S(0, 0) =1,
and S(n, k) is the coefficient. of the polynom
x = x (x - 1) ... (x -k + 1), 1 <k <n, from the
development (which is uniquely written):
n
x"= ¥ S (n, k) x%®
k=1
(42) Superperfect numbers; a is superperfect 1if
o2(a) = 2 a (D. Suryanarayana). .
(43) Untouchable numbers; a is untouchable 1f s(x) =
has no solution (Jack Alanen).

(44) U-numbers: starting from arbitrary u, and u,

1

continues with those numbers which can be expressed in just



cne way as the sum cf two distinct earlier members ¢f the
sequence (S. M. Ulam).
(45) Weird numbers; a is called weird if it i1s abundant

-

but not pseudoperfect (5. J. Benkoski).

MORE NUMBER SEQUENCES

*

The unsolved problem No. 41 is obtained by taking P =

(1) and R = (1).

g
i

The unsolved problem No. 42 is obtained by taking

i
—
(=)
S
~
Py

= (2).
The unsolved problem No. 2065 is cbtained by taking P =

(45) and R = (45).

OTHER UNSOLVED PROBLEMS CONCERNING THE FUNCTION n

AND USING NUMBER SEQUENCES

*

§7. Unsolved Diophantine Equations Concerning the

Function n

2066) Let 0 < k < 1 be a rational number. Does the
diophantine equation n(n)/n = k always have solutions? Find
all k so that this equation has an infinite number of
solutions. (For example, if k = l/r, r € N*, then n = rp_,,
h=1, 2, ..., all p,., 8re primes, and a is a choéen index

such that P,.;y > r.)



2067) Let {a”)mo be a sequence, a, = 1, a, = 2, and
a,., = &, T n(a). Are there infinitely many pairs (m, n),
m = n, for which a_= a2 ? (For example: 2, = a;; = 16.)
2068) Conjecture: the equation n(x) = n(x + 1) has no
solution.
*.
Let m, n be fixed integers. Solve the diophantine

equations:

i
S

206%9) n(m x + n)
2070) n(m x + n) =m + ﬁ X.

2071) n(m x + n)

]
x

n

2072) n(x%) X",

2073) n(x)™ = n(x").

2074) n(m x + n) = n(x)’.

2075) n(x) + y = x + n(y), x and y are net primes.

2076) n(x) + n(y) = n(x + y), x and y are not twin
primes. (Generally, n is not additive.)

2077) n(x + y) = n{x)-n(y). (Generally, n is not an
exponential function.)

2078) n(xy) = n(x)n(y). (Generally, nis not a
multiplicative function.) .

2079) n(m x + n) = x".

2080) n(x) vy x n(y), x and y are not prines.

2081) n(x)/Y x/n(y), x and y are not primes.

(Particularly when y = 2%, k ¢ N, i.e., n(x)/2% is a dyadic

rational number.)



v
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2082) n(x) = %", x and y are not primes.

2083) n(x)"™ = n(x").

38

2084) n(x’) - n(z") =1, with y = 1 » w. (On Catalan's
problem.)

2085) n(x’) =m, y > 2

2086) n(x*) = y’. (A trivial solution: x =y = 2.)

2087) n(x’) = y*. (A trivial solution: x =y = 2.)

2088) n(x) = y! (An example: x =9, y = 3.)
2089) n(m x) = m n(x), m > 2.

2090) o™ + n(x)" = m".

2091) n(x*)/m = n(y’)/n = 1.

Y, Y. , Y, Y.
2092) n(x, + ... +x_ ) = n(x,) o0 + (X))

2093) n(x,! +

+
<

o
|

=n(x)! + ...+ n(x.)!
2094) (x, y) = (n(x), n(y)), x and y are not primes.

2095) [x, (n(x), n(y)], ¥ and y are not primes.

<
"
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OTHER UNSOLVED DIOPHANTINE EQUATIONS CONCERNING
THE FUNCTION nONLY

e

§8. Unsolved Diophantine Egquations Concerning the

Function n in Correlation’'with Other Functions
Let m, n be fixed integers. Solve the diophantine
equations:
2096-2102) n(x) = d(m x + n)
n(x)® = d(x")

n(x) +y =x + d(y)



2103~

39
n(x) -y =x -+ d(y)

n(x)/y = d(y)/x

n(x)? = x*

n(x)? = d(y)”*

2221) Same eguations as before, but we substitute

the function d(x) with d,, p(x), s(X), s*(x), s*(x), r.(x),

T(x), w(x;

Q(x), w(x)
2222)
2223)
2224)
2225)
2226)
2227)
2228)
2229)
2230)

2231)
2232)

2233)

2234)
2235)
2236)

2237)

m, n), o (x), oX(x), g*(x), @(x), 9%(x), o(x),

respectively.

n(s(x, y)) = s(n®, n(y)).
n(s(x, y)) = S(n(x), n(y))-
n(Lx]) = LT(xx)]-
n(lx - yl) = LB(x, ¥)].
B(n(Lx)), v) = B(x, n(Lyl)).
n(LB(x, v =LBmdx), alvlnl.
p(n(x)) = s(e(x)).
n(x) = [6(x)].
n(x) = L¥(x)].
n(m x +n) = A = x(x = 1) (x = n + 1).
n{m x + n) = A:.
n{m x + n) = (ﬁ ) = *
‘n!(x-n)'
r,(.mx«r-n) =(I)I<l)
n(m x + n) = p, = the x-th prime.

n(m x + n) = 1/BJ-

n(m x + n) = G,.



2238) n(m x + n) =k

2239) n{(m x + n) = k..
2240) n(m x + n) = s(m, X).
2241) n(m x + n) = s(x, n.

2242) n(m x + n) = S(m, x).

2244) n(m x + n) = 7w_.
2245) n(m x + n) = b._.
2246) n(m x + n) = |E]| .

2247) n(m x + n) = ! x

2248) n(x) = n(y) (mod m).

2249) n(xy) = x (med y).

2230) n(x) (x +m) + n(y) (y +m) = n(z) (z + m).
2251) n(m x + n) = £_.
2252) n(m x + n) = F..
2253) n(m x + n) = M.
2254) n (m x + n) = c_.
2253) n (m x + n) = C_.
2256) n (m x + n) = h..

2257) n (m x + n)

I
4

More unsolved diophantine equations concerning the

function n in correlation with other functions.

*
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§9. Unsolved Dicchantine Equations Concerning the Functicn

n in Combositicn with Other Functions

2258) n (d (x)) = d(n(x)), X 1s not prime.
2259-2275) Same equations as this, but we substitute
the function d(x) with 4, p(%), ..., ©(x) respectively.
More unsolved diophantine egquations concerning the
function n in composition with other functions. (For
example: 7n(7(4(x))) = 9(n(7(x))), etrc.)
%*

§10. Unsolved Diovhantine Inequations Concerning the

Function n

Let m, n be fixed integers. Scolve the following
diophantine inequalities:

2276) n(x) 2 n(y).

2277) is 0 < {x/n(x))} < {n(x)/x} infinitely often?
where (a} is the fractional part of a.

2278) n(m x + n) < d(x).

2279-2300) Same (or similar) inequations as this, but
we substitute the function d(x) with d, p(x), ..., o(x),
T(x), B(x, x), (%), B(x), T(x), respectively.

More unsolved diophantine inequations concerning the
function n in correlation (or composition, etc.) with other

functions. (For example: 6(n(Lx])) < n([8(x)]), etc.)

*

(=



§11. Arithmetic Functicns Constructed by Means of the

Functicn n

UNSOLVED PROBLEMS CONCERNING

THESE NEW FUNCTIONS

H

The functicen S, : N* - N, S, (x) = z n(n).
O0<n<x

2301) Is I s, (x)' a convergent series?
xX>2

2302) Find the smallest k for which (S, «-. °S)) (@) 2>

k times
> n, for m, n fixed integers.
2303-4602) Study S,. The same (or similar questions
for Sn as for n.

1
II. The function C, : N* = Q, C(x) =— (n(l) + n(2) +

=

* ... + n(x)) (sum of Cesaro concerning the functiocn

n.
4603) Is I c, (x)' a convergent series?
x>1
4604) Find the smallest k for which (C,o ... oC) (m) 2

k times
> n, for m, n fixed integers.
4605)-6904) Study C,- The same (or similar) gquestions

for C,7 as for n.
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9
III. The function E, : N* = N, E (x) = T 1% (x), where
k=1
r)(") =7 and r](k) =n0o ... QN of Xk times, and kﬁ is the
smallest integer k for which n™" (x) = 7% (x).

6905) Is I E, (x)' a convergent series?
X>2

6906) Find the smallest x for which E, (x) > @, where

m is a fixed integer.
6907-9206) Study E . The same (or similar) gquestions

for S, as for n.
IV. The function F, @ N\{0, 1} = N, F (x) = z n
PP

9207) Is £ F, (x)'' a convergent series?
xX>2

9208-11507) Study the function F . The same (or

similar questions for F_ as for 7.

X
v. The function a, N* - N, a, (x) = T B(n), where

0, i1f n(n) is even;
g(n) =
1, if n(n) is old.

11508) Let n € N*. Find the smallest k for which

(¢o ... oan) (n) = 0.

R J

k times

11509-13808) Study «,. The same (or similar) questions

for a, as for n.



VI. The function m : N* - N, R, (J) = a;, 1 <3 <n, figes
integers, and m, (n + 1) = min, {n(ai + ami)}, etc,
13809) Is £ m, (%) a convergent seriesg?

x>1
13810-16109) study m,. The same(or simila;)questions
for m.as for n.
VII. The function Mn : N* - N. A given finite positive

integer sequence &y, ..., @, is successively extended
by:

Mﬂ (n + 1) = max, {n(a; + 2,.,)), etc.

YE)=2 155 <n.

-1
16110) Is % Mn(x) a convergent series?
x>1

16111-18410) sStudy Mn. The same (or similar)

questions for Mn as for n.

-1 -1
VIII. The function n__ : N\(1l} - N, Mmin (X) = min (77" (x)),

where n' (X)) = {a ¢ N f n{(a) = x}. For example

nlo(6) = (2%, 2% . 3, 2¢ . 32, 32, 32.. 5, 32, 22,

-1
32 . 23}, whence Nain (6) = 9.

- -1

18411) Find the smallest k for which ( 0 ... o

nrm'n
| —

kK times

-1
18412-20711) Study n,,- The same (or similar)

) -1
questiocns for Nain @S for n.
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-1 -1 .
IX. The function n,, : N = N, n_.. (x) = card (n"' (x)},

~

where Card A means the nunmber of elements cf “he set- A.

20712) Find the smallest k for which

[ S

|
* Neara 0 ... 0 Mearq ) , .
~— d (m) > n, for m, n fixed integers.

times

-1 .
20713-23012) Study Nearg* Ihe same (or similar)

-1

questicns for Nears @S for n.

X. The function 4 : N* - N, d (x) = [n(x + 1) - n(x)].
Let 4 (x) = 14 (x + 1) - g, (x)|, for all x e nx,
where d;” (x) = dn (x).

(x)

23013) Conjecture: d,7 (1) = 1 or 0, for all k > 2.

(This reminds us of Gillreath's conjecture on primes.) For

example:



o>
[0)%

n(l) =20

n{2)y = 2 1

[
[

n(3) =3 0 1
n(4) = 4 0 1 1

n(3) =3 1 0 1 0

n(é)y = 3 2 0 1 1 0
n(7)y =7 1 1 0 2 1 0

n(8) = 4 1 0 3 0 0 1 o}

.‘J
[

n(s) = 6 1 4 0 2 0 0
n(10)= 5 S o 1 0 0 2 1 0 1
n(ll)=11 1 3 0 2 2 1 1 0 1

n{12)= 4 2 0 3 2 1 1 1 1

Xs
[o
o
-
[l
o
-
-

n(13)=13 3 o0 2 1 1 0 0
n(l4)=7 4 2 2 1 1 1

n(l3)=

u
-
o
[
o
o

n(le)=6 10 1 2 1
11 10 7 2
n(17)=17 0 8 0
11 2 7
n(ig)=6 2 1
13 1
n(19)=19 1
14
n(20)= 5

%) '
23014-25313) Study d, - The same (or similar)

. (k)
questions for dn as for n.

XI. The function w, : N* = N, o (x) is the number of m,

with 0 < m < x, so that n(m) divide x. Hence, W, (x) 2

2 w(x), and we have equality if x = 1 or x is a prime.



25314) Find the smallest k for which (v, o ... ocuwn) (X)

k times
= 0, for a fixed integer X.
25315-27614) Study o,. The sane (or similar) guesticns

for w, as for n.

XII. The function Hn : N* - N, Hn (x) 1is the number of n,
with 0 < m < x*, so that n(m) is a multiple of x. Ffor
example ! (3) = Card {1, 3, 6, 9, 12, 27}y = 6. If p
is a prinme, Mn (p) = card (1, a,, ..., a.}, then all a,
2 <1< r, are multiples of p.

27615) Let m, n be integer numbers. Find the smallest

k for which (M o ... o M,) (m) > n.

.

k times
27616-29915) Study Mn. The same (or similar guesticns
for'}l77 as for n.
XIII. The function g, : N* - N, o (x) = I n(d).
dlx
d>0
For example o (18) = n(1l) * n(2) + n(3) + n(6) + n(9)+
+ n(18) = 20, o,(9) = 9.
29916) Are there an infinity of nonprimes n so that
an(n) =n ? .
29917-32216) Study J,. The same (or similar) questions

for g, as for n.
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XIV. The function T, : N - N, T,(X) 1s the number cof

numbers n so that n(n) < x. If p.<p, < ... <p < n <
- -2 &g -

}e

¢ Py.; 1s the primes sequence, and for aill
a. a.+1

1 1 .
=1, 2, ..., k we have p, divides n! bu: j<F does

not divide n!, then:

T (ny = (a, = 1) ... (ak + 1).
32217-34516) Study T, - The same (or similar)

question for T, as for n.

XV. The function ¢, : N* - N, ?, (x) i1s the number of m,
with 0 < m < ¥, having the property (n(m), x) = 1.
34517) 1Is always true that ?, (x) < ¢ (x)? |
34518) Find x for which P, (x) > o(%).

34519) Find the smallest k so that (°n © ... 0 9) (x) =

/

k times
= 1, for a fixed integer x.
34520-36819) Study ¢,- The same (or similar) questions

for ¢, as for n.

——--———-———----—--—--_--—--—--—--——--——-————-—_—_--—-_———_—-—

More new (arithmetic) functions constructed by means

of the function 7, and new unsolved problems concerning

them.

.—-—----——--—-———----—---_—---———a_-_—-——-————————-—.—---_--—.
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36820 - ®., We can continue these recurring sequences

of unsolved problems in number theory to infinity. Thus, we

construct an infinity of more new functions: Using the
functions S_, C ..., 9_ construct the functions £,,, £.,,
n n’ ! n 1 12
eoeys Ly 1(by varied combinations between S_, Cor vvvs 80
(i) ¢y
for example: S, (x) = z S, for all x ¢ N*,
O0<n<x
(i) , ()
S,7 : N* - N for all 1 =90, 1, 2, ..., wWhere Sn = Sn. Cr:
1 .
sC, (x) = — L s, (n), sC, : N* - Q, SC, being a ccmbinaticn
X n=1

between S, and C,; etc.); analogously by means of the

functions £,,, £,, ... f,, Wwe construct the functions
1
£590 £5, ..., £, ~etc. The method tec obtain new functions
2
continues to infinity. For each function we have at least

2300 unsolved problems, and we have an infinity of thus

functions. The method can be represented in the follcwing

way:

produces

n S,r Cor eres 9, = £0 E50 ooy fm1

. £
f11, f12, e e, f"n' fzx, J-22, o e s g fznz

_— £
f21, fzz, . s ey fznz f}«!/ 532, LI i f3n3

- — . - D S A WD - D D D D - — - - - D = D D D D W D G D D D S R D > G - — - - -
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ens,

}—

Other recurring methods to make new unsclved preb

§12. Conclusion

With this paper the author wants to prove that we car
construct infinitely many unsolved problenms, especially in
number theory: vyou "rock and roll" *he numbers until you
Create interesting scenarios! Some problems in this pacger
could effect the subsegquent development of mathematics.

The world is in a general crisis. Do the unsolved
problems really constitute a mathematical crisis, or
contrary to that, do their absence lead to an intellec*tual
stagnation? Mankind will always have problems to solve,
they.even must again solve previously solved preblens ()
For example, this paper shows that people will be more and
more coverwhelmed by (open) unsolved problems. {It is easier
to ask than to answer.]

Here, there are proposed (un)solved problems which are
enough for ever!! Suppose you solve an infinite number of
problems, there will always be an infinity of problems
remaining. Do not assume those proposals are trivial and

non-important, rather, they are very substantial.
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SOLVING PROBLEMS BY USING A FUNCTION IN

THE NUMBER THEORY

Let n>1, h>1, and a > 2 be integers. For which
values of a and n is (n + h)! a multiple of a" ?
(A generalization of the problem n® = 1270, Mathematics
Magazine, Vol. 60, No. 3, June 1987, p. 179, proposed by

Roger B. Eggleton, The University of Newcastle, Australia.)

Solution

(For h = 1 the problem n® = 1270 is obtained.)

§1. Introduction

We have constructed a function 7 (see [1]) having the
following properties:

(&) For each non-null integer n, n(n)! is a multiple
of n;

(b) n(n) is the smallest natural number with the
property (a).

It 1s easy to prove:

Lemma 1. (V) k, p € N*, p,= 1, k is uniquely written

in the form:



(e , (e
kK = t, a, + + ot ané ,
n.
(p) i .
where ani = (p - 1) / (p - 1), 1=1, 2, ..., 2,
n, >n, > > n, > 0 and 1 < L, <p-1, § =1,
2, » &€ -1, 1<t <p, n i» &, e N, 1 =1, 2,

-, 2, 2 € N=x,

We have constructed the function Ny P prime > Q, n. : N* -

N*, thus:

)

(V) n € N=*, n( anp ) = p”, and
(®) (p)
Up (t1 an1 + + tz anz =
(p) (p)
=t a v+ . + t a
1np( noy } an( ”L)
Of course:

Lemma 2.
(@) (¥) k e N*, n, (k) ! = upk.

(b) N, (K) is the smallest number with the property

(a). Now, we construct another function:

n : Z\{0} - N defined as follows:



~J

(&]]

It is not difficult to prove n has the demanded properties
of §1.
a‘( as
§2. Now, let a = P, ... DB , with all @, € N* and all

p; distinct primes. By the previous theory we have:

-1

n(a) = max (n, (e)} = M, (@) (by notation).
1<ics !
Hence n(a) = n(p%, n(p% ! = Mp®.
We Know:
n, n,
p -1 p -1
n, 0, T = + . + T
(¢ + ...+ £, p ) ! =Mp p-1 p-1
We put:
n n



n, n,
p -1 P -1
and ¢, —m +. ... =, — = 2 n.
p-1 p-1
Whence
n, n,
1, » -1 . jo! -1 n, n,
- ...t T, >t p + +Lt e -*h
a p-1 p-1
or
n, n,
(1) e(p-1)h2(ap-a=-1) (,p =+ ...+t p ]+
+ (t1~...+tz).
n, n,
On this condition we take n, = ¢, p + ...+t P - h

Ny, Ny > 07
(see Lemma 1), hencen=11, n, £ 0 .

g
Consider giving a # 2, we have a finite number of n.
There are an infinite number of n if and only if ¢ p - ¢ - 1

=0, i.e., a=1andp=2, i.e., 2a = 2.

§3. Particular Case

If h=1and a = 2, because



(1') (¢ p ~-a) > (¢eap=-a=-1) «+ 1 +1=qap - q,

which is impossible. If h =1 and a = 2 thena =1, p = 2,

>
CI

(1") 1 >%t, + ... =t

i
¢
hence ¢ =1, £, = 1 whencen = T, p ... F LD - h =
n,
= 2 - 1, n, € N*¥ (the sclution toc problem 1270C)
A =2 .
Example 1. Let h =16 and a = 3* - 53°. Find all n

such that

(n + 16) ! =3 2023".

Solution

n (2025) = max {n, (4), ns (2Y}) = max {9, 10} = 10 =

=2

=ng (2) = n (5. Whence ¢ = 2, p = 5., From (1) we have:
n, .
128 > 7(%,5 + ...t 5 ] FL o+ L0 L,
. n, n,
Because 5“ > 128 and 7 [t, 5 + ... =% 5 ] < 128 we f£ind
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whence n, < 1, i.e., n, =1, and t, = 1, 2, 3. Then n, =

= t, 53 - 16 < 0, hence we take n = 1.

3

Example 2

(n + 7)! =4 3”-when n=1, 2, 3, 4, 5.

(n + 7)! =4 5" when n = 1.
(n + 7)! =4 7" when n = 1.
But (n + 7)! = M p", for p prime > 7, (V) n € N=.
(n + 7)! =M 2" when
n, N,
np =t 2 + ...+t 2 -7,
t,, ;T = 1,
1822, &+ .00+t <7

and n =

etc.

Exercise for Readers

If n e N*, a € N*\{1}, find all values of a and n such

that:

(n + 7)! be a multiple of a".
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Some Unsolved Problems (see ([2])

Solve the diocphantine equaticns:

(L) n(x) = n(y) =n(x+Y).
(2) n (x) =y! (A solution: x =9, y = 3),
(3) Conjecture: the egquation n (X) =1 (x + 1) has

no solution.
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£(k) with the property that (f(k))! is a multiple of p*."]



SOME LINEAR EQUATIONS INVOLVING A

FUNCTION IN THE NUMBER THEORY

We have constructed a function n which associates

62

non-null integer m the smallest positive n such that n! is a

multiple of nm.

(2) Solve the equation n (x) = n, where n € N.
*(b) Solve the egquaticn n (mx) = x, where m ¢ Z.
Discussion.

(c) Let nP notenono ... on of i times.

there is a k for which

% (m) = ntkeD (m) = n, for all m € Z*\{(1).

**Find n_ and the smallest k with this property.
m

Solution

(2) The cases n = 0, 1 are trivial.

We note the increasing sequence of primes less or egual

than n by p,, P and

P

where ([y] is the greatest integer less or equal than

Y.
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Of course we have n < x < n!

c, c
! X
Thus x = p <.+ Py where 0 < o, < £. fcr all
. : g
t =1, 2, ..., k and there exists at least a
j e (1, 2, ..., s} for which

Clearly n! is a multiple of x, and 1s the smallest cne.
(b) See [l] toco. We consider m € N*,
Lemma 1. n (m) <m, and n (m) = m 1if and only 1if
m =4 or m is a prime.
Of ccurse m! is a multiple of m.
Ifm »4 and m is not a prime, the Lemma is equivalent
to there are m,, m, such that m =m, - m, with 1 < m < m,
and (2 m, < m or 2 m < m). Whence n (m) £ 2 m, < m,

respectively n (m) < max {(m,, 23} < m.

Lemma 2. Let p be a prime > 5. Then n (p X) = X 1ZI
and only if x is a prime > p, or x = 2p.

‘Proof: n (p) = p. Hence X > p.

Analogously: X is not a prime and X = 2p = X = X, X,

1 < x, £ X%

, £ X, and (2 X; < X X * p1)and 2 X, <°X) = n (p X) £



< max {(p, 2 X;} < X respectively n (p X) < max (B, 2 %X, X,}

< X.

Observations

n (2 X) =X =x =4 or x is an odd prine.

n (3 xXx) =x=x=4,6, 90r x is a prime > 3.
Lemma 3. If (m, x) = 1 then x is a prime > 7 (m).
QOf course, n (mx) ; max {n (m), n (x)} = ﬁ (x) = x.

And x » n (m), because if x = n (m) then m - n (m) divides
n (m)! that is nm divides (n (m) - 1)! whence n (m) < n (m) -
- 1.

Lemma 4. If x is not a prime then n(m) < x <2 n (o)
and x = 2 n (m) if and only if n (m) is a prime.

Proof: If x > 2 n (m) there are Xy, X, With 1 < X, <

£ X, X =X, X,. For x, < n (m) we have (x - 1)! is a

2’
multiple of m x. Same proof for other cases.
Let x =2 n (m); if n (m) is not a prime, then

X =2ab, 1< acx<b, but the product (n (m) + 1) (n (m) +

+ 2) ... (2n (m) 1) is divided by x.

If n (m) is a prime, n (m) divides m, whence m - 2 n(m)
is divided by n (m)?, it results inn (m « 2 5 (m)) > 2 -
‘n(m), but (n (m) + 1) (7 (m) + 2) ... (2 n (m)) is a

multiple of 2 n (m), that is n (m « 2 7 (m)) =2 n (m).



Conclusion

All x, prime numper > n (W), are soluticns.

If n (m) is prime, then x = 2 7 (®m) is a sclution.

*If x is not a prime, n (m) < X < 2 17 (m), and x does
not divide (x - 1)!/m then x is a solution (semi-cpen
question). If m = 3 it adds x = 9 too. (No other socluticn
exists yet.)

(c)

Lemma 5. n (a b) < n (a) + n (b).

of course, n (a) = a' and n (b) = b involves (a' +
+ b'y! = pb'! (b' + 1) ... (b'" + a'). Let a' < p'. Then
ﬂ(ab) < a' + b', because the product of a' consecutive

positive integers is a multiple of a'!

Clearly, if m is a prime then k = 1 and n 2 = m.

If m is not a prime then n (m) < m, whence there is a k
for which 7% (m) = %" (m).

Ifm =1 then 2 < n < m.

Lemma 6. n 2 = 4 or n, is a prime.

Ifn =nn, 1l <n < n, then 7 (n,) < n.. Absurd.
n = 4.

(**) This question remains, open.
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