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Abstract

Some splitting lemma of topological nature provides fundamental
information when dealing with dynamics (see (1], p2.79). Because the
set involved, namely X \ P, is neither open nor closed, a natural
question arise: can this set be modified in order to obtain aditional
data 7 Unfortunately, the answer is negative.

For a metric space X which is locally connected and locally com-
pact and for some continuous mapping f : X — X . the set w-set of
each element z of X is given by the formula

@ = = 3 kn : _
We also denote by w;(z), 1 <7 <r, the set

wj(z) = {y € Xly= lilil frTHz), lim omg = +oo}_

n—+oo

Now, w(z) can be splitted according to the following lemma.

Lemma 1 o) «(z) = |J v,(z);
j=1
b) f(wi(Z)) Cwit1)modr-
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Its proof relies upon the properties of w(z).

Lemma 2 For some nonvoid subset S of X we consider C a compo-
nent of X\ S. i.e. a mazimal connected set (see (2], pg. 54). Then:
o) T cou (sn o%S) :

b) o¥C c (Cna¥c)u(sna¥s).

where C signifies the closure of C under the topology of X while
&% C is the boundary of C under the same topology.

Remark 1 For instance. if S is closed, then 05C C 8¥S as the
components of a locally connected space are open.

Proof. a) First, let’s show that TYcCcuS. ForreX \(CuUS) =
(X\S)\C,as Cisclosed in X \ S, there will be some open G C X
such that

zeGN(X\S)CX\(CUS).
Obviously,

GNX\SnC=G6nNnC=10

and so .
r¢C .

Further on, let's assume that € - N S. lfz € X \ 8¥S. then

¢ X\ 5 There will be some open W C X such that

TEW;, WNX\S =0.

In particular, WNC =0 and so z ¢ c*.
b) According to a}, we have:

o ﬂmx S o (Cﬂ)_{\_CX> U [(SHBXS) ﬁX'\CX}

= (cnXINCY)u(sné¥s)

because of SNA¥SCSCX\C.
Obviously,

cnX\ct = (cmxm*“)m@“:caaxc.
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Remark 2 [t worths noticing that the sets (CN 9% C) and (SN 8% S)
are disjoint; in other words. 3XC is piecewise-made. Lemma 2 works
equally well in any topological space.

Lemma 3 (Melbourne, Dellnitz, Golubitsky)
For some nonvoid subset S of X . we denote by P, the union

Let x be some element of S. Then either w(z) C ff or the following

are valid:

a) w(z)\P; is covered by finitely many (connected) components Cy, ..., C,_;
of X\ Ps;

b) These components can be ordered so that

&) C C(z-H) mod »

¢) w(z) C Ty U...UTY |

Remark 3 Notice the splitting in relation with lemma 1. As we men-
tioned in the Abstract. it is quite natural to ask if X\'Ps can be replaced
by the easier-to-work-with X \ P,. The following lemma shows that
this would imply no more the presence of finitely many components.

Lemma 4 Let S be some nonvoid subset of X which is not dense in
X, ie. 5 # X . We consider C a component of X \ SY and D a
component of X \ S such that C C D. Then any element of D\ C

belongs either to 8% S or to any other component of X \ 5

Proof. If z ¢ X\ Sthenz € (X\S)N3  c8¥s. W
An example would be appropriate: in R2, we denote by D(0,7) the

r-disk centered in 0. Now, for X = D(0,2) 2) ; S=D(0,1)U(1,2] U
[-2,-1), we have

SV =D DN UL U2, 1]

D=X\5S, CE{(X\§R2>ﬂ(y>0),(X\§R2)ﬂ(y<O)}.

Further exemples can be architectured easily even to obtain infinitely

many components of X \ 5.
In other words, finitely many components of X \ § may include infi-

nitely many components of X \ §
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