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The Smarandache Numbers are: 
1,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7, 11 ,23,4,1 0, 13,9,7,29,5,31,8,11,17,7,6,37, 
19,13,5,41,7,43,11,6,23,47,6,14,10,17,13,53,9,11 ,7, 19,29,59,5,61,31,7,8,13,11,67,17, 
23,7,71,6,73,37,10,19,11,13,79,6,9,41,83,7, ... 
and defined as the smallest integer m such that n divides mt Finding the exact value of 
a(n) is an open problem, and this paper presents an effective algorithm for 
detenninin~ the value of a(n). 
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Introduction 
The process involved is fairly simple, and we need to know the factorisation ofn. 
From this factorisation, it is possible to exactly calculate by which m each prime is 
satisfied, i.e. the correct number of exponents appears for the first time. The largest of 
these values gives a(n). 

Satis(ving l!.;.k 
To satisfY p , we fmd the lowest m such that pk divides m!. 

For example, if we look at 34=81, then m=9 suffices and is also the lowest possible 
value of m we can achieve. 

We can see that m=9 suffices, as 9!=1.2.3.4.5.6.7.8.9, of which 3,6 and 9 are 
mUltiples of3, and 9 happens to be 32

• As 3, 6 and 9 are the first mUltiples of3, this 
implies m=9 is minimal. 

The key to fmding m lies in the value of~ and with the distribution of 3' s over the 
integers. 

The pattern of divisibility by 3, beginning with 1, is; 

0010010020010010020010010030 .... 

For the purpose of the Smarandache numbers, we can remove the O's from this, as we 
are only concerned with accumulating enough 3' s. 

(AJ 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 3 1 1 2 1 1 2 1 1 4 1 .... 
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The pattern present here can be generalized at a basic level to allow us to calculate the 
values of the sums whenever a number appears for the flrst time. 

This gives us the sub-sequences 1, 112, 112112113, etc,." and we are interested in 
the sums of these, i.e,: 

(B) 1, 4, 13, 40 .. , 

This is the partial sums of 1 +3+9+27+. __ , and this is result of evaluating (3n-1)/2. 

Now we can deduce the value ofm from k, where does k appear in B? Our k in the 
example was 4, and this appears as B(2). This means that to reach 34 we need 3 terms 
from A (=3(2.1»), and mUltiplying by 3 gives the answer we require of9, 

But how about 3333 ? To calculate m for this, we reduce in by as many possible of the 
terms of A. 

A fuller list of A is: 

(pari/gp code) 
three(n) = (3"'n-l )/2 
jor (n=1,8,print1 (three(n)", '')) 

1,4,13,40,121,364,1093,3280, 

364 is too large, but 121 is Ok. 333-121=212, and again 212-121=91. 

121 is A(5), so the data collected so far is [2*5] 

Continuing, 91-2*40=11, and 11-2*4=3, and 3=1 *3, thus we have the data [2*5, 2*4, 
2*2,3*1], I 

To interpret this data, we just fe-apply it to the distribution of3's,2*5 means that we 
need 2*3 4 consecutive mUltiples of3 - by this stage we have satisfied 3242 .2 *4 means 
that we add a further 2*33 multiples of3, 2*2 means that we add a further 2*3 1 

multiples of 3, and [mally we add 3 * 1 multiples of 3. 

The whole sum is therefore 2*81 +2*27+2*3+3*1=162+54+6+3=225, and this gives 
us the answer directly: (22S*3)! = 675! is the smallest factorial that 333

3- divides. 

This can be proven with a small Pari program: 

? jor(i=1,2000,ij(i!%3 A333==O,print1 (i);break)) 
675 

Calculating a(n) 
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Then we need to calculate the m value for each prime and exponent, and a(n) is the 
largest. 

This ParilGP code performs the necessary calculations 

{ 
fmdm(x,y)=local(m,n,xl); 
m=O;n=l ;xl =x-I; 
while ((x"n-l)/xl)<=y,n++);n--; 
while (y>O, 
while (((x"n-l )hd )<=y,y-=((x"n-l )/xl );m+=(x"(n-l )));n--); 
x*m 
} 

This is the fmdmQ function. n is boosted until larger than necessary, and then 
trimmed down one so that is must be less than or equal to y. Then y is decreased by 
the largest possible value of (x"n-l )/(x-l) possible until y=0. m is continually 
incremented throughout this process as appropriate, and the returned value is x*m. 

{ 
smarandache(n)=local(f,fl,ms); 
if(n=l,l, 
f=factor(n);fl=length(fT, 1 ]); 
ms=vector(fl,i,O); 
for (i= l,fl,ms[i}=findm(fIi, 1],fIi,2J)); 
vecmax(ms)) 
} 

The smarandacheQ function returns 1 ifn is 1, otherwise it creates the IDS vector of 
lowest possible m values, and returns the largest value. 

( 

The program results in this data: 

?for (i=I,1 OO,printl (smarandache(i)",n)) 
1 ,2,3,4,5,3,7,4,6,5,11,4,13,7,5,6,17,6,19,5,7,11,23,4,1 0, 13,9,7,29,5,31,8,11,17, 
7,6,37,19,13,5,41,7,43,11,6,23,47,6,14, 1 0,17,13,53,9,11,7,19,29,59,5,61,31,7,8,1 
3,11,67,17,23,7,71,6,73,37,10,19,11,13,79,6,9,41,83, 7,17,43,29,11,89,6,13,23,31, 
47,19,8,97,14,11,10, 

which give a 100% correlation with the sequence given in the abstract. 

At 100Mhz, it takes about 1 minute to generate the sequence to n=1 0000. 
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