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The function S, and its dual S, are defined by
S(n) =min{m € N: n|m!};
Si(n) =max{m € N: mlln} (seee.g. [1])

We now define the following ”additive analogue”, which is defined on a subset of real

numbers.
Let
S(z)=min{m eN: z<ml}, ze(1,00) (1)
as well as, its dual
Si(z)=max{meN: mI <z}, z€[l,00). @

Clearly, S(z) = m if z € ((m — 1), m!] for m > 2 (for m = 1 it is not defined, as
0! = 1! = 1), therefore this function is defined for z > 1.

In the same manner, S.(z) =m if z € [m!,(m+ 1)) for m > 1, i.e. S, : [1,00) = N
(while S': (1, 00) — N).

It is immediate that

S(z) = S@)+1, if zek, (k+1)) (k>1) 3)
S.(z), if z=(k+1)! (k>1)
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Therefore, S.(z) + 1 > S(z) > S.(z), and it will be sufficient to study the function
S.(z).

The following simple properties of S, are immediate:

1° S, is surjective and an increasing function

2° 5, is continuous for all z € [1, 00)\ 4, where A = {k!, k > 2}, and since :11/1‘12' S.(z) =
k-1, }1\1113! S.(z) =k (k 2 2), S, is continuous from the right in z = k! (k> 2), but it is
not continuous from the left. |

S.(z) — S.(k))

3° S, is differentiable on (1,00) \ 4, and since ﬁ\’,% = 0, it has a right-

z— k!
derivative in AU {1}.
4° S, is Riemann integrable in [a, b} C R for all a < b.
a) If [a, ] C [K!, (K + 1)!) (E > 1), then clearly
b
/ S.(z)dz = k(b a) @)

b) On the other hand, since

n (k+1)! (k+2)! (k+i-k)!
L=+ e s /
kt k! (k+1)1 (k+1-k-1)!
(where | > k are positive integers), and by
(k+1)! _ ’
/ Su(@)dz = K(k + 1) ~ K] = K2 - kt 5)
Kt

we get
u

S.(z)dz =K® - k! + (B+1*(k+ D!+ + [+~ k= DRk + (I — k —1)] (6)
k!

¢) Now, if a € [k!, (k+1)1], b € !, + 1)1), by

b (k+1)! i k
L] ot
a 3 (k+1)! 44
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and (4), (5), (6), we get:

be,(x)dx =k[(k+1)1—al+ (k+ Dk + 1)l +...+

HE+1+(—k=2)Pk+1+ -k ~-2)] +1b~1) (7)

We now prove the following

Theorem 1.
logz
loglogz

S.(z) ~ (z — o0) (®)

Proof. We need the following

T
Lemma. Let r, > 0, y, > 0, y—" — a > 0 (finite) as n — oo, where z,,,y, — 0o
n

(n — 00). Then
log z,,
log s

-1 (n— o). 9

Proof. log? — loga, ie. logz, — logy = loga + £(n), with g(n) = 0 (n — 00). So
logzn _y_loga  e(n) 0. o0.0-0
log yn logy,  logyn

nlog log n!

log n!

1;

Lemma 2. a)

logn!
by ——27% _
) log(n + 1)! -
loglogn!

K log log(n + 1)!

Proof. a) Since n! ~ Ce™"n™*Y/2 (Stirling’s formula), clearly logn! ~ nlogn, so b)

follows by l_o—gl(c;g_*il) ~ 1 ((9), since nL—i-l ~ 1). Now c) is a consequence of b) by the

—lasn— o (10)

Lemma. Again by the Lemma, and logn! ~ nlogn we get

loglogn! ~ log(nlogn) = logn + loglogn ~ logn

and a) follows.
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Now, from the proof of (8), remark that

nloglogn!  S.(z)loglogz < nloglog(n + 1)!
log(n + 1)! logx logn!

and the result follows by (10).
1

Theorem 2. The series ZW is convergent for a > 1 and divergent for
n=1 *
a<l.
Proof. By Theorem 1,
logn logn
S < B——
loglogn ( )< loglogn

(A,B > 0) for n > ng > 1, therefore it will be sufficient to study the convergence of
i (loglogn)=

n(logn)e

n>ng

The function f(z) = (loglog z)?/z(log =)™ has a derivative given by
z*(log z)* f'(z) = (loglog z)**(log £)*"![1 - (loglog 7)(log z + )]

implying that f'(z) < O for all sufficiently large = and all @ € R. Thus [ is strictly
decreasing for z > ;. By the Cauchy condensation criterion ([2]) we know that E ay &
Z2“a2n (where «» means that the two series have the same type of convergence) for

(az) strictly decreasing, a,, > 0. Now, with a,, = (loglog n)%/n(logn)® we have to study

2n (log log 2”)“ logn+a @
ot b =1 =
Z 27 (log 27)= « Z b , Where a,b are constants (a oglog?2, b

a
log 2). Arguing as above, (b,) defined by b, = (loﬁiE

S ) is a strictly positive, strictly
decreasing sequence, so again by Cauchy’s criterion
2" (log 2™ + a)* 2%(nb + 2'nb+a)* \
S b 5 ZUBT L S
n2>mg n2mgp (2 + b) * n>my (Qn + b)u n2mg

1
Now, Jim % = Foer

the theorem for o # 1. But for & = 1 we get the series Z

by an easy computation, so D’Alembert’s criterion proves
2%(nb+a)

b which is clearly

divergent.
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