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PREFACE

In this book we introduce the notion of Smarandache special 
definite algebraic structures. We can also call them equivalently 
as Smarandache definite special algebraic structures. These new 
structures are defined as those strong algebraic structures which 
have in them a proper subset which is a weak algebraic 
structure. For instance, the existence of a semigroup in a group 
or a semifield in a field or a semiring in a ring. It is interesting 
to note that these concepts cannot be defined when the algebraic 
structure has finite cardinality i.e., when the algebraic structure 
has finite number of elements in it.  

This book has four chapters. Chapter one is introductory in 
nature. In chapter two the notion of Smarandache special 
definite groups and Smarandache special definite fields are 
introduced and several interesting properties are derived. The 
notion of Smarandache definite special rings, vector spaces and 
linear algebras are introduced and analysed in chapter three. The 
final chapter suggests over 200 problems. 

 I deeply acknowledge the unflinching support of 
Dr.K.Kandasamy, Meena and Kama.  

W.B.VASANTHA KANDASAMY 
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�

We dedicate this book to the ‘Heroic Tamil Son’ Muthukumar 
Kumaresan who immolated himself in Chennai, Tamil Nadu on 
29 January 2009 to draw the world’s attention to the genocide 
of Tamils in Sri Lanka. Muthukumar’s supreme self-sacrifice 

brought about an unparalleled students’ upsurge in
Tamil Nadu, and became the rallying point for the struggle to 
recognize Tamil Eelam, a separate homeland for Tamils in the 

embattled island of Sri Lanka.  
We salute the courage of this braveheart.  
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Chapter One 

BASIC CONCEPTS

In this chapter we just recall some of the basic notions essential 
to make this book a self contained one. This chapter has three 
sections. In the first section notions about groups and 
semigroups are introduced. Section two introduces the concepts 
of fields and rings. Section three introduces the notion of 
semirings and semifields. The final section recalls the concepts 
of vector spaces and semivector spaces. 
 In this chapter we recall the notion of groups and 
semigroups. We know all groups are semigroups and 
semigroups in general are not groups. That is why one can 
always think of semigroups as a generalization of groups. We 
have studied Smarandache semigroups [100], which are a new 
class of algebraic structures which contain a proper subset P of 
S such that P is a group. Thus Smarandache semigroups are 
semigroups which has a proper subset P of S such that P is a 
group under the operations of the semigroup. 
 Now in this book we study a new algebraic Smarandache 
structure called Smarandache definite algebraic structures which 
contains a proper subset which satisfies an algebraic structure 
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under the same operations but is weaker than the given 
algebraic structure i.e., for instance finding proper subsets 
which are semigroups in the group. Like wise for a field to 
contain proper subsets which are rings, and rings which contain 
subsets which are semirings and so on. Finally we study those 
structures which are vector spaces that contain modules as 
substructures.

1.1 Groups, Semigroups and Smarandache Semigroups 

In this section we just recall the basic definition of groups, 
semigroups and Smarandache semigroups. For more about these 
concepts the interested reader can refer [100]. 

DEFINITION 1.1.1: Let (G, *) denote a non empty set G under 
the associative binary operation * . We call (G, *) to be a group 
if the following conditions are satisfied. 

1. G is closed under the binary operation * i.e., for all a, b 
� G, a * b � G. 

2. There exists a unique element e in G such that a * e =  
e * a = a for all a � G called the identity element of G. 

3. There exists for every a � G a unique element a'� G 
such that a * a' = a' * a = e; a' is defined as the inverse 
of a in G. 

If ‘*’ is a binary operation on G such that a * b = b * a for 
all a, b � G we call G to be a commutative group.  

The number of distinct elements in G is called the order of 
G and denoted by o(G) or | G |. If o(G) = n and n < � we call G 
to be a finite group. If o(G) = � then we call G to be an infinite 
group.

If the group G is generated by a single element g then G is 
said to be a cyclic group and is denoted as G = �g | gn = 
identity�.

We now illustrate these situations by the following examples.  
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Example 1.1.1: Let Z be the set of positive and negative 
integers with zero. Z is a group under addition. Z is a 
commutative group and order of Z is infinite.

Example 1.1.2: Let Q* = Q \ {0} be the set of all rationals. Q* = 
Q \ {0} is a group under multiplication. Q* is an infinite abelian 
group of infinite order. 

Example 1.1.3: Let

3 3

a b c
M  = d e f  = A | a, b, c, ..., i  Q

g h i
�

� �	 

� ��  �� �� 
� �� 
� �� �

with |A| � 0 . M3�3 is a group under matrix multiplication. In fact 
M3�3 is a non commutative infinite group.

Example 1.1.4: Let Sn be the symmetric group of order n (n < 
�). Sn be the symmetric group of order �n = n! .

Example 1.1.5: Let G = �g | g16 = 1� be a group of order 16. G is 
a finite cyclic group. 

Example 1.1.6: Let Z26 = { 0, 1, 2, , 25� }, Z26 is an additive 
group of order 26 which is finite and commutative.

Example 1.1.7: Let D26 = {a, b| a2 = b6 = 1, bab = a}, D26 is the 
non commutative group of order 12 known as the dihedral 
group.

Now we request the reader to refer [35, 37, 100] for more 
about groups. Now we proceed on to recall the definition of 
semigroups. 

DEFINITION 1.1.2: Let (S, *) be a non empty set on which is 
defined an associative binary operation *. If for all a,b � S we 
have a * b � S then we call S to be a semigroup with respect to 
the binary operation * . If the number of distinct elements in S is 
finite then we call S to be a finite semigroup. If S has infinite 
number of elements then we call S to be an infinite semigroup. If 
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in S, for all a, b in S and we have a * b = b * a then we call S to 
be a commutative semigroup. If a semigroup is generated by a 
single element then we call the semigroup to be a cyclic 
semigroup. A semigroup (S, *) in which there exists an element 
e � S with e * s = s * e = s for all s � S, we call e the identity 
element of S. S is called a monoid. Thus a semigroup with 
identity is called the monoid.  

Now we illustrate these situations by some examples. 

Example 1.1.8: Let Z+ be the set of positive integers. Z+ is a 
semigroup under multiplication.  

Example 1.1.9: Let Q be the set of rationals. Q is a monoid 
under multiplication for 1 � Q is such that 1 � q = q � 1 = q for 
all q � Q. 

Example 1.1.10: Let M2�2 = {(aij) = A such that aij � Q}; M2�2 is 
a semigroup under matrix multiplication. In fact M2�2 is an 
infinite monoid which is non commutative. 

Example 1.1.11: Let Z15 = { 0, 1,  2, ,14� } be the set of integers 
modulo 15. Z15 is a semigroup under multiplication. Z15 is a 
commutative finite semigroup. 

Example 1.1.12: Let Z11 be the set of integers modulo 11. Z11 is
a finite commutative semigroup under addition modulo 11. Z11
is in fact a cyclic semigroup for it is generated by 1.  

Now we have seen the examples; we just recall the 
definition of subsemigroup and ideal. 

DEFINITION 1.1.3: Let (S, *) be a semigroup. A proper non 
empty subset P of S is said to be a subsemigroup of S if (P, *) is 
a semigroup. 

We illustrate this by the following example. 

Example 1.1.13: Let Z+ be the semigroup of integers under 
multiplication. 3Z+ is a subsemigroup of Z+ under 
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multiplication. In fact nZ+ for any n � Z+ is a subsemigroup of  
Z.

DEFINITION 1.1.4: Let (S, *) be a semigroup. Let I be a proper 
subset of S. I is called an ideal of S if the following conditions 
are satisfied. 

1. (I, *) is a subsemigroup of (S, *).  
2. For each i � I and s � S; i * s = s * i � I.

We illustrate this by the following example:

Example 1.1.14: Let Z be the semigroup under multiplication. 
Z+ is a subsemigroup of Z. Clearly Z+ is not an ideal of Z for we 
see if –5 � Z and 3 � Z+; – 5 � 3 = – 15 is not in Z+.

Example 1.1.15: Let Z+ be the semigroup under multiplication. 
13Z+ is a subsemigroup of Z+ and in fact 13Z+ is an ideal of Z+

under multiplication. 

Now we have just seen from the example 1.1.14 that 
subsemigroups of a semigroup in general need not be an ideal of 
the semigroup. 

Now we just recall the definition of a subgroup and the normal 
subgroup of a group. 

DEFINITION 1.1.5: Let (G, *) be a group. A proper subset H of 
G is said to be a subgroup of G if (H, *) is itself a group. 
 We call a subgroup H of a group G to be a normal 
subgroup of G if g * H* g–1 = H for all g � G. 

We illustrate the above definition by the following example. 

Example 1.1.16: Let S7 be a group; the group of permutations 
of seven elements. A7 the alternating subgroup of S7. In fact A7
is a normal subgroup of S7.



12

Example 1.1.17: Let Q\{0} be the group under multiplication. 
Q+ \ {0} is a subgroup of Q under multiplication. In fact Q+ \ 
{0} is also a normal subgroup of Q\{0}. 
 All subgroups of a group G in general need not be normal 
subgroups of G.  

We illustrate this by the following example. 

Example 1.1.18: Let S4 be the symmetric group of degree 4. 
Take

1 2 3 4 1 2 3 4
P = ,  ,

1 2 3 4 2 3 4 1
�	 
 	 
�
��  � 
�� � � ��

1 2 3 4 1 2 3 4
,

3 4 1 2 4 1 2 3
�	 
 	 
�
��  � 
�� � � ��

 a proper subset of S4; P is a subgroup of S4 ; P is not a normal 
subgroup of S4.

Now we just recall the definition of Smarandache semigroup 
and give some examples. 

DEFINITION 1.1.6: Let (S, � ) be a semigroup we call S to be a 
Smarandache semigroup (S-semigroup) if S contains a non 
empty proper subset P such that (P, � ) is a group. 

We give an example of it. 

Example 1.1.19: Let Z10 be the semigroup under multiplication 
modulo 10. �3� = {3, 9, 7, 1} = P 

� 3 9 7 1
3 9 7 1 3
9 7 1 3 9
7 1 3 9 7
1 3 9 7 1

 Clearly P is a group under multiplication modulo 10 is 
given in the above table. Hence Z10 is a S-semigroup. 
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Remark: If S is a S-semigroup such that S has only finite 
number of distinct elements then we call S to be a finite S 
semigroup. If S has infinite number of distinct elements then we 
call S to be a infinite S-semigroup. Let S be a semigroup, if S 
has a non empty subset P such that P has proper subset. T such 
that T is a group then we call P a Smarandache subsemigroup. It 
is interesting to note that any semigroup which has a S sub 
semigroup itself becomes a S-semigroup. It is still important to 
see that not all semigroups are S-semigroups. For take Z+ a 
semigroup under multiplication. Clearly Z+ has no proper subset 
which is a group under multiplication. Let Z be the semigroup 
under multiplication S = {–1, 1} is a group under multiplication. 
Hence Z is a S-semigroup.  

For several properties about this structure please refer [100]. 

1.2. Fields and Rings 

Now we just recall the definition of fields and rings. 

DEFINITION 1.2.1: Let R be a set with two associative binary 
operations +, �. We call R to be a ring if the following 
conditions are satisfied. 

1. (R, + ) is a group. 
2. (R, � ) is a semigroup. 
3. (i) a � ( b + c) = a � b + a � c 

 (ii) (a + b) � c = a � c + b � c 
for all a, b, c � R. 

If R contains an element 1 such that a � 1 = 1 � a = a for all a 
� R we call R to be a ring with unit. If in R, a � b = b � a for all 
a, b � R then we call R to be a commutative ring. If in the 
commutative ring R we have a � b = 0 implies either a = 0 or b 
= 0 then we call R to be an integral domain. If (R, +, �) be an 
integral domain and if in addition (R \ {0}, �) is a commutative 
group then we call (R, +, �) to be a field. Clearly all fields are 
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commutative rings with unit. But all commutative rings with unit 
need not be a field. Suppose (R, +, �) be a ring with unit and if 
(R \ {0}, �) is a non commutative group. Then we call (R, +, �)
to be a division ring. All division rings are rings but a ring in 
general is not a division ring.  

Now we will proceed on to illustrate these by examples. 

Example 1.2.1: Let M2�2 = {M = (aij) | aij � Q} be the collection 
of all 2 � 2 matrices with entries from Q. M2�2 is a ring which is 
non commutative but M2�2 is not a division ring. Thus every non 
commutative ring need not be a division ring.  

Clearly all division rings are rings. 

Example 1.2.2: Let Z12 be the ring of integers module 12. Z12 is 
a finite commutative ring. 

Example 1.2.3: Let 2
2 2M �  = {(aij) = M | aij � {0, 1}}. 2

2 2M �

denotes the set of all 2 � 2 matrices with entries from the prime 
field of characteristic two. 2

2 2M �  is a finite non commutative 
ring. In fact it is not even a division ring. 

Example 1.2.4: Let Z5 = { 0,  1,  2,  3,  4 } be the set of integers 
modulo 5. Z5 is a field. It is in fact a finite field. 

Example 1.2.5: Let Z be the ring of integers. Z is a 
commutative ring, in fact an integral domain. 3Z is also an 
integral domain which is not a field. 

Example 1.2.6: Let Q be the ring of rationals. Q is a field. R the 
set of reals is also a field. C the collection of complex numbers 
is also a field. We see Q � R � C even as sets. 

Example 1.2.7: Let Q[x] be the ring of polynomials. Q[x] is 
only a ring and not a field known as the ring of polynomials.

Example 1.2.8: Let Z7[x] be the ring of polynomials in the 
variable x. 
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n

7 i i i 7
i 0

Z [x] = x n N; Z
�

� �
� � � �� �

� �
� . Clearly Z7[x] is not a field 

only a commutative ring with unit.

Example 1.2.9: Let Z6[x] be the ring of polynomials in the 
indeterminate x, Z6[x] is a commutative ring having zero 
divisiors.

Now we proceed on to define the notion of subrings and ideals 
of a ring. 

DEFINITION 1.2.2: Let R be any ring. A proper non empty 
subset P of R is said to be a subring of R if P is a ring under the 
operations of R. 

DEFINITION 1.2.3: Let R be any ring. A proper non empty 
subset I of R is said to be a ideal of R if the following conditions 
are satisfied.

1. I is a subring of R. 
2. For every i � I and r � R; ir and ri � I. 

Thus from the very definitions we see all ideals are subrings and 
subrings in general need not be ideals of R. 

Example 1.2.10: Let Q be the ring. Z is a subring of Q but Z is 
not an ideal of Q. 

Example 1.2.11: Let Z12[x] be the polynomial ring. Z12 is a 
subring of Z12[x]. Clearly Z12 is not an ideal of Z12[x].

Example 1.2.12: Let Z be the ring of integers. 5Z is a subring of 
Z as well as ideal of Z. 

Example 1.2.13: Let M2�2 = {(mij) = M | mij � Q} be the ring of 
matrices. P2�2 = {(mij) = M | mij � Z} is a subring of M2�2 which
is not an ideal of M2�2.
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Having seen the examples of subrings and ideals in a ring we 
now proceed on to make a mention of special types of ideals for 
more about these concepts please refer [48, 60]. 

We have defined an ideal. Let R be any ring. I � (0) be an 
ideal of R. We say I is maximal ideal of R if we have any other 
ideal J of R such that (0) � I � J � R, then either J = I or J = R. 
We call an ideal (0) � P or R to be a minimal ideal of R if we 
have for any N an ideal of R such that (0) � N � P, either N = 
(0) or N = P. An ideal I of R is said to be prime if xy � I then 
either x or y is in I. An ideal J of R is said to be principal if J is 
generated by a single element. 

We illustrate these with examples. 

Example 1.2.14: Let Z be the ring of integers 3Z is an ideal of 
Z. In fact 3Z is a maximal ideal of Z. 3Z is also a principal ideal 
of Z as 3Z is generated by 3. In fact 3Z is a prime ideal of Z as 
for xy � 3Z clearly x or y is in 3Z. We see all ideals of the form 
pZ, p a positive prime is an ideal of Z which is maximal, prime 
and principal. We consider 6Z the ideal of Z, clearly 6Z is not a 
maximal ideal of Z � 6Z is not a prime ideal as 2 � 3 = 6 � 6Z 
but both 2 and 3 are not in 6Z. 6Z is a principal ideal as it is 
generated by 6. We see 
 2Z = {0, �2, �4, �6, …}
 6Z = {0, �6, �12, �18, … } 
 6Z � 2Z so 6Z is not a maximal ideal of Z. It is interesting to 
see Z has no minimal ideal. 

Example 1.2.15: Let Z12 be the ring of integers modulo 12. I = 
{0, 2, 4, 6, 8, 10}, J = {0, 6}, T = {0, 4, 8} and K = {0, 3, 6, 9} 
are ideals of Z12. T and J are minimal ideals of Z12, whereas I 
and K are maximal ideals of Z12. In fact all the four ideals are 
principal. J and T are not prime ideals for 2 � 2 = 4 � T but 2 �
T. Also 3�2 � J but 2 and 3 � J. Hence the claim.  

Now we proceed on to give yet another example. 

Example 1.2.16: Let Z6 be the ring of integers modulo 6. I = {0, 
3} and J = {0, 2, 4} are ideals of Z6. I and J are both prime 
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ideals of Z6, they are also principal ideals of Z6. It is very 
interesting to note that both I and J are maximal as well as 
minimal ideals of Z6.

It is interesting to know a field cannot have proper ideals [35-8]. 
A field may have only subfields. 

DEFINITION 1.2.4: Let F be any field. We say F is a field of 
characteristic zero if nx = 0 for all x � F; n an integer implies n 
= 0 i.e., for no integer nx = 0 for all x � F can occur then F is a 
field of characteristic zero.  

We say a field F is of characteristic p if we have px = 0 for 
all x � F and p is a prime number. 
 Thus we say the field F is of characteristic p, p > 0 and p a 
prime.

We illustrate this by the following examples. 

Example 1.2.17: Let Zp = { 0,  1,  2, ,  p 1�� } be the ring of 
integers modulo p. Zp is a field we see px = 0 for all x � Zp so 
Zp is a field characteristic p.  

Z5 is the field of characteristic 5. Z13 is the field of 
characteristic 13. Z12 is not a field but only a ring. 

Example 1.2.18: Let R be the field of reals. R is of 
characteristic 0. Further every subset of R is also of 
characteristic zero. Q be the rationals; Q is the field of 
characteristic zero. 

DEFINITION 1.2.5: Let F be a field. A proper subset P of F is 
said to be a subfield of F if P is itself a field under the 
operations of F. If a field has no proper subset which is a 
subfield then we call F to be a prime field. 
 We see Q, the field of rationals is a prime field and Q is of 
characteristic zero. Zp, p a prime are all prime fields of 
characteristic p. R the field of reals is not a prime field for it 
contains Q to be a subfield. Likewise C the field of complex 
numbers is not a prime field for it contains Q and R to be 
proper subfields. 
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 Now we define the notion of quotient rings for that alone 
leads us to show the existence of non prime fields of 
characteristic p. For we see all fields Zp, p a prime are only 
prime fields of characteristic p. Let Zp[x] be the ring of 
polynomials with coefficients from Zp. Let p(x) be an 
irreducible polynomial of degree n over Zp[x]. 

 Consider the ideal I generated by p(x), pZ [x]
I

 is the 

quotient ring and if I is a maximal ideal the quotient ring pZ [x]
I

is a field and pZ [x]
I

 has pn elements in it and pZ [x]
I

 is also a 

field of characteristic p and it has a subfield isomorphic to Zp

given by �  I,  1 + I,  2 + I, ,p 1 ��  where I acts as the additive 

zero of pZ [x]
I

.

We illustrate this situation by the following examples. 

Example 1.2.19: Let Z3[x] be the polynomial ring with 
coefficients in Z3 in the variable x. Consider the polynomial 
p(x) = 1 + x4 in Z3[x]. Clearly p(x) is irreducible over Z3[x]. Let 
I be the ideal generated by p(x). 

It is easily verified 3Z [x]
I

 has 81 elements in it and it is a 

field of characteristic 3. I acts as the additive identity and 1 + I 
acts as the multiplicative identity. For instance the 
multiplicative inverse of 2x2 + I is for (2x2 + I)(x2 + I) = 1 + I.  

We now yet illustrate a few more examples. 

Example 1.2.20: Let Z2[x] be a polynomial ring with 
coefficients from {0, 1} in the variable x. Consider a 
polynomial p(x) = x3 + x + 1. Clearly p(x) is irreducible over 
Z2[x]. Let I be the ideal generated by p(x). Consider the quotient 
ring
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2 2Z [x] Z [x] T
p(x) I

� �

= 2 2{I,  1 I,  x I,  x I, 1 x I,  1 x I,! ! ! ! ! ! !
2 2x x I,  1 x x I}! ! ! ! ! .

Clearly T is a field of characteristic two. We have S = {I, 1 + I} 
is a proper subset of T which is a subfield of T. It is easily 
verified S " Z2 = {0, 1} for map I 0�  and 1+ I 1� .

Now it is important to note that in general all quotient rings are 
not fields.

We illustrate this by the following examples. 

Example 1.2.21: Let Z2[x] be the ring of polynomial over the 
prime field of characteristic two. Consider p(x) = x2+ 1 � Z2(x).
Let J be the ideal generated by x2 + 1. The quotient ring  

�  2Z [x] J,  1 J,  x J,  x 1 J   P(say)
J

� ! ! ! ! � .

We prove P is not a field. Consider  

# $# $ # $# $ # $2
x 1 J x 1 J x 1 J! ! ! ! � ! !

# $ # $ # $2 2 2 x 2x 1 J x 1 J   J x 1 J� ! ! ! � ! ! � ! �� .

So (x + 1 + J) (x + 1 + J) = J. J is the zero of 2Z [x]  P
J

�  so x 

+ 1 + J is a zero divisor in P. Hence P is a not a field it is only a 
quotient ring of characteristic two. 

Now we have seen ideals and quotient rings. We just make a 
mention of how we have quotient rings to be also prime fields. 

Example 1.2.22: Let Z be the ring of integers. Z is a ring, I = 
�3Z� is an ideal of Z in fact a maximal ideal of Z. The quotient 
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ring �  Z  = I,  1 I,  2 I  S
I

! ! � . Clearly S is isomorphic to the 

prime field of characteristic 3. For �  3Z  = 0, 1, 2  then S " Z3

given by (I) 0,% � (1+I) 1 and  (2 I) 2% % !� � . It is easily 
verified % is a field isomorphism. 
 Now we give an example of a quotient ring which is not a 
prime field. We can generalise the example 1.2.21 as follows. 
Let Z be the ring of integers p be any prime. pZ = I be the ideal 
generated by p. The quotient ring  

�  Z Z      V = I,  1 I,  2 I, ,p 1 + I
pZ I

� � ! ! ��

and V " Zp (Zp the prime field of characteristic p). 
 Consider the following example which gives rings as 
quotient rings. 

Example 1.2.23: Let Z be the ring of integers. 12Z is an ideal 
generated by 12. Let I = 12Z, consider the quotient ring  

�  Z   = I,  1 I,  2 I, , 11 I
I

! ! !� .

We see (3  I)(4  I)  12  I  I! ! � ! �  is a zero divisor in the 

quotient ring Z  = T
I

. Also 

(2 + I)(6 + I) = 12 + I = I, (3 + I) (8 + I) I� .
Thus T is only a ring which is isomorphic to Z12.

Now having given the recollection of definitions of rings and 
fields we now proceed on to give the definition of Smarandache 
rings, (S-rings). 

DEFINITION 1.2.6: Let R be a ring. We call R to be a 
Smarandache ring (S-ring) if we can find a proper subset P in R 
such that P � % and P � R but P is a field under the operations 
of R. All Smarandache rings are rings but in general every ring 
need not be a S-ring.

We illustrate this situation by some examples. 
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Example 1.2.24: Let Q[x] be the polynomial ring over Q. We 
see Q the field of rationals is a proper subset of Q[x]. Thus Q[x] 
is a S - ring. 

Example 1.2.25: Consider the polynomial ring Z[x]. Z[x] has 
no proper subset P which is a field. Hence Z[x] is not a S-ring. 
Thus we see all rings are not S-rings, but clearly every S-ring is 
a ring.

Now we proceed on to define the notion of Smarandache 
subring of any ring R. 

DEFINITION 1.2.7: Let R be any ring. P a proper subset of R. If 
P is a S-ring then we call P to be Smarandache subring (S-
subring) of R. 

It is interesting to note that if a ring R has a proper Smarandache 
subring P then R itself is a S-ring; for P � R and P has a proper 
subset T such that T is a field now T & P & R so R itself is a S-
ring.

Example 1.2.26: Let R[x] be the ring of polynomials over the 
reals R. Clearly Q[x] is the subring of R[x]. Q[x] is not a field 
but Q[x] is a S-ring for it contains a proper subset Q which is a 
field. Now Q � Q[x] � R[x] so R[x] is also a S-ring.  

Now we proceed on to give example of a finite S-ring. 

Example 1.2.27: Let Z2[x] be the ring of polynomials. Consider 
the quotient ring  

�  2
2

Z [x] I,  1 I,  x I,  1+ x I T
x +1 I

� ! ! ! �
�

.

T is a S-ring but T does not contain a S-subring. Z2[x] is also a 
S-ring. So every S-ring need not in general contain a S-subring.  
Now we recall the definition of Smarandache ideal of a ring. 

DEFINITION 1.2.8 [101]: The Smarandache ideal (S-ideal) is 
defined as an ideal A of a ring R such that a proper subset of A 
is a field(with respect to the same induced operations). 
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It is interesting to note with these conditions we may not find 
examples of S-ideals. For Z6 has no S-ideals, Z10 has no S-
ideals. So we proceed on to define Smarandache definite ideal.

DEFINITION 1.2.9: The (A, +, �) be a S-ring. Let B be a proper 
subset of A which is a field. A non empty subset S of A is said to 
be Smarandache definite right ideal (S-definite right ideal) of A 
related to B if

1. (S, +) is an additive abelian group. 
2. For b � B and s � S we have s � b � S. 

On similar lines we can define Smarandache definite left ideals. 

We illustrate this by the following example. 

Example 1.2.28: Let Z12 = { 0, 1, 2, , 11� } be the ring of 
integers modulo 12. Let A {0, 4, 8}�  be a field. Z12 is a S-ring 
S = {0, 6} is a S-definite ideal related to A. But S is also an 
ideal Z12.

The interested reader is requested to refer [35-8].  
Now we proceed on to recall the definition of semirings. 

DEFINITION 1.2.10: Let S be a non empty set on which is 
defined two binary operations addition ‘+’ and multiplication 
‘�’ satisfying the following conditions. 

1. (S, +) is a commutative monoid. 
2. (S, � ) is a semigroup. 
3. (a + b) �  c = a� c + b� c and 

c � (a + b) = c �  a + c �  b for all a, b, c in S.  
We call (S, +, � ) to be a semiring. If the semiring (S, +, � )

contains 1 such that 1 �  s = s � 1 = s for all s � S, we call S to 
be a semiring with unit.  

We illustrate this by the following examples. 
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Example 1.2.29: Let Zo = Z+ ' {0} the set of integers with zero 
(Zo, +, 0) is a semiring. 

Example 1.2.30: Let Qo = Q+ ' {0}; Qo is a commutative 
semiring.  

Note: A semiring S is said to be commutative if a � b = b � a for 
all a, b � S. 

Example 1.2.31: Let

o
2 2

a b
S  a, b, c, d  Z Z {0}

c d
!

�

� �	 
� �� � � '� �� 
� �� �� �

set of all 2 � 2 matrices with entries from Z�. (M2�2, +, �) is a 
semiring ‘+’ is the matrix addition and ‘�’ is the matrix 
multiplication. 

We now proceed on to define the notion of subsemiring. 

DEFINITION 1.2.11: Let S be a semiring, P a proper subset of S. 
We call P to be subsemiring if P itself is a semiring, under the 
operations of S. 

We illustrate this situation by the following examples. 

Example 1.2.32: Let Zo = Z+ ' {0} be a semiring. Take 2Zo =
{0, 2, 4, …}; 2Zo is a subsemiring of Zo.

Example 1.2.33: Let Zo[x] be the polynomial semiring i.e., 
�  o on

0 1 n0 1 nZ [x] p ,  p , ,p  Zp p x p x� �! ! ! �� . Under the 

polynomial addition and multiplication Zo[x] is a semiring. 
Clearly Zo & Zo[x] and Zo is the subsemiring of Zo[x]. 
 Now as in case of rings in case of semirings also one can 
define the notion of ideals of a semiring. We now recall the 
definition of ideals of a semiring and illustrate it with examples. 
For more about semirings the interested reader is requested to 
refer [92, 96, 98, 102]. 
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DEFINITION 1.2.12: Let S be a semiring. A non empty subset I 
of S is said to be an ideal of S if 

1. I is a subsemiring of S. 
2. For all i � I and s � S we have i s and s i � I.

As in case of rings one can define both right ideal of a semiring 
and a left ideal of a semiring. The notion of right ideal and left 
ideal trivially coincide only when the semiring is a commutative 
semiring. 

Example 1.2.34: Let Zo = Z+ ' {0} be a semiring n Zo, n any 
positive integer is an ideal of the semiring Zo. We have n Zo = 
{0, n, 2n, 3n, …}. 

Example 1.2.35: Consider the distributive lattice given by the 
following figure. 

e

c

d

f

Figure 1.2.1 

a

h

1

b

g

i

0
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S = {1, a, b, c, d, e, f, g, h, i, 0}. S is a semiring. Take I = {0, i, 
h, g, f, d, e, c} is an ideal of the semiring S.  

As in case of ring in case of semirings one can define the 
notion of units, idempotents and zero divisors; but in case of 
semirings the existence of idempotents need not lead to zero 
divisors.

For we see all distributive lattices are semirings and every 
element in a distributive lattice is an idempotent but this does 
not imply the semiring has zero divisors.  

We illustrate this by the following example. 

Example 1.2.36: Consider semiring given by the lattice. 

S = {1, a, b, c, d, e, 0} is a semiring but S has no zero divisors 
but every element in S is an idempotent of S.  

But we have semiring which contain zero divisors as well as 
idempotents. 

Example 1.2.37: Consider the semiring given by the following 
lattice.

c

a

b

d

Figure 1.2.2 

1

e

0
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S = {1, a, c, d, 0}; S is a semiring in which every element; is an 
idempotent. This semiring has zero divisors. For c � d = 0; c � 0 
and d � 0. Hence the claim. 

We give yet another example. 

Example 1.2.38: Consider the semiring  

o +
2 2

a b
M  = a, b, c, d  Z  = Z {0}

c d�

� �	 
� �� '� �� 
� �� �� �

.

M2�2 is a semiring under matrix addition and matrix 
multiplication.  

Take
5 0

A = 
0 0

	 

� 
� �

 and 
0 0

B = 
0 7

	 

� 
� �

.

Clearly  
5 0 0 0 0 0

A B =  = 
0 0 0 7 0 0

	 
 	 
 	 

�  �  � 
� � � � � �

� .

Thus the semiring M2�2 has zero divisors.  

Now we proceed on to define the notion of semifields. 

d

a

c

0

Figure 1.2.3 

1
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DEFINITION 1.2.13: Let S be a non empty set. S is said to be a 
semifield if 

1. S is a commutative semiring with 1. 
2. S is a strict semiring i.e., for a, b � S if a + b = 0 then a 

= 0 and b = 0. 
3. If in S, a �  b = 0 then either a = 0 or b = 0. 

We now illustrate this definition by the following examples. 

Example 1.2.39: Zo = Z+ ' {0} be a semiring which is also a 
semifield.  

Example 1.2.40: The semiring  

o +
2 2

a b
M  = a, b, c, d  Z  = Z {0}

c d�

� �	 
� �� '� �� 
� �� �� �

is not a semifield for M2�2 is not a commutative semiring and 
further we have

3 0
A = 

0 0
	 

� 
� �

 and 
0 0

B = 
0 2

	 

� 
� �

such that
3 0 0 0 0 0

A B =  = 
0 0 0 2 0 0

	 
 	 
 	 

�  �  � 
� � � � � �

� .

i.e., M2�2 has zero divisors as A o B = (0) without A being zero 
and B being equal to zero. 

Now we proceed on to define the notion of subsemifield. 

DEFINITION 1.2.14: Let S be a semifield; a proper subset P of S 
is said to be subsemifield if P itself is a semifield. 

Example 1.2.41: Let Qo = Q+ ' {0} be the semifield. Zo & Qo

and Zo is a subsemifield of Qo .
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 We see all semifields need not in general contain sub 
semifields. For instance Zo has no proper subset which is a sub 
semifield of Qo.

Example 1.2.42: We see Zo[x] is a semifield. Zo & Zo[x] is a 
subsemifield. 

Now in the next section we proceed on to define the notion of 
vector spaces, semivector spaces and modules. 

1.3 Vector spaces, Semivector spaces and Modules 

 In this section we just recall the basic definitions of vector 
spaces, modules and semivector spaces and illustrate them with 
examples. For more about these notions please refer [2, 15, 29, 
104]. 

DEFINITION 1.3.1: We call a non empty set V to be a vector 
space over a field F of characteristic zero if the following 
conditions are satisfied. 

1. (V, + ) is an additive abelian group. 
2. For every v � V and a � F (The elements of the field F 

are called as scalars) we have ( � a and a � ( � F. (Note 
a � v = v � a we always write the scalar as coefficients). 

3. 0 � ( = ( � 0 = 0 for all v � V and 0 � F. 
4. 1 � ( = ( � 1 = ( for all v � V. 
5. ( a + b) ( = a( + b( for all a, b � F and ( � V. 
6. a ( u1 + u2 ) = a u1 + a u2 for all a � F and u1, u2 � V. 

Since a ( u1 + u2 ) = ( u1 + u2 ) a and ( a + b) ( = ( ( a + b), we 
do not express both identities explicitly. 

We illustrate this definition by an example. 

Example 1.3.1: Let Q[x] be the polynomial abelian group with 
respect to addition. Q the field of rationals. Q[x] is a vector 
space over Q. 
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Note: Q[x] is not a vector space over the field of reals. For if we 
take 2 � R and p(x) = p0 + p1x + … + pnxn any polynomial in 
Q[x] where p0, p1, …, pn � Q. We see 2 p(x) is not a 
polynomial in Q[x], hence the claim. 

 Now we show more interesting result in this direction. 

Example 1.3.2: Let R[x] be the set of all polynomials with 
coefficients from the reals in the indeterminate x. R[x] is a 
group under addition. R[x] is a vector space over Q as well as 
R[x] is a vector space over R. 

Example 1.3.3: Let R be the group of reals under addition. R is 
a vector space over R as well as R is a vector space over Q. 

Example 1.3.4: Let Q be the group of rationals under addition. 
Q is a vector space over the field of rationals Q; but Q is not a 
vector space over the field of reals. For 3 � Q and 5 R�  but 
3 5 Q� , hence the claim. 

Example 1.3.5: Let M3�2 be the collection of all 3 � 2 matrices 
with entries from the field of rationals i.e., M3�2 = M = (mij) is a 
group under matrix addition. M3�2 is a vector space over the 
field Q but M3�2 is not a vector space over the field of reals R 
for take 3 R� , clearly

11 12

21 22

31 32

3 m 3 m

3M 3 m 3 m

3 m 3 m

	 

� 

� � 
� � 
� �

;

but 3 M does not belong to the collection M3�2 as ij3m  Q� .
Hence the claim. Clearly M3�2 is a vector space over Q only.  
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Now we have seen examples of vector spaces. We recall the 
definition of linear algebra. 

DEFINITION 1.3.2: Let V be a vector space over the field F, i.e., 
V is an additive abelian group satisfying the conditions given in 
definition 1.3.1. If in addition we have for u, ( � V, ( � u and u �
( � V and the operation ‘.’ is a closed binary associative 
operation on V. Then we call V to be linear algebra over the 
field F.

We see all linear algebras are vector spaces over the fields on 
which they are defined, but in general a vector space need not 
always be a linear algebra. For more refer [2, 15, 29, 104].  

We now illustrate this definition. 

Example 1.3.6: Let M3�2 be a vector space over Q given in 
example 1.3.5. Clearly M3�2 is not a linear algebra over Q as for 
any A, B � M3�2 we see the matrix product AB is not even 
defined.

Example 1.3.7: Let Q[x] be the group of polynomials under 
addition. Q[x] is a vector space over Q. In fact Q[x] is a linear 
algebra over Q; for if p(x), q(x) � Q[x] then p(x)q(x) the 
product of two polynomials is again polynomial in Q[x]. Hence 
Q[x] is a linear algebra over Q. 

Example 1.3.8: Let Mn�n = {M = (mij)|mij � Q} be the collection 
of n � n matrices with entries from Q. Mn�n is a vector space 
over Q. In fact Mn�n is a linear algebra over Q. In fact Mn�n is
neither a vector space nor a linear algebra over R. 

We have seen the notion of vector spaces and linear algebra. 
Now we just define the basis for a vector space and dimension 
of a vector space over a field K. 

DEFINITION 1.3.3: Let V be a vector space over the field K. Let 
B = {(1, (2, …, (n} be a non empty subset of V; we say (1, (2, …, 
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(n are linearly dependent over K if there exits elements �1, �2,
…, �n  in K not all of them zero, such that �1(1 + �2(2+ … + 
�n(n= 0. If the vectors (1, (2, …, (n are not linearly dependent 
over K then they are said to be linearly independent; that is

1
0

�

��
n

i i
i
�(

if and only if each �i = 0 for i = 1, 2, …, n.  

We say the set B = {(1, (2, …, (n} which is linearly independent 
generates the vector space V over K if every element x in V can 
be uniquely represented as a linear combination of elements 
from B with coefficients from K i.e.,

1�
��

n

i i
i

x x(

where xi � K; 1, 2, …, n.  

The set B in this case is called a basis of V and the number of 
elements in B corresponds to the dimension of V over K. If B 
has finite number of elements in it then we call V to be a finite 
dimensional vector space over K. If B has infinite number of 
elements then we say V is an infinite dimensional vector space 
over K.

It is important to note that the dimension is also dependent on 
the field over which it is defined.  

This will be clear from the following examples. 

Example 1.3.9: Let M2�2 = {(mij) | mij � R} be set of all 2 � 2 
matrices with entries from the field of reals. M2�2 is a vector 
space over R. Now the dimension of M2�2 as a vector space over 
R is four i.e., M2�2 is generated by the set  

1 0 0 1 0 0 0 0
B ,  , , 

0 0 0 0 1 0 0 1
� �	 
 	 
 	 
 	 
� �� � ��  �  �  � 
� �� � � � � � � �� �

.
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Now M2�2 is also a vector space over Q; but the dimension of 
M2�2 over Q is infinite dimensional.  

This can be more explicitly explained by the following example. 

Example 1.3.10: Let V = R � R be a vector space over R. V is a 
two dimensional vector space over the reals. V is generated by 
B = {(0, 1), (1, 0)}. Now V = R � R is also a vector space over 
Q.

Now V as a vector space is generated by an infinite number 
of elements as the generating pairs B = {(x, y)} must vary over 
the irrationals of the form # $p,  q  where p and q are not 

perfect squares i.e.,

# $ # $ # $ # $ # $ # $�  B = 2,  0 , 0, 2 , 3,  0 , 0,  3 , 5,  0 , 0, 5 ,� .

Thus these two examples clearly show the dimension of a vector 
space is much dependent on the field over which it is defined. 

Now we proceed on to define the notion of modules. 

DEFINITION 1.3.4: Let R be a ring. A non empty set M is said to 
be a R-module (or a module over R) if M is an abelian group 
under an operation ‘+’ such that for every r � R and m � M 
there exists an element rm in M subject to  

r ( a + b ) = ra + rb 
r (sa) = (rs) a 

( r + s ) a = ra + sa 

for all a,b � M and r, s � R. 
 If the R has a unit element 1 and if 1� m = m for every 
element m in M; then M is called a unital R-module.  

Note that if R is a field, a unital R-module is nothing more than 
a vector space over R.  
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We will be defining and using only unital rings. Properly 
speaking, we should have called the object that we have defined 
as a left R-module. An R-module M is said to be cyclic if there 
is an element mo � M such that every m � M is of the form m = 
rmo where r � R.

An additive subgroup A of the R-module M is called a 
submodule of M if whenever r � R and a � A then ra � A. 
 An R-module M is said to be finitely generated if there 
exists elements a1, a2, …, an � M such that every m in M is of 
the form m = r1a1 + … + rnan.

We now illustrate this by the following example. 

Example 1.3.11: Let Z be the ring of integers  

2 2

a b
M  = a, b, c, d  Q

c d�

� �	 
� ��� �� 
� �� �� �

is an additive group. M2�2 is a module over Z. 

Example 1.3.12: Let Z[x] be the polynomial ring. Z[x] is a 
unital module over Z.  

Example 1.3.13: Let M5�3 = {(mij) | mi � Q} be the set of all 5 �
3 matrices with entries from Q. M5�3 is a group under matrix 
addition. M5�3 is a vector space over Q also M5�3 is a vector 
space over Z. 

Let Q be a field # $Q 3  is a field containing in Q. # $Q 3

is an extension field of Q.  

# $Q 3  is a vector space over Q and in fact # $Q 3  is a 

finite dimension vector space over Q; then we call # $Q 3  a 

finite extension of Q and �  1, 3  is a basis and # $Q 3  is a 

vector space of dimension 2. 
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Thus in view of this we have the following definition. 

DEFINITION 1.3.5: Let F be any field, E an extension field of F 
that is F is a subfield of the field E. We say E is a finite 
extension of F if E as a vector space over F is finite dimensional 
and it is denoted by [E: F] = n < �.

 We see F can be realised as a subfield of E. One of the 
interesting properties is that if F is any field; E is a finite 
extensions of F and T is a finite extension of E then T is a finite 
extension of F i.e., F � E � T; i.e., [T: F] = [T: E] [E: F] = mn 
where [T: E] =  m < � and [E: F] =  n < �.

 If T is a vector space over E of dimension m and E is a 
vector space of dimension n then T is a vector space of 
dimension mn. Several interesting results can be obtained in this 
direction but the reader is requested to refer [2, 15, 29, 104] for 
more about this literature. 
 We see Q is a field and R the field of reals is only an 
infinite extension as R is a vector space over Q but dimension of 
R as a vector space over Q is infinite. Also if Q is the field of 
rationals # $Q 2  is a finite extension of Q.

Now consider

# $K Q 2� ,

now # $K 3  is a finite extension of K. We see # $Q 2  is a 

vector space of dimensions two over Q and # $K 3  is a vector 

space of dimension two over K. We see  

# $Q K K 3� � .

Now # $K 3  is a vector space over Q, and # $K 3  is a 

finite dimensional vector space over Q.  

Now
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# $ # $ ) *K 3 : Q K 3 : K 2.2 4K : Q+ , + ,� � �- . - . .

Thus # $K 3  is a vector space of dimension 4 over Q and a 

basis of # $K 3  as a vector space over Q is �  1,  2,  3,  6 .

Now having seen finite extensions of fields, we now proceed on 
to recall the definition of Smarandache vector space.  

For more about Smarandache vector space refer [104]. 

DEFINITION 1.3.6: Let R be a S-ring, V be a module over R. We 
say V is a Smarandache vector space of type II (S-vector space 
of type II)  if V is a vector space over a proper subset K of R 
where K is a field. 

We illustrate this by the following example. 

Example 1.3.14: R[x] be the polynomial ring over the field of 
reals. Q is a field in R[x]. Q[x] is a S-vector space over Q. 
Clearly Q[x] is not a vector space over R. 

DEFINITION 1.3.7: Let R be a S-ring M a R-module M is said to 
be a Smarandache linear algebra of type II (S-linear algebra of 
type II) if M is a linear algebra over a proper subset K in R 
where K is a field. 

For more about these concepts please refer [101].

DEFINITION 1.3.8: Let M be an R-module over a S-ring R. If a 
proper subset P of M is such that P is a S-vector space II over a 
proper subset K of R where K is a field then we call P a 
Smarandache subspace II(S-subspace II)  of M relative to P. 

Now we proceed on to define the notion of Smarandache linear 
subalgebra.
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DEFINITION 1.3.9: Let M be an R-module over a S-ring R. If M 
is a proper subset P such that P is a Smarandache linear 
algebra over a proper subset K in R where K is a field then we 
say P is a Smarandache linear subalgebra of type II (S-linear 
subalgebra of type II). 

For more refer [104]. 
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Chapter Two 

SMARANDACHE ALGEBRAIC SPECIAL 
DEFINITE STRUCTURES 

The study of Smarandache algebraic structures was only 
visualizing an algebraic stronger structure in an algebraically 
weak structure. For instance the Smarandache semigroups had 
in it a group, a Smarandache groupoid had a loop in it as a 
substructure and so on. It is pertinent to mention here that we 
had no concept of Smarandache group for the group happened 
to be a very strong concentrated algebraic structure for no more 
stronger structure can be put into that algebraic structure. 

So now for the first time we study the new notion of 
Smarandache special definite structures. That is we visualize a 
weak algebraic structure in a strong algebraic structure.

This chapter has two sections. In section one the notion of 
Smarandache special definite groups are introduced. 
Smarandache special definite algebraic structures or 
equivalently we say Smarandache special definite algebraic 
structure like S-special definite fields, S-definite special 
minimal (and maximal ideals) S-special definite homomorphism 
are introduced.
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2.1 Smarandache Special Definite Groups 

In this section we for the first time introduce the notion of 
Smarandache special definite groups and investigate some of its 
interesting properties. 

DEFINITION 2.1.1: Let (G, *) be a group we call G to be 
Smarandache special definite group (S-special definite group) if 
we can find a non empty subset S in G such that (S, *) is a 
semigroup.

We illustrate this situation by the following examples. 

Example 2.1.1: Let (Z, +) be a group under addition. If we take 
Z+ the set of only positive integers then Z+ is a semigroup under 
addition. Thus (Z, +) is a Smarandache special definite group.

Example 2.1.2: Consider G = Q \ {0}; G is a group under 
multiplication �; Take Z \ {0} a proper subset of G, clearly Z \ 
{0} is only a semigroup under multiplication. Thus (Q \ {0}, �)
is a S-special definite group. 

All groups in general are not Smarandache special definite 
groups. This is proved only by the following example. 

Example 2.1.3: Consider S3 the group of permutations on (1 2 
3). Clearly S3 is not a S-special definite group for we cannot 
find any proper subset in S3 which is a semigroup under the 
operations of S3.

Note: When we say a proper subset (S, *) � (G, *) is a 
semigroup we by no means accept (S, *) to be a subgroup of (G,
*).

Example 2.1.4: Sn (n / 2) is a symmetric group which is never a 
S-special definite group. 
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Example 2.1.5: Let M2�2 = {(aij) = M such that aij � Q and |M| �
0, i.e., determinant of M � 0} be a group under matrix 
multiplication. Take P2�2 = {(aij) = P | aij � Z, |M| � 0} a proper 
subset of M2�2. Clearly P is only a semigroup under 
multiplication. So M2 x 2 is a S-special definite group. 

We make a note M2�2 is a non commutative group. 

Example 2.1.6: Consider the set M2�2 = {(mij) = M | mij � Q and 
det[M] � (0)}. M2�2 is a group under matrix multiplication. Take  

P2�2 =
1 2
2 1

�	 

� �� �

;

P2�2 is a semigroup under matrix multiplication and P2�2 is a 
proper subset of M2�2 . So M2 x 2 is a S-special definite group. 

DEFINITION 2.1.2: Let (G, *) be a group. If we have a proper 
subset P in G such that (P, *) is a commutative semigroup then 
we call (G, *) to be a commutative Smarandache special definite 
group (commutative S-special definite group). 

Note: It is important and interesting to note that (G, *) need not 
be commutative group still the group (G, *) may be a 
commutative S-special definite group. 
 We have got the following theorem as an immediate 
consequence of the definition which is left as an exercise for the 
reader.

THEOREM 2.1.1: Every commutative group (G, *) which is a S-
definite special group is a commutative S-definite special group.  

Just we show by an example that there exists commutative S-
special definite groups (G, *) which in general are not 
commutative. 

Example 2.1.7: Let M2�2 = {(mij) = M | mij � Q and | M | � 0} 
be the group under matrix multiplication.  
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P2�2 =
1 2
2 1

�	 

� �� �

is a semigroup generated under matrix multiplication. We see 
P2�2 is a commutative semigroup but M2�2 is not a commutative 
group but M2�2 is a commutative S-special definite group. 
 Now we proceed on to define strongly commutative 
Smarandache special definite group. 

DEFINITION 2.1.3: If every proper subset P of G which is a 
semigroup under “*” happens to be a commutative semigroup 
then we call (G, *) to be strongly commutative Smarandache 
special definite group (strongly commutative S-special definite 
group).

The following theorem is left as an exercise for the interested 
reader to prove. 

THEOREM 2.1.2: Let (G, *) be a commutative group, which is 
also a S-special definite group. Then (G, *) is a strongly 
commutative Smarandache special definite group. 

 Now we proceed on to prove that all commutative S-special 
definite groups are not strongly commutative S-special definite 
groups but all strongly commutative S-special definite groups 
are commutative S-special definite groups. It is clear from the 
very definition all strongly commutative S-special definite 
groups are commutative S-special definite groups.  

We prove by an example that a commutative S-special 
definite group in general is not a strongly commutative S-
special definite group. 

Example 2.1.8: Consider M2�2 = {(M = mij) | mij � Q and | M | �
0} be a non commutative group under matrix multiplication. 
Consider the set P2�2 = {P = (pij) | pij � Z, |P| � 0}, P2�2 is a 
subset of M2�2 and P2�2 is a semigroup under matrix 
multiplication and P2�2 is not a commutative semigroup.  
Now consider
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T2�2 =
1 2
2 1

�	 

� �� �

i.e., T2 x 2 is a semigroup generated by the matrix  
1 2
2 1

�	 

� �� �

which is in M2�2. Clearly T2�2 is commutative and so M2�2 is 
only a commutative S-special definite group and not a strongly 
commutative S-special definite group of a S-special definite 
group.

DEFINITION 2.1.4: Let (G, *) be a group. Let (H, *) be a 
subgroup of (G, *) If (H, *) is itself a S-special definite group 
then we call (H, *) to be a S-special definite subgroup of (G, *).

We have the following theorem. 

THEOREM 2.1.3: Let (G, *) be a group. Suppose (H, *) be a 
subgroup of (G, *) which is a S-special definite subgroup. Then 
(G, *) is a S-special definite group. 

Proof: Given (G, *) is a group and H is a subgroup of G which 
is a S-special definite group. So (H, *) has a proper subset P 
such that (P, *) is a semigroup of H. Now P & H and H & G so P 
& H & G and H is a semigroup, hence G is a S-special definite 
group.
 Hence the claim.  

We illustrate this situation by the following example. 

Example 2.1.9: Let Q \ {0} be the group under multiplication. 
Consider Q+ the set of positive rationals, Q+ is a subgroup of Q \ 
{0} under multiplication. Let Z+ be the semigroup under 
multiplication contained in Q+. So Q+ is a S-definite special 
subgroup of Q. Since Z+ & Q+ & Q \ {0} we see Q \ {0} is also a 
S-definite special group.

We see all subgroups of a S-definite special group need not 
be a S-definite special subgroup.  
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We illustrate this by the following example. 

Example 2.1.10: Let G = S3 � (Q \ {0}, �) be a group. Clearly G 
is a S-definite special group for P = {e} � (Z+, �) is a semigroup 
of G, so the claim.  
 Now we see A3 � {1} is also a subgroup of G but A3 � {1} 
is not a S-definite special subgroup of G.M = {e} � (Q+, �) is a 
S-definite special subgroup of G. Hence the claim.  

Now we proceed on to define the notion of S-special definite 
normal subgroup of a group G. 

DEFINITION 2.1.5: Let (G, *) be a group (H, *) be a normal 
subgroup of (G, *), we call (H, *) to be a Smarandache definite 
special normal subgroup (S-definite special normal subgroup) 
of G if (H, *) is itself a S-special definite group. If (G, *) has no 
S-special definite normal subgroups but (G, *) is a S-special 
definite group then we call (G, *) to be a Smarandache definite 
special simple group (S-definite special simple group). 

 It is interesting to make a note of the fact that if (G, *) is a 
commutative S-definite special group having non trivial S-
definite special subgroup then G has S-definite special normal 
subgroups, evident from the fact every subgroup of a 
commutative group is normal. 

THEOREM 2.1.4: Let (G, *) be a group having a S-definite 
special normal subgroup. Then (G, *) is a S-special definite 
group.

The reader is expected to prove this theorem which is similar to 
the proof of the theorem 2.1.3. 
 It is important to mention here that torsion free groups alone 
happen to be S-special definite groups or at least the group 
should contain some torsion free elements otherwise they by 
Cauchy theorem turn to be not a S-special definite groups. This 
condition has sealed the opportunity of us to study the classical 
theorems like Sylow, Lagrange and Cauchy. 
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 Now we define element wise Smarandache properties of 
these S-special definite groups. 

DEFINITION 2.1.6: Let (G, *) be a S-special definite group. A 
proper subset P of (G, *) is said to be Smarandache special 
definite ideal (S-special definite ideal) of (G, *) if P is an ideal 
with respect to some semigroup T of G; i.e., tp, pt � P for all t 
� T and p � P.  

It is interesting and important to note that every semigroup of 
the group (G, *) need not have an ideal associated with it or 
equivalently the S-special definite ideal of G need not be an 
ideal with every semigroup of (G, *) if it is an ideal with respect 
to some semigroup it is enough.  

We illustrate this by the following example. 

Example 2.1.11: Let Q \ {0} be the group under multiplication. 
Z+ is a subset of Q \ {0} which is also a semigroup. Thus (Q \ 
{0}, �) is a S-special definite group. Now 2Z+ is an ideal of the 
S-special definite semigroup of Q \ {0}. Hence 2Z+ is S-special 
definite ideal of Z+. Take T = Z \ {0} � Q \ {0}; T is also a S-
special definite ideal of Q \ {0} for T is a ideal over Z+.

Further we see Z+ is not a S-special definite ideal of Q \ {0}.  

We define the notion of Smarandache special definite cyclic 
ideal, Smarandache special definite maximal ideal, 
Smarandache special definite minimal ideal and Smarandache 
special definite prime ideal related with a S-special definite 
group.

DEFINITION 2.1.7: Let (G, *) be a S-special definite group i.e., 
(G, *) has at least a semigroup (T, *) such that T � G. We say 
(P, *) is a Smarandache special definite maximal ideal (S-
special definite maximal ideal) of (G, *) related to T if (M, *) is 
any other S-special definite ideal related to T and if P � M � T 
then either P = M or M =T. We say (U, *) to be a S-minimal 
definite ideal related to T if we have another (V, *) related to T 
and (0) = V � U � T then (0) = V or V = U. We call an S- 
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special definite ideal W related to T to be a Smarandache 
special definite prime ideal (S-special definite prime ideal) if for 
ab � W either a or b is in W.

 Now having defined these new Smarandache notions we 
proceed on to describe them with examples. 

Example 2.1.12: Let Q \ {0} be the group under multiplication. 
Q \ {0} is a S-special definite group. Let Z \ {0} � Q \ {0} be 
the semigroup of Q \ {0} under multiplication. 2Z \ {0} is a S-
definite special ideal of Z. Clearly 2Z \ {0} is S-definite special 
maximal ideal of Z \ {0}. All S-definite ideals of Z \ {0} are not 
maximal for example; consider 6Z \ {0} a proper subset of Z \ 
{0}. 6Z \ {0} is a S-special definite ideal related to the 
semigroup Z \ {0}, but 6Z \ {0} is not S-definite special 
maximal ideal of Z \ {0} for the S-definite special ideal 2Z \ {0} 
contains 6Z \ {0} to be a proper subset. Hence the claim. Take 
2Z \ {0} the S-definite special ideal of Z \ {0}; 2Z \ {0} is a S-
special definite prime ideal of Z \ {0}. 

We are not able to get any S-special definite minimal ideals 
of a group, we leave it as an open problem in the last chapter. 
Now having seen illustrations of some types of S-special 
definite ideals we define now the notion of Smarandache special 
definite principal or cyclic ideals related to the semigroup of a 
S-special definite group. 

DEFINITION 2.1.8: Let (G, *) be a S-special definite group. 
Suppose T be a proper subset of G which is a semigroup. We 
call P a proper subset of T to be a Smarandache special definite 
principal ideal (S-special definite principal ideal) related to P if 
P is generated by a single element. 

Example 2.1.13: Let Q \ {0} be a S-special definite group. Z \ 
{0} be a semigroup of Q \ {0}. 6Z \ {0} is an S-special definite 
ideal of Z \ {0}, we see 6Z \ {0} is a S-special definite principal 
ideal of Z \ {0}. 
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Remark: It is interesting to note that in general a S-special 
definite principal ideal need not be a S-special definite maximal 
ideal related to some semigroup of a S-special definite group G. 

We suggest some problems in the last chapter of this book. All 
S-special definite principal ideals related to a semigroup of a S-
special definite group need not be prime. 
 We illustrate this by the following example. 

Example 2.1.14: Let Q \ {0} be a S-special definite group under 
multiplication. Z \ {0} be a semigroup of Q \ {0}. Consider 6Z \ 
{0} the S-special definite principal ideal related to Z \ {0} of the 
S-special definite group Q \ {0}. 6Z \ {0} is generated by 6. 
Now 4.3 � 6Z \ {0} but neither 4 nor 3 is in 6Z \ {0}. Thus a S-
special definite principal ideal 6Z \ {0} is not a S-special 
definite prime ideal of Z \ {0}. Hence the claim. 

Now having defined the S-special definite ideals we proceed on 
to define Smarandache definite coset of a S-special definite 
ideals of a S-special definite group. 

DEFINITION 2.1.9: Let (G, *) be a S-special definite group. H be 
a semigroup of G. We define the Smarandache definite left coset 
of the semigroup (S-definite left coset of the semigroup ) aH of 
H in (G, *) for a � G as follows. 

aH = {ah | h � H }. 
If a � H then aH � H in general. Similarly Smarandache 

definite right coset of the semigroup (S-definite right coset of 
the semigroup) H is defined to be Ha of H in (G, *) for a � G as 
follows:

Ha = {ha | h � H}. 

Remark: If (G, *) be a S-special definite group and if (G, *) is a 
commutative group then we have the S-definite special right 
coset to be equal to S-definite special left coset i.e., Ha = aH.  

We illustrate this situation by the following example. 



46

Example 2.1.15: Let Q \ {0} be a S-special definite group. Z+ &
Q \ {0} be a semigroup g Z+ = Z+g for all g � Q\ {0}, gZ+ where 

g = 
1
2

 then

1
2

Z+ = 1 3 5,  1, ,  2, ,  3,
2 2 2

� �
� �
� �

� .

Also for 2 � Z+; 2Z+ � Z+.

THEOREM 2.1.5: Let G be a S-special definite group. H be a 
semigroup of G. Let aH be the S-definite coset of the semigroup 
H in G. Then aH � H for a � H. We may have H � gH for g �
G \ H. 

Proof: We prove this only by a counter example. Let Q \ {0} be 
the S-special definite group under multiplication. Take Z+ & Q \ 
{0} to be the semigroup of Q \ {0}. 

 Take 1
2
� Q\ {0} now  

1
2

Z+ = 1 3 5 7 9 11,  1, ,  2, ,  3, , 4,  5, ,6, ,
2 2 2 2 2 2

� ��� �
� �

� .

Clearly Z+ &
1
2

Z+. Hence aH may contain H. Consider 2 � Z+,

the coset 2Z+= {2, 4, 6, … } & Z+. Thus even if a � H, aH � H. 
Hence the claim.  

This is the marked difference between the coset of a subgroup 
and S-definite coset of a semigroup. 

THEOREM 2.1.6: Let (G, *) be a S-special definite group. H a 
semigroup of G. The S-special coset of H in G does not in 
general divide (G, *) into disjoint classes. 

Proof: We prove this only by the following example. 
 Take Q \ {0} to be a S-special definite group under 
multiplication; H = Z+ & Q \ {0} be a semigroup of Q \ {0}. 
Take 2 � Q \ {0}; 2Z+ = {2, 4, 6, …} is the S-definite special 
coset of the semigroup Z+.
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 Take 1
2
� Q \ {0} and we find the S definite special coset of 

the semigroup Z+.
1
2

Z+ = 1 3 5 7,  1, ,  2, ,  3, ,
2 2 2 2

� �
� �
� �

� .

Clearly 1
2

Z+ 0 2Z+ = 2Z+. So the S-definite special coset of the 

semigroup H of a group in general are not disjoint. 

Now we proceed on to define the notion of Smarandache special 
definite double coset of a S-special definite group G. 

DEFINITION 2.1.10: Let G be a S-special definite group. Let H 
and K be two semigroups of G. For x � G we define 
Smarandache special definite double coset of the semigroups 
(S-special definite double coset of the semigroups) H and K for 
x � G as HxK = {hxk | h � H and k � K}.

We first illustrate this by an example before we prove and 
define any of the important properties. 

Example 2.1.16: Let Q \ {0} be a S-special definite group under 
multiplication. Let K = 3Z+ and H = 2Z+ be any two semigroups 
of Q \ {0}. To find the S-special definite double coset for –1 �
Q \ {0}. K – 1H = {–6, –12, –18, –24, –36 , …}. We observe 
the following. 

1. (K – 1 H) 0 H = %;
(K – 1 H) 0 K = %;
But K 0 H � % for {6, 12, 18, 24, …} are in K 0 H. 

2. K – 1 H is not even a closed set under multiplication.  

Now we find the S-definite special double coset of H and K. 
K2H where 2 � H � K2H = {12, 24, 36, …}. The S-definite 
special double coset is a semigroup 12Z+ and in fact, 12Z+ is 
contained in both H and K as subsemigroup. Now we find the 
S-definite special double coset for x = 5 � Q+ \ {0} using the 
semigroups H and K. 
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H5K = {30, 60, 120, 240, 360, …}. It is easily verified H5K 
is a subsemigroup of H and K.  

As in case of S-special definite semigroup cosets we see S-
definite special double cosets of a semigroup also need not 
divide the S-special definite group G into disjoint classes. 

THEOREM 2.1.7: Let G be a S-special definite group. H and K 
be semigroups of G. The S-special double definite coset of H 
and K need not be disjoint in general. 

Proof: We prove this by giving some examples. Let Q \ {0} be 
the group under multiplication. Take K = 2Z+ and H = 5Z+. Now 
take x = –1 � Q\ {0} to find the S-special definite double cosets 
of the semigroups H and K for x = – 1. K – 1 H = – 10 Z+ = {–
10, –20, –30, –40, …}. Take –3 � Q \ {0}. Find the S-definite 
special double coset of the semigroups H and K using –3. 
 K –3 H = {–30, –60, –90, …}. We see K -1 H 0 K- 3H � %.
Hence the claim. It is pertinent to mention here that we can have 
(H x K ) 0 H y K = % for some x and y. For take in the S-special 
definite group, H = 2Z and K = 3Z to be semigroups. Find H – 1 
K for –1 � Q \ {0} the S-special definite double coset of the 
semigroups H and K. H – 1 K = {–6, –12, –18, –24, …}. Now 
using 5 � Q \ {0} we get the S-special definite double coset of 
the semigroups H and K to be H 5K = {30, 60, 90, 90, 120, …}. 
Clearly K –1 H 0 H 5 K = %. Hence the claim. 
 Thus unlike the double coset of a group the S-definite 
special double coset of the semigroups of a S-special definite 
group G do not partition G. This is shown from the examples 
just given in the theorem 2.1.7.  
 Another interesting factor about these S-special definite 
double cosets of semigroups of S special definite groups is that 
in many a cases they form a semigroup.  

We prove an interesting theorem in this regard. 

THEOREM 2.1.8: Let Q \ {0} be the S-special definite group 
under multiplication. For any pair of semigroups of the form 
mZ+ and nZ+ of Q \ {0} and for all x � Z+ we see the S-definite 
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special double coset of the semigroups mZ+ and nZ+ is a 
semigroup of Q \ {0}. 

Proof: Given Q \ {0} to be a S-special definite group under 
multiplication. Let mZ+ and nZ+ be two semigroups of Q \ {0}. 
For and x � Z+. We consider mZ+ x n Z+ = mxnZ+ it is clear 
(mxn) � Z+ and mxn Z+ is again a semigroup such that mxn Z+

is contained in mZ+ and nZ+ i.e., mxn Z+ is a subsemigroup of 
mZ+ and nZ+.

 Further if x � Z- or x � (Q \ {0}) \ Z+ then m Z+xnZ+ is not 
even closed under the multiplication of rationals! This is evident 
for if x � Z– then m Z+xnZ+ = mxnZ+ = set of negative multiples 
of mxn of the form N (mxn) N = {1, 2, …} so t mxn � r m x n = 
t r m n would be + ve for any t, r � N. Thus mxn Z+ is not even 
closed under multiplication. Further if x � Q \ {Z} then also m 
Z+xn Z+ = (m x n) Z+ is not closed under multiplication of 
rationals. Hence the claim.  

However we illustrate this situation by the following example. 

Example 2.1.17: Let Q \ {0} be the group under multiplication. 
Let 5 Z+ and 6 Z+ be two semigroups of Q \ {0}. Take 8 � Z+;
5Z+8 6 Z+= 240 Z+ = {240, 480, 720, 960, …}is a semigroup. If 
we take –3 � Z– and find 5Z+(–3) 6Z+ = {–180, –360, –540, 
…}. Now the product of any two elements in 5Z+(–3) 6Z+ does 
not belong to 5Z+(–3) 6Z+= {–180, –360, –540, …}. Now the 
product of any two elements in 5Z+(–3) 6Z+ does not belong to 
5Z+(–3) 6Z+as it gives a positive number. Now we take some 
1
7
� Q\ {0}. We find out

5Z+(
1
7

) 6Z+ = 30 60 90,  , ,
7 7 7

	 

� 
� �

� .

Now take
+ +30 60 180 1  =  5Z   6Z

7 7 49 7
	 
	 
� �� � 

� �� �
.
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Thus 5Z+ 1
7

 6Z+ is not a semigroup under product. Now we 

have seen the S-special definite double coset of S-definite 
special group. 

We define the product of two semigroups of a S-special definite 
group.  

DEFINITION 2.1.11: Let (G, *) be a S-special definite group. H 
and K be any two semigroups of G. HK = {h * k / h � H and k 
� K} is defined as the product of H and K called the 
Smarandache definite special product of semigroups (S-definite 
special product of semigroups) in a S-special definite group  
(G, *).

We propose a few problems to this end in the last chapter of this 
book. However we illustrate this concept by the following 
example. 

Example 2.1.18: Let Q \ {0} be a S-definite special group under 
multiplication. Take H = 5Z+ and K = 3Z+; both H and K are 
semigroups of the S-definite special group Q \ {0}. Now HK = 
{15, 30, 45, 60, 75, …}. We see in this case HK is also a 
semigroup under multiplication. 

2.2 Smarandache special definite algebraic structures

In this section for the first time we define a new Smarandache 
algebraic structure called Smarandache special definite fields 
and give some of its properties like their substructures. 

DEFINITION 2.2.1: Let (F, +, *) be a field. We call F a 
Smarandache special definite field (S-special definite field) if F 
contains a proper subset T such that (T, +, *) is just a ring. 

We give an illustrative example. 
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Example 2.2.1: Let Q be the field of rationals, Q is a S-special 
definite field as it contains Z to be a proper subset which is a 
ring.

All fields are not in general S-special definite fields. 

THEOREM 2.2.1: All fields are not in general S-special definite 
fields.

Proof: We show there are fields which do not contain a proper P 
subset which is a ring. Take Z2 = {0, 1}. Z2 is not a S-special 
definite field. Zp = {0, 1, 2, …, p –1} is a prime field of 
characteristic p (p a prime) has no proper subset P such that P is 
a ring. Hence the claim.  

Let us define the Smarandache special definite subfield of a 
field G. 

DEFINITION 2.2.2: Let F be a field. Suppose K be a proper 
subfield of the field F and if K has a proper subset S (� %) such 
that S is a ring then we call K to be a Smarandache special 
definite subfield (S-special definite subfield) of the field F. 

 We first give an example of the S-special definite subfield 
of the field F. 

Example 2.2.2: Let R be the field of reals. Q � R is the subfield 
of R and we see Q is a S-special definite subfield of R. For take 
T = 3Z; 3Z is a ring contained in Q.  

In view of this we have the following theorem.

THEOREM 2.2.2: Let F be a field; suppose F has a S-definite 
special subfield then F is also a S-definite special field. 

Proof: Given F is a field such that F has a subfield say K; where 
K is a S-definite special subfield of F. Thus K has a proper non 
empty set T such that T is a ring under the operations of K. Now 
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T & K but K & F so T & F and T is a ring so F is a S-definite 
special field.
 Now we prove even if F be a S-definite special field then in 
general F need not have S-definite special subfield. 

THEOREM 2.2.3: Let F be a S-definite special field. F in 
general need not contain a S-definite special subfield. 

Proof: We prove this only by example 2.2.3. 

Example 2.2.3: Take Q to be a field. Clearly Q is a S-definite 
special field. Now we know as Q is the prime field of 
characteristic zero; Q has no proper subfields so the question of 
Q having a subfield does not rise so Q having a S-definite 
special subfield is an impossibility. 
 Based on this we define the notion of Smarandache special 
definite prime field. 

DEFINITION 2.2.3: Let F be any field. If F has no S-special 
definite subfield then we call F to be a Smarandache special 
definite prime field (S-special definite prime field). 

Example 2.2.4: R the field of reals is not a S-special definite 
prime field.

Example 2.2.5: Let Q be field of rationals. Q is a S-definite 
special prime field. 

Example 2.2.6: Let Q[x] be the ring of polynomials. Let p(x) = 
x2 + 1 � Q[x]. Now  

) *
# $

Q x
T

p x
�  = {ax + b | b, a � Q} 

where �p(x)� is the ideal generated by x2 + 1. Q � T; Q is a 
subfield of T and Q is a S-definite special subfield. Hence T is a 
S-definite special field.

 We have the following interesting theorem. 
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THEOREM 2.2.4: Let F be a prime field of characteristic zero 
then F has no S-definite special subfields.

Proof: If F is a prime field, F has no subfields hence F cannot 
have S-definite special subfield.  

We have the converse also to be true. 

THEOREM 2.2.5: Let F be a field of characteristic zero. If F has 
no S-definite special subfields then F is a prime field. 

Proof: We know if F is the field of characteristic zero then it 
contains properly or otherwise the field of rationals. Given F is 
a field of characteristic zero. We know if F has a subfield of 
characteristic zero say T then T can be Q or T is any field 
containing Q. So that T is a S-special definite subfield of F. 
Hence F is not prime. So if F is a prime field then F has no S-
definite special subfields.

It is left as a open problem. Can a finite field be a S-definite 
special field? 

Remark: It is important to note that any S-definite special field 
can have only rings which are always integral domains. 

Now we proceed on to define the notion of S-definite special 
ideal related with the ring contained in S-definite special field. 

DEFINITION 2.2.4: Let F be a S-definite special field. Let R be a 
ring in F where R is not a field. An ideal I in R will be called as 
the Smarandache definite special ideal (S-definite special ideal) 
of F. We know a field can never have ideals but S-definite 
special fields can have S-definite special ideals.

We first illustrate the following example. 

Example 2.2.7: Let Q be the S-definite special field. Z is the 
ring contained in Q. pZ is a S-definite special ideal of Q. (p any 
positive number in N). 
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Example 2.2.8: Let Q[x] be the polynomial ring. Let p(x) = x2 – 
2 and I the ideal generated by x2 – 2. The quotient ring  

) *
2

Q x
V

x 2 I
�

� �
 = {ax + b + I | a, b � Q}

is a S-special definite field. Now take the ring T = {ax + b + I | 
a, b � Z}; T � V. So V is a S-special definite field. If we take 
W = {ax + b + I | a, b � 2Z} then W is a S-definite special ideal 
of V.

Now we have seen examples of S-definite special ideals of a 
field F. Since the rings in a S-definite special fields are 
commutative all rings are commutative. So the question of right 
or left ideals does not arise. But we can have the notion of S-
definite special maximal ideals, S-definite special minimal 
ideals, S-definite special prime ideals and S-definite special 
principal ideals. 

DEFINITION 2.2.5: Let F be a S-definite special field having V 
to be a subring in F. Let P & V be an ideal of V if P is a 
maximal ideal then we call P to be a Smarandache definite 
special maximal ideal (S-definite special maximal ideal) of F if 
P � M � V, where M is an ideal of V containing P then P = M 
or M = V. Likewise we define T � V to be a minimal ideal of V 
as a Smarandache definite special minimal ideal (S-definite 
special minimal ideal) of F if (0) � W � T, W an ideal of V then 
(0) = W or W = T.

Now we say a Smarandache definite special ideal P to be a 
Smarandache definite special principal ideal (S-definite special 
principal ideal) of F if P is generated by a single element. 

Let M be a S-definite special ideal of F, if for xy � M then 
either x � M or y � M then we call M to be a Smarandache 
special definite prime ideal (S-special definite prime ideal) of F.

Now we illustrate these by the following examples. 

Example 2.2.9: Let Q be the S-definite special field. Z be the 
ring contained in Q. Take P = 6Z then P is a S-definite special 
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ideal of Q which is not a S-definite special non prime ideal of Q 
as 2.3 � P but 2 � P and 3 � P. Thus we have shown in general 
every S-definite special ideal of Q need not be a S-definite 
special prime ideal of Q. 
 Now consider T = 3Z then T is a S-definite special ideal of 
Q. Clearly 3Z is a S-definite special maximal ideal of Q. 
Consider the S-definite special ideal W = 2Z of Q then W is a S-
definite special principal ideal of Q as W is generated by 2. 
 Clearly Q has no S-definite special minimal ideals.  

We propose the problem of finding S-definite special minimal 
ideals of a field F. 
 Now we have defined the concept of S-definite special 
minimal ideals, S-definite special maximal ideals, S-definite 
special prime ideals and S-definite special principal ideals and 
exhibited them with examples.  

We now proceed on to define notions analogues to galois group 
of automorphisms for S-definite special field. 

DEFINITION 2.2.6: Let F be a field suppose F(b) be the finite 
extension of F. Let V be the subring of F and V(b) be the finite 
extension subring of V.
 Now G(F(b): F) is the group of automorphisms of F(b) 
fixing F.  Let Gs(V(b), V) be the group of automorphism of V(b) 
fixing V. We call Gs(V(b), V) to be the Smarandache group of 
definite special automorphism of V(b) (S-group of definite 
special automorphism of V(b)) fixing V. 

 We propose the following, Is Gs(V(b), V) " G (F(b): F)? 
Now we have only written in terms of abstract extensions. We 
would now define more in an non abstract level. We know the 
element a � K is said to be algebraic of degree n over F if it 
satisfies a non zero polynomial of lower degree. If a � K is 
algebraic of degree n over F then [F(a): F ] = n where F(a) is {10

+ 11a + … + 1n–1an–1 | 10, 11, …, 1n–1 � F}.
Suppose R is in the ring in F such that �0an + �1an–1 + … + 

�n–1a + �n = 0; �0 , …, �n � R then R(a) = {10 + 11a + … + 1n–

1an–1 | 10, 11, …, 1n–1 � R}. R(a) & F(a) i.e., R(a) is a ring in 
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F(a). R(a) is a module over the ring R. Now just analogous to 
[F(a): F ] we call [R(a): R], Smarandache definite special finite 
extension (S-definite special finite extension).   

Now for every group of automorphisms of F(a) which keeps 
F fixed denoted by G(F(a); F); we define Gs(R(a), R) to be the 
Smarandache definite special group of automorphisms (S-
definite special group of automorphisms) of R(a) keeping R 
fixed.

Find the relation between Gs(R(a); R) and G(F(a), F ). 
Several interesting results in this direction can be determined; in 
order to make these concepts more easy we would be defining 
the notion of Smarandache polynomial rings. 

DEFINITION 2.2.7: Let F be a field of characteristic zero. F(x) 
be the smallest field containing F and x. x a variable i.e., x is 
algebraic over F. Let Z be the ring in F. Then we have Z[x], the 
polynomial ring with coefficients in Z. Clearly Z[x] is a ring 
contained in F(x). We call Z[x] the Smarandache algebraic 
polynomial ring of the extension field (S-algebraic polynomial 
ring of the extension field) F(x) of F. 
 It is noted that this variate x is algebraic over F of degree 
some m (m > 1), i.e., we have �0, …, �m � F such that �0xm + 
… + �m = 0.  

We illustrate this situation by an example so that the reader may 
not have difficulty in understanding this concept. 

Example 2.2.10: Let Q be the field of rationals; 3  is algebraic 
over Q for it splits in the field Q( 3 ) and Q( 3 ) is the 
splitting field of the polynomial p(x) = x2 – 3. Or more in the 
conventional language we can say 3 � R (R – the real field) 
is algebraic over Q for 1.( 3 )2 – 3 = 0 and [Q( 3 ): Q] = 2, 
degree of the lowest degree of the polynomial which is satisfied 
by 3 .  
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We say Z( 3 ) is a subring of Q( 3 ) and Z is the subring 
of Q. Z( 3 ) is the Smarandache algebraic polynomial ring of 
the extension field Q( 3 ). 
 In this way we can construct any number of examples. Also 
Z( 3 ) is the module over Z.  

We shall be defining these concepts when we relate it with a 
field as Smarandache concepts in the following chapter.

We now proceed on to define Smarandache special definite 
homomorphism. 

DEFINITION 2.2.8: Let F and K be any two S-definite special 
fields having R and T as subrings of F and K respectively. The 
Smarandache special homomorphism of S-special definite field 
(S-special homomorphism of S-special definite field) % is a map 
from R & F 2 T & K such that % is a ring homomorphism from 
R to T i.e.,

%(r � s) = %(r) � %(s)
% (r s) = % (r) % (s) 

 for all r, s � R. 

Note: We are not bothered about F \ R and K \ T i.e., % is not 
even defined on the whole of F only on the ring R of F. 

We illustrate this by the following example. 

Example 2.2.11: Let Q be the field of rationals and R the field 
of reals. Clearly Q and R are S-special definite fields. Let 2Z be 
the ring contained in Q and Z the ring contained in R. A map %
from 2Z & Q to Z & R be defined by %(n) �  n for n � 2Z as 
2Z � Z ; clearly % is a S-definite special homomorphism of S-
definite fields Q to R, the field of reals.  
 Now one can define not only for any ring R contained in the 
field F to any other ring T contained in K but also define many 
homomorphisms from R to T itself. The notion of 
automorphism, isomorphism follow as in case of general ring 
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homomorphism but in this case restricted only to the rings in 
them.  

We illustrate this yet by another example.  

Example 2.2.12: Let Q( 2 , 3 ) be the S-special definite field 
and Q be another S-special definite field. Let Z[ 2 ] be the ring 
in Q( 2 , 3 ) and 2Z[ 2 ] be the ring in Q( 2 , 7 ).

The reader is expected to define a S-special definite 
homomorphism from Q( 2 , 3 ) to Q( 2 , 7 ). Clearly 
kernel % is an ideal in the ring which we define as a S-special 
definite ideal of the S-special definite field F. 

 Now we have the notion of Smarandache special definite 
division rings. 

DEFINITION 2.2.9: Let K be a division ring. We say K is a 
Smarandache special definite division ring (S-special definite 
division ring) if K contains a nontrivial ring R which is not a 
division ring. 

We give the following example. 

Example 2.2.13: Let K be the division ring of real quaternions 
where F is the field of reals and K = {�o + �1i + �2j + �3k | �0,
�1, �2, �3 � F and i2 = j2 = k2 = –1, ij = k, jk = I, ki = j, ji = –k, 
kj = –i and ik = –j}.  
Define multiplication in K as follows. 

(�0 + �1i + �2j + �3k) (10 + 11i + 12 j+ 13 k ) 
= 3o + 31i + 32 j+ 33k

where
30 = �010 – �111 – �212  – �313

31 = �011 + �110 + �213 – �312

32 = �012 + �210 – �113 + �311
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33 = �013 – �211 + �112 + �310.

It is easily verified that K is a division ring. Take Z & K, Z is 
just a ring and not a division ring so K is a S-special definite 
division ring.  

We can also take T = {�o + �1i + �2j + �3k | �o, �1, �2, �3 �
Z}; T is a ring in K, which is a non commutative ring.  

As in case of S-special definite fields we define in case of S-
special definite division rings S-special definite 
homomorphisms of division rings. 

DEFINITION 2.2.10: Let K and T be any two S-special definite 
division rings. We call % a Smarandache special definite 
division rings homomorphism (S-special definite division rings 
homomorphism) if % a ring homomorphism from a ring R in K 
to a ring S in T.  

It is pertinent to mention here that the map % will not be defined 
on the whole of K but only on the whole of the ring for which 
we need the ring homomorphism. As in case of ring 
homomorphism even in case of S-definite special definite 
division rings we have ker % to be an ideal of the ring R in K. 
We have proposed some problems of finding the S-definite 
special homomorphisms of S-definite special division ring. 
 Now having defined the notion of S-special definite fields 
and S-special definite division rings we now in the next chapter 
define S-special definite modules using S-special division rings 
and also Smarandache definite special vector spaces using S-
special definite fields. We will also define the notion of S-
special definite linear algebra. 

DEFINITION 2.2.11: Let (G, *) and (H, o) be any two S-special 
definite groups. We define % to be a Smarandache special 
definite group homomorphism (S-special definite group 
homomorphism) of the S-special definite groups if % is a 
semigroup homomorphism from S1 to S2 where S1 is a 
semigroup in G and S2 is a semigroup in H; i.e., % (x * y) = x�  y 
for all x, y � S.
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We illustrate this situation by the following example. 

Example 2.2.14: Let Q \ {0} be the S-special definite group and  

M2�2 = 
a b

a, b, c, d  Q and ad bc  0
c d

� �	 
� �� � �� �� 
� �� �� �

be the S-special definite group. Let 2Z be the semigroup under 
multiplication and  

1 2
T

2 1
�	 


� � �� �

be the semigroup in M2�2 generated by  

1 2
2 1

�	 

� �� �

.

Define a non trivial semigroup homomorphism from 2Z to T.  
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Chapter Three 

SMARANDACHE SPECIAL DEFINITE RINGS
AND SMARANDACHE DEFINITE SPECIAL 
VECTOR SPACES

 
 

 
 
 

This chapter has 3 sections. In section one the new notion of S-
special definite rings are introduced. Section two introduces the 
notion of S-special definite vector spaces. It is shown the notion 
of Gram Schmidt orthogonalization process cannot be defined 
on these S-special vector spaces. In the final section the notion 
of S-special definite linear algebras are defined and some 
interesting properties derived.  
  
 
3.1 Smarandache Special Definite Ring  
 
In this section we for the first time define the notion of 
Smarandache special definite rings and give some of its 
interesting properties. 
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DEFINITION 3.1.1: Let R be a ring, we say R is a Smarandache 
special definite ring (S-special definite ring) if R has a proper 
subset S � 0 such that S is a semiring. 

If S is a commutative semiring then we say R to be a 
Smarandache special definite weakly commutative ring(S- 
special definite weakly commutative ring). Only when every S is 
a commutative semiring then alone we call R to be a S-special 
definite commutative ring.  
 
We first give some examples of them. 
 
Example 3.1.1: Let Z be the ring of integers. Take S = 2Z+ ' 
{0} a, semiring; clearly S & Z, so Z is a S-special definite ring. 
Since Z happens to be commutative we can say Z is trivially a 
S-special definite commutative ring. 
 
Example 3.1.2: Let M2�2 be the collection of all 2 � 2 matrices 
with entries from Q. M2�2 is a ring under matrix addition and 
matrix multiplication. 
Take  

S = 
a b

a,b,c,d Z {0}
c d

!
� �	 
� �� '� �� 
� �� �� �

 

 
a proper subset in M2�2. S is a semiring with respect to matrix 
addition and multiplication. But S is not a commutative 
semiring. So M2�2 is only a S-definite special non commutative 
ring. 
Take  

P = 
a 0

a 2Z {0}
0 0

!
� �	 
� �� '� �� 
� �� �� �

 

 
a proper subset in M2�2. P is a commutative semiring, hence 
M2�2 is a S-definite special weakly commutative ring. For M2�2 
has both commutative semiring as well as non commutative 
semiring so M2�2 can only be a S-special definite weakly 
commutative ring.  
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We have the following interesting theorem.  
 
THEOREM 3.1.1: Every commutative ring R is a S-special 
definite commutative ring. 
 
Proof: Since every subset S of R which is a semiring happens to 
be commutative we see that R is a S-special definite 
commutative ring. 
 
DEFINITION 3.1.2: Let R be a ring we say a subring V of R to be 
a Smarandache special definite subring (S-special definite 
subring) of R if V has a peroper subset W � % such that W is a 
semiring. 
 
We have the following interesting theorem. 
 
THEOREM 3.1.2: Let R be a ring. If R has a Smarandache 
special definite subring then R itself is a S-special definite ring. 
 
Proof: Given R is a ring such that R contains a proper subring V 
such that V is a S-special definite subring of R. Now given V is 
a S-special definite subring so V contains a nonempty subset W 
such that W is a semiring. Now W & V and W is a semiring; but 
V is a subring of R so V & R and W & V & R. Thus W & R is a 
semiring. Hence R is a S-definite special ring. 
 
Example 3.1.3: Let R be the ring of reals. Q is a subring of R. 
Now Q contains a proper subset Z+ ' {0} = Z° such that Z° is a 
semiring. Hence Q is a S-special definite subring of R. Clearly 
as Z° & Q & R and Z° is a semiring we see R is also a S-special 
definite subring. 
 
Example 3.1.4: Consider Z to be the ring 2Z is a subring of Z. 
2Z is a S-special definite subring of Z as 2Z contains a proper 
subset V = 2Z+ ' {0} which is a semiring. Thus Z is itself a S-
special definite ring. 
 
Now we proceed, on to define the notion of Smarandache 
special definite ideal of a ring. 
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DEFINITION 3.1.3: Let R be any ring we call a proper subset I 
of R to be a Smarandache special definite ideal (S-special 
definite ideal) of R if the following conditions are satisfied. 

(1) I is a S-special definite subring of R. 
(2) I is an ideal of R. 

 
We illustrate this situation by the following examples. 
 
Example 3.1.5: Let Z be the ring of integers. Take I = 5Z, I is a 
S-special definite ideal of Z as 5Z is a S-special subring of R 
and V = 5Z+ ' {0} is a proper subset of 5Z which is a semiring 
of Z. 
 
Example 3.1.6: Let 

M2�2 = 
a b

a,b,c,d Z
c d

� �	 
� ��� �� 
� �� �� �

 

 
be the collection of all 2 � 2 matrices with entries from Z, M2�2 
is a S-definite special ring. Further if we take  
 

I2�2 =
a b

a,b,c,d 2Z {0}
c d

� �	 
� �� '� �� 
� �� �� �

, 

 
I2�2 � M2�2 and I2�2 is a S-special definite ideal of M2�2. For  
 

V = 
a b

a,b,c,d 2Z {0}
c d

!
� �	 
� �� '� �� 
� �� �� �

 

 
is a semiring contained in I2�2. Hence the claim. 
 
It is interesting to see the following the results. As the proof of 
them are straight forward we just only mention the results. 
 
Result I: Every S-definite special ideal of a ring R is a S-definite 
special subring of R.  
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This is by the very definition of S-definite special ideal of a ring 
R. 
 
Result II: If a ring R has a S-definite special ideal then the ring 
R is a S-definite special ring. 
 
This proof is also straight forward using result I the result 
follows.  

Now we have certain rings which can have S-definite 
special subrings which are not S-special definite ideals of R.  
 
We illustrate this situation by the following example. 
 
Example 3.1.7: Let Q be the ring of rationals. Z is a subring of 
Q. Clearly Z is a S-special definite subring of Q but is not a S-
special definite ideal of Q. Hence the claim. 
 
Now we illustrate a special ring in which  
(1)  Every subring is a S-special definite subring and  
(2) Every S-definite special subring is also a S-definite special 

ideal of R. 
 
THEOREM 3.1.3: Let Z be the ring of integers. Z is a S-definite 
special ring such that 

(1) Every S-special definite subring of Z is a S-special 
definite ideal of Z. 

(2) Every subring of Z is a S-definite special subring. 
 
Proof: Given Z is a ring, clearly Z is a principal ideal domain. 
Every ideal is principal. The subrings of Z are only of the form 
nZ where n is a positive integer. Thus every subring is an ideal. 
Every ideal in Z is only of the form nZ as Z is a principal ideal 
domain. So every subring of Z is a S-special subring of Z and 
clearly all S-special subrings of Z are S-special definite ideals of 
Z. It is easily verified every subring in Z is generated only by a 
single element. For if S is a proper subring of Z and by chance S 
is not generated by a single element, so that S is generated by 
atleast two elements say such that one of them is the first least 
and another the second least, let it be x and y (without loss of 
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generality we can assume S is generated by at least two 
elements). Further we can assume x < y. Now x, y � S so x + y 
and x – y � S. But now if x – y = t > 0 then t � x but x is the 
least element of S which gives a contradiction if t < x. If t = x 
then we see y = 2x i.e. y = x + x so x is the only generator. Thus 
every subring of Z is generated by a single element and none of 
the subrings S, contain 1 for if it contains 1, we have S = Z i.e. S 
is not a proper subring of Z. 
 
Every subring is obviously a S-special definite subring of Z for 
if S is subring it is only of the form nZ (n > 1) now take V = nZ+ 
' {0}, V is a semiring; hence S is a S-definite special subring 
of Z.  
 
We define in view of this property Smarandache strong special 
definite rings. 
 
DEFINITION 3.1.4: Let R be any ring we call R to be 
Smarandache strong special definite ring (S-strong special 
definite ring) if every subring of R is a S-special definite subring 
of R. 
 
Example 3.1.8: Let Z be the ring of integers; Z is a S-strong 
special definite ring. 
 
DEFINITION 3.1.5: Let R be a ring we call R to be a 
Smarandache ideally strong definite special ring (S-ideally 
strong definite special ring) if every S-definite special subring is 
a S-definite special ideal of R.  
 
Cleary Z the ring of integers is a S-ideally strong definite 
special ring. 

We see all group rings over the field of characteristic zero 
are S-definite special rings.  
 
For literature about group rings refer [70-1]. 
 
THEOREM 3.1.4: Let F be a field of characteristic zero and G 
any group. The group ring FG is a S-definite special ring. 
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Proof: Given F is a field of characteristic zero so either F = Q or 
Q � F in both cases we see Z+ ' {0} is a proper subset of F. 
Now FG is the group ring of G over F so F � FG (41 �  G). 
Also V = Z+ ' {0} & F & FG. Thus FG contains a proper subset 
V such that V is a semiring.  
 
Hence FG is a S-definite special ring when F is of characteristic 
zero. 
 
Example 3.1.9: Take Q to be the field of rationals G = S3, the 
symmetric group of degree 3. QG is a S-definite special ring for 
V = Z+ ' {0} is a semiring also (Z+ ' {0})G = VG, the group 
semiring is also a semiring. 
 
THEOREM 3.1.5: All group ring ZG of the group G over the 
ring of integers Z is a S-definite special ring. 
 
Proof: Since V = (Z+ ' {0}) � ZG we see ZG is a S-special 
definite rings. Clearly V is a semiring. It has also infinite 
number of semirings given by (pZ+ ' {0}).  

The group ring ZG has infinite number of S-definite special 
ideals. 
 
THEOREM 3.1.6: Let ZG be the group ring of the group G over 
the ring of integers Z. ZG has S-special definite ideal. 
 
Proof: ZG is the group ring; 2Z+ ' {0} = V � Z � ZG. V is a 
semiring, consider (2Z+ ' {0})G = VG, VG is an ideal of ZG. 
Hence the claim. 
We have given a nontrivial class of S-definite special rings.  
 
Now we give yet another class of S-definite special rings. 
 
Let K be any field or a commutative ring with unit. S any 
semigroup with unit or a monoid. The semigroup ring KS of the 
semigroup over K (the field or ring) is defined analogous to 
group rings. KS the semigroup ring is also a ring. For more 
about semigroup rings please refer [101]. We give some special 
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properties about semigroup ring. If K is a field of characteristic 
zero and S any semigroup with unit, then the semigroup ring is 
S-special definite ring which is proved in the form of the 
following theorem. 
 
THEOREM 3.1.7: Let K be a field of characteristic zero. S be 
any semigroup with 1. Then the semigroup ring KS is a S-
special definite ring. 
 
Proof: Let KS be the semigroup ring where K is a field of 
characteristic zero and S is a semigroup with 1. To prove KS is 
a S-special definite ring; i.e., KS has a proper subset V where V 
is a semigroup. Since we are given K is a field of characteristic 
zero either Q = K or Q � K, according as K is a prime field of 
characteristic zero are a non prime field. Clearly Z & Q � K; 
now take V = Z+ ' {0}, a proper subset of Z. V is a semiring; 
also VS is a semiring. Hence KS is a S-sepcial definite ring. 
 
Thus we have given yet another class of S-special definite rings. 
Throughout this book by S(n) we denote the semigroup of all 
mappings of the set (1 2 3 … n) to itself under the composition 
of mappings. How ever we express this S(n) by some examples. 
 
Example 3.1.10: Let S(2) be the semigroup of mappings of (12) 
to itself.  
 

S(2)= 1 2 3

1 2 1 2 1 2 1 2
e, p , p , p

1 2 2 1 1 1 2 2
� �	 
 	 
 	 
 	 
� �� � � �� ��  �  �  � 
� �� � � � � � � �� �

; 

 
S(2) is a semigroup under the composition of maps for  
 

1

1 2
p :

2 1
2
2

, 

2

1 1
p :

2 1
2
2

, 

3

1 2
p :

2 2
2
2
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and  
1 1

e :
2 2
2
2

; 

 
 i.e., the identity map p3 � e = e � p3 = p3,  
 

3 3 3

1 2
p p p

2 2
2

� �
2

� , 

2 2 2

1 1
p p p

2 1
2

� �
2

� , 

1 2

1 1
p p

2 1
2

�
2

�  

 
and so on. S(2) is a semigroup of order 22 usually called as 
symmetric semigroups.  
 
Please refer [101] for more information. 
 
Example 3.1.11: Take S(4) to be the symmetric semigroup. S(4) 
to be the symmetric semigroup. S(4) has 44 elements in it. 
 
Thus we see S(n) gives us the symmetric semigroup of finite 
order when n < � and the number of elements in S(n) is nn. 
 
Example 3.1.12: Take Z2 = {0, 1}, the prime field of 
characteristic two and S(2) = {e, p1, p2, p3} be the symmetric 
semigroup got using (1, 2). Now Z2S(2) be the semigroup ring. 
Z2S(2) = {0, 1 = e, p1, p2, p3, 1 + p1, 1 + p2 , 1 + p3 , p1 + p2, p1 + 
p3, 1 + p1 + p2, 1 + p1 + p3, 1 + p2 + p3, p1 + p2 + p3, 1 + p1 + p2 + 
p3} Clearly Z2S(2) is not a S-definite special ring. 
 
Example 3.1.13: Let ZS(2) be the semigroup ring. ZS(2) is a S-
definite special ring.  
 
Now having seen a few classes of S-definite special rings we 
now proceed on to define some more properties about S-definite 
special rings. 
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We give yet another class of non commutative rings which are 
S-special definite rings. 
 
THEOREM 3.1.8: Let Mn�n = {m = (mij)| mij �  Z}; i.e., the set of 
all n � n matrices with entries form Z. Mn�n is a ring under 
matrix addition and matrix multiplication. Mn�n is a S-definite 
special ring. 
 
Proof: To show Mn�n is a S-definite special ring we must find a 
non empty subset V in Pn�n which is only a semiring. Take V = 
Pn�n = {p = (pij) | pij �  Z+ ' {0}}, Pn�n is a semiring clearly V is 
a proper subset of Mn�n; hence Mn�n is a S-definite special ring. 
 
THEOREM 3.1.9: Let Fn�n denote the set of all n � n matrices 
with entries from a field F of characteristic zero. Fn�n is a S-
definite special ring. 
 
Proof: Fn�n = {A = (aij) | aij �  F} where F is a field of 
characteristic zero}. Fn�n is a ring under matrix addition and 
matrix multiplication. Take V = {V = (vij) | vij �  Z+ ' {0}}. 
Clearly Z+ ' {0} is a proper subset of F as F is given to be a 
field of characteristic zero so F contains either Q or F = Q itself. 
V = Vn�n is a proper subset of Fn�n and V = Vn�n is a semiring. 
Hence Fn�n is a S-definite special ring. Thus we have seen yet 
another class of S-definite special rings. 
 
Example 3.1.14: Let M3�3 = {M = (mij) | mij �  R, the field of 
reals }, be the ring. Take T3�3 = {T = (tij) | tij �  Z}; T3�3 is only a 
S-definite special subring of M3�3 which is never an ideal of 
M3�3.  
 
We have yet another large class of S-definite special rings. 
 
THEOREM 3.1.10: Let F be a field of characteristic zero; F[x] 
the polynomial ring in the variable x. F[x] is a S-definite special 
ring. 
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Proof: F[x] is a polynomial ring and F � F[x]. Also F is given 
to be field of characteristic zero so F either contains Q, the field 
of rationals or F = Q. In either case we have Z+ ' {0} = V, is a 
proper subset of F hence a proper subset of F[x]. But both V and 
V[x] are semirings hence F[x] is a S-definite special ring. Apart 
from this Z[x] is also a S-definite special ring.  

Now we show that Z[x] can have S-special definite subrings 
which are not S-special definite subrings and which are not S-
special definite ideals of Z[x]. 
 
Example 3.1.15: Let Z[x] be the polynomial ring over Z. Let  
 

T[x] = 
n

i 2i
i

i D
a x a Z

�

� �
�� �

� �
� . 

 
T[x] is a subring of Z[x]. Clearly T[x] is a S-definite special 
subring of Z[x] as Z � T[x] and Z in turn contains V = Z+ ' {0} 
and V is a semiring. We see T[x] is not even an ideal of Z[x] as 
x. T[x] �5 T[x], hence the claim! 

Now we give yet another class of S-definite special rings. 
Let K[x1, x2, …, xn] be a polynomial ring in the n variables x1, 
x2, …, xn where K is a field or a commutative ring with 1.  
 
For more about these rings refer I.N.Heristen [35-8]. We show 
K[x1, x2, …, xn] is a S-definite special ring if K is a field of 
characteristic zero. 
 
THEOREM 3.1.11: Let K be a field of characteristic zero. K[x1, 
x2, …, xn] be a polynomial ring in the n-variables. K [x1, x2, …, 
xn] is a S-definite special ring. 
 
Proof: Given K[x1, x2, …, xn] is a polynomial in the n-variables 
with coefficients from K, K a field of characteristic zero. Since 
K is a field of characteristic zero we have Q = K or Q � K. 
Hence V = Z+ ' {0} & K is a semiring in K thus V � K[x1, …, 
xn] is a S-definite special ring.  

In fact V[x1, …, xn] is also a semiring in K[x1, x2, …, xn] we 
have the following interesting theorem. 
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THEOREM 3.1.12: Let R be a ring which is a S-definite special 
ring. Then R[x] is also a S-definite special ring. 
 
Proof: Given R is a S-definite special ring, so R contains a 
proper subset P such that P is a semiring. Since R & R[x] we 
have P & R[x] and P is a semiring in R[x] so R[x] a S-definite 
special ring.  

However if R[x] be any polynomial ring over a ring R. If 
R[x] is a S-definite special ring will R be a S-definite special 
ring? 
 
It is important at this juncture to mention that in general that a 
ring which is a S-definite special ring need not be a S-ring. Also 
all S-rings need not be a S-definite special rings but however 
there are rings which are both S-definite special rings as well as 
S-rings.  

We now illustrate this situation by some theorems. 
 
THEOREM 3.1.13: Let Z[x] be a polynomial ring over the ring 
of integers Z. Z[x] is a S-definite special ring but Z[x] is not a 
S-ring. 
 
The proof is left as an exercise for the reader. For literature 
about S-rings please refer [101].  

The following theorems are also left for the reader to prove 
as the proofs are straight forward. 
 
THEOREM 3.1.14: Let Sn�n = {m = (mij) | mij �  Z} be the ring of 
n � n matrices with entries form Z. Sn�n is a S-definite special 
ring which is not a S-ring. 
 
THEOREM 3.1.15: Let Z[x1, x2, …, xn] be a polynomial ring with 
coefficients from the ring of integers Z in the n-variables x1, x2, 
…, xn. Z[x1, x2, …, xn] is a S-definite special ring and is not a S-
ring. 
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THEOREM 3.1.16: Let Zn = �  , , , ��0 1 n 1  be the ring of 
integers modulo n (n a composite number), Zn is a S-ring and is 
not a S-definite special ring. 
 
Thus we see we have a class of rings which are S-rings but not 
S-definite special rings and still we have a class of rings which 
are S-definite special rings but not S-rings.  

Now we will give a class of rings which are both S-rings as 
well as S-definite special rings which will answer the question 
that we have a class of rings which is both a S-ring and S-
definite special ring. 
 
THEOREM 3.1.17: Let Q[x] be a polynomial ring Q[x] is both a 
S-ring as well as a S-definite special ring. 
 
THEOREM 3.1.18: Let Mp�p = {M = (mij)| mij �Q} be the ring of 
p � p matrices with entries from the field of rationals. Mp�p is a 
S-ring and also Mp�p is a S-special definite ring. 
 
Proof: Given Mp�p= {M = (mij) | mij � Q} is the ring of all p � p 
matrices with entries from Q. Clearly Mp�p is a ring under 
matrix addition and matrix multiplication.  

Mp�p is a S-ring. For take all matrices M1 = ( 1
11m ); i.e., 1

ijm  = 
0 for i � j, 1 � j � p only m11 is non zero; T = M1 ' (0) = 

�  1 1
11 11(m ) m Q�  ' (0), where (0) denotes the zero p � p 

matrix. Clearly T is a field under matrix addition and matrix 
multiplication. Infact T" Q Thus T & Mp�p and as T is a field 
Mp�p is a S-ring. Now consider the subset P � % in Mp�p; where P 
= {A = (aij) | aij � Z+ ' {0}}. We see P is a semiring under 
matrix addition and matrix multiplication; hence Mp�p is a S-
definite special ring. Thus we see Mp�p is a S-ring as well as a S-
definite special ring. 
 
THEOREM 3.1.19: The ring of polynomials Q[x] is a S-ring as 
well as a S-definite special ring. 
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Proof: Now Q[x] is the ring of polynomials in the variable x 
with coefficients from the field Q. Q[x] is a S-ring for Q � Q[x] 
and Q is a field. Further Q[x] is a S-definite special ring as Z+ ' 
{0} = V & Z & Q & Q[x]. Thus V is a proper subset of Q[x] and 
V is a semiring, hence the claim. Thus Q[x] is a S-ring as well 
as a S-definite special ring. 
 
Those rings which are both S-rings as well as S-definite special 
rings gives the researchers more opportunity to study their 
structures. We give a new name to this class. 
 
DEFINITION 3.1.6: Let R be a ring we call R to be Smarandache 
doubly strong (S-doubly strong) ring if R is a S-ring as well as 
R is a S-definite special ring. 
 
We illustrate it by an example. 
 
Example 3.1.16: The ring Q[x1, x2] is a S-doubly strong ring.  
 
Now we have the following interesting theorem which can be 
viewed as the existence theorem. 
 
THEOREM 3.1.20: The class of S-doubly strong rings is non 
empty. 
 
Proof: To show the class of S-doubly strong rings is non empty 
it is sufficient if we prove a class of rings which are S-doubly 
strong rings. Consider Mn�n = {M = (mij) | mij � R}. Mn�n is a 
ring under matrix multiplication and matrix addition which can 
be easily verified to be a S-ring as well as a S-definite special 
ring. 

This class of rings is non commutative. Q[x1, x2, …, xn] is a 
S-doubly strong rings which form a class of commutative rings.  

Thus we see the class of S-doubly strong rings can be 
commutative or non commutative; hence we have shown the 
existence of S-doubly strong rings which infact forms an 
infinite class of rings. 
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So given a ring we can say either they are S-doubly strong rings 
or not i.e. we can divide the class of rings into two disjoint 
classes; we cannot always say all infinite rings are S-doubly 
strong rings. For we see Z[x1, x2, …, xn] is not a S-doubly 
strong ring but Z[x1, x2, …, xn] is a ring of infinite cardinality.  
 
Thus we have studied a new class of rings which has a weaker 
substructure embedded in it. Now we have defined those class 
of rings as Smarandache special definite rings. Unlike 
Smarandache rings which contain a stronger structure in them 
here a reverse study is made. It is surprising to see we have a 
class of rings which are both S-rings as well as S-definite 
special rings. Further we see when we seek a weaker structure 
in a strong structure, like finding semigroups as a proper subset 
in a group or a semiring in a ring; we found that those algebraic 
structures invariably had infinite cardinality. We were unable to 
find such structures with finite number of elements in them. 
Further we are not in a position to say why structures with finite 
cardinality fail to cater to these S-definite special substructures. 
Does it imply when finite sets satisfy any algebraic operation 
those sets become very tight or dense or complete under those 
operations? For we could not find any finite group which had a 
proper subset which was a semigroup. Likewise we were unable 
to find finite rings which had in them a proper subset which was 
a semiring. We have left this as an open problems for the reader 
to prove or disprove this claim! How ever we feel it is 
impossible because of Cauchy theorems for groups. 
 
Now we proceed on to define yet another Smarandache definite 
special algebraic structure for fields. 
 
DEFINITION 3.1.7: Let F be a field of characteristic zero. Let A 
be a proper subset of F which is a semifield under the 
operations of F. Then we say F to be a Smarandache definite 
special field. (S-definite special field). 
 
We illustrate this by the following example. 
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Example 3.1.17: Let Q be the field of characteristic zero. Take 
A = Z+ ' {0}, A is a semifield and A & Q so Q is a S-definite 
special field. 
 
Now we define Smarandache definite special subfield. 
 
DEFINITION  3.1.8: Let F be any field. Let K be a subfield of F, 
we call K to be Smarandache definite special subfield (S-
definite special subfield) if K itself is a S-definite special field. 
 
Thus we see if F is a field having a subfield which is a S-
definite special subfield then F itself is a S-definite special field. 
 
THEOREM 3.1.21: Let F be any field. K a proper subset of F 
which is a subfield and K is a S-definite special subfield of F; 
then F itself is a S-definite special field. 
 
Proof: Given F is a field and K a proper subset of F which is a 
subfield of F which is a subfield and K is also given to be a S-
definite special subfield of F. To show F is itself a S-definite 
special field. Since K is given to be a S-definite special subfield; 
K contains a proper subset T � % (T � K) such that T is a 
semifield. Now K � F and T � K & F i.e., T � F and T is a 
semifield so F is a S-definite special field. Hence the claim.  
 
We illustrate this situation by the following example. 
 
Example 3.1.18: Let R be the field of reals. R contains a proper 
subset Q and Q is the field of rationals. We see Q is a S-definite 
special field as Q contains the subset Z+ ' {0} = V, where V is 
a semifield. Now V � Q so Q is a S-definite special subfield of 
R. Now Q � R and V � Q � R and V is a subset of R which is a 
semifield. Hence R is a S-definite special field.  
 
Now however the converse of the above statement in general is 
not true which is given by the following theorem. 
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THEOREM 3.1.22: Let F be any field which is a S-special 
definite field. F in general need not contain a S-definite special 
subfield. 
 
Proof: We prove this only by a counter example. Take Q to be 
the field of rationals. Clearly Q is a S-definite special field for Q 
contains V = Z+ ' {0} which is a semifield. Now Q being the 
field of rationals does not contain any proper subfields so Q 
does not contain any S-definite special subfields. Hence the 
claim.  

We call all fields F which do not contain S-definite special 
subfields and which is a S-definite special field as S-definite 
special prime field. Q is a S-definite special prime field. 
R is not a S-definite special prime field. 
 
For more above semifields please refer [102]. 
 
 
3.2 Smarandache Special Vector Spaces 
 
Now having defined the notion of S-definite special fields we 
now proceed on to define the new notion of Smarandache 
definite special vector spaces and give a few important 
properties about them. 
 
DEFINITION 3.2.1: Let F be a field which is a S-definite special 
field and V be a vector space over F. We say V is Smarandache 
definite special vector space (S-definite special vector space) 
over F if V has a proper subset W such that W is a semivector 
space over at least one semifield contained in F. 
 
We illustrate this by some examples. 
 
Example 3.2.1: Let Q[x] be a vector space over Q. We see Q is 
a S-definite special field. Let Z° = Z+ ' {0} be the semifield in 
Q. Let Z°[x] be the proper subset of Q[x]. Clearly Z°[x] is a 
semivector space over Z°, so Q[x] is a S-definite special vector 
space over Q. In fact we can take Q° = Q+ ' {0} to be a proper 
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subset and Qo[x] is also a semivector space over Zo, so Q[x] is a 
S-definite special vector space over Q. 
 
Example 3.2.2: Let Mn�n= {M = (mij) | mij � Q} be the vector 
space over Q. Mn�n is a S-definite special vector space over Q, 
because Q is a S-definite special field with Z° = Z+ ' {0} and if 
we choose Pn�n = {P = (pij) | pij �  Z°} then Pn�n is a semivector 
space over Z°. Hence the claim.  
 
Now we proceed on to define the new notion of Smarandache 
definite special basis of a S-special definite vector space. 
 
DEFINITION 3.2.2: Let V be a vector space over F. Suppose V 
be a S-definite special vector space over F and if B = {x1, …, xn} 
forms a basis of a semivector space in V as well as the vector 
space V over F then we call a B to be S-definite special basis of 
V.  
 
We illustrate this situation by the following example. 
 
Example 3.2.3: Let Q � Q � Q = V be a vector space over Q. V 
is a S-definite special vector space. For take T = Z° � Z° � Z°; T 
is a semivector space over the semifield Z°. {(1 0 0), (0 1 0), (0 
0 1)} is a basis of T as well as a basis of V, so T is a S-definite 
special basis of V. Take B = {(0 3 0), (0 0 1), (4 0 0)} to be a 
basis of V. Clearly B is not a S-definite special basis of V for B 
is not a basis of T = Z° � Z° � Z°.  
 
We give yet another example. 
 
Example 3.2.4: Let Q[x] be a vector space over Q. Z°[x] is a 
semivector space over Z°, the semifield. {1, x, x2, …} is a basis 
of Z°[x] over Z° as well as Q[x] over Q i.e., {1, x, x2, …, xn, 
…} is a S-definite special basis of Q[x]. Take {1/3, x, x2, x2, …, 
xn, …} = B. B is a basis of Q[x] but is not a basis of Z°[x] so B 
is not a S-definite special basis of Q[x].  
 
We now define the S-definite special dimension of a S-definite 
special vector space. 
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DEFINITION 3.2.3: Let V be a vector space over F. S � V be a 
semivector space over T & F. If dimension of V is the same as 
dimension of at least one S & V (say) n, then we say the 
Smarandache definite special dimension (S- definite special 
dimension) of the vector space is n where n is the number of 
elements in the basis of the vector space V and n is also the 
number of elements in at least one of the semivector spaces S � 
V over the semifield T & F. If one does not get such n we say the 
S-definite special dimension of the S-definite special vector 
space is not defined. 
 
We illustrate this by the following example. 
 
Example 3.2.5: Let V = R � R � R � R be a vector space over 
the field R. We see V as a vector space over R is of dimension 
4. W = R° � R° � R° � R° (where R° = R ' {0}) is a semivector 
space over Q° = Q+ ' {0} of infinite dimension. W as a 
semivector space over R° = R+ ' {0} is of dimension four and 
{(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} = B is a basis of 
W over R°. Now B is also a basis of V. Hence the S-definite 
special basis of V over R is four.  

Now W as a semivector space over Q° is infinite 
dimensional. Thus we see in the first instance one can see that 
the number of elements in the basis of the semivector space is 
not always equal to the number of elements in the basis of the 
given vector space V over R. Thus the S-definite special 
dimension is given by the existence of atleast one semivector 
space in V, having the same number of base elements. Hence 
the S-definite special dimension in this case is however four. 
We see we can find several semivector spaces over appropriate 
semifields contained in the given field. 
 
We illustrate this by the following example. 
 
Example 3.2.6: Consider the vector space M3�2 = {(mij) = M | 
mij � Q, 1 � i � 3, 1 � j � 2} over Q. Clearly M3�2 is a S-definite 
special vector space as M3�2 contains P3�2 = {p = (pij) | pij � Zo = 
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Z+ ' {0}; 1 � i � 3 and 1 � j � 2} to be a proper subset which is 
a semivector space over Z° clearly a basis of P3�2 is six given by  

B = 
1 0 0 1 0 0 0 0 0 0 0 0
0 0 , 0 0 , 1 0 , 0 1 , 0 0 , 0 0
0 0 0 0 0 0 0 0 1 0 0 1

� �	 
 	 
 	 
 	 
 	 
 	 

� ��  �  �  �  �  � 
� ��  �  �  �  �  � 
� ��  �  �  �  �  � 
� � � � � � � � � � � �� �

. 

 
B is also a basis of the vector space M3�2 over Q. Thus  
 

1. M3�2 is a S-definite special vector space.  
2. This S-definite special vector space has B to be a S-

definite special basis.  
3. The S-definite special dimension of M3�2 over Q is six. 

 
Now consider the proper subset S3�2 = {(sij) = S | 1 � i � 3, 1 � j 
� 2, sij �  Q0 = Q+ ' {0}} in M3�2. S3�2 is a semivector space 
over Z° = Z+ ' {0}. Also S3�3 is a semivector space over Q° = 
Q+ ' {0}. Now the number of basis of S3�2 as a semivector 
space over Z° = Z+ ' {0} is infinite. But S3�2 as a semivector 
space over Q° = Q+ ' {0} is finite and it is six. It is interesting 
to note that P3�2 is not a semivector space over Q° = Q+ ' {0} 
as it is evident from the fact any p/q �  P3�2 (q � 0) p � q. Hence 
the claim.  
 
We give yet another example in this direction. 
 
Example 3.2.7: Let V = R � R a vector space over Q. V is S-
definite special vector space as W = Z° � Z° � V is a 
semivector space over Z° � Q. But the dimension of V is 
infinite over Q and dimension of W over Z° is two given by the 
basis B = {(0, 1) (1, 0)}. Now what is the S-definite dimension 
of V as a vector space. To this end we must try to find a 
semivector space of infinite dimension.  

Now take P = R° � R° where R° = R+ ' {0}, P is a 
semivector space over Q° = Q+ ' {0} � Q. This P is infinite 
dimensional as it has infinite basis. Thus any basis of P will be a 
basis of V also. Now consider T = Q° � Q°, T � V and T is a 
semivector space over semifield Q° and B1 = {(1,0), (0,1)} is a 
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basis of T over Q°. Also we see certainly B1 is not a basis of the 
vector space V over Q. Now the same semivector space T is 
defined over the semifield Z°. Now the basis of T relative to Z° 
is infinite but that infinite is different from the infinite basis of 
V as a vector space over Q. 

Infact this infinite set which acts as a basis for T over Z° 
cannot act as a basis of V over the field Q. Thus it is not a S-
definite special basis. Now consider R° � R° = M; M is a 
semivector space over Z° and the number of elements in the 
basis is also infinite but this is yet another infinity different 
from the infinite basis of semivector space T over Z°. Thus we 
have seen in case of S-definite special vector spaces the 
semivector spaces in them are many and with varying 
dimension.  

We suggest some problems about them.  
Next we proceed on to define the notion of Smarandache 

definite special linear transformation of Smarandache special 
definite vector spaces. 
 
DEFINITION 3.2.4: Let V and W be vector spaces over the same 
field F we say T from V to W to be a Smarandache definite 
special linear transformation (S-definite special linear 
transformation) if we have T to be a semivector space linear 
transformation of a semivector space S from V to S1 from W 
over the same semifield K & F i.e., T: S 2 S1 such that T (au + 
v) = aT(u) + T(v) for all u, v �  S and a �  K. 
 
Note: It is important to note that we can have several linear 
transformations with different domain and range spaces for the 
same S-definite special vector spaces V and W. Further it is 
made very clear that all of the domain space need not be 
transformed under T, infact T when we call it as a S-definite 
special linear transformation we only make it work on the 
semivector space S contained in V and not on the whole of V.  
 
We illustrate this by the following example. 
 
Example 3.2.8: Let T: V 2 W be a S-definite special linear 
transformation where V = Q � Q � Q � �Q � Q defined over Q 
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and W = R � R � Q � Q defined over Q. Here T is from the 
semivector space S = Z° � Z° � Z° � Z° � Z° over Z° and S1 = 
Q° � Q° � Z° � Q° over Z°. T(x, y, z, u, v) = (x + y, u, y, z + u + 
v); it is easily verified T is a S-definite special linear 
transformation of the two S-definite special vector spaces V and 
W both defined over Q. Suppose we take S = Z° � Z° � Q° � Q° 
� Q° over Z° and S1 = Q° � Q° � Q° � Q° over Q° then clearly 
we cannot define a S-definite special linear transformation form 
V to W restricting it to S and S1 respectively (S & V and S1 & 
W).  
 
Several interesting properties regarding the S-definite special 
linear transformation can be obtained. In this direction the 
authors have suggested several problems in the last chapter of 
this book.  
 
Now we proceed on to define the notion of Samarandache 
definite special subvector space of a vector space. 
 
DEFINITION 3.2.5: Let V be any vector space over the field F. 
Suppose W be a subspace of V then we say W is a Smarandache 
definite special subvector space (S-definite special subvector 
space) of V if W has a proper subset P such that P is a 
semivector space over a semifield K where K is a proper subset 
of F. 
 
We illustrate the definition by the following example. 
 
Example 3.2.9: Let V = Q � Q � Q be a vector space over Q. 
Let W = Q � Q � {0}, be a proper subset of V, we prove W is a 
Smarandache special definite subspace of V. Take the proper 
subset T = Z° � Z° � {0} of W. Clearly T is a semivector space 
over Z° where Z° � Q. This W is a S-special definite vector 
subspace of V. 
 
In view of the definition of S-definite special subvector space 
we prove the following theorem. 
 



 83

THEOREM 3.2.1: Let V be a vector space over a field F. 
Suppose W & V is a proper subset of V which is a S-definite 
special subspace of V then V is itself a S-definite special vector 
space. 
 
Proof: Given V is a vector space over F and W is a proper 
subset of V which is a S-definite special subspace of V. Now W 
is a S-definite special vector space over F so W has a proper 
subset T such that T is a semivector space over the semifield K 
where K is a proper subset of F. Now T & W but W & V so T & 
W but W & V so T & W & V i.e., T is a proper subset of V i.e. 
T � V and T is a semivector space over K; K a semifield 
contained in F so V is itself a S-definite special vector space. 
Hence the claim. 
 
THEOREM 3.2.2: Let V be a vector space over the field F. V is a 
S-special definite vector space over F then V is a S-special 
definite group and F is a S-special definite field. 
 
Proof: Suppose V is given to be a S-definite special vector 
space over F to show V is a S-special definite group and F is a 
S-definite special field. Now V is a S-definite special vector 
space implies V has a proper subset S such that S is a 
semivector space over the semifield K, K a proper subset of F 
which is a semifield. We know (V, +) is an ableian group by the 
very definition of a vector space.  

Now S & V and (S, +) is a commutative semigroup. Hence 
(V, +) is a S-definite special group. Further we know since V is 
a S-definite special vector space over F. We have K & F and K 
is a semifield. Thus when a field F contains a proper subset K, 
which is a semifield then we know F is a S-definite special 
field. Hence one way is true. 

Now on the other hand we are given (V, +) is a S-definite 
special group so we can find in V a proper subset W such that 
(W, +) is a semigroup. Now we are also given F is a S-definite 
special field so F contains a proper subset K such that K is a 
semifield. We know FV & F i.e., for all v �V and a �  F, av �  
F so for all w�W and a � K, aw � V but we need aw to be in 
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W but this may happen or may not happen in general. Thus the 
converse of the theorem may not be true in general.  
 
This we illustrate by the following example. 
 
Example 3.2.10: Let V = Q � Q � Q be a S-definite special 
group with respect to addition. Q be a S-definite special field. 
Suppose W = Z° � Z° � Z° be a semigroup in V and Q° be the 
semifield in Q we see for any a � Q° and w � W aw �  W; for 
take   
 

3a
7

� , w = (1 1 0);  aw =( 3
7

, 3
7

, 0) �W = Z° � Z° � Z°. 

 
Hence the claim.  

This we see the converse of the theorem 3.2.2 is not in 
general true.  
 
DEFINITION 3.2.6: Let V be a S-definite special vector space 
over F. We call a function ( | ) on a semivector space W � V 
which assigns to each ordered pair of vectors �, � � W a scalar 
(� | �) in K, K a semifield in F in such a way that for all �, �, � 
in W and for all scalars c in K. 
 

(a) (� + � | �) = (�|�) + (�|�). 
(b) (c� | �) = c(� | �). 
(c) (� | �) = ( |� 1 ) if elements are from complex 

semivector space. 
(d) (� | �) > 0 if � � 0.  

 
Then we call the function ( | ) to be a Smarandache definite 
special inner product on V (S-definite special inner product on 
V).  
 
Note: It is important to note that the S-definite special inner 
product on V need not be defined on whole of V if it is defined 
on a semivector space W in V it is sufficient. So inner product 
also need note be defined on the whole of V. As usual if V = Q 
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� Q � Q then an inner product on V, for x = (x1, x2, x3) and y = 
(y1, y2, y3) � W = Z° � Z° � Z° defined by (x | y) = �xiyi will be 
called as S-definite special standard inner product.  

As in case of other vector spaces one in case of S-definite 
special inner product defined on V cannot claim |(�|�)| < ||�|| 
||�||.  

Further writing  

2

( )
|| ||
1 �

1 � �
�

 

may not be possible for all vector space V for we see in case the 
semivector space of V is of the form W & V, W = Z° � Z° � … 
� Z° then every element in the n-tuple can only be positive 
integers hence the claim; i.e., we wish to bring to the notice of 
the readers that for every inner product defined on the vector 
space all its properties cannot be restricted to the subset which is 
the semivector space of the vector space. Thus one cannot 
blindly say all the properties satisfied by the inner product on V 
is true in case of the S-definite special inner product on V. With 
this in mind the reader can as a researcher develop properties 
about S-definite special inner products on V. 

We cannot define the notion of orthogonal vectors in 
general using the notion of S-special definite standard inner 
product or we can show that there exist S-definite special inner 
products which have no element other than zero to be 
orthogonal. So while characterizing S-definite special vector 
spaces we see the Gram Schmidt process cannot be applied for 
all S-definite special inner products on S-definite special vector 
spaces. 
 
 
3.3 Smarandache Definite Special Linear Algebra 
 
In this section we proceed on to define the new notion of 
Smarandache definite special linear algebra. 
 
DEFINITION 3.3.1: Let V be a semivector space over a semifield 
F. We say V is a semilinear algebra if for each pair of vectors v, 
u in V vu and uv are in V; called product of u and v in such a 
way that 
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a. Multiplication is associative; u(vt) = (uv)t for all u, v, t 
� V. 

b. Multiplication is distributive with respect to addition; 
u(v + t ) = uv + ut and  
(u + v)t = ut + vt for all u, v, t � V. 

c. For each scalar c in F c(uv ) = (cu )v = u( cv ) and u, v 
� V. 

d. If there is an element 1 in V such that u.1 = 1.u = u for 
each u � V;  

 
we call V to be the semilinear algebra with identity over F. If in 
V for every u, v � V, uv = vu, we call V to be a commutative 
semilinear algebra. 
 
We first illustrate this by some examples before we proceed to 
define the notion of S-definite special linear algebra. 
 
Example 3.3.1: Zo � Zo � Zo = V be a semivector space over the 
semifield Zo. Clearly V is a semilinear algebra by defining for x 
= (x1, x2, x3) and y = (y1, y2, y3) in V we have x.y = (x1y1, x2y2, 
x3y3) � V. Hence the claim. 
 
Example 3.3.2: Let Mn�n = {M = (mij) | mij � Zo} be the 
collection of all n � n matrices with entries from Zo, that is for 
A, B � Mn�n, A · B � Mn�n; where “·” is the matrix 
multiplication. Mn�n is a semilinear algebra over Zo. 
 
Now having seen the definition and examples of semilinear 
algebra, we proceed on to define the notion of Smarandache 
definite special linear algebra. 
 
DEFINITION 3.3.2: Let V be a linear algebra over a field F. We 
say V is a Smarandache definite special linear algebra (S- 
definite special linear algebra) if V contains a nonempty subset 
W in V such that W is a semilinear algebra over a semifield K 
contained in F. 
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Example 3.3.3: Let V = Q � Q � Q � Q be a linear algebra over 
Q. Take W = Zo � Zo � Zo � Zo over Zo � Q where Zo = Z + ' 
{0}; W is a S- definite special linear algebra over V, as W is a 
semilinear algebra over Zo � Q.  
 
We see all S-definite special vector spaces need not be S-
definite special linear algebras. 

We can only illustrate this situation by examples. 
 
Example 3.3.4: Let M3�2 = {M = (mij)| mij � Q } be the 
collection of all M3�2 matrices with entries from Q. M3�2 is only 
a S- definite special vector space over Q and is not a S-definite 
special linear algebra over Q. For M3�2 does not contain any 
semilinear algebra over a semifield. 

Thus we can say that as in case of vector spaces, all linear 
algebras are vector spaces but vector spaces in general are not 
linear algebras; like wise all S-definite special linear algebras 
are S-definite special vector spaces but S-definite special vector 
spaces in general need not be S-definite special linear algebras.  

We now illustrate by examples some linear algebras which 
are not S-definite special linear algebras. 

 
Example 3.3.5: Let V = Z2 � Z2 � Z2 be a linear algebra over Z2. 
Clearly V is not a S-definite special linear algebra over Z2. 
 
Example 3.3.6: Let 2

3 3M � = {M = (mij) | mij � Z7} be the 
collection of all 3 � 3 matrices with entries from Z7. 2

3 3M �  is a 
linear algebra over Z7. We see M3�3 is not a S-definite special 
linear algebra as Z7 does not contain any proper subset which is 
a semifield.  
 
Now we will define the notion of Smarandache definite special 
linear algebra. 
 
DEFINITION 3.3.3: Let V be a linear algebra over a field F. If W 
is a proper subset of V and W is a S- definite special linear 
algebra then we call W to be a S- definite special linear 
subalgebra of V over F. 
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The following claim given in the form of the theorem which can 
be easily proved. 
 
THEOREM 3.3.1: Let V be a linear algebra over the field F. If V 
has a proper subset W such that W is a S-definite special sub 
linear algebra over F then V is itself is a S-definite special 
linear algebra over F. 
 
We illustrate this situation by the following example. 
 
Example 3.3.7: Let V = Q � Q � Q � Q � Q be a linear algebra 
over Q. Let W = Q � Q � Q � {0} � {0} be a proper subset of 
V. Clearly W is a S- definite special linear algebra over Q. For 
take T = Zo � Zo � Zo � {0} � {0}, a proper subset of W, we see 
T is a semilinear algebra over Zo. Hence W is a S- definite 
special linear algebra which is nothing but a S-definite special 
linear subalgebra of V. Now we claim V is itself a S-definite 
special linear algebra, for T = Zo � Zo � Zo � {0} � {0} � W � 
V; so T contained in V and T is a semilinear algebra over Zo, 
hence V is a S-definite special linear algebra over Q. 
 
Now we have seen some of the properties of S-special linear 
algebra. We show the existences of a few class of S-definite 
special linear algebras; which is stated by the following 
theorems. 
 
THEOREM.3.3.2: Let F[x] be the linear algebra of polynomials 
over the field F of characteristic zero then, F[x] is a S-special 
definite linear algebra over F. 
 
Proof: Given F[x] is a linear algebra over the field F of 
characteristic zero. Since F is a field of characteristic zero we 
see either Q the field of rationals is a subfield of F or F is 
isomorphic with Q. Now in both cases we see F contains 
nontrivial semifields like Qo = Q+  ' {0} and Zo = Z+ ' {0}. 
Consider the collection of all polynomials with coefficients 
from Qo denoted by Qo[x]. Qo[x] is clearly a semilinear algebra 
over the semifield Q also Qo[x] is a semilinear algebra over the 
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semifield Zo. As Qo[x] � F[x], we see F[x] is a S-special 
definite linear algebra over F. Hence the theorem. 

It is pertinent to mention here that Zp[x] where Zp is a prime 
field of characteristic p (p a prime) and Zp[x] the collection of 
all polynomials with coefficients in Zp is not a S- special 
definite linear algebra over Zp.  

In view of this we propose some problems in the last 
chapter of this book. 

 
Remark: Suppose we restrain the degree of polynomials to be 
less than or equal to say n, that is xn + 2 = x or xn + 1 = 1, then we 
by replacing all polynomials p(x) of degree m in x if m 6 n then 
we take p(x) as the polynomial. If m > n then we replace those 
powers of x which are greater than n by m – n. 
 
(If the reader has some confusion over this he/she can make use 
of this illustrative example.) Suppose  

F[x] = {
5

i
i

i 0
a x

�
� |x6 = x0 and ai �F}. 

Then F[x] is clearly a vector space over F and dimension of F[x] 
over F is 6 and the standard basis is given by {1, x, x2, x3, x4, 
x5}. Now we can treat or make F[x] as a linear algebra over F 
by declaring multiplication in this way; replace all polynomials 
after usual polynomial multiplication if it contains powers of x 
greater than 5 then put x6 = x0 = 1. 
For instance x13 = x, x7 = x and x9 = x3. Suppose p(x) = x5 + 3x3 
– 4x + 1 and q(x) = 3x5 + 2x2 – 7 then p(x)q(x) = (x5 + 3x3 –4x 
+ 1) (3x5 + 2x2 – 7) = 3x10 + 9x8 – 12x6 + 3x5 + 2x7 + 6x5 – 8x3 
+ 2x2 – 7x5 – 21x3 + 28x – 7 by putting x6 = x0 = 1, we get 
p(x)q(x) = 2x5 + 3x4 – 29x3 + 11x2 + 30x –19. 
 
Clearly p(x)q(x) � F[x]. Thus F[x] is a linear algebra of finite 
dimension, infact F[x] is a finite dimensional S- definite special 
linear algebra. We have given a class of S-definite special linear 
algebra of both finite and an infinite dimension having standard 
basis {1, x, x2, x3, …, xn | n < �} and {1, x, x2, …, xn, …} 
respectively. 
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We give yet another class of S- definite special linear algebras 
by this theorem. 
 
THEOREM 3.3.3: Let Mn�n = {M = (mij)| mij � F; 16 i, j 6 n} be 
the set of all n�n matrices with entries from the field F of 
characteristic zero. Mn�n is a S- definite special linear algebra. 
 
Proof: Given F is a field of characteristic zero so the field of 
rationals is either a subfield of F or is isomorphic with Q. It is 
further given Mn�n is a linear algebra over F. Now to show Mn�n 
is a S-definite special linear algebra over F. We see F is a S- 
definite special field as F contains Zo = Z+ ' {0} and Q0 = Q+ ' 
{0} as semifields. Now Pn�n = {P = (pij)| pij � Qo = Q+ ' {0}, 1 
6 i, j 6 n}. Clearly Pn�n � Mn�n and Pn�n is semilinear algebra 
over the semifield Zo. Also Pn�n is a semilinear algebra over the 
semifield Qo = Q+ ' {0}. This Mn�n is a S- definite special 
linear algebra. Infact Mn�n is a S- definite special linear algebra 
over F. 
 
Thus we have given yet another class of S- definite special 
linear algebra. 
 
Example 3.3.8: Let M2�2 = {M = (mij) | mij � Q; 1 6 i, j 6 2 } be 
the set of all 2 � 2 matrices with entries from Q. M2�2 is a S- 
definite special linear algebra as P2�2 = {(pij) = P | pij � Zo = Z+ 
' {0}; 16 i, j 6 2} is a semilinear algebra over the semifield Zo 
= Z+ ' {0}. Thus M2�2 is a S- definite special linear algebra 
over Q. Take  
 

B = 
1 0
0 0

�	 
�
�� 
�� ��

, 
0 1
0 0

	 

� 
� �

, 
0 0
1 0

	 

� 
� �

, 
0 0
0 1

�	 
�
�� 
�� ��

; 

 
B is a S-definite special basis of the S-definite special linear 
algebra as B is a basis of P2�2 as a semilinear algebra over the 
semifield Zo as well as B is a basis of M2�2, the linear algebra 
over Q. Hence the claim.  
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Another class of S-definite special linear algebra is given by the 
following theorem.  
 
 
THEOREM 3.3.4: Let V = 

�

� � ��������	
n times

Q Q Q  be a linear algebra 

over Q. V is a S-definite special linear algebra of S- definite 
dimension n.  
 
Proof: Given V = Q � Q � Q � … � Q; n-times is a linear 
algebra over Q. Take S = Qo � Qo � … � Qo; n-times contained 
in V where Qo = Q+ ' {0}, clearly S is a semilinear algebra 
over Qo, the semifield in Q. Hence V is a S- definite special 
linear algebra over Q. Now B = {(1, 0, 0, …, 0), (0, 1, 0, …, 0), 
…, (0, 0, 0, …, 1)} is a basis of both V and S, hence B is a S- 
definite special basis of the S- definite special linear algebra 
over Q. 
 
We give the following example to the interested reader. 
 
Example 3.3.9: Let V = Q � Q � Q � Q be a linear algebra over 
Q. V is a S-definite linear algebra over Q as V contains a proper 
subset T = Zo � Zo � Zo � Zo � V and Zo � Q so T is a 
semilinear algebra over Zo, the semivector space contained in Q. 
Hence T is a S-definite special linear algebra over Q. Clearly B 
= {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)} is a S-definite 
special basis of the S- definite special linear algebra over Q. 
 
Now we proceed on to define the notion of Smarandache 
definite special transformation of S-definite special linear 
algebra. 
 
DEFINITION 3.3.4: Let V and W be any two S- definite special 
linear algebras defined over the fields F and K respectively both 
of characteristic zero. We call a linear transformation from V to 
W to be a Smarandache definite special linear transformation 
(S-definite special linear transformation) if T is a linear 
transformation from a semilinear algebra M to N, where M is a 
semilinear algebra in V and N is a semilinear algebra in W; but 
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both M and N are semilinear algebra defined on the same 
semifield P contained in both F and K, that is; T:V 2 W is such 
that T: M (� V)2 N(� W), that is T need not be defined on the 
whole of V but only defined on the semilinear algebra M 
contained in V to the semilinear algebra N contained in W, but 
both M and N are semilinear algebras over the same semifield 
P. 
 
The following are the difference between linear transformation 
of the linear algebras and the S-definite special linear algebras. 
 

1. T in case of linear transformation defined on whole of 
V to W and T in case of S-definite special linear 
transformation defined only on the semivector space 
contained in V need not be defined on whole of V. 

 
2. In case of linear transformation we need both V and W 

to be defined as linear algebras over the same field, but 
incase of S-definite special linear transformation V and 
W the S-definite special linear algebras need not be 
defined over the same field but only the semilinear 
algebra M and N contained in the linear algebras V and 
W respectively be defined on the same semifield. 

 
3. The linear algebra transformation from V to W in 

general even if restricted from M (M � V) to N (N � 
W) need not be well defined. If in case the linear 
transformation be defined we will give a new name for 
such transformations. 

 
We first illustrate these situations by the following examples.  
 
Example 3.3.10: Let V = Q � Q � Q � Q be a S- definite special 
linear algebra defined over the field Q and let W = R � R be a 
S- special definite linear algebra defined over R. We call a map 
T: V 2 W to be a S-definite special linear algebra 
transformation, that is; T: M � V 2 N � W where T(x, y, z, w) 
= (x + y, z + w) for all x, y, z, w � Qo � Qo � Qo � Qo = M, a 
semilinear algebra over the semifield Qo where Qo = Q+ ' 
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{0}and M � V; here N = Qo � Qo � W a semilinear algebra over 
the semifield Qo. 
 
We see any linear transformation of linear algebras in general 
need not be S-definite special linear algebra linear 
transformations even when restricted to semilinear algebras. 
This would be made explicit by the following example. 
 
Example 3.3.11: Let V = Q � Q � Q � Q be a S- definite special 
linear algebra over Q. Let W = R � R � R � R � R be a S- 
definite special linear algebra over R. Let M = Zo � Zo � Zo � Zo 
defined over Zo be a semilinear algebra contained in V and N = 
Qo � Qo � Qo � Qo � Qo be a S-definite special linear algebra 
defined over Zo, N a semilinear algebra contained in W. Let T: 
V 2 W be a S-definite linear transformation of S-definite 
special linear algebras from M to N defined by T(x, y, z, w) = (x 
+ y, y, z, w + y, z) for all (x, y, z, w) � Zo � Zo � Zo � Zo � V 
and (x + y, y, z, w + y, z) � N = Qo  � Qo � Qo � Qo � Qo � W. 
Clearly T is a S-definite special linear algebra transformation of 
S- definite special linear algebras. 
 
Example 3.3.12: Let V and W be S-definite special linear 
algebras defined over the S-definite special field Q, where V = 
Q � Q � Q � Q � Q and W = Q � Q � Q defined over Q. Let T: 
V 2 W be a linear transformation given by T(x, y, z, w, u) = (x 
– y, – y,  – z + x) for (x. y, z, w, u) � V and (x – y, – y, –z –x ) 
� W. 

We see T is a linear algebra linear transformation. Clearly T 
is not a S- definite linear transformation of S-definite special 
linear algebras. 
 
Yet we give another example before we give our conclusions. 
 
Example 3.3.13: Let V and W be any two S-definite special 
linear algebras where V = R � R � R defined over Q and W = Q 
� Q � Q � Q defined over Q. Consider P = Zo � Zo � Zo � V be 
a semilinear algebra over Zo and S = Zo � Zo � Zo � Zo � W be a 
semilinear algebra over Zo. 
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Define S- definite linear transformation T: V 2 W by T(x, 
y, z) = (x + y, z, y + z, x). T is a S-definite special linear algebra 
transformation. 

Can T be extended to V so that T is a linear algebra 
transformation from V to W? 

Now we give an application which becomes an important 
one in case of defining Smarandache definite Leontief economic 
models. [104] 

We see suppose for any Smarandache definite vector space 
of n�n matrices over the field F of characteristic zero. 

Suppose we have S- definite vector space V of n�n matrices 
with entries from the real field then if we take any map from the 
S-definite vector space V to the semivector space over Ro say P 
= {A = (aij) | aij � Ro} � V. 

Then we see any Leontief model with n entries belong to P, 
so these models can be easily generated by this particular S-
definite vector space over reals.  

To this end we define a new type of linear transformation 
on S- definite vector spaces. 
 
DEFINITION 3.3.5: Let V be any S-definite vector space over the 
field K of characteristic zero. Let W � V be any non empty 
proper subset of V such that W is a semivector space over some 
semifield F � K. A linear transformation Ts(x + y) = Ts(x) + 
Ts(y) and Ts(ax) = a Ts(x) for all x, y � V and for all a � K will 
be known as Smarandache definite special converging linear 
transformation (S-definite special converging linear 
transformation ) on V. 
 
We first illustrate it by an example. 
 
Example 3.3.14: Let V = Q � Q � Q � Q be a S- definite special 
vector space over Q. Let W = Zo � Zo � Zo � Zo be a semivector 
space over Zo. Let T: V 2 W be defined by T(x, y, z, w) = T 
(|x|, |y| + |z|, |z| = |w|, |w|). Then it is easily verified that T is a S- 
special definite converging linear transformation on V. 
 
All identity linear transformation of V to V are S-definite 
special converging linear transformation when restricted to any 



 95

of the semivector spaces contained in V. One may wonder can 
we ever have the concept of Smarandache special definite 
diverging linear transformation of a vector space V? The answer 
is yes and we define a Smarandache special definite diverging 
linear transformation. 
 
DEFINITION 3.3.6: Let V be a S-definite special vector space 
over a field F of characteristic zero. Let T be a map from V to V 
that is; T is a map from a semivector space W � V to V such 
that T(ax + y) = aT(x) = T(y) for all x, y � W and a � F. Such a 
map T is defined as the Smarandache special definite diverging 
linear transformation (S-special definite diverging linear 
transformation) of V.  
 
We first illustrate this situation by the following example. 
 
Example 3.3.15: Let V = R � R � R � R be a S-definite special 
vector space over R. Let T: W � V 2 V be a S- definite special 
diverging linear transformation of V where W = Ro � Ro � Ro � 
Ro is a semivector space over Ro defined by T(x, y, z, w) = (x – 
y, y – z, z – w, w – x) for all (x, y, z, w) � W. 

In general a S-definite special divergence linear 
transformation need not be a S- definite special convergence 
linear transformation. 
 
Next we proceed on to define the notion of Smarandache 
definite special near rings and develop some important 
properties about these S-definite special near rings. 
 
DEFINITION 3.3.7: Let N be a near ring, we say N is a 
Smarandache definite special near ring (S-definite special near 
ring) if N has a proper subset S which is a seminear ring under 
the operations of N and % � S � N. 
 

We see all near rings are seminear rings but near rings in 
general are not seminear rings. We see the class of seminear 
rings strictly contains the class of near rings; that is, seminear 
rings are the generalization of near rings, i.e., in Smarandache 
definite special algebraic structures we demand a weaker 
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structure to be contained in the stronger structure where as the 
Smarandache algebraic structure are those algebraic structures 
which contain in them a subset which is a stronger structure 
imbedded in the weaker structure. 
 
First we illustrate this by the following example. 
 
Example 3.3.16: Let {Z, +, �} be a near ring where + is a 
group under + and � be a operation on Z defined by a � b = a 
for all a, b � Z. {Zo, +, �} is a near ring. We see {Zo, +, �} is a 
proper subset of Z and Zo is a seminear ring. Hence {Z, +, �} is 
a S-definite special near ring. 
 
Now we give yet another example. 
 
Example 3.3.17: Let {Q, +, �} be a near ring. {Qo, +, �} is a 
seminear ring and Qo � Q. Hence {Q, +, �} is a definite special 
near ring. 
 
We prove by examples that all near rings in general need not be 
a S-definite special near ring. 
 
Example 3.3.18: Let {Z5, +, �} be a near ring with (Z5, +) a 
group under addition modulo 5. Further a � b = a for all a � Z5. 
{Z5, +, �} is a near ring. We see {Z5, +, �} is not a S-definite 
special near ring; for we cannot find a proper subset S in Z5 
such that {S, +, �} is a seminear ring.  
 
We just leave the following theorem as an exercise for the 
reader to prove. 
 
THEOREM 3.3.5: Every near ring need not in general be a S-
definite special near ring. 
 
Now we proceed on to define the notion of Smarandache 
definite special subnear ring. 
 
DEFINITION 3.3.8: Let {N, +, �} be a near ring. Let S be a 
proper subset of N, such that {S, +, �} is a subnear ring of {N, 
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+, �}. If {S, +, �} is a S-definite special near ring then we call 
S to be a Smarandache definite special subnear ring (S-definite 
special subnear ring) of the near ring N. 
 
We prove the following interesting theorem. 
 
THEOREM 3.3.6: Let {N, +,�} be a near ring. Suppose {S, +, 
�} be a S-definite special subnear ring of N; then N is a S-
definite special near ring. 
 
Proof: Given {N, +, �} = N is a near ring which contains a 
proper subset S � % and S � N such that {S, +, �} is a S-
definite special subnear ring of N; so S contains a proper subset 
P, P � % and P � S such that P is a seminear ring under the 
operation + and �. Now P � S and S � N so P � S �N and P is 
a seminear ring in N so N itself is a S-definite special near ring. 
 
It is important to note that even if {N, +, �} is a S-definite 
special near ring; N need not contain a S-definite special 
subnear ring.  

The task of finding an example to this effect is left as an 
exercise to the reader. 

 
Now we proceed on to define more properties about S-definite 
special near rings. 
 
DEFINITION 3.3.9: Let {N, +, �} be a near ring. I an ideal of 
N. We define I to be a S-definite special ideal of N if I contains a 
proper subset P, P � % and P � I such that P is a seminear ring 
under the operations of N. 
 
DEFINITION 3.3.10: Let {N, +, �} be a S-definite special near 
ring. (P, +) be a group with � and let N be a near ring. Let 7: 
N � P 2 P; (P, 7) is called an N-group if for all p � P and for 
all n, n1 � N; we have (n + n1) p = np + n1p and (nn1)p = 
n(n1p). 

We call the N-group to be a Smarandache definite special 
N-group if the N-group is a S-definite special group. So a N-
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subgroup of P will be called as a S-definite special N-subgroup 
if the subgroup is itself a S-definite special N-group. 

 
We propose some problems in this direction in the last chapter 
of this book. 
 
Now we can have nontrivial class of S-definite special near 
rings. This is got by constructing group near rings using S-
definite special near rings and any group. For more about group 
near rings please refer [106]. 

The notion of S-definite special seminear rings is identical 
with S-definite special near rings introduced in this book.  

One can define S-definite special near ring homomorphisms 
as in [106]. We have suggested problems in this in the last 
chapter of this book.  

Further the interested reader can see that the S-definite 
special near rings can be used to construct special automatons 
which can do sequential operations provided the S-definite 
special near ring N has finite subsets in N such that (S, + ) and 
(S, �) can be generated as free semigroups. In view of this we 
give the applications of S-definite special near rings in finite 
automaton. 
 
Now we proceed on to define S-special near automaton using S-
definite special near rings. 
 
DEFINITION 3.3.11: Let {N, +, �} be a S-definite special near 
ring. Let P be a finite proper subset in N such that P generates 
a free semigroup under addition and �P, +� � {N, +}. Then the 
semiautomaton can be constructed using the set P with respect 
to + as the alphabets, for any set of finite states Z. Now we have 
7: Z � P 2 Z is a semiautomaton; since P generates a free 
semigroup �P� and �P� = P is contained in N. We see 7 : Z � P 
2 Z gives a semiautomaton which can work on a sequence of 
elements as an input alphabet.  
 
Now a S-definite special near ring endowed with such a 
semiautomaton will be known as the Smarandache near definite 
special semiautomaton. As we are unaware of the fact that 
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whether near rings having only finite number of elements can 
ever be a S-definite special near ring. 
 
We proceed on to define S-near definite special automaton. 
 
DEFINITION 3.3.12: Let {N, +, �} be a S-definite special near 
ring. Let P be a proper finite subset of N. Suppose (P, +) 
generates a free semigroup !P  under + and {P, �} generates a 
free semigroup 
P  under � so that {P, +,�} is a seminear ring 

in {N, +, �} then an automaton associated with P; and 
P  and 

!P  denotes the automaton for some set of states with output 
alphabet S again to a proper finite subset of N with !S , a free 
semigroup generated by S with respect to + and 
S  a free 

semigroup generated by S with respect to � and { S ,�, + } is a 
seminear ring then for any set of finite state Z we with a map 7 : 
Z�P 2 P and 8 : Z�P 2 S and : ! !� 2Z P P7  and 

: � 2
 
Z P S8  where 7  and 8  are extensions of 7 and 8 

respectively; then we call {Z, !P , 
P , !S , 
S , 7 , 8 } to be the 
Smarandache near definite special automaton (S-near definite 
special automaton) associated with the S-definite special near 
ring N. 
 
Remark: Unless we have N to be a S-definite special near ring 
we cannot think of a S-near definite special automaton 
associated with N. 

Thus one of the applications of S-definite special near ring 
is its use in construction of finite machines. 

It has become important to mention here that associated 
with a S- definite special near ring N we can have several S-
near definite special automatons and semiautomatons associated 
with it. 

Thus this is the main advantage of using S-definite special 
near rings in constructing S-near definite special automatons. So 
a single algebraic structure can pave way for several finite 
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machines. Now one may wonder how a S-definite special 
commutative near ring is. To this end we define the following. 
 
DEFINITION 3.3.13: Let N be a S-definite special near ring. If 
we have atleast one seminear ring in N under the same 
operations of N to be commutative, then we call N to be a S-
definite special near ring or trivially S-definite special 
commutative near ring. Further we see all S-definite special 
commutative near rings need not be commutative but only S-
definite special commutative near rings. 
 
We now proceed on to define S-definite special strongly 
commutative near rings. 
 
DEFINITION 3.3.14: Let {N, +, �} be a near ring. If every 
proper subset P of N which is a seminear ring is commutative; 
then we call (N, +, �) to be a Smarandache definite special 
strongly commutative near ring (S-definite special strongly 
commutative near ring). 
 
We have the following important theorem.  
 
THEOREM 3.3.7: Let (N, +, �) be a commutative near ring 
which is a S-definite special near ring then N is a S-definite 
special strongly commutative near ring. 
 
Proof is obvious from the definition.  
 
The reader is requested to prove that a S-definite special 
commutative near ring in general is not a S-definite special 
strong commutative near ring. 

Finally it has become pertinent to mention here that we 
cannot construct S-definite special semirings for we see 
semirings are the most generalized concepts of rings and fields. 
Just like we do not have the notion of Smarandache groups we 
cannot have the notion of Smarandache definite special 
semirings. However we have the notion of S-definite special 
near rings.  
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Chapter Four 

SUGGESTED PROBLEMS 

 
 

 
In this chapter we suggest over 200 problems for the reader to 
solve. Some of the problems are simple and easy to solve. Some 
of them can be treated as conjectures. The solving of the 
problems will certainly make the reader not only more involved 
but also make the reader get insight in to the subject. Further the 
Smarandache definite special algebraic structures try to find a 
weaker structure in the stronger structure unlike the S-algebraic 
structures.  

 
1.  Prove there exists no finite group which is a S-special 

definite group.  
 
2.  Give an example of a strongly commutative S-special 

definite group which is not a commutative S-special definite 
group. 

 
3.  Does the group {Q \ {0}, �} have a subgroup which is not a 

S-special definite subgroup of {Q \ {0}, �}. 
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4.  Find S-special definite groups which are simple! 
 
5.  Give an example of a non commutative S-special definite 

group which has non trivial S-special definite normal 
subgroups. 

 
6.  Give an example of a S-special definite group which has 

only S-special definite subgroups but does not contain S-
definite special normal subgroups. 

 
7.  Does the Cauchy theorems prove the non existence of finite 

S-special definite groups? 
 
8.  Does there exist group G which has torsion free elements 

yet G is not a S-special definite group? 
 
9.  Does there exist S-special definite group G which has a S-

special definite minimal ideal? 
 
10. Prove or disprove a S-special definite maximal ideal related 

to the semigroup of a S-definite special group is a S-special 
definite principal ideal! 

 
11. Let G be a S-special definite group. Let K and H be 

semigroups. Find conditions for x in G or K and H so that 
KxH is a semigroup of G. 

 
12.  Can we have a S-special definite group G such that for 

semigroups H and K HxK is never a semigroup for all x � 
G? 

 
13.  Let G be a S-special definite group H and K be semigroups 

of G. Does there exist x � G such that H x K is a subgroup 
of G? 

 
14.  Characterize those S-special definite groups such that the 

product of every pair of semigroups is again a semigroup. 
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15.  Illustrate by an example the product of two semigroups is 
not a semigroup in a S-definite special group. 

 
16.  Is in Q \ {0}, the S-definite special group the product of any 

two semigroups a semigroup.? 
 
17.  Is in the S-definite special group M2�2 the product of any 

two semigroups a semigroup? 
 
18.  Is in the S-definite special group Z under ‘+’ the sum of any 

two semigroups a semigroup? 
 
19.  Can a finite field be a S-special definite field? Justify your 

claim. 
 

20.  Prove ) *11

2

Z x
Ix x 1 �! !

= T (where I is the ideal generated by 

x2 + x +1) is not a S-special definite field. 
 
21.  Let F be a field. Can F contain a S-special definite minimal 

ideal? 
 
22.  Let F be an extension field of K. Suppose F is a S-definite 

special field and F contains T as a subring. If G(K, F) be the 
group of automorphisms of K keeping F fixed and if Gs(T, 
P) (where P & F is a ring in F and T & K is a ring in K) be 
the group of automorphisms of T keeping P fixed .When 
will G(K, F) be isomorphic to (Gs(T, P))? 

 
23.  Let Q be a field and Q( 2 , 3 ) be the smallest field 

containing Q, 2  and 3 ; i.e. Q( 2 , 3 ) is the finite 
extension of Q. Let Z be the ring in Q and Z ( 2 , 3 ) be 
the ring generated by Z, 2  and 3 . Let G (Q( 2 , 3 ), 
Q) be the group of automorphisms of Q ( 2 , 3 ) keeping 
Q fixed and Gs(Z( 2 , 3 ), Z) be the group of 
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automorphisms of the ring Z ( 2 , 3 ) keeping Z fixed. Is 
Gs(Z ( 2 , 3 ), Z)" G (Q ( 2 , 3 );Q)? 

 
24.  Determine any interesting relation between Gs(R(a), R) and 

G(F(a), F); R & F and R(a) & F(a) where R and R(a) are 
ring in F and F(a) respectively. 

 
25.  Let Q ( 2, 3, 7 ) and Q( 5, 11, 6 ) be two given S-

definite special fields. Let Z ( 3 ) and Z ( 5, 11 ) be rings 
in Q ( 2, 3, 7 ) and Q ( 5, 11, 6 ) respectively. Give 
S-definite special homomorphisms %1 and %2 such that 

a.  Ker %1 is a trivial ideal of Z ( 3 ). 
b.  Ker %2 is a nontrivial ideal of Z ( 3 ). 

 
26.  For the problem 25 if Z( 2 ) is the ring taken from 

Q( 2, 3, 7 ) and Z( 5 ) the ring taken from 
Q( 5, 11, 6 ). Is it possible to find a S-definite special 
isomorphism from Z ( 2 ) to Z ( 5 ) ? 

 

27.  Is M2�2 = 
a b

a,b,c,d R,ad bc 0
c d

� �	 
� �� � �� �� 
� �� �� �

a S-special 

definite division ring? 
 
28.  Let K be the ring of quarternions which is a division ring. 

M2�2 = 
a b
c d

�	 
�
�� 
�� ��

ad – bc � 0; a, b, c, d �  R} be another 

division ring. Construct two sets of S-special definite 
homomorphism from K to M2�2 so that one of them has a 
trivial kernel and another has a non trivial kernel. 

 
29.  Give example of a S-definite special ring.  
 
30.  Does there exist a S-definite special ring of finite order? 
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31.  Give an example of S-definite special ring which does not 

contain a S-special definite ideal? 
 
32.  Give an example of a S-definite special ring R in which 

every S-definite special subring is a S-definite special ideal 
of R. 

 
33.  Give an example of a ring which is not a S-strong definite 

special ring! 
 
34.  Give an example of a ring other than Z which is a S-strong 

special definite ring. 
 
35.  Is Z[x] a S-strong special definite ring (Z[x] the polynomial 

ring in an indeterminate x)? 
 
36.  Is R[x] a S-strong special definite ring? (R[x] the 

polynomial ring with coefficients from the field of reals). 
 
37.  Does R[x] have a proper subring which is not an ideal? (We 

do not want R � R[x], R is a ring which is not an ideal of 
R[x]). 

 
38.  Give an example of a ring R in which R has no S-special 

definite ideals (We do not want the reader to take R to be 
any field it should strictly be a ring). 

 
39.  Is nZ (n a positive integer) a S-strong special definite ring? 

(Justify your claim). 
 
40.  Let M3�3 = {M = (mij) | mij �  Q} be the set of all matrices 

with entries from Q. Is M3�3 a S-strong special definite ring? 
(a)  Does M3�3 contain ideals which are not S-definite 

special ideals? 
(b) Does M3�3 contain subrings which are not S-definite 

special subrings? 
(c)  Is every subring a S-special definite subring of M3�3? 
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(d)  Is every ideal of M3�3 a S-special definite ideal of 
M3�3? 

 
41.  Define some new and interesting properties about S-special 

definite rings! 
 

42.  Is P2�2 = 
a b
c d

�	 
�
�� 
� ���

 a, b, c, d �  Z} a S-strong special 

definite ring? Justify your claim. 
(a)  Find S-definite special ideals in P2�2! 
(b)  Find S-definite special subrings in P2�2. 
(c)  Is every S-definite special subring of P2�2 a S-definite 

special ideal of P2�2? 
(d)  Does P2�2 contain an ideal which is not a S-special 

definite ideal?  
(e)  Does P2�2 contain a subring which is not a S-special 

definite subring? 
 
43.  Is R = Z� Z � Z (the direct product of the ring of integers) = 

{(x, y, z) | x, y, z � Z} a S-strong special definite ring? 
 
44.  Does R = Z � Z � Z = {(x, y, z) | x, y, z � Z} have ideals 

which are not S-definite special ideals of R? 
 
45.  Does P = Q � Q � Z � R contain S-definite special ideals? 

Can P have subrings which are not S-definite special 
subrings? 

 
46.  Is Q[x] a S-ideally strong definite special ring? Justify your 

claim. 
 
47.  Can Z[x] be a S-ideally strong definite special ring? 
 
48.  Give an example of a S-ideally strong definite special ring 

which is not Z. 
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49.  Is M3�3 = {M = (mij) | mij � R, the set of reals}; a S-ideally 
strong definite special ring?  

 
50. Is P = Z � Z � Q a S-ideally strong definite special ring? 
 
51.  Can a ring Zn, n an integer be a S-definite special ring? 
 
52.  Is Z27 a S-definite special ring? 
 
53.  Is Z6G(where G = �g | g6 = 1�) the group ring a S-definite 

special ring? 
 
54.  Let ZG be the group ring of the group G where G = D27 = 

{a, b | a2 = b7 = 1; bab = a}. Find a subring in ZG which is a 
S-definite special ideal of ZG? Does ZG contain any 
subring which is not a S-definite special ideal? 

 
55.  Take the group ring Z10S4; the symmetric group S4 over the 

ring of integers modulo 10. Is Z10S4 a S-definite special 
ring? Does Z10S4 contain a subring which is a S-definite 
special ring? Can Z10S4 have ideals which are not S-definite 
special ideals? 

 
56.  Is the group ring Z2S3 a S-definite special ring? 
 
57.  Can Z2G the group ring where G = �g | g9 = 1� be a S-

definite special ring? 
 
58.  Does Z2G where G = �g | g9 = 1� have a subring which is a 

S-definite special subring? 
 
59.  Can the group ring Z2G where G = �g | g9 = 1� have a S-

definite special ideal?  
 
60.  Can Z6G where G = S3 have S-definite special ideals? 
 
61.  Does Z7S3 have any S-definite special ideals? 
 
62.  Does Z7S7 have any S-definite special subrings? 
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63.  Can Z5S5 have subrings which are not S-definite special 

subrings? 
 
64.  Can ZpSn, (p, n) = 1 have S-definite special subrings? What 

happens if (p n) = n or p? 
 
65.  Does ZS5 have any subrings which are not S-definite special 

subrings? 
 
66.  Is ZSn a S-strong special definite ring? 
 
67.  Is ZSn a S-ideally strong special definite ring? 
 
68.  Characterize all those subrings in ZS5 which are not S-

sepcial definite ideals? 
 
69.  Find all S-special definite subrings in ZS5 which are not S-

special definite ideals! 
 
70.  Find in ZS where S is the semigroup of all mappings of the 

set (1 2 3) to (1 2 3) under composition of mappings a S-
definite special subring which is not a S-definite special 
ideal of ZS. 

 
71.  Let S(5) denote the set of all mappings of (1 2 3 4 5) to 

itself; under composition of mappings S(5) is a semigroup 
with unit. Let Z be the ring of integers Z(S(5)) the 
semigroup ring. 

 
(a)  Does Z(S(5)) have a subring which is not a S-special 

definite ring? 
(b)  Does Z(S(5)) contain an ideal which is not a S-special 

definite ideal? 
(c)  Give an ideal in Z(S(5)) which is a S-special definite 

ideal. 
 
72.  Is Z3 S(5) a S-definite special ring? 
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73.  Can Z5S(5) have S-definite special ideals? 
 
74.  Does Z6S(5) contain S-definite special subrings? 
 
75.  Can the semigroup ring ZnS(m); (n, m) = 1 be a S-definite 

special ring? 
 
76.  Is Z18 S(6) the semigroup ring a S-definite special ring? 
 
77.  Does there exist a S-definite special ideal in Z6 (S(6))? 
 
78.  Give an ideal in Z4S(6) which is not a S-definite special 

ideal. 
 
79.  Let ZS(5) be the semigroup ring. Is every ideal in ZS(5) a 

S-special definite ideal? If so find atleast one ideal; which is 
a S-special definite ideal. 

 
80.  Let ZS(3) be the semigroup ring. Is every subring in ZS(3) a 

S-special definite subring? 
 
81.  Let ZS(4) be semigroup ring. Is in ZS(4) every S-special 

definite subring a S-special definite ideal? 
  
 [Can the problems 79, 80, 81 be studied for ZS(n); n < �]. 
 
82.  Let M2�2 = {M = (mij) | mij � Z} be the ring of 2 �2 matrices 

with entries from Z. Does M2�2 contain ideals which are not 
S-definite special ideals? Give a S-definite special subring 
in M2�2 which is not a S-definite special ideal. 

 
83.  Let P3�3 = {P = (pij) | pij � Q} be the ring of 3 � 3 matrices 

with entries from Q. Is P3�3 a S-strong definite special ring? 
Justify your claim! Does P3�3 contain S-definite special 
subrings? 

 
84.  Q[x] be the polynomial ring in the variable x. Can Q[x] 

have S-definite special subrings which are not S-definite 
special ideals? 
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85.  Is every S-definite special subring which is an ideal a S-

definite special ideal in a ring? 
 
86.  Can Zp[x] a polynomial ring over Zp be a S-definite special 

ring? 
 
87.  Will Zn[x], n a composite number have S-definite special 

ideals?  
 
88.  Find in Z[x1, x2, x3] subrings which are not S-definite 

special subrings. 
 
89.  Given R [x1, x2, …, xn] is a S-definite special ring where, R 

is just a commutative ring with unit. Can R be a S-definite 
special ring? 

 
90.  Is the class of rings Zn[x]; n a composite number only be a 

S-ring and not a S-definite special ring? 
 
91.  What can one say about the class of rings Zp [x1, x2, …, xn], 

p a prime and Zp the prime field of characteristic p and x1, 
x2, …, xn are n-variables and Zp[x1, x2, …, xn] are 
polynomial rings in n-variables x1, x2, …, xn with 
coefficients from Zp. 

 
92.  Prove R[x] where R is the field of reals is a S-ring as well as 

S-definite special ring. 
 
93.  Is Z[x] a S-ring as well as a S-definite special ring? 
 
94.  Is Tp�p = {T = (tij) | tij � Zn the ring of integers modulo n}; a 

ring under matrix multiplication and matrix addition a S-
ring and a S-definite special ring? Justify your claim! 

 
95.  Prove Q[x1, x2, x3] is a S-ring as well as a S-definite special 

ring. Find ideals in Q[x1, x2, x3] which are not S-definite 
special ideals. 
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96.  Characterize those rings R which are S-rings as well as S-
definite special rings. 

 
97.  Characterize those rings which are only S-rings and never a 

S-definite special ring. 
 
98.  Characterize those rings which are S-definite special rings 

but never a S-ring. 
 
99.  Does S-double strong rings have infinite cardinality?  
 
100.  Can we have S-doubly strong rings with finite number of 

elements in them? 
 
101.  Does there exists finite rings which are S-doubly strong 

rings? 
 
102.  Are all infinite rings S-doubly strong rings? Justify your 

claim! 
 
103.  Does there exists S-special definite rings which has finite 

number of elements in them? 
 
104.  Can we have any finite set which can be transformed into a 

S-definite special algebraic structure by defining algebraic 
operations on them appropriately? 

 
105.  Can a finite group i.e., a group of finite order be a S-definite 

special group? 
 
106.  Can a finite ring i.e., a ring with only finite number of 

elements be a S-definite special ring? 
 
107.  Can we have S-special definite prime fields (which are 

prime) to be a field which is not a prime field? 
 
108.  Prove every prime field which is a S-special definite field is 

a S-special definite prime field! 
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109.  Can Z19 be a S-special definite prime field? Justify your 
claim! 

 
110.  Is Z23 a S-special definite field? 
 
111.  Can we have finite characteristic field to be a S-definite 

special field? 
 
112.  Suppose F is a field of characteristic p. Can F be a S-

definite special field? Justify your answer. 
 

113.  Is 19
2

Z [x]
x x 4! !

 a S-special definite field? 

 

114.  Is 5
2

Z [x]
x x 1! !

 a S-special definite field? 

 

115.  Is 
2

Q[x]
x 1!

 a S-special definite field? Note �x2 + 1� denote 

the ideal generated by x2 + 1 so in general �p(x)� denotes the 
ideal generated by the polynomial p(x). 

 

116.  Is 
2

Q[x]
x 16!

 a S-definite special prime field? 

 
117.  Is Q( 2 ) the field containing Q and 2 a S-definite 

special prime field? 
 
118.  Give examples of S-special definite fields which are not S-

definite special prime fields. 
 
119. Can you prove we have infinite collection of S-special 

definite fields which are not S-special definite prime fields? 
 
120.  Let Q[x1, x2] be a vector space over Q. Is Q[x1, x2] a S-

definite special vector space over Q? 
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121.  Can Mmxn = {(mij) | mij � Z} be a S-definite special vector 
space over Q? 

 
122.  Is Q[x] a S-definite special vector space over R? 
 
123.  Is R[x] a S-definite special vector space over Q? 
 
124.  Can Q � Q � Q � Q = V be a S-definite special vector space 

over Q? Find a basis of V which is not a S-definite special 
basis of V. 

 
125.  Can every vector space V over a field F be a S-definite 

special vector space? 
 
126.  Does their exists a vector space defined over the field of 

characteristic zero which is not a S-special definite vector 
space? 

 
127.  Let M3�4 = {(mij) = M | mij � R, 1 � i � 3 and 1 � j � 4} be a 

vector space over R. Is M3�4 a S-definite special vector 
space? Give a basis for M3�4 which is a S-definite special 
basis. 

 
128.  Find the dimension of all the basis of all the semivector 

spaces over the vector space M3�2 = {(mij) = M | 16 i 6 3; 1 
6 j 6 2 and mij � Q} over Q. How many semivector spaces 
are in M3�2? Is M3�3 a S-definite special vector space of 
finite dimension? 

 
129.  What is the S-definite special dimension of the vector space 

where the vector space Q � Q � Q � Q � Q = V over Q? 
 
130.  Find the S-definite special basis for M3�3 = {(mij) = m | mij 

�  Q; 1 � i, j � 3} over Q. 
 
131.  Can any semivector space obtained from the above problem 

have infinite number of basis? 
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132.  Let V = Q � Q � Q � Q � Q be a vector space over Q. Is V a 
S-definite special vector space? How many semivector 
spaces are in V? Find the number of S-definite special 
basis? Is the basis of the semivector spaces in V unique? 

 
133.  What is the structure of Lp(V, W)? Here V and W are S-

definite special vector spaces over a field F and Lp(V, W) 
denotes the collection of all S-definite special linear 
transformations of S-definite special vector spaces. 

 
134.  Suppose Lp(Vs, 1SW ) denotes the set of all S-definite 

special linear transformations of the S-definite special 
vector spaces over F restricted to the set of all linear 
transformations from the semivector space S to S1, what is 
the algebraic structure enjoyed by Lp(Vs, 1SW ), under the 
sum of the transformations and composition of 
transformation when ever defined? 

 
135.  Let V = M3�2 = {M = (mij) | mij � Q; 1 � i � 3 and 1 � j � 2} 

be a S-definite special vector space over Q and W = M2�2 = 
{M = (mij) | mij � R, 1 � i, j � 2} be a S-definite special 
vector space over Q. Give 2 nontrivial S-special definite 
linear transformations from V to W. Can we ever have a S-
definite special transformation which is 1-1? 

 
136.  Let V = R � R over the field Q and W = Q � Q � Q over the 

field Q be two S-definite special linear vector spaces. For S 
= Z° � Z° over Z° and S1 = Z° � Z° � Z° over Z°, the S-
special transformation given by T(x, y) = (x + y, 3x, x – y). 
Find Ker T and the matrix of S-special definite linear 
transformation related with T. 

 
137.  Let V = R � R � R � R be a S-definite special vector space 

over Q. Find two proper S-special definite subspaces of V. 
 
138.  Does a S-definite special vector space contain two S-special 

definite subspaces W1, W2 such that W1	 W2 = {0}? 
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139.  Obtain any other interesting results about S-definite special 
subspaces of a vector space. 

 
140.  Can we define for any S-definite special vector space V a S-

special definite subspaces W and W
 such that W + W
 = 
V? 

 
141.  Bring out the properties enjoyed by the S-special definite 

inner product on a vector space V. Does it depend on the 
semivector space choosen in V? Illustrate this explicitly by 
examples.  

 
142.  Show that the S-speduo special standard inner product on V 

= Q � Q � Q � Q over Q on the S-definite special vector 
space V for which the semivector space is taken as W = Z° 
� Z° � Z° � Z° � Z° over Zo, one cannot normalize each of 
the S-special definite vectors as unit vectors. Prove {0} = (0 
0 0 0) is the only vector which is orthogonal under the S-
definite special inner product. 

 
143.  Let V = Q � Q � Q � Q � Q be a S-definite special vector 

space over Q. Let W = Z° � Z° � Z° � Z° � Z° be a 
semivector space of V over the semifield Z°. Suppose (� / 
�) = 3x1y1 – x2y2 + x3y3 – x4y4 – x5y5 be an inner product on 
the vector space V where � = (x1, x2, x3, x4, x5) and � = (y1, 
y2, y3, y4, y5). Can the restriction of this inner product be a 
S-special definite inner product (relative to the semivector 
space W � V) of the vector space V. 

 
144.  Let G be a S-definite special group and K any S-definite 

special field. Is the group ring a S-definite special ring? 
 
145.  Give an example of a group ring which is not a definite 

special ring. 
 
146.  Let G be a S-definite special group and K any field or a 

commutative ring with unit. Is the group ring KG a S-
definite special ring? 
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147.  Let G be a S-semigroup and K any field. Can the S-
semigroup ring KG be a S-ring? 

 
148.  Let R be a S-definite special ring with 1 and G any group. Is 

the group ring RG a S-definite special ring? 
 
149.  Does there exists any S-definite special linear algebra over a 

field of finite characteristic p (p < �, p > 0)? 
 
150.  Is Z7[x] the linear algebra over Z7 a S-definite special linear 

algebra? 
 
151.  Let M3�3 = {M = (mij)| mij � Z5; 1 � i, j � 3} be the 

collection of all 3 � 3 matrices with entries from Z5. Is M3�3 
a S-definite special linear algebra over Z5? Justify your 
claim! 

 
152.  Let V = Q � Q � Q � Q � Q be a linear algebra over Q Find 

all the semilinear algebras contained in V. Find the S-
definite special basis of V over Q. 

 
153.  Let V = R � R � R � R be a linear algebra over Q. Is V a S-

special definite linear algebra over Q? Is V a finite 
dimensional S-special definite linear algebra? 

 
154.  Let V = R � R � R � R be a linear algebra over R and W = 

Q � Q � Q be a linear algebra over Q; T: V 2 W be a map 
such that T(x y z w) = (x y z) where P = R° � R° � R° � R° 
is a semilinear algebra over R° and S = Q° Q° Q° is a 
semilinear algebra over Q°. Can T be a S-definite linear 
algebra transformation for the semilinear algebras P and S? 
Substantiate your answer! Is T defined from V to W a S-
definite linear algebra transformation? Can T be a linear 
algebra transformation? 

 
155.  Suppose in the above problem if V is also defined over Q. Is 

T a linear algebra transformation? Is T S-definite linear 
algebra transformation?  
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156.  Let V = Q � Q � Q � Q be a S-definite special vector space 
over Q. How many S-definite special converging 
transformation on V can be defined? 

 
157.  Let Mn�n = {M = (mij) | mij �  R} be a S-definite special 

vector space over Q. Define a S-definite special converging 
transformation on Mn�n .  

 
158.  Let V = Q[x] be a S-definite special vector space over Q. 

Does there exists a transformation from V to V whose 
restriction can be S-definite special converging 
transformation on V. How many such transformations can 
be defined? 

 
159.  Let V be a S-definite special vector space over a field F. Is 

every S-definite special converging transformation be 
extended to be a linear transformation? 

 
160.  Let V = Mn�n = {M = (mij) | mij �Q; 1 6 i 6 m; 1 � j � n} be 

a S-definite special vector space over Q. Let W = s
m nM � = 

{M = (mij) | mij � Z°, 1 � i � m, 1 � j � n} be a semivector 
space over Z°. Define a S-definite special diverging 
transformation TD on V. Define a S-definite special 
converging Tc transformation on V. Can ever TD and. Tc be 
related in any way? 

 
161.  Obtain some interesting properties about TD and Tc. 
 
162.  Define TD which is such that 1

DT�  is a S-definite special 
linear transformation! 

 
163.  Is it possible to define Tc such that 1

cT�  exists and T is a S-
definite special linear transformation? 

 
164.  Given V = Q � Q � Q � Q is the S-definite special linear 

transformation. Define TD and Tc such that 1
DT�  exists? Is it 

possible to define 1
cT�  on V? 
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165. Obtain some interesting results on V when V is both S-

definite special vector space as well as S-vector space. 
 
166.  Give an example of a S-definite special near ring, which has 

no S-definite special subnear ring. 
 
167.  Give an example of a S-definite special near ring which has 

a subnear ring which is not a S-definite special subnear ring. 
  
168.  Can we have S-definite special near rings which has only 

finite number of elements in them? 
 
169.  Is {Z10, +, 
 } with a a
 b = a, a S-definite special near 

ring? 
 
170.  Can {Z17, +, 
 } be a S-definite special near ring? 
 
171.  Give an example of a S-definite special ideal in a S-definite 

special near ring. 
 
172. Is every S-definite special ideal, an ideal of the S-definite 

special near ring? 
 
173.  Can every ideal of a near ring be a S-definite special ideal 

of a near ring? 
 
174.  Can {Z, +, 
 } have S-definite special ideals? 
 
175.  Can {Z11, +, 
 } have S-definite special ideals? 
 
176.  Does {Z18, +, 
 } have S-definite special ideal? 
 
177.  Is every ideal of {Z, +, 
 } a S-definite special ideal of {Z, 

+, 
 }? 
 
178.  Can the near ring {Z, +, 
 } have S-definite special N-

group associated with it? 
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179.  Can one say every N-group of any near ring will be a S-

definite special N-group? 
 
180.  Is it true that every N-group of a S-definite special near ring 

of a S-definite special N-group? 
 
181.  Can a N-group associated with a S-special definite near ring 

be not a S-definite special N-group? 
 
182.  Find any relation or interesting conditions/ relation, between 

S-definite special near ring N and the S-definite special N-
group of N. 

 
183.  Can one prove if {Ik}; k � K denotes the collection of all S-

definite special ideals of a near ring N then the following 
two condition are equivalent  
a.  The S-definite special ideal of N generated by k

k K

I
�
�  

b.  The set of all finite sums of the elements of the Ik’s. 
 
184.  Can the set of n � n matrices with entries from Q be made 

into a near matrix ring which is a S-definite special ring? 
 
185.  Define S-definite special right ideal of a near ring and 

illustrate it with examples. 
 
186.  Define S-definite special minimal right ideal. 
 
187.  Can the near ring {Z, +, 
 } have S-definite special 

minimal right ideal? 
 
188.  Define S-definite special equiprime left ideal of a near ring 

N.  
 
189. Obtain some interesting results on S-definite special near 

rings.  
 
190.  Illustrate the above definition by an example. 
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191.  Define the notion of S-definite special n ideal near ring. 
 
192.  Give an example of a S-definite special n-ideal near ring. 
 
 
193.  Can {Z, +, 
 } be a S-definite special n-ideal near ring? 
 
194.  Prove if the near ring N is a S-definite special near ring then 

for any group G the group near ring NG is a S-definite 
special near ring. 

 
195.  Suppose N is not a S-definite special near ring can for any 

group G the group near ring NG be a S-definite special near 
ring? 

 
196.  Suppose we take G to be a S-definite special group and N to 

be any near ring not in particular a S-definite special near 
ring. Can the group near ring NG be a S-definite special 
near ring? 

 
197.  Give examples of S-definite special near rings which are 

group near rings. 
 
198.  Give examples of group near rings which are not S-definite 

special near rings. 
 
199.  Can the group near ring Z12G where G = �g | g6 =1� be a S-

definite special near ring? (Here Z12 is endowed with usual 
modulo 12 addition and multiplication is a 
  b = a for all a 
� Z12). 

 
200.  Define the notion of S-definite special equiprime near ring. 

Will all S-definite special near rings be S-definite special 
equiprime near rings? Justify your claim! 

 
201. Obtain conditions under which S-infra near ring and S-

definite special near ring will be identical! Is it possible? 
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202.  Can a S-definite special near ring be S-infra near ring? 
 
203.  Let Z be the set of integers. Let {N = Z � Z � Z, +, 
 } be a 

near ring. Using the set S = {(1, 2, 3)} ' (0 0 0) generate a 
S-near definite special automation for any arbitrary set of 
states  

 
Z�  = {Z1, Z2, …, Zn} | n < �}. 

P = {(4, 7, 5) } ' (1 1 1) 
 where  

8 : Z � P  2 P  
 and  

9 : Z � P  2 S  
 where  
 

P  = { P! , P
 }; {{(4Z°, 7Z°, 5Z°)} = P!  
 where  

 
4Z° = {0, 4, 8, 12, 16, …}, 
7Z° = {0, 7, 14, 21, …} and 

5Z° = {0, 5, 10, 15, …} 
 

 and (4Z°, 7Z°, 5Z°) = {(x, y, z) | x � 4Z°, y � 7Z°, z  � 
5Z°};   

P
 = { (4Z )! , (7Z )! , (5Z )! } 
 where  

(4Z )!  =  {4, 42, 43, …}; 

(7Z )!  = {7, 72, 73, …} and 

(5Z )! = {5, 52, 53, …}. 
 
 Now S = {S! , S
 }; worked as in case of P . We can now 

define p8 : Z�  � S  2 S  depending on what is taken as 
input symbols P  or S .  

 So that  
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p : Z7 � � P  2 S  
 and  

s Z7 � � � S  2 P . 
 Hence prove or disprove  

pA = { Z , P , S , p8 , p7 } 
 will be a S-near definite special automation associated with 

N or  

sA = { Z , S , P , s8 , S7 } 
 

 will be a S-near definite special automation.  
 Further prove or disprove   

pS = { Z , P , p8 } 
 is a S-near definite special semiautomation associated with 

N and  

sS = { Z , S , s8 } 
 a S-near definite special semiautomation associated with N. 
 
204. Give examples of S-near definite special automation 

associated with any S-definite special near ring. 
 
205.  Prove S-near definite special automation associated with a 

near ring N exists if and only if N is a S-definite special 
near ring. 

 
206.  Does there exists a S-near definite special semiautomation 

with a near ring, which is not a S-definite special near ring? 
 
207.  Suppose (N, +, 
 ) is a near ring and P is a finite subset 

associated with a S-near definite special semiautomation of 
N will ( P! , +, 
 ) be a semiring is general? 

 
208.  Is it always be possible to make a S near definite special 

semiautomation into a S-near definite special automation? 
 
209.  Define S-definite special :-near ring and illustrate it by an 

example. 
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210.  Can (Z, +, 
 ) be made into a S-definite special :-near ring 

for an appropriate :? 
 
211.  Give an example of a S-definite special strongly 

commutative near ring. 
 
212.  Give an example of a S-definite special commutative near 

ring. 
 
213.  Show by an example a S-definite special commutative near 

ring is not in general a S-definite special strongly 
commutative near ring. 

 
214.  Give an example of a S-definite special strongly 

commutative near ring, which is not a commutative near 
ring. 

 
215.  Can we define a special operation on (Z, + 
 s) so that (Z, 

+, 
 s) is only a S-definite special commutative near ring 
which is not a commutative near ring. 

 
216.  Can (Z, +, 
 ) be made into a S-definite special strongly 

commutative near ring which is not a commutative near 
ring? 

 
217.  Does there exists finite S-definite special commutative near 

ring which is not a commutative near ring? 
 
218. Does there exists finite S-special definite strongly 

commutative near ring which is not a commutative near 
ring? 

 
219.  Let Mn�n = {M = (aij) | aij � Z} be matrix near ring. Is this a 

S-definite special commutative ring? 
 
220.  Give a S-definite special near ring N which has at least six 

S-near definite special semiautomation associated with it. 
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221.  Give a S-definite special near ring N which has only one S-
near definite special automation associated with it. 

 
222.  Does there exist a S-definite special near ring N which has 

an infinite number of S-near definite special automations 
associated with it? 
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