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Abstract: In this paper we introduce the operators of validation and invalidation of a

proposition, and we extend the operator of S-denying a proposition, or an axiomatic system,

from the geometric space to respectively any theory in any domain of knowledge, and show

six examples in geometry, in mathematical analysis, and in topology.

Key Words: operator of S-denying, axiomatic system
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§1. Introduction

Let T be a theory in any domain of knowledge, endowed with an ensemble of sentences E, on

a given space M .

E can be for example an axiomatic system of this theory, or a set of primary propositions

of this theory, or all valid logical formulas of this theory, etc. E should be closed under the

logical implications, i.e. given any subset of propositions P1, P2, · · · in this theory, if Q is a

logical consequence of them then Q must also belong to this theory.

A sentence is a logic formula whose each variable is quantified i.e. inside the scope of

a quantifier such as: ∃ (exist), ∀ (for all), modal logic quantifiers, and other various modern

logics’ quantifiers. With respect to this theory, let P be a proposition, or a sentence, or an

axiom, or a theorem, or a lemma, or a logical formula, or a statement, etc. of E. It is said

that P is S-denied on the space M if P is valid for some elements of M and invalid for other

elements of M , or P is only invalid on M but in at least two different ways.

An ensemble of sentences E is considered S-denied if at least one of its propositions is S-

denied. And a theory T is S-denied if its ensemble of sentences is S-denied, which is equivalent

to at least one of its propositions being S-denied.

The proposition P is partially or totally denied/negated on M . The proposition P can

be simultaneously validated in one way and invalidated in (finitely or infinitely) many different

ways on the same space M , or only invalidated in (finitely or infinitely) many different ways.

1Reported at the First International Conference on Smarandache Multispaces and Multistructures, June

28-30,2013, Beijing, P.R.China.
2Received March 27,2013, Accepted June 5, 2013.
3The multispace operator S-denied (Smarandachely-denied) has been inherited from the previously published

scientific literature (see for example Ref. [1] and [2]).
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The invalidation can be done in many different ways. For example the statement A =:

x 6= 5 can be invalidated as x = 5 (total negation), but x ∈ {5, 6} (partial negation). (Use

a notation for S-denying, for invalidating in a way, for invalidating in another way a different

notation; consider it as an operator: neutrosophic operator? A notation for invalidation as

well.)

But the statement B =: x > 3 can be invalidated in many ways, such as x ≤ 3, or x = 3,

or x < 3, or x = −7, or x = 2, etc. A negation is an invalidation, but not reciprocally - since an

invalidation signifies a (partial or total) degree of negation, so invalidation may not necessarily

be a complete negation. The negation of B is B =: x ≤ 3, while x = −7 is a partial negation

(therefore an invalidation) of B.

Also, the statement C =: John’s car is blue and Steve’s car is red can be invalidated in

many ways, as: John’s car is yellow and Steve’s car is red, or John’s car is blue and Steve’s car

is black, or John’s car is white and Steve’s car is orange, or John’s car is not blue and Steve’s

car is not red, or John’s car is not blue and Steve’s car is red, etc.

Therefore, we can S-deny a theory in finitely or infinitely many ways, giving birth to

many partially or totally denied versions/deviations/alternatives theories: T1, T2, · · · . These

new theories represent degrees of negations of the original theory T .

Some of them could be useful in future development of sciences.

Why do we study such S-denying operator? Because our reality is heterogeneous, composed

of a multitude of spaces, each space with different structures. Therefore, in one space a state-

ment may be valid, in another space it may be invalid, and invalidation can be done in various

ways. Or a proposition may be false in one space and true in another space or we may have a

degree of truth and a degree of falsehood and a degree of indeterminacy. Yet, we live in this

mosaic of distinct (even opposite structured) spaces put together.

S-denying involved the creation of the multi-space in geometry and of the S-geometries

(1969). It was spelt multi-space, or multispace, of S-multispace, or mu-space, and similarly for

its: multi-structure, or multistructure, or S-multistructure, or mu-structure.

§2. Notations

Let < A > be a statement (or proposition, axiom, theorem, etc.).

a) For the classical Boolean logic negation we use the same notation. The negation of

< A > is noted by ¬A and ¬A =< nonA >. An invalidation of < A > is noted by i(A), while

a validation of < A > is noted by v(A):

i(A) ⊂ 2<nonA>\{∅} and v(A) ⊂ 2<A>\{∅},

where 2X means the power-set of X , or all subsets of X .

All possible invalidations of < A > form a set of invalidations, notated by I(A). Similarly

for all possible validations of < A > that form a set of validations, and noted by V (A).

b) S-denying of < A > is noted by S¬(A). S-denying of < A > means some validations of

< A > together with some invalidations of < A > in the same space, or only invalidations of
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< A > in the same space but in many ways. Therefore, S¬(A) ⊂ V (A)
⋃
I(A) or S¬(A) ⊂ I(A)k

for k ≥ 2.

§3. Examples

Let’s see some models of S-denying, three in a geometrical space, and other three in mathemat-

ical analysis (calculus) and topology.

3.1 The first S-denying model was constructed in 1969. This section is a compilation of ideas

from paper [1]:

An axiom is said Smarandachely denied if the axiom behaves in at least two different ways

within the same space (i.e., validated and invalided, or only invalidated but in multiple distinct

ways). A Smarandache Geometry [SG] is a geometry which has at least one Smarandachely

denied axiom.

Let’s note any point, line, plane, space, triangle, etc. in such geometry by s-point, s-line,

s-plane, s-space, s-triangle respectively in order to distinguish them from other geometries. Why

these hybrid geometries? Because in reality there does not exist isolated homogeneous spaces,

but a mixture of them, interconnected, and each having a different structure. These geometries

are becoming very important now since they combine many spaces into one, because our world

is not formed by perfect homogeneous spaces as in pure mathematics, but by non-homogeneous

spaces. Also, SG introduce the degree of negation in geometry for the first time (for example an

axiom is denied 40% and accepted 60% of the space) that’s why they can become revolutionary

in science and it thanks to the idea of partial denying/accepting of axioms/propositions in

a space (making multi-spaces, i.e. a space formed by combination of many different other

spaces), as in fuzzy logic the degree of truth (40% false and 60% true). They are starting to

have applications in physics and engineering because of dealing with non-homogeneous spaces.

The first model of S-denying and of SG was the following:

The axiom that through a point exterior to a given line there is only one parallel passing

through it (Euclid’s Fifth Postulate), was S-denied by having in the same space: no parallel,

one parallel only, and many parallels.

In the Euclidean geometry, also called parabolic geometry, the fifth Euclidean postulate

that there is only one parallel to a given line passing through an exterior point, is kept or

validated. In the Lobachevsky-Bolyai-Gauss geometry, called hyperbolic geometry, this fifth

Euclidean postulate is invalidated in the following way: there are infinitely many lines parallels

to a given line passing through an exterior point.

While in the Riemannian geometry, called elliptic geometry, the fifth Euclidean postulate is

also invalidated as follows: there is no parallel to a given line passing through an exterior point.

Thus, as a particular case, Euclidean, Lobachevsky-Bolyai-Gauss, and Riemannian geometries

may be united altogether, in the same space, by some SG’s. These last geometries can be

partially Euclidean and partially Non-Euclidean simultaneously.
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3.2 Geometric Model

Suppose we have a rectangle ABCD. See Fig.1 below.

A

B C

DM

NP

P1 Pn

R1

R

Rn

Fig.1

In this model we define as:

Point = any point inside or on the sides of this rectangle;

Line = a segment of line that connects two points of opposite sides of the rectangle;

Parallel lines = lines that do not have any common point (do not intersect);

Concurrent lines = lines that have a common point.

Let’s take the line MN, where M lies on side AD and N on side BC as in the above Fig. 1.

Let P be a point on side BC, and R a point on side AB.

Through P there are passing infinitely many parallels (PP1, · · · , PPn, · · · ) to the line MN,

but through R there is no parallel to the line MN (the lines RR1, · · · , RRn cut line MN).

Therefore, the Fifth Postulate of Euclid (that though a point exterior to a line, in a given

plane, there is only one parallel to that line) in S-denied on the space of the rectangle ABCD

since it is invalidated in two distinct ways.

3.3 Another Geometric Model

We change a little the Geometric Model 1 such that:

The rectangle ABCD is such that side AB is smaller than side BC. And we define as line

the arc of circle inside (and on the borders) of ABCD, centered in the rectangle’s vertices A,

B, C, or D.

The axiom that: through two distinct points there exist only one line that passes through

is S-denied (in three different ways):

a) Through the points A and B there is no passing line in this model, since there is no arc

of circle centered in A, B, C, or D that passes through both points. See Fig.2.



S-Denying a Theory 5

................................................................

................................................................

A

B C

D

O

E

F

G

H

Fig.2

b) We construct the perpendicular EF⊥AC that passes through the point of intersection

of the diagonals AC and BD. Through the points E and F there are two distinct lines the dark

green (left side) arc of circle centered in C since CE≡FC, and the light green (right side) arc

of circle centered in A since AE≡AF. And because the right triangles
⊔

COE,
⊔

COF,
⊔

AOE,

and
⊔

AOF are all four congruent, we get CE≡FC≡AE≡AF.

c) Through the points G and H such that CG≡CH (their lengths are equal) there is only

one passing line (the dark green arc of circle GH, centered in C) since AG6=AH (their lengths

are different), and similarly BG6=BH and DG6=DH.

3.4 Example for the Axiom of Separation

The Axiom of Separation of Hausdorff is the following:

∀x, y ∈M, ∃N(x), N(y)⇒ N(x)
⋂
N(y) = ∅,

where N(x) is a neighborhood of x, and respectively N(y) is a neighborhood of y.

We can S-deny this axiom on a space M in the following way:

a) ∃x1, y1 ∈M and ∃N1(x1), N1(y1)⇒ N1(x1)
⋂
N1(y1) = ∅, where N1(x1) is a neighbor-

hood of x1, and respectively N1(y1) is a neighborhood of y1. [validated]

b) ∃x2, y2 ∈ M ⇒ ∀N2(x2), N2(y2), N2(x2)
⋂
N2(y2) = ∅, where N2(x2) is a neighborhood

of x2, and respectively N2(y2) is a neighborhood of y2. [invalidated]

Therefore we have two categories of points in M : some points that verify The Axiom of

Separation of Hausdorff and other points that do not verify it. So M becomes a partially

separable and partially inseparable space, or we can see that M has some degrees of separation.

3.5 Example for the Norm

If we remove one or more axioms (or properties) from the definition of a notion < A > we get

a pseudo-notion < pseudoA >. For example, if we remove the third axiom (inequality of the

triangle) from the definition of the < norm > we get a < pseudonorm >. The axioms of a

norm on a real or complex vectorial space V over a field F , x→ ‖ · ‖, are the following:
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a) ‖x‖ = 0⇔ x = 0;

b) ∀x ∈ V, ∀α ∈ F , ‖αx‖ = |α|‖x‖;
c) ∀x, y ∈ V , ‖x+ y‖ ≤ ‖x‖ · ‖y‖ (inequality of the triangle).

For example, a pseudo-norm on a real or complex vectorial space V over a field F , x→ p‖·‖,
may verify only the first two above axioms of the norm.

A pseudo-norm is a particular case of an S-denied norm since we may have vectorial spaces

over some given scalar fields where there are some vectors and scalars that satisfy the third

axiom [validation], but others that do not satisfy [invalidation]; or for all vectors and scalars

we may have either ‖x+ y‖ = 5‖x‖ · ‖y‖ or ‖x+ y| = 6‖x‖ · ‖y‖, so invalidation (since we get

‖x+ y‖ > ‖x‖ · ‖y‖) in two different ways.

Let’s consider the complex vectorial space C = {a+ bi, where a, b ∈ R, i =
√
−1} over the

field of real numbers R. If z = a+ bi ∈ C then its pseudo-norm is ‖z‖ =
√
a2 + b2. This verifies

the first two axioms of the norm, but do not satisfy the third axiom of the norm since:

For x = 0 + bi and y = a + 0i we get ‖x + y‖ = ‖a + bi‖ =
√
a2 + b2 ≤ ‖x‖ · ‖y‖ =

‖0 + bi‖ · ‖a + 0i‖ = |ab|, or a2 + b2 ≤ a2b2. But this is true for example when a = b ≥
√

2

(validation), and false if one of a or b is zero and the other is strictly positive (invalidation).

Pseudo-norms are already in use in today’s scientific research, because for some applications

the norms are considered too restrictive. Similarly one can define a pseudo-manifold (relaxing

some properties of the manifold), etc.

3.6 Example in Topology

A topology O on a given set E is the ensemble of all parts of E verifying the following properties:

a) E and the empty set ∅ belong to O;

b) Intersection of any two elements of O belongs to O too;

c) Union of any family of elements of O belongs to O too.

Let’s go backwards. Suppose we have a topology O1 on a given set E1, and the second or

third (or both) previous axioms have been S-denied, resulting an S-denied topology S¬(O1) on

the given set E1.

In general, we can go back and recover (reconstruct) the original topology O1 from S¬(O1)

by recurrence: if two elements belong to S¬(O1) then we set these elements and their intersection

to belong to O1, and if a family of elements belong to S¬(O1) then we set these family elements

and their union to belong to O1; and so on: we continue this recurrent process until it does not

bring any new element to O1.

§4. Conclusion

Decidability changes in an S-denied theory, i.e. a defined sentence in an S-denied theory can

be partially deducible and partially undeducible (we talk about degrees of deducibility of a

sentence in an S-denied theory).
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Since in classical deducible research, a theory T of language L is said complete if any

sentence of L is decidable in T , we can say that an S-denied theory is partially complete (or

has some degrees of completeness and degrees of incompleteness).
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Abstract: Different from the homogenous systems, a Smarandache system is a contra-

dictory system in which an axiom behaves in at least two different ways within the same

system, i.e., validated and invalided, or only invalided but in multiple distinct ways. Such

systems widely exist in the world. In this report, we discuss such a kind of Smarandache sys-

tem, i.e., non-solvable equation systems, such as those of non-solvable algebraic equations,

non-solvable ordinary differential equations and non-solvable partial differential equations

by topological graphs, classify these systems and characterize their global behaviors, partic-

ularly, the sum-stability and prod-stability of such equations. Applications of such systems

to other sciences, such as those of controlling of infectious diseases, interaction fields and

flows in network are also included in this report.

Key Words: Non-solvable equation, Smarandache system, topological graphs, vertex-edge

labeled graph, G-solution, sum-stability, prod-stability.
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§1. Introduction

Consider two systems of linear equations following:

(LESN
4 )





x+ y = 1

x+ y = −1

x− y = −1

x− y = 1

(LESS
4 )





x = y

x+ y = 2

x = 1

y = 1

Clearly, (LESN
4 ) is non-solvable because x + y = −1 is contradictious to x + y = 1, and so

that for equations x − y = −1 and x − y = 1. Thus there are no solutions x0, y0 hold with all

equations in this system. But (LESS
4 ) is solvable clearly with a solution x = 1 and y = 1.

It should be noted that each equation in systems (LESN
4 ) and (LESS

4 ) is a straight line

in Euclidean space R
2, such as those shown in Fig.1.

1Reported at the First International Conference on Smarandache Multispaces and Multistructures, June

28-30,2013, Beijing, P.R.China.
2Received April 6, 2013, Accepted June 6,2013.
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-6
O

x

y

x+ y = 1

x+ y = −1x− y = 1

x− y = −1 -
6

x

y

x = yx = 1

y = 1

x+ y = 2

O

(LESN
4 ) (LESS

4 )

Fig.1

What is the geometrical essence of a non-solvable or solvable system of linear equations?

It is clear that each linear equation ax + by = c with ab 6= 0 is in fact a point set Lax+by=c =

{(x, y)|ax + by = c} in R
2. Then, the system (LESn

4 ) is non-solvable but (LESS
4 ) solvable in

sense because of

Lx+y=1

⋂
Lx+y=−1

⋂
Lx−y=1

⋂
Lx−y=−1 = ∅

and

Lx=y

⋂
Lx=1

⋂
Ly=1

⋂
Lx+y=2 = {(1, 1)}

in Euclidean plane R
2. Generally, let

(ESm)





f1(x1, x2, · · · , xn) = 0

f2(x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . .

fm(x1, x2, · · · , xn) = 0

be a system of algebraic equations in Euclidean space R
n for an integer n ≥ 1 with point set

Sfi
such that fi(x1, x2, · · · , xn) = 0 for any point (x1, x2, · · · , xn) ∈ Sfi

, 1 ≤ i ≤ m. Then, it

is clear that the system (ESm) is solvable or not dependent on
m⋂

i=1

Sfi
= ∅ or 6= ∅. This fact

implies the following interesting result.

Proposition 1.1 Any system (ESm) of algebraic equations with each equation solvable posses

a geometrical figure in R
n, no matter it is solvable or not.

Conversely, for a geometrical figure G in R
n, n ≥ 2, how can we get an algebraic represen-

tation for geometrical figure G ? As a special case, let G be a graph embedded in Euclidean
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space R
n and

(ESe)





fe
1 (x1, x2, · · · , xn) = 0

fe
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fe
n−1(x1, x2, · · · , xn) = 0

be a system of equations for determining an edge e ∈ E(G) in R
n. Then the system

fe
1 (x1, x2, · · · , xn) = 0

fe
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

fe
n−1(x1, x2, · · · , xn) = 0





∀e ∈ E(G)

is a non-solvable system of equations. Generally, let G be a geometrical figure consisting of m

parts G1,G2, · · · ,Gm, where Gi is determined by a system of algebraic equations





f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
n−1(x1, x2, · · · , xn) = 0

Similarly, we get a non-solvable system

f
[i]
1 (x1, x2, · · · , xn) = 0

f
[i]
2 (x1, x2, · · · , xn) = 0

. . . . . . . . . . . . . . . . . . . . . . . .

f
[i]
n−1(x1, x2, · · · , xn) = 0





1 ≤ i ≤ m.

Thus we obtain the following result.

Proposition 1.2 Any geometrical figure G consisting of m parts, each of which is determined

by a system of algebraic equations in R
n, n ≥ 2 posses an algebraic representation by system of

equations, solvable or not in R
n.

For example, let G be a planar graph with vertices v1, v2, v3, v4 and edges v1v2, v1v3, v2v3,

v3v4, v4v1, shown in Fig.2.
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O
x

y

y = 8

y = 2

x = 2 x = 12

v1 v2

v3v4

Fig.2

Then we get a non-solvable system of linear equations




x = 2

y = 8

x = 12

y = 2

3x+ 5y = 46.

More results on non-solvable linear systems of equations can be found in [9]. Terminologies

and notations in this paper are standard. For those not mentioned in this paper, we follow [12]

and [15] for partial or ordinary differential equations. [5-7], [13-14] for algebra, topology and

Smarandache systems, and [1] for mechanics.

§2. Smarandache Systems with Labeled Topological Graphs

A non-solvable system of algebraic equations is in fact a contradictory system in classical

meaning of mathematics. As we have shown, such systems extensively exist in mathematics

and possess real meaning even if in classical mathematics. This fact enables one to introduce

the conception of Smarandache system following.

Definition 2.1([5-7]) A rule R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Without loss of generality, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems,

where Ri is a rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj

or Σi = Σj but Ri 6= Rj , then they are said to be different, otherwise, identical. If we can list

all systems of a Smarandache system (Σ;R), then we get a Smarandache multi-space defined

following.
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Definition 2.2([5-7],[11]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on

Σ̃, denoted by
(
Σ̃; R̃

)
.

The conception of Smarandache multi-space reflects the notion of the whole Σ̃ is consisting

of its parts (Σi;Ri), i ≥ 1 for a thing in philosophy. The laterality of human beings implies

that one can only determines lateral feature of a thing in general. Such a typical example is

the proverb of blind men with an elephant.

Fig. 3

In this proverb, there are 6 blind men were be asked to determine what an elephant looked

like by feeling different parts of the elephant’s body. The man touched the elephant’s leg, tail,

trunk, ear, belly or tusk claims it’s like a pillar, a rope, a tree branch, a hand fan, a wall or a

solid pipe, respectively. They then entered into an endless argument and each of them insisted

his view right. All of you are right! A wise man explains to them: Why are you telling it

differently is because each one of you touched the different part of the elephant. So, actually the

elephant has all those features what you all said, i.e., a Smarandache multi-space consisting of

these 6 parts.

Usually, a man is blind for an unknowing thing and takes himself side as the dominant

factor. That makes him knowing only the lateral features of a thing, not the whole. That is also

the reason why one used to harmonious, not contradictory systems in classical mathematics.

But the world is filled with contradictions. Being a wise man knowing the world, we need to

find the whole, not just the parts. Thus the Smarandache multi-space is important for sciences.

Notice that a Smarandache multi-space
(
Σ̃; R̃

)
naturally inherits a combinatorial struc-

ture, i.e., a vertex-edge labeled topological graph defined following.

Definition 2.3(([5-7])) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Then a inherited graph G
[
Σ̃, R̃

]
of
(
Σ̃; R̃

)
is a labeled topological graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1,Σ2, · · · ,Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi,Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}
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with an edge labeling

lE : (Σi,Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi,Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl if and only

if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

For example, let S1 = {a, b, c}, S2 = {c, d, e}, S3 = {a, c, e} and S4 = {d, e, f}. Then the

multi-space S̃ =
4⋃

i=1

Si = {a, b, c, d, e, f} with its labeled topological graph G[S̃] is shown in

Fig.4.

S1 S2

S3 S4

{c}

{d, e}

{e}

{c, e}{a, c}

Fig.4

The labeled topological graph G
[
Σ̃, R̃

]
reflects the notion that there exist linkages between

things in philosophy. In fact, each edge (Σi,Σj) ∈ E
(
G
[
Σ̃, R̃

])
is such a linkage with coupling

̟(Σi

⋂
Σj). For example, let a = {tusk}, b = {nose}, c1, c2 = {ear}, d = {head}, e = {neck},

f = {belly}, g1, g2, g3, g4 = {leg}, h = {tail} for an elephant C . Then its labeled topological

graph is shown in Fig.5,

a

b

d

c1

c2

e f

g1 g2

h

g3 g4

a ∩ d c1 ∩ d

b ∩ d
c2 ∩ d

d ∩ e e ∩ f

g1 ∩ f g2 ∩ f

g3 ∩ f g4 ∩ f

f ∩ h

Fig.5

which implies that one can characterizes the geometrical behavior of an elephant combinatori-

ally.
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§3. Non-Solvable Systems of Ordinary Differential Equations

3.1 Linear Ordinary Differential Equations

For integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0, particu-

larly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 3.1 An ordinary differential equation system (DES1
m) or (LDES1

m) are called non-

solvable if there are no function X(t) hold with (DES1
m) or (LDES1

m) unless the constants.

As we known, the general solution of the ith differential equation in (LDES1
m) is a linear

space spanned by the elements in the solution basis

Bi = { βk(t)eαkt | 1 ≤ k ≤ n }

for integers 1 ≤ i ≤ m, where

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;
λs, if k1 + k2 + · · ·+ ks−1 + 1 ≤ i ≤ n,

λi is the ki-fold zero of the characteristic equation

det(A− λIn×n) = |A− λIn×n| = 0

with k1 + k2 + · · ·+ ks = n and βi(t) is an n-dimensional vector consisting of polynomials in t

with degree≤ ki − 1.

In this case, we can simplify the labeled topological graph G
[∑̃

, R̃
]

replaced each
∑

i by

the solution basis Bi and
∑

i

⋂∑
j by Bi

⋂
Bj if Bi

⋂
Bj 6= ∅ for integers 1 ≤ i, j ≤ m,

called the basis graph of (LDES1
m), denoted by G[LDES1

m]. For example, let m = 4 and B0
1 =

{eλ1t, eλ2t, eλ3t}, B0
2 = {eλ3t, eλ4t, eλ5t}, B0

3 = {eλ1t, eλ3t, eλ5t} and B0
4 = {eλ4t, eλ5t, eλ6t},

where λi, 1 ≤ i ≤ 6 are real numbers different two by two. Then G[LDES1
m] is shown in Fig.6.
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B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.6

We get the following results.

Theorem 3.2([10]) Every linear homogeneous differential equation system (LDES1
m) uniquely

determines a basis graph G[LDES1
m] inherited in (LDES1

m). Conversely, every basis graph G

uniquely determines a homogeneous differential equation system (LDES1
m) such that G[LDES1

m]

≃ G.

Such a basis graph G[LDES1
m] is called the G-solution of (LDES1

m). Theorem 3.2 implies

that

Theorem 3.3([10]) Every linear homogeneous differential equation system (LDES1
m) has a

unique G-solution, and for every basis graph H, there is a unique linear homogeneous differential

equation system (LDES1
m) with G-solution H.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}

{e5t}

{e6t}

{et}

Fig.7 A basis graph

Example 3.4 Let (LDEn
m) be the following linear homogeneous differential equation system





ẍ− 3ẋ+ 2x = 0 (1)

ẍ− 5ẋ+ 6x = 0 (2)

ẍ− 7ẋ+ 12x = 0 (3)

ẍ− 9ẋ+ 20x = 0 (4)

ẍ− 11ẋ+ 30x = 0 (5)

ẍ− 7ẋ+ 6x = 0 (6)
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where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis graph is shown in Fig.7.

3.2 Combinatorial Characteristics of Linear Differential Equations

Definition 3.5 Let (LDES1
m), (LDES1

m)′ be two linear homogeneous differential equation

systems with G-solutions H, H ′. They are called combinatorially equivalent if there is an

isomorphism ϕ : H → H ′, thus there is an isomorphism ϕ : H → H ′ of graph and labelings

θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃
E(H), denoted by

(LDES1
m)

ϕ≃ (LDES1
m)′.

We introduce the conception of integral graph for (LDES1
m) following.

Definition 3.6 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z
+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ

1 and GIτ

2 be two integral labeled graphs. They are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃
E(G1), denoted by GIθ

1 = GIτ

2 .

For example, these labeled graphs shown in Fig.8 are all integral on K4−e, but GIθ

1 = GIτ

2 ,

GIθ

1 6= GIσ

3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.8

Then we get a combinatorial characteristic for combinatorially equivalent (LDES1
m) fol-

lowing.

Theorem 3.5([10]) Let (LDES1
m), (LDES1

m)′ be two linear homogeneous differential equation

systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃ (LDES1
m)′ if and only if

H = H ′.

3.3 Non-Linear Ordinary Differential Equations

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize these non-linear

equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′
i (0)X +Ri(X),
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where F ′
i (0) is an n× n matrix, we replace the ith equation Ẋ = Fi(X) by a linear differential

equation

Ẋ = F ′
i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m) from

(DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of linearized dif-

ferential equation system (DES1
m) is defined to be the linearized basis graph of (DES1

m) and

denoted by G[DES1
m]. We can also apply G-solutions G[DES1

m] for characterizing the behavior

of (DES1
m).

§4. Cauchy Problem on Non-Solvable Partial Differential Equations

Let (PDESm) be a system of partial differential equations with





F1(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

F2(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, ux1
, · · · , uxn

, ux1x2
, · · · , ux1xn

, · · · ) = 0

on a function u(x1, · · · , xn, t). Then its symbol is determined by





F1(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

F2(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, · · · , pn, p1p2, · · · , p1pn, · · · ) = 0,

i.e., substitute pα1

1 , pα2

2 , · · · , pαn

n into (PDESm) for the term ux
α1

1
x

α2

2
···xαn

n
, where αi ≥ 0 for

integers 1 ≤ i ≤ n.

Definition 4.1 A non-solvable (PDESm) is algebraically contradictory if its symbol is non-

solvable. Otherwise, differentially contradictory.

The following result characterizes the non-solvable partial differential equations of first

order by applying the method of characteristic curves.

Theorem 4.2([11]) A Cauchy problem on systems





F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Fm(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0
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of partial differential equations of first order is non-solvable with initial values




xi|xn=x0
n

= x0
i (s1, s2, · · · , sn−1)

u|xn=x0
n

= u0(s1, s2, · · · , sn−1)

pi|xn=x0
n

= p0
i (s1, s2, · · · , sn−1), i = 1, 2, · · · , n

if and only if the system

Fk(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0, 1 ≤ k ≤ m

is algebraically contradictory, in this case, there must be an integer k0, 1 ≤ k0 ≤ m such that

Fk0
(x0

1, x
0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) 6= 0

or it is differentially contradictory itself, i.e., there is an integer j0, 1 ≤ j0 ≤ n− 1 such that

∂u0

∂sj0

−
n−1∑

i=0

p0
i

∂x0
i

∂sj0

6= 0.

Particularly, we get conclusions following by Theorem 4.2.

Corollary 4.3 Let 



F1(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

F2(x1, x2, · · · , xn, u, p1, p2, · · · , pn) = 0

be an algebraically contradictory system of partial differential equations of first order. Then

there are no values x0
i , u0, p

0
i , 1 ≤ i ≤ n such that





F1(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0,

F2(x
0
1, x

0
2, · · · , x0

n−1, x
0
n, u0, p

0
1, p

0
2, · · · , p0

n) = 0.

Corollary 4.4 A Cauchy problem (LPDESC
m) of quasilinear partial differential equations with

initial values u|xn=x0
n

= u0 is non-solvable if and only if the system (LPDESm) of partial

differential equations is algebraically contradictory.

Denoted by Ĝ[PDESC
m] such a graphG[PDESC

m] eradicated all labels. Particularly, replac-

ing each label S[i] by S
[i]
0 = {u[i]

0 } and S[i]
⋂
S[j] by S

[i]
0

⋂
S

[j]
0 for integers 1 ≤ i, j ≤ m, we get a

new labeled topological graph, denoted by G0[PDES
C
m]. Clearly, Ĝ[PDESC

m] ≃ Ĝ0[PDES
C
m].

Theorem 4.5([11]) For any system (PDESC
m) of partial differential equations of first order,

Ĝ[PDESC
m] is simple. Conversely, for any simple graph G, there is a system (PDESC

m) of

partial differential equations of first order such that Ĝ[PDESC
m] ≃ G.

Particularly, if (PDESC
m) is linear, we can immediately find its underlying graph following.

Corollary 4.6 Let (LPDESm) be a system of linear partial differential equations of first

order with maximal contradictory classes C1,C2, · · · ,Cs on equations in (LPDES). Then

Ĝ[LPDESC
m] ≃ K(C1,C2, · · · ,Cs), i.e., an s-partite complete graph.
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Definition 4.7 Let (PDESC
m) be the Cauchy problem of a partial differential equation system of

first order. Then the labeled topological graph G[PDESC
m] is called its topological graph solution,

abbreviated to G-solution.

Combining this definition with that of Theorems 4.5, the following conclusion is holden

immediately.

Theorem 4.8([11]) A Cauchy problem on system (PDESm) of partial differential equations

of first order with initial values x
[k0]
i , u

[k]
0 , p

[k0]
i , 1 ≤ i ≤ n for the kth equation in (PDESm),

1 ≤ k ≤ m such that

∂u
[k]
0

∂sj
−

n∑

i=0

p
[k0]
i

∂x
[k0]
i

∂sj
= 0

is uniquely G-solvable, i.e., G[PDESC
m] is uniquely determined.

§5. Global Stability of Non-Solvable Differential Equations

Definition 5.1 Let H be a spanning subgraph of G[LDES1
m] of systems (LDES1

m) with initial

value Xv(0). Then G[LDES1
m] is called sum-stable or asymptotically sum-stable on H if for all

solutions Yv(t), v ∈ V (H) of the linear differential equations of (LDES1
m) with |Yv(0)−Xv(0)| <

δv exists for all t ≥ 0, ∣∣∣∣∣∣

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∣∣∣∣∣∣
< ε,

or furthermore,

lim
t→0

∣∣∣∣∣∣

∑

v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)

∣∣∣∣∣∣
= 0.

Similarly, a system (PDESC
m) is sum-stable if for any number ε > 0 there exists δv >

0, v ∈ V (Ĝ[0]) such that each G(t)-solution with
∣∣∣u′[v]

0 − u
[v]
0

∣∣∣ < δv, ∀v ∈ V (Ĝ[0]) exists for all

t ≥ 0 and with the inequality

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
< ε

holds, denoted by G[t]
Σ∼ G[0]. Furthermore, if there exists a number βv > 0, v ∈ V (Ĝ[0]) such

that every G′[t]-solution with
∣∣∣u′[v]

0 − u
[v]
0

∣∣∣ < βv, ∀v ∈ V (Ĝ[0]) satisfies

lim
t→∞

∣∣∣∣∣∣

∑

v∈V (Ĝ[t])

u′
[v] −

∑

v∈V (Ĝ[t])

u[v]

∣∣∣∣∣∣
= 0,

then the G[t]-solution is called asymptotically stable, denoted by G[t]
Σ→ G[0].

We get results on the global stability for G-solutions of (LDES1
m) and (PDESC

m).
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Theorem 5.2([10]) A zero G-solution of linear homogenous differential equation systems

(LDES1
m) is asymptotically sum-stable on a spanning subgraph H of G[LDES1

m] if and only if

Reαv < 0 for each βv(t)eαvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H).

Example 5.3 Let a G-solution of (LDES1
m) or (LDEn

m) be the basis graph shown in Fig.4.1,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution is sum-stable on the triangle

v4v5v6, but it is not on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}

v5

v6

Fig.9

For partial differential equations, let the system (PDESC
m) be

∂u

∂t
= Hi(t, x1, · · · , xn−1, p1, · · · , pn−1)

u|t=t0 = u
[i]
0 (x1, x2, · · · , xn−1)



 1 ≤ i ≤ m (APDESC

m)

A point X
[i]
0 = (t0, x

[i]
10, · · · , x

[i]
(n−1)0) with Hi(t0, x

[i]
10, · · · , x

[i]
(n−1)0) = 0 for 1 ≤ i ≤ m is called

an equilibrium point of the ith equation in (APDESm). Then we know that

Theorem 5.4([11]) Let X
[i]
0 be an equilibrium point of the ith equation in (APDESm) for each

integer 1 ≤ i ≤ m. If
m∑

i=1

Hi(X) > 0 and
m∑

i=1

∂Hi

∂t
≤ 0 for X 6=

m∑
i=1

X
[i]
0 , then the system

(APDESm) is sum-stability, i.e., G[t]
Σ∼ G[0]. Furthermore, if

m∑
i=1

∂Hi

∂t
< 0 for X 6=

m∑
i=1

X
[i]
0 ,

then G[t]
Σ→ G[0].

§6. Applications

6.1 Applications to Geometry

First, it is easily to shown that the G-solution of (PDESC
m) is nothing but a differentiable

manifold.

Theorem 6.1([11]) Let the Cauchy problem be (PDESC
m). Then every connected component

of Γ[PDESC
m] is a differentiable n-manifold with atlas A = {(Uv, φv)|v ∈ V (Ĝ[0])} underlying

graph Ĝ[0], where Uv is the n-dimensional graph G[u[v]] ≃ R
n and φv the projection φv :

((x1, x2, · · · , xn) , u (x1, x2, · · · , xn)))→ (x1, x2, · · · , xn) for ∀ (x1, x2, · · · , xn) ∈ R
n.
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Theorems 4.8 and 6.1 enables one to find the following result for vector fields on differen-

tiable manifolds by non-solvable system (PDESC
m).

Theorem 6.2([11]) For any integer m ≥ 1, let Ui, 1 ≤ i ≤ m be open sets in R
n underlying a

connected graph defined by

V (G) = {Ui|1 ≤ i ≤ m}, E(G) = {(Ui, Uj)|Ui

⋂
Uj 6= ∅, 1 ≤ i, j ≤ m}.¸

If Xi is a vector field on Ui for integers 1 ≤ i ≤ m, then there always exists a differentiable

manifold M ⊂ R
n with atlas A = {(Ui, φi)|1 ≤ i ≤ m} underlying graph G and a function

uG ∈ Ω0(M) such that

Xi(uG) = 0, 1 ≤ i ≤ m.

More results on geometrical structure of manifold can be found in references [2-3] and [8].

6.2 Global Control of Infectious Diseases

Consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1,V2, · · · ,Vm with infected rate ki, heal rate hi for integers

1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for j 6= i.

Case 2 There are m varying V1,V2, · · · ,Vm from a virus V with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m.

We are easily to establish a non-solvable differential model for the spread of infectious

viruses by applying the SIR model of one infectious disease following:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

(DES1
m)

and know the following result by Theorem 5.2 that

Conclusion 6.3([10]) For m infectious viruses V1,V2, · · · ,Vm in an area with infected rate ki,

heal rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if 0 < S <
m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.

6.3 Flows in Network

Let O be a node in N incident with m in-flows and 1 out-flow shown in Fig.10.
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66- �f1 fm

F

f2 fm−1

O }3
Fig.10

How can we characterize the behavior of flow F? Denote the rate, density of flow fi by ρ[i]

for integers 1 ≤ i ≤ m and that of F by ρ[F ], respectively. Then we know that

∂ρ[i]

∂t
+ φi(ρ

[i])
∂ρ[i]

∂x
= 0, 1 ≤ i ≤ m.

We prescribe the initial value of ρ[i] by ρ[i](x, t0) at time t0. Replacing each ρ[i] by ρ in

these flow equations of fi, 1 ≤ i ≤ m enables one getting a non-solvable system (PDESC
m) of

partial differential equations following.

∂ρ

∂t
+ φi(ρ)

∂ρ

∂x
= 0

ρ |t=t0 = ρ[i](x, t0)



 1 ≤ i ≤ m.

Let ρ
[i]
0 be an equilibrium point of the ith equation, i.e., φi(ρ

[i]
0 )
∂ρ

[i]
0

∂x
= 0. Applying

Theorem 5.4, if

m∑

i=1

φi(ρ) < 0 and

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
≥ 0

for X 6=
m∑

k=1

ρ
[i]
0 , then we know that the flow F is stable and furthermore, if

m∑

i=1

φ(ρ)

[
∂2ρ

∂t∂x
− φ′(ρ)

(
∂ρ

∂x

)2
]
< 0

for X 6=
m∑

k=1

ρ
[i]
0 , then it is also asymptotically stable.
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Abstract: Let R be any ring and let S = R1 ∪ R2 be the union of any two subrings of R.

Since in general S is not a subring of R but R1 and R2 are algebraic structures on their own

under the binary operations inherited from the parent ring R, S is recognized as a bialgebraic

structure and it is called a biring. The purpose of this paper is to present some properties

of such bialgebraic structures.
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§1. Introduction

Generally speaking, the unions of any two subgroups of a group, subgroupoids of a groupoid,

subsemigroups of a semigroup, submonoids of a monoid, subloops of a loop, subsemirings of a

semiring, subfields of a field and subspaces of a vector space do not form any nice algebraic

structures other than ordinary sets. Similarly, if S1 and S2 are any two subrings of a ring

R, I1 and I2 any two ideals of R, the unions S = S1 ∪ S2 and I = I1 ∪ I2 generally are

not subrings and ideals of R, respectively [2]. However, the concept of bialgebraic structures

recently introduced by Vasantha Kandasamy [9] recognises the union S = S1 ∪ S2 as a biring

and I = I1 ∪ I2 as a bi-ideal. One of the major advantages of bialgebraic structures is the

exhibition of distinct algebraic properties totally different from those inherited from the parent

structures. The concept of birings was introduced and studied in [9]. Other related bialgebraic

structures introduced in [9] included binear-rings, bisemi-rings, biseminear-rings and group

birings. Agboola and Akinola in [1] studied bicoset of a bivector space. Also, we refer the

readers to [3-7]. In this paper, we will present and study some properties of birings.

1Reported at the First International Conference on Smarandache Multispaces and Multistructures, June

28-30,2013, Beijing, P.R.China.
2Received April 13, 2013, Accepted June 8, 2013
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§2. Definitions and Elementary Properties of Birings

Definition 2.1 Let R1 and R2 be any two proper subsets of a non-empty set R. Then, R =

R1 ∪R2 is said to be a biring if the following conditions hold:

(1) R1 is a ring;

(2) R2 is a ring.

Definition 2.2 A biring R = R1 ∪R2 is said to be commutative if R1 and R2 are commutative

rings. R = R1 ∪R2 is said to be a non-commutative biring if R1 is non-commutative or R2 is

non-commutative.

Definition 2.3 A biring R = R1∪R2 is said to have a zero element if R1 and R2 have different

zero elements. The zero element 0 is written 01 ∪ 02 (notation is not set theoretic union) where

0i, i = 1, 2 are the zero elements of Ri. If R1 and R2 have the same zero element, we say that

the biring R = R1 ∪R2 has a mono-zero element.

Definition 2.4 A biring R = R1 ∪R2 is said to have a unit if R1 and R2 have different units.

The unit element u is written u1 ∪u2, where ui, i = 1, 2 are the units of Ri. If R1 and R2 have

the same unit, we say that the biring R = R1 ∪R2 has a mono-unit.

Definition 2.5 A biring R = R1 ∪R2 is said to be finite if it has a finite number of elements.

Otherwise, R is said to be an infinite biring. If R is finite, the order of R is denoted by o(R).

Example 1 Let R = {0, 2, 4, 6, 7, 8, 10, 12} be a subset of Z14. It is clear that (R,+, ·) is not

a ring but then, R1 = {0, 7} and R2 = {0, 2, 4, 6, 8, 10, 12} are rings so that R = R1 ∪ R2 is a

finite commutative biring.

Definition 2.6 Let R = R1 ∪ R2 be a biring. A non-empty subset S of R is said to be a

sub-biring of R if S = S1 ∪ S2 and S itself is a biring and S1 = S ∩R1 and S2 = S ∩R2.

Theorem 2.7 Let R = R1∪R2 be a biring. A non-empty subset S = S1∪S2 of R is a sub-biring

of R if and only if S1 = S ∩R1 and S2 = S ∩R2 are subrings of R1 and R2, respectively.

Definition 2.8 Let R = R1 ∪R2 be a biring and let x be a non-zero element of R. Then,

(1) x is a zero-divisor in R if there exists a non-zero element y in R such that xy = 0;

(2) x is an idempotent in R if x2 = x;

(3) x is nilpotent in R if xn = 0 for some n > 0.

Example 2 Consider the biring R = R1 ∪R2, where R1 = Z and R2 = {0, 2, 4, 6} a subset of

Z8.

(1) If S1 = 4Z and S2 = {0, 4}, then S1 is a subring of R1 and S2 is a subring of R2. Thus,

S = S1 ∪ S2 is a bi-subring of R since S1 = S ∩R1 and S2 = S ∩R2.

(2) If S1 = 3Z and S2 = {0, 4}, then S = S1 ∪ S2 is a biring but not a bi-subring of R

because S1 6= S ∩R1 and S2 6= S ∩R2. This can only happen in a biring structure.

Theorem 2.9 Let R = R1 ∪ R2 and S = S1 ∪ S2 be any two birings and let I = I1 ∪ I2 and

J = J1 ∪ J2 be sub-birings of R and S, respectively. Then,
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(1) R× S = (R1 × S1) ∪ (R2 × S2) is a biring;

(2) I × J = (I1 × J1) ∪ (I2 × J2) is a sub-biring of R× S.

Definition 2.10 Let R = R1 ∪R2 be a biring and let I be a non-empty subset of R.

(1) I is a right bi-ideal of R if I = I1 ∪ I2, where I1 is a right ideal of R1 and I2 is a right

ideal of R2;

(2) I is a left bi-ideal of R if I = I1 ∪ I2, where I1 is a left ideal of R1 and I2 is a left ideal

of R2;

(3) I = I1 ∪ I2 is a bi-ideal of R if I1 is an ideal of R1 and I2 is an ideal of R2.

Definition 2.11 Let R = R1 ∪ R2 be a biring and let I be a non-empty subset of R. Then,

I = I1 ∪ I2 is a mixed bi-ideal of R if I1 is a right (left) ideal of R1 and I2 is a left (right) ideal

of R2.

Theorem 2.12 Let I = I1 ∪ I2, J = J1 ∪ J2 and K = K1 ∪K2 be left (right) bi-ideals of a

biring R = R1 ∪R2. Then,

(1) IJ = (I1J1) ∪ (I2J2) is a left(right) bi-ideal of R;

(2) I ∩ J = (I1 ∩ J1) ∪ (I2 ∩ J2) is a left(right) bi-ideal of R;

(3) I + J = (I1 + J1) ∪ (I2 + J2) is a left(right) bi-ideal of R;

(4) I × J = (I1 × J1) ∪ (I2 × J2) is a left(right) bi-ideal of R;

(5) (IJ)K =
(
(I1J1)K1

)
∪
(
(I2J2)K2

)
= I(JK) =

(
I1(J1K1)

)
∪
(
I2(J2K2)

)
;

(6) I(J+K) =
(
I1(J1 +K1)

)
∪
(
I2(J2 +K2)

)
= IJ+IK = (I1J1 +I1K1)∪(I2J2 +I2K2);

(7) (J+K)I =
(
(J1 +K1)I1

)
∪
(
(J2 +K2)I2

)
= JI+KI = (J1I1 +K1I1)∪(J2I2 +K2I2).

Example 3 Let R be the collection of all 2× 2 upper triangular and lower triangular matrices

over a field F and let

R1 =






 a 0

b c


 : a, b, c ∈ F



 ,

R2 =






 a b

0 c


 : a, b, c ∈ F



 ,

I1 =






 a 0

0 0


 : a ∈ F



 ,

I2 =






 0 0

0 a


 : a ∈ F



 .

Then, R = R1 ∪ R2 is a non-commutative biring with a mono-unit


 1 0

0 1


 and I = I1 ∪ I2

is a right bi-ideal of R = R1 ∪R2.

Definition 2.13 Let R = R1∪R2 and S = S1∪S2 be any two birings. The mapping φ : R→ S
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is called a biring homomorphism if φ = φ1 ∪ φ2 and φ1 : R1 → S1 and φ2 : R2 → S2 are ring

homomorphisms. If φ1 : R1 → S1 and φ2 : R2 → S2 are ring isomorphisms, then φ = φ1∪φ2 is a

biring isomorphism and we write R = R1∪R2
∼= S = S1∪S2. The image of φ denoted by Imφ =

Imφ1 ∪ Imφ2 = {y1 ∈ S1, y2 ∈ S2 : y1 = φ1(x1), y2 = φ2(x2) for some x1 ∈ R1, x2 ∈ R2}. The

kernel of φ denoted by

Kerφ = Kerφ1 ∪Kerφ2 = {a1 ∈ R1, a2 ∈ R2 : φ1 (a1) = 0 and φ2 (a2) = 0} .

Theorem 2.14 Let R = R1∪R2 and S = S1∪S2 be any two birings and let φ = φ1∪φ2 : R→ S

be a biring homomorphism. Then,

(1) Imφ is a sub-biring of the biring S;

(2) Kerφ is a bi-ideal of the biring R;

(3) Kerφ = {0} if and only if φi, i = 1, 2 are injective.

Proof (1) It is clear that Imφ = Imφ1 ∪ Imφ2, where φ1 : R1 → S1 and φ2 : R2 → S2 are

ring homomorphisms, is not an empty set. Since Imφ1 is a subring of S1 and Imφ2 is a subring

of S2, it follows that Imφ = Imφ1 ∪ Imφ2 is a biring. Lastly, it can easily be shown that

Imφ ∩ S1 = Imφ1 ,Imφ ∩ S2 = Imφ2 and consequently, Imφ = Imφ1 ∪ Imφ2 is a sub-biring

of the biring S = S1 ∪ S2.

(2) The proof is similar to (1).

(3) It is clear. 2
Let I = I1 ∪ I2 be a left bi-ideal of a biring R = R1 ∪ R2. We know that R1/I1 and

R2/I2 are factor rings and therefore (R1/I1) ∪ (R2/I2) is a biring called factor-biring. Since

φ1 : R1 → R1/I1 and φ2 : R2 → R2/I2 are natural homomorphisms with kernels I1 and I2,

respectively, it follows that φ1 ∪ φ2 = φ : R → R/I is a natural biring homomorphism whose

kernel is Kerφ = I1 ∪ I2.

Theorem 2.15(First Isomorphism Theorem) Let R = R1 ∪ R2 and S = S1 ∪ S2 be any two

birings and let φ1 ∪ φ2 = φ : R → S be a biring homomorphism with kernel K = Kerφ =

Kerφ1 ∪Kerφ2. Then, R/K ∼= Imφ.

Proof Suppose that R = R1∪R2 and S = S1∪S2 are birings and suppose that φ1∪φ2 = φ :

R→ S is a biring homomorphism with kernel K = Kerφ = Kerφ1 ∪Kerφ2. Then, K is a bi-

ideal of R, Imφ = Imφ1∪Imφ2 is a bi-subring of S and R/K = (R1/Kerφ1)∪(R2/Kerφ2) is a

biring. From the classical rings (first isomorphism theorem), we haveRi/Kerφi
∼= Imφi, i = 1, 2

and therefore, R/K = (R1/Kerφ1) ∪ (R2/Kerφ2) ∼= Imφ = Imφ1 ∪ Imφ2. 2
Theorem 2.16(Second Isomorphism Theorem) Let R = R1 ∪ R2 be a biring. If S = S1 ∪ S2

is a sub-biring of R and I = I1 ∪ I2 is a bi-ideal of R, then

(1) S + I is a sub-biring of R;

(2) I is a bi-ideal of S + I;

(3) S ∩ I is a bi-ideal of S;

(4) (S + I)/I ∼= S/(S ∩ I).
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Proof Suppose that R = R1 ∪ R2 is a biring, S = S1 ∪ S2 a sub-biring and I = I1 ∪ I2 a

bi-ideal of R.

(1) S + I = (S1 + I1)∪ (S2 + I2) is a biring since Si + Ii are subrings of Ri, where i = 1, 2.

Now, R1 ∩ (S + I) =
(
R1 ∩ (S1 + I1)

)
∪
(
R1 ∩ (S2 + I2)

)
= S1 + I1. Similarly, we have

R2 ∩ (S + I) = S2 + I2. Thus, S + I is a sub-biring of R.

(2) and (3) are clear.

(4) It is clear that (S+I)/I =
(
(S1 +I1)/I1

)
∪
(
(S2 +I2)/I2

)
is a biring since (S1 +I1)/I1

and (S2 + I2)/I2 are rings. Similarly, S/(S ∩ I) =
(
S1/(S1 ∩ I1)

)
∪
(
S2/(S2 ∩ I2)

)
is a biring.

Consider the mapping φ = φ1 ∪ φ2 : S1 ∪ S2 →
(
(S1 + I1)/I1

)
∪
(
(S2 + I2)/I2

)
. It is clear

that φ is a biring homomorphism since φi : Si → (Si + Ii)/Ii, i = 1, 2 are ring homomorphisms.

Also, since Kerφi = Si ∩ Ii, i = 1, 2, it follows that Kerφ = (S1 ∩ I1) ∪ (S2 ∩ I2). The required

result follows from the first isomorphism theorem. 2
Theorem 2.17(Third Isomorphism Theorem) Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2
and J = J1 ∪ J2 be two bi-ideals of R such that Ji ⊆ Ii, i = 1, 2. Then,

(1) I/J is a bi-ideal of R/J ;

(2) R/I ∼= (R/J)/(I/J).

Proof Suppose that I = I1∪I2 and J = J1∪J2 are two bi-ideals of the biring R = R1∪R2

such that Ji ⊆ Ii, i = 1, 2.

(1) It is clear that R/J = (R1/J1)∪(R2/J2) and I/J = (I1/J1)∪(I2/J2) are birings. Now,

(R1/J1) ∩
(
(I1/J1) ∪ (I2/J2)

)
=
(
(R1/J1) ∩ (I1/J1)

)
∪
(
(R1/J1) ∩ (I2/J2)

)
= I1/J1 (since

Ji ⊆ Ii ⊆ Ri, i = 1, 2). Similarly, (R2/J2) ∩
(
(I1/J1) ∪ (I2/J2)

)
= I2/J2. Consequently, I/J is

a sub-biring of R/J and in fact a bi-ideal.

(2) Let us consider the mapping φ = φ1 ∪ φ2 : (R1/J1) ∪ (R2/J2) → (R1/I1) ∪ (R2/I2).

Since φi : Ri/Ji → Ri/Ii, i = 1, 2 are ring homomorphisms with Kerφi = Ii/Ji, it follows

that φ = φ1 ∪ φ2 is a biring homomorphism and Kerφ = Kerφ1 ∪Kerφ2 = (I1/J1) ∪ (I2/J2).

Applying the first isomorphism theorem, we have
(
(R1/J1)/(I1/J1)

)
∪
(
(R2/J2)/(I2/J2)

)
∼=

(R1/I1) ∪ /(R2/I2). 2
Definition 2.18 Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. Then,

(1) I is said to be a principal bi-ideal of R if I1 is a principal ideal of R1 and I2 is a

principal ideal of R2;

(2) I is said to be a maximal (minimal) bi-ideal of R if I1 is a maximal (minimal) ideal of

R1 and I2 is a maximal (minimal) ideal of R2;

(3) I is said to be a primary bi-ideal of R if I1 is a primary ideal of R1 and I2 is a primary

ideal of R2;

(4) I is said to be a prime bi-ideal of R if I1 is a prime ideal of R1 and I2 is a prime ideal

of R2.

Example 4 Let R = R1 ∪R2 be a biring, where R1 = Z, the ring of integers and R2 = R[x],

the ring of polynomials over R. Let I1 = (2) and I2 = (x2 + 1). Then, I = I1 ∪ I2 is a principal

bi-ideal of R.
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Definition 2.19 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. Then, I

is said to be a quasi maximal (minimal) bi-ideal of R if I1 or I2 is a maximal (minimal) ideal.

Definition 2.20 Let R = R1 ∪ R2 be a biring. Then, R is said to be a simple biring if R has

no non-trivial bi-ideals.

Theorem 2.21 Let φ = φ1 ∪φ2 : R→ S be a biring homomorphism. If J = J1 ∪J2 is a prime

bi-ideal of S, then φ−1(J) is a prime bi-ideal of R.

Proof Suppose that J = J1 ∪J2 is a prime bi-ideal of S. Then, Ji, i = 1, 2 are prime ideals

of Si. Since φ−1(Ji), i = 1, 2 are prime ideals of Ri, we have I = φ−1(J1) ∪ φ−1(J2) to be a

prime bi-ideal of R. 2
Definition 2.22 Let R = R1 ∪R2 be a commutative biring. Then,

(1) R is said to be a bidomain if R1 and R2 are integral domains;

(2) R is said to be a pseudo bidomain if R1 and R2 are integral domains but R has zero

divisors;

(3) R is said to be a bifield if R1 and R2 are fields. If R is finite, we call R a finite bifield.

R is said to be a bifield of finite characteristic if the characteristic of both R1 and R2 are finite.

We call R a bifield of characteristic zero if the characteristic of both R1 and R2 is zero. No

characteristic is associated with R if R1 or R2 is a field of zero characteristic and one of R1 or

R2 is of some finite characteristic.

Definition 2.23 Let R = R1 ∪ R2 be a biring. Then, R is said to be a bidivision ring if R is

non-commutative and has no zero-divisors that is R1 and R2 are division rings.

Example 5 (1) Let R = R1 ∪R2, where R1 = Z and R2 = R[x] the ring of integers and the

ring of polynomials over R, respectively. Since R1 and R2 are integral domains, it follows that

R is a bidomain.

(2) The biring R = R1 ∪R2 of Example 1 is a pseudo bidomain.

(3) Let F = F1 ∪ F2 where F1 = Q(
√
p1), F2 = Q(

√
p2) where pi, i = 1, 2 are different

primes. Since F1 and F2 are fields of zero characteristics, it follows that F is a bi-field of zero

characteristic.

Theorem 2.24 Let R = R1 ∪ R2 be a biring. Then, R is a bidomain if and only if the zero

bi-ideal (0) = (01) ∪ (02) is a prime bi-ideal.

Proof Suppose that R is a bidomain. Then, Ri, i = 1, 2 are integral domains. Since the

zero ideals (0i) in Ri are prime, it follows that (0) = (01) ∪ (02) is a prime bi-ideal.

Conversely, suppose that (0) = (01)∪ (02) is a prime bi-ideal. Then, (0i), i = 1, 2 are prime

ideals in Ri and hence Ri, i = 1, 2 are integral domains. Thus R = R1 ∪R2 is a bidomain. 2
Theorem 2.25 Let F = F1 ∪ F2 be a bi-field. Then, F [x] = F1[x] ∪ F2[x] is a bidomain.

Proof Since F1 and F2 are fields which are integeral domains, it follows that F1[x] and

F2[x] are integral domains and consequently, F [x] = F1[x] ∪ F2[x] is a bidomain. 2
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§3. Further Properties of Birings

Except otherwise stated in this section, all birings are assumed to be commutative with zero

and unit elements.

Theorem 3.1 Let R be any ring and let S1 and S2 be any two distinct subrings of R. Then,

S = S1 ∪ S2 is a biring.

Proof Suppose that S1 and S2 are two distinct subrings of R. Then, S1 6⊆ S2 or S2 6⊆ S1

but S1 ∩ S2 6= ∅. Since S1 and S2 are rings under the same operations inherited from R, it

follows that S = S1 ∪ S2 is a biring. 2
Corollary 3.2 Let R1 and R2 be any two unrelated rings that is R1 6⊆ R2 or R2 6⊆ R1 but

R1 ∩R2 6= ∅. Then, R = R1 ∪R2 is a biring.

Example 6 (1) Let R = Z and let S1 = 2Z, S2 = 3Z. Then, S = S1 ∪ S2 is a biring.

(2) Let R1 = Z2 and R2 = Z3 be rings of integers modulo 2 and 3, respectively. Then,

R = R1 ∪R2 is a biring.

Example 7 Let R = R1∪R2 be a biring, where R1 = Z, the ring of integers and R2 = C[0, 1],

the ring of all real-valued continuous functions on [0, 1]. Let I1 = (p), where p is a prime number

and let I2 = {f(x) ∈ R2 : f(x) = 0}. It is clear that I1 and I2 are maximal ideals of R1 and

R2, respectively. Hence, I = I1 ∪ I2 is a maximal bi-ideal of R.

Theorem 3.3 Let R = {0, a, b} be a set under addition and multiplication modulo 2. Then, R

is a biring if and only if a and b (a 6= b) are idempotent (nilpotent) in R.

Proof Suppose that R = {0, a, b} is a set under addition and multiplication modulo 2 and

suppose that a and b are idempotent (nilpotent) in R. Let R1 = {0, a} and R2 = {0, b}, where

a 6= b. Then, R1 and R2 are rings and hence R = R1∪R2 is a biring. The proof of the converse

is clear. 2
Corollary 3.4 There exists a biring of order 3.

Theorem 3.5 Let R = R1 ∪R2 be a finite bidomain. Then, R is a bi-field.

Proof Suppose that R = R1 ∪ R2 is a finite bidomain. Then, each Ri, i = 1, 2 is a finite

integral domain which is a field. Therefore, R is a bifield. 2
Theorem 3.6 Let R = R1 ∪R2 be a bi-field. Then, R is a bidomain.

Proof Suppose that R = R1 ∪R2 is a bi-field. Then, each Ri, i = 1, 2 is a field which is an

integral domain. The required result follows from the definition of a bidomain. 2
Remark 1 Every finite bidivision ring is a bi-field.

Indeed, suppose that R = R1 ∪ R2 is a finite bidivision ring. Then, each Ri, i = 1, 2 is a
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finite division ring which is a field. Consequently, R is a bi-field.

Theorem 3.7 Every biring in general need not have bi-ideals.

Proof Suppose that R = R1 ∪R2 is a biring and suppose that Ii, i = 1, 2 are ideals of Ri.

If I = I1 ∪ I2 is such that Ii 6= I ∩Ri, where i = 1, 2, then I cannot be a bi-ideal of R. 2
Corollary 3.8 Let R = R1 ∪R2 be a biring and let I = I1 ∪ I2, where Ii, i = 1, 2 are ideals of

Ri. Then, I is a bi-ideal of R if and only if Ii = I ∩Ri, where i = 1, 2.

Corollary 3.9 A biring R = R1 ∪R2 may not have a maximal bi-ideal.

Theorem 3.10 Let R = R1 ∪R2 be a biring and let M = M1 ∪M2 be a bi-ideal of R. Then,

R/M is a bi-field if and only if M is a maximal bi-ideal.

Proof Suppose that M is a maximal bi-ideal of R. Then, each Mi, i = 1, 2 is a maximal

ideal in Ri, i = 1, 2 and consequently, each Ri/Ii is a field and therefore R/M is a bi-field.

Conversely, suppose that R/M is a bi-field. Then, each Ri/Mi, i = 1, 2 is a field so that

each Mi, i = 1, 2 is a maximal ideal in Ri. Hence, M = I1 ∪ I2 is a maximal bi-ideal. 2
Theorem 3.11 Let R = R1 ∪ R2 be a biring and let P = P1 ∪ P2 be a bi-ideal of R. Then,

R/P is a bidomain if and only if P is a prime bi-ideal.

Proof Suppose that P is a prime bi-ideal of R. Then, each Pi, i = 1, 2 is a prime ideal in

Ri, i = 1, 2 and so, each Ri/Pi is an integral domain and therefore R/P is a bidomain.

Conversely, suppose that R/P is a bidomain. Then, each Ri/Pi, i = 1, 2 is an integral

domain and therefore each Pi, i = 1, 2 is a prime ideal in Ri. Hence, P = P1 ∪ P2 is a prime

bi-ideal. 2
Theorem 3.12 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 be a bi-ideal of R. If I is

maximal, then I is prime.

Proof Suppose that I is maximal. Then, Ii, i = 1, 2 are maximal ideals of Ri so that Ri/Ii

are fields which are integral domains. Thus, R/I = (R1/I1) ∪ (R2/I2) is a bidomain and by

Theorem 3.11, I = I1 ∪ I2 is a prime bi-ideal. 2
Theorem 3.13 Let φ : R → S be a biring homomorphism from a biring R = R1 ∪ R2 onto a

biring S = S1 ∪ S2 and let K = Kerφ1 ∪Kerφ2 be the kernel of φ.

(1) If S is a bi-field, then K is a maximal bi-ideal of R;

(2) If S is a bidomain, then K is a prime bi-ideal of R.

Proof By Theorem 2.7, we have R/K = (R1/Kerφ1) ∪ (R2/Kerφ2) ∼= Imφ = Imφ1 ∪
Imφ2 = S1 ∪ S2 = S. The required results follow by applying Theorems 3.10 and 3.11. 2
Definition 3.14 Let R = R1 ∪ R2 be a biring and let N(R) be the set of nilpotent elements

of R. Then, N(R) is called the bi-nilradical of R if N(R) = N(R1) ∪ N(R2), where N(Ri),
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i = 1, 2 are the nilradicals of Ri.

Theorem 3.15 Let R = R1 ∪R2 be a biring. Then, N(R) is a bi-ideal of R.

Proof N(R) is non-empty since 01 ∈ N(R1) and 02 ∈ N(R2). Now, if x = x1∪x2, y1∪y2 ∈
N(R) and r = r1 ∪ r2 ∈ R where xi, yi ∈ N(Ri), ri ∈ Ri, i = 1, 2, then it follows that

x− y, xr ∈ N(R). Lastly, R1 ∩
(
N(R1)∪N(R2)

)
=
(
R1 ∩N(R1)

)
∪
(
R1 ∩N(R2)

)
= N(R1).

Similarly, we have R2 ∩
(
N(R1) ∪N(R2)

)
= N(R2). Hence, N(R) is a bi-ideal. 2

Definition 3.16 Let I = I1 ∪ I2 and J = J1 ∪ J2 be any two bi-ideals of a biring R = R1 ∪R2.

The set (I : J) is called a bi-ideal quotient of I and J if (I : J) = (I1 : J1) ∪ (I2 : J2), where

(Ii : Ji), i = 1, 2 are ideal quotients of Ii and Ji. If I = (0) = (01) ∪ (02), a zero bi-ideal,

then
(
(0) : J

)
=
(
(01) : J1

)
∪
(
(02) : J2

)
which is called a bi-annihilator of J denoted by

Ann(J). If 0 6= x ∈ R1 and 0 6= y ∈ R2, then Z(R1) =
⋃
x
Ann(x) and Z(R2) =

⋃
y
Ann(y),

where Z(Ri), i = 1, 2 are the sets of zero-divisors of Ri.

Theorem 3.17 Let R = R1 ∪ R2 be a biring and let I = I1 ∪ I2 and J = J1 ∪ J2 be any two

bi-ideals of R. Then, (I : J) is a bi-ideal of R.

Proof For 0 = 01 ∪ 02 ∈ R, we have 01 ∈ (I1 : J1) and 02 ∈ (I2 : J2) so that (I : J) 6= ∅.
If x = x1 ∪ x2, y = y1 ∪ y2 ∈ (I : J) and r = r1 ∪ r2 ∈ R, then x − y, xr ∈ (I : J) since

(Ii : Ji), i = 1, 2 are ideals of Ri. It can be shown that R1 ∩
(
(I1 : J1) ∪ (I2 : J2)

)
= (I1 : J1)

and R2 ∩
(
(I1 : J1) ∪ (I2 : J2)

)
= (I2 : J2). Accordingly, (I : J) is a bi-ideal of R. 2

Example 8 Under addition and multplication modulo 6, consider the biring R = {0, 2, 3, 4},
where R1 = {0, 3} and R2 = {0, 2, 4}. It is clear that Z(R) 6= Z(R1) ∪ Z(R2). Hence, for

0 6= z = x ∪ y ∈ R, 0 6= x ∈ R1 and 0 6= y ∈ R2, we have

⋃
z=x∪y

Ann(z) 6=
(⋃

x
Ann(x)

)
∪
(
⋃
y
Ann(y)

)
.

Definition 3.18 Let I = I1 ∪ I2 be any bi-ideal of a biring R = R1 ∪ R2. The set r(I)

is called a bi-radical of I if r(I) = r(I1) ∪ r(I2), where r(Ii), i = 1, 2 are radicals of Ii. If

I = (0) = (01) ∪ (02), then r(I) = N(R).

Theorem 3.19 If R = R1 ∪ R2 is a biring and I = I1 ∪ I2 is a bi-ideal of R, then r(I) is a

bi-ideal.
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Abstract: Let G = (V, E) be a graph. By directional labeling (or d-labeling) of an edge

x = uv of G by an ordered n-tuple (a1, a2, · · · , an), we mean a labeling of the edge x such

that we consider the label on uv as (a1, a2, · · · , an) in the direction from u to v, and the

label on x as (an, an−1, · · · , a1) in the direction from v to u. In this survey, we study graphs,

called (n, d)-sigraphs, in which every edge is d-labeled by an n-tuple (a1, a2, · · · , an), where

ak ∈ {+,−}, for 1 ≤ k ≤ n. Several variations and characterizations of directionally n-signed

graphs have been proposed and studied. These include the various notions of balance and

others.

Key Words: Signed graphs, directional labeling, complementation, balance.
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§1. Introduction

For graph theory terminology and notation in this paper we follow the book [3]. All graphs

considered here are finite and simple. There are two ways of labeling the edges of a graph by

an ordered n-tuple (a1, a2, · · · , an) (See [10]).

1. Undirected labeling or labeling. This is a labeling of each edge uv of G by an ordered

n-tuple (a1, a2, · · · , an) such that we consider the label on uv as (a1, a2, · · · , an) irrespective of

the direction from u to v or v to u.

2. Directional labeling or d-labeling. This is a labeling of each edge uv of G by an ordered

n-tuple (a1, a2, · · · , an) such that we consider the label on uv as (a1, a2, · · · , an) in the direction

from u to v, and (an, an−1, · · · , a1) in the direction from v to u.

Note that the d-labeling of edges of G by ordered n-tuples is equivalent to labeling the

symmetric digraph
−→
G = (V,

−→
E ), where uv is a symmetric arc in

−→
G if, and only if, uv is an edge

in G, so that if (a1, a2, · · · , an) is the d-label on uv in G, then the labels on the arcs −→uv and −→vu
are (a1, a2, · · · , an) and (an, an−1, · · · , a1) respectively.

Let Hn be the n-fold sign group, Hn = {+,−}n = {(a1, a2, · · · , an) : a1, a2, · · · , an ∈
{+,−}} with co-ordinate-wise multiplication. Thus, writing a = (a1, a2, · · · , an) and t =

1Reported at the First International Conference on Smarandache Multispaces and Multistructures, June

28-30,2013, Beijing, P.R.China.
2Received May 16, 2013, Accepted June 10, 2013.
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(t1, t2, · · · , tn) then at := (a1t1, a2t2, · · · , antn). For any t ∈ Hn, the action of t on Hn is

at = at, the co-ordinate-wise product.

Let n ≥ 1 be a positive integer. An n-signed graph (n-signed digraph) is a graph G = (V,E)

in which each edge (arc) is labeled by an ordered n-tuple of signs, i.e., an element of Hn. A

signed graph G = (V,E) is a graph in which each edge is labeled by + or −. Thus a 1-signed

graph is a signed graph. Signed graphs are well studied in literature (See for example [1, 4-7,

13-21, 23, 24].

In this survey, we study graphs in which each edge is labeled by an ordered n-tuple a =

(a1, a2, · · · , an) of signs (i.e, an element of Hn) in one direction but in the other direction its

label is the reverse: ar = (an, an−1, · · · , a1), called directionally labeled n-signed graphs (or

(n, d)-signed graphs).

Note that an n-signed graph G = (V,E) can be considered as a symmetric digraph
−→
G =

(V,
−→
E ), where both −→uv and −→vu are arcs if, and only if, uv is an edge in G. Further, if an edge uv

in G is labeled by the n-tuple (a1, a2, · · · , an), then in
−→
G both the arcs −→uv and −→vu are labeled

by the n-tuple (a1, a2, · · · , an).

In [1], the authors study voltage graph defined as follows: A voltage graph is an ordered

triple
−→
G = (V,

−→
E ,M), where V and

−→
E are the vertex set and arc set respectively and M is a

group. Further, each arc is labeled by an element of the group M so that if an arc −→uv is labeled

by an element a ∈M , then the arc −→vu is labeled by its inverse, a−1.

Since each n-tuple (a1, a2, · · · , an) is its own inverse in the group Hn, we can regard an

n-signed graph G = (V,E) as a voltage graph
−→
G = (V,

−→
E ,Hn) as defined above. Note that the

d-labeling of edges in an (n, d)-signed graph considering the edges as symmetric directed arcs is

different from the above labeling. For example, consider a (4, d)-signed graph in Figure 1. As

mentioned above, this can also be represented by a symmetric 4-signed digraph. Note that this

is not a voltage graph as defined in [1], since for example; the label on −−→v2v1 is not the (group)

inverse of the label on −−→v1v2.

Fig.1

In [8-9], the authors initiated a study of (3, d) and (4, d)-Signed graphs. Also, discussed

some applications of (3, d) and (4, d)-Signed graphs in real life situations.

In [10], the authors introduced the notion of complementation and generalize the notion of

balance in signed graphs to the directionally n-signed graphs. In this context, the authors look

upon two kinds of complementation: complementing some or all of the signs, and reversing the

order of the signs on each edge. Also given some motivation to study (n, d)-signed graphs in

connection with relations among human beings in society.

In [10], the authors defined complementation and isomorphism for (n, d)-signed graphs as
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follows: For any t ∈ Hn, the t-complement of a = (a1, a2, · · · , an) is: at = at. The reversal of

a = (a1, a2, · · · , an) is: ar = (an, an−1, · · · , a1). For any T ⊆ Hn, and t ∈ Hn, the t-complement

of T is T t = {at : a ∈ T }.
For any t ∈ Hn, the t-complement of an (n, d)-signed graph G = (V,E), written Gt, is the

same graph but with each edge label a = (a1, a2, · · · , an) replaced by at. The reversal Gr is

the same graph but with each edge label a = (a1, a2, · · · , an) replaced by ar.

Let G = (V,E) and G′ = (V ′, E′) be two (n, d)-signed graphs. Then G is said to be

isomorphic to G′ and we write G ∼= G′, if there exists a bijection φ : V → V ′ such that if uv is

an edge in G which is d-labeled by a = (a1, a2, · · · , an), then φ(u)φ(v) is an edge in G′ which

is d-labeled by a, and conversely.

For each t ∈ Hn, an (n, d)-signed graph G = (V,E) is t-self complementary, if G ∼= Gt.

Further, G is self reverse, if G ∼= Gr.

Proposition 1.1(E. Sampathkumar et al. [10]) For all t ∈ Hn, an (n, d)-signed graph G =

(V,E) is t-self complementary if, and only if, Ga is t-self complementary, for any a ∈ Hn.

For any cycle C in G, let P(
−→
C ) [10] denotes the product of the n-tuples on C given by

(a11, a12, · · · , a1n)(a21, a22, · · · , a2n) · · · (am1, am2, · · · , amn) and

P(
←−
C ) = (amn, am(n−1), · · · , am1)(a(m−1)n, a(m−1)(n−1), · · · , a(m−1)1) · · · (a1n, a1(n−1), · · · , a11).

Similarly, for any path P in G, P(
−→
P ) denotes the product of the n-tuples on P given by

(a11, a12, · · · , a1n)(a21, a22, · · · , a2n) · · · (am−1,1, am−1,2, · · · , am−1,n) and

P(
←−
P ) = (a(m−1)n, a(m−1)(n−1), · · · , a(m−1)1) · · · (a1n, a1(n−1), · · · , a11).

An n-tuple (a1, a2, · · · , an) is identity n-tuple, if each ak = +, for 1 ≤ k ≤ n, otherwise

it is a non-identity n-tuple. Further an n-tuple a = (a1, a2, · · · , an) is symmetric, if ar = a,

otherwise it is a non-symmetric n-tuple. In (n, d)-signed graph G = (V,E) an edge labeled with

the identity n-tuple is called an identity edge, otherwise it is a non-identity edge.

Note that the above products P(
−→
C ) (P(

−→
P )) as well as P(

←−
C ) (P(

←−
P )) are n-tuples. In

general, these two products need not be equal.

§2. Balance in an (n, d)-Signed Graph

In [10], the authors defined two notions of balance in an (n, d)-signed graph G = (V,E) as

follows:

Definition 2.1 Let G = (V,E) be an (n, d)-sigraph. Then,

(i) G is identity balanced (or i-balanced), if P (
−→
C ) on each cycle of G is the identity

n-tuple, and

(ii) G is balanced, if every cycle contains an even number of non-identity edges.

Note: An i-balanced (n, d)-sigraph need not be balanced and conversely. For example, consider

the (4, d)-sigraphs in Figure.2. In Figure.2(a) G is an i-balanced but not balanced, and in

Figure.2(b) G is balanced but not i-balanced.
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Fig.2

2.1 Criteria for balance

An (n, d)-signed graph G = (V,E) is i-balanced if each non-identity n-tuple appears an even

number of times in P (
−→
C ) on any cycle of G.

However, the converse is not true. For example see Figure.3(a). In Figure.3(b), the number

of non-identity 4-tuples is even and hence it is balanced. But it is not i-balanced, since the

4-tuple (+ +−−) (as well as (−−++)) does not appear an even number of times in P (
−→
C ) of

4-tuples.

Fig.3

In [10], the authors obtained following characterizations of balanced and i-balanced (n, d)-

sigraphs:

Proposition 2.2(E.Sampathkumar et al. [10]) An (n, d)-signed graph G = (V,E) is balanced

if, and only if, there exists a partition V1∪V2 of V such that each identity edge joins two vertices

in V1 or V2, and each non-identity edge joins a vertex of V1 and a vertex of V2.

As earlier discussed, let P (C) denote the product of the n-tuples in P (
−→
C ) on any cycle C

in an (n, d)-sigraph G = (V,E).

Theorem 2.3(E.Sampathkumar et al. [10]) An (n, d)-signed graph G = (V,E) is i-balanced if,

and only if, for each k, 1 ≤ k ≤ n, the number of n-tuples in P (C) whose kth co-ordinate is −
is even.

In Hn, let S1 denote the set of non-identity symmetric n-tuples and S2 denote the set

of non-symmetric n-tuples. The product of all n-tuples in each Sk, 1 ≤ k ≤ 2 is the identity

n-tuple.
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Theorem 2.4(E.Sampathkumar et al. [10]) An (n, d)-signed graph G = (V,E) is i-balanced,

if both of the following hold:

(i) In P (C), each n-tuple in S1 occurs an even number of times, or each n-tuple in S1

occurs odd number of times (the same parity, or equal mod 2).

(ii) In P (C), each n-tuple in S2 occurs an even number of times, or each n-tuple in S2

occurs an odd number of times.

In [11], the authors obtained another characterization of i-balanced (n, d)-signed graphs as

follows:

Theorem 2.5(E.Sampathkumar et al. [11]) An (n, d)-signed graph G = (V,E) is i-balanced

if, and only if, any two vertices u and v have the property that for any two edge distinct u− v
paths

−→
P1 = (u = u0, u1, · · · , um = v and

−→
P2 = (u = v0, v1, · · · , vn = v) in G, P(

−→
P1) = (P(

−→
P2))

r

and P(
−→
P2) = (P(

−→
P1))

r .

From the above result, the following are the easy consequences:

Corollary 2.6 In an i-balanced (n, d)-signed graph G if two vertices are joined by at least 3

paths then the product of n tuples on any paths joining them must be symmetric.

A graph G = (V,E) is said to be k-connected for some positive integer k, if between any

two vertices there exists at least k disjoint paths joining them.

Corollary 2.7 If the underlying graph of an i-balanced (n, d)-signed graph is 3-connected, then

all the edges in G must be labeled by a symmetric n-tuple.

Corollary 2.8 A complete (n, d)-signed graph on p ≥ 4 is i-balanced then all the edges must

be labeled by symmetric n-tuple.

2.2 Complete (n, d)-Signed Graphs

In [11], the authors defined: an (n, d)-sigraph is complete, if its underlying graph is complete.

Based on the complete (n, d)-signed graphs, the authors proved the following results: An (n, d)-

signed graph is complete, if its underlying graph is complete.

Proposition 2.9(E.Sampathkumar et al. [11]) The four triangles constructed on four vertices

{a, b, c, d} can be directed so that given any pair of vertices say (a, b) the product of the edges

of these 4 directed triangles is the product of the n-tuples on the arcs
−→
ab and

−→
ba.

Corollary 2.10 The product of the n-tuples of the four triangles constructed on four vertices

{a, b, c, d} is identity if at least one edge is labeled by a symmetric n-tuple.

The i-balance base with axis a of a complete (n, d)-signed graph G = (V,E) consists list of

the product of the n-tuples on the triangles containing a [11].

Theorem 2.11(E.Sampathkumar et al. [11]) If the i-balance base with axis a and n-tuple of an
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edge adjacent to a is known, the product of the n-tuples on all the triangles of G can be deduced

from it.

In the statement of above result, it is not necessary to know the n-tuple of an edge incident

at a. But it is sufficient that an edge incident at a is a symmetric n-tuple.

Theorem 2.12(E.Sampathkumar et al. [11]) A complete (n, d)-sigraph G = (V,E) is i-balanced

if, and only if, all the triangles of a base are identity.

Theorem 2.13(E.Sampathkumar et al. [11]) The number of i-balanced complete (n, d)-sigraphs

of m vertices is pm−1, where p = 2⌈n/2⌉.

§3. Path Balance in (n, d)-Signed Graphs

In [11], E.Sampathkumar et al. defined the path balance in an (n, d)-signed graphs as follows:

Let G = (V,E) be an (n, d)-sigraph. Then G is

1. Path i-balanced, if any two vertices u and v satisfy the property that for any u− v paths

P1 and P2 from u to v, P(
−→
P 1) = P(

−→
P 2).

2. Path balanced if any two vertices u and v satisfy the property that for any u− v paths P1

and P2 from u to v have same number of non identity n-tuples.

Clearly, the notion of path balance and balance coincides. That is an (n, d)-signed graph

is balanced if, and only if, G is path balanced.

If an (n, d) signed graph G is i-balanced then G need not be path i-balanced and conversely.

In [11], the authors obtained the characterization path i-balanced (n, d)-signed graphs as

follows:

Theorem 3.1(Characterization of path i-balanced (n; d) signed graphs) An (n, d)-signed graph

is path i-balanced if, and only if, any two vertices u and v satisfy the property that for any two

vertex disjoint u− v paths P1 and P2 from u to v, P(
−→
P 1) = P(

−→
P 2).

§4. Local Balance in (n, d)-Signed Graphs

The notion of local balance in signed graph was introduced by F. Harary [5]. A signed graph

S = (G, σ) is locally at a vertex v, or S is balanced at v, if all cycles containing v are balanced.

A cut point in a connected graph G is a vertex whose removal results in a disconnected graph.

The following result due to Harary [5] gives interdependence of local balance and cut vertex of

a signed graph.

Theorem 4.1(F.Harary [5]) If a connected signed graph S = (G, σ) is balanced at a vertex u.

Let v be a vertex on a cycle C passing through u which is not a cut point, then S is balanced at

v.
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In [11], the authors extend the notion of local balance in signed graph to (n, d)-signed

graphs as follows: Let G = (V,E) be a (n, d)-signed graph. Then for any vertices v ∈ V (G),

G is locally i-balanced at v (locally balanced at v) if all cycles in G containing v is i-balanced

(balanced).

Analogous to the above result, in [11] we have the following for an (n, d) signed graphs:

Theorem 4.2 If a connected (n, d)-signed graph G = (V,E) is locally i-balanced (locally bal-

anced) at a vertex u and v be a vertex on a cycle C passing through u which is not a cut point,

then S is locally i-balanced(locally balanced) at v.

§5. Symmetric Balance in (n, d)-Signed Graphs

In [22], P.S.K.Reddy and U.K.Misra defined a new notion of balance called symmetric balance

or s-balanced in (n, d)-signed graphs as follows:

Let n ≥ 1 be an integer. An n-tuple (a1, a2, · · · , an) is symmetric, if ak = an−k+1, 1 ≤
k ≤ n. Let Hn = {(a1, a2, · · · , an) : ak ∈ {+,−}, ak = an−k+1, 1 ≤ k ≤ n} be the set of all

symmetric n-tuples. Note that Hn is a group under coordinate wise multiplication, and the

order of Hn is 2m, where m = ⌈n/2⌉. Let G = (V,E) be an (n, d)-signed graph. Then G is

symmetric balanced or s-balanced if P (
−→
C ) on each cycle C of G is symmetric n-tuple.

Note: If an (n, d)-signed graph G = (V,E) is i-balanced then clearly G is s-balanced. But a

s-balanced (n, d)-signed graph need not be i-balanced. For example, the (4, d)-signed graphs in

Figure 4. G is an s-balanced but not i-balanced.

Fig.4

In [22], the authors obtained the following results based on symmetric balance or s-balanced

in (n, d)-signed graphs.

Theorem 5.1(P.S.K.Reddy and U.K.Mishra [22]) A (n, d)-signed graph is s-balanced if and

only if every cycle of G contains an even number of non-symmetric n-tuples.

The following result gives a necessary and sufficient condition for a balanced (n, d)-signed

graph to be s-balanced.

Theorem 5.2(P.S.K.Reddy and U.K.Mishra [22]) A balanced (n, d) signed graph G = (V,E)

is s-balanced if and only if every cycle of G contains even number of non identity symmetric n
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tuples.

In [22], the authors obtained another characterization of s-balanced (n, d)-signed graphs,

which is analogous to the partition criteria for balance in signed graphs due to Harary [4].

Theorem 5.3(Characterization of s-balanced (n, d)-sigraph) An (n, d)-signed graph G = (V,E)

is s balanced if and only if the vertex set V (G) of G can be partitioned into two sets V1 and V2

such that each symmetric edge joins the vertices in the same set and each non-symmetric edge

joins a vertex of V1 and a vertex of V2.

An n-marking µ : V (G) → Hn of an (n, d)-signed graph G = (V,E) is an assignment

n-tuples to the vertices of G. In [22], the authors given another characterization of s-balanced

(n, d)-signed graphs which gives a relationship between the n-marking and s-balanced (n, d)-

signed graphs.

Theorem 5.4(P.S.K.Reddy and U.K.Mishra [22]) An (n, d)-signed graph G = (V,E) is s-

balanced if and only if there exists an n-marking µ of vertices of G such that if the n-tuple on

any arc −→uv is symmetric or nonsymmetric according as the n-tuple µ(u)µ(v) is.

§6. Directionally 2-Signed Graphs

In [12], E.Sampathkumar et al. proved that the directionally 2-signed graphs are equivalent

to bidirected graphs, where each end of an edge has a sign. A bidirected graph implies a

signed graph, where each edge has a sign. Signed graphs are the special case n = 1, where

directionality is trivial. Directionally 2-signed graphs (or (2, d)-signed graphs) are also special,

in a less obvious way. A bidirected graph B = (G, β) is a graph G = (V,E) in which each end

(e, u) of an edge e = uv has a sign β(e, u) ∈ {+,−}. G is the underlying graph and β is the

bidirection. (The + sign denotes an arrow on the u-end of e pointed into the vertex u; a −
sign denotes an arrow directed out of u. Thus, in a bidirected graph each end of an edge has

an independent direction. Bidirected graphs were defined by Edmonds [2].) In view of this,

E.Sampathkumar et al. [12] proved the following result:

Theorem 6.1(E.Sampathkumar et al. [12]) Directionally 2-signed graphs are equivalent to

bidirected graphs.

§7. Conclusion

In this brief survey, we have described directionally n-signed graphs (or (n, d)-signed graphs)

and their characterizations. Many of the characterizations are more recent. This in an active

area of research. We have included a set of references which have been cited in our description.

These references are just a small part of the literature, but they should provide a good start

for readers interested in this area.
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§1. Introduction

The geometry of curves in a Euclidean space have been developed a long time ago and we have

a deep knowledge about it. In the theory of curves in Euclidean space, one of the important and

interesting problem is characterizations of a regular curve. We can characterize some curves via

their relations between the Frenet vectors of them. For instance Mannheim curve is a special

curve and it is characterized using the Frenet vectors of its Mannheim curve couple.

In 2007, the definition of Mannheim curves in Euclidean 3-space is given by H.Liu and

F.Wang [4] with the following:

Definition 1.1 Let α and β be two curves in Euclidean 3-space. If there exists a corresponding

relationship between the space curves α and β such that, at the corresponding points of the

curves, the principal normal lines of α coincides with the binormal lines of β, then α is called

a Mannheim curve, and β is called a Mannheim partner curve of α.

In their paper, they proved that a given curve is a Mannheim curve if and only if then

for λ ∈ R, it has λ
(
κ

2 + τ2
)

= κ, where κ and τ are curvature functions of curve. Also in

2009, Matsuda and Yorozu, in [5], defined generalized Mannheim curves in Euclidean 4-space.

If the first normal line at each point of α is included in the plane generated by the second

normal line and the third normal line of β at corresponding point under a bijection, which is

from α to β. Then the curve α is called generalized Mannheim curve and the curve β is called

generalized Mannheim mate curve of α. And they gave a theorem such that if the curve α is

a generalized Mannheim curve in Euclidean 4-space, then the first curvature function k1 and

1Received January 24, 2013, Accepted June 12, 2013.
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second curvature functions k2 of the curve α satisfy the equality:

k1(s) = µ
{
(k1(s))

2
+ (k2(s))

2
}
,

where µ is a positive constant number. The quaternion was introduced by Hamilton. His initial

attempt to generalize the complex numbers by introducing a three-dimensional object failed in

the sense that the algebra he constructed for these three-dimensional object did not have the

desired properties. On the 16th October 1843 Hamilton discovered that the appropriate gener-

alization is one in which the scalar(real) axis is left unchanged whereas the vector(imaginary)

axis is supplemented by adding two further vectors axes.

In 1987, The Serret-Frenet formulas for a quaternionic curve in E
3 and E

4 was defined by

Bharathi and Nagaraj, in [7], and then in 2004, Serret-Frenet formulas for quaternionic curves

and quaternionic inclined curves have been defined in Semi-Euclidean space by Çöken and Tuna

in 2004, [1].

In 2011 Güngör and Tosun studied quaternionic rectifying curves, [8]. Also, Gök et.al and

Kahraman et.al, in [6,3], defined a new kind of slant helix in Euclidean space E
4 and semi-

Euclidean space E
4
2. It called quaternionic B2-slant helix in Euclidean space E

4 and semi-real

quaternionic B2-slant helix in semi-Euclidean space E
4
2, respectively. Recently, Sağlam, in [2],

has studied on the osculating spheres of a real quaternionic curve in Euclidean 4−space. In this

paper, we define quaternionic Mannheim curves and we give some characterizations of them in

Euclidean 3 and 4 space.

§2. Preliminaries

Let QH denotes a four dimensional vector space over the field H of characteristic grater than

2. Let ei (1 ≤ i ≤ 4)denote a basis for the vector space. Let the rule of multiplication on QH

be defined on ei (1 ≤ i ≤ 4) and extended to the whole of the vector space by distributivity as

follows:

A real quaternion is defined with q = a−→e1 + b−→e2 + c−→e3 + de4 where a, b, c, d are ordinary

numbers. Such that

e4 = 1, e21 = e22 = e23 = −1,

e1e2 = e3, e2e3 = e1, e3e1 = e2,

e2e1 = −e3, e3e2 = −e1, e1e3 = −e2.
(2.1)

If we denote Sq = d and
−→
Vq = a−→e1 + b−→e2 + c−→e3 , we can rewrite real quaternions the basic

algebraic form q = Sq +
−→
Vq where Sq is scalar part of q and

−→
Vq is vectorial part. Using these

basic products we can now expand the product of two quaternions to give

p× q = SpSq − 〈
−→
Vp,
−→
Vq〉+ Sp

−→
Vq + Sq

−→
Vp +

−→
Vp ∧

−→
Vq for every p, q ∈ QH , (2.2)

where we have use the inner and cross products in Euclidean space E
3, [7]. There is a unique

involutory antiautomorphism of the quaternion algebra, denoted by the symbol γ and defined

as follows:

γq = −a−→e1 − b−→e2 − c−→e3 + de4 for every q = a−→e1 + b−→e2 + c−→e3 + de4 ∈ QH ,
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which is called the “Hamiltonian conjugation”. This defines the symmetric, real valued, non-

degenerate, bilinear form h are follows:

h(p, q) =
1

2
[ p× γq + q × γp] for p, q ∈ QH .

And then, the norm of any q real quaternion denotes

‖q‖2 = h(q, q) = q × γq. (2.3)

The concept of a spatial quaternion will be used of throughout our work. q is called a

spatial quaternion whenever q + γq = 0, [2].

The Serret-Frenet formulae for quaternionic curves in E
3 and E

4 are follows:

Theorem 2.1([7]) The three-dimensional Euclidean space E
3 is identified with the space of

spatial quaternions {p ∈ QH | p+ γp = 0} in an obvious manner. Let I = [0, 1] denotes the

unit interval of the real line R. Let

α : I ⊂ R −→ QH

s −→ α(s) =
3∑

i=1

αi(s)
−→ei , 1 ≤ i ≤ 3,

be an arc-lenghted curve with nonzero curvatures {k, r} and {t(s), n(s), b(s)} denotes the Frenet

frame of the curve α. Then Frenet formulas are given by




t
′

n
′

b′


 =




0 k 0

−k 0 r

0 −r 0







t

n

b


 , (2.4)

where k is the principal curvature, r is torsion of α.

Theorem 2.2([7]) The four-dimensional Euclidean spaces E
4 is identified with the space of

quaternions. Let I = [0, 1] denotes the unit interval of the real line R. Let

α(4) : I ⊂ R −→ QH

s −→ α(4)(s) =
4∑

i=1

αi(s)
−→ei , 1 ≤ i ≤ 4, −→e4 = 1,

be a smooth curve in E
4 with nonzero curvatures {K, k, r −K} and {T (s), N(s), B1(s), B2(s)}

denotes the Frenet frame of the curve α. Then Frenet formulas are given by




T
′

N
′

B′
1

B′
2




=




0 K 0 0

−K 0 k 0

0 −k 0 (r −K)

0 0 −(r −K) 0







T

N

B1

B2




(2.5)

where K is the principal curvature, k is the torsion and (r −K) is bitorsion of α(4).
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§3. Characterizations of the Quaternionic Mannheim Curve

In this section, we define quaternionic Mannheim curves and we give some characterizations of

them in Euclidean 3 and 4 space.

Definition 3.1 Let α (s) and β (s∗) be two spatial quaternionic curves in E
3. Let {t(s), n(s), b(s)}

and {t∗(s∗), n∗(s∗), b∗(s∗)} be Frenet frames,respectively, on these curves. α (s) and β (s∗) are

called spatial quaternionic Mannheim curve couple if n(s) and b∗(s∗) are linearly dependent.

Theorem 3.2 Let α : I ⊂ R → E
3 be a spatial quaternionic Mannheim curve with the arc

lenght parameter s and β : I ⊂ R → E
3 be spatial quaternionic Mannheim partner curve of α

with the arc lenght parameter s∗. Then

d (α (s) , β (s∗)) = constant, for all s ∈ I.

Proof From Definition 3.1, we can write

α (s) = β (s∗) + λ∗ (s∗) b∗ (s∗) (3.1)

Differentiating the Eq.(3.1) with respect to s∗ and by using the Frenet equations, we get

dα (s)

ds

ds

ds∗
= t∗(s∗) + λ∗

p

(s∗)b∗(s∗)− λ∗(s∗)r∗(s∗)n∗(s∗)

If we denote
dα (s)

ds
= t(s)

t(s) =
ds∗

ds

[
t∗(s∗) + λ∗

p

(s∗)b∗(s∗)− λ∗(s∗)r∗(s∗)n∗(s∗)
]

and

h (t(s), n (s)) =
ds∗

ds


 h (t∗(s∗), n (s)) + λ∗

p

(s∗)h (b∗(s∗), n (s))

−λ∗(s∗)r∗(s∗)h (n∗(s∗), n (s))


 .

Since {n (s) , b∗(s∗)} is a linearly dependent set, we get

λ∗
p

(s∗) = 0

that is, λ∗ is constant function on I. This completes the proof. 2
Theorem 3.3 Let α : I ⊂ R→ E

3 be spatial quaternionic curves with the arc-length parameter

s. Then α is spatial quaternionic Mannheim curve if and only if

k(s) = λ
(
k2(s) + r2(s)

)
, (3.2)

where λ is constant.

Proof If α is spatial quaternionic Mannheim curve, we can write

β (s) = α (s) + λ(s)n (s)
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Differentiating the above equality and by using the Frenet equations, we get

dβ(s)

ds
=
[
(1− λ(s)k (s)) t(s) + λp(s)n(s) + λ(s)r (s) b (s)

]
.

As {n (s) , b∗(s∗)} is a linearly dependent set, we get

λp(s) = 0.

This means that λ is constant. Thus we have

dβ(s)

ds
= (1− λk (s)) t(s) + λr (s) b (s) .

On the other hand, we have

t∗ =
dβ

ds

ds

ds∗
= [(1− λk (s)) t(s) + λr (s) b (s)]

ds

ds∗
.

By taking the derivative of this equation with respect to s∗ and applying the Frenet formulas

we obtain

dt∗

ds

ds

ds∗
=
[
−λkp(s)t(s) +

(
k(s)− λk2(s)− λr2(s)

)
n(s) + λrp(s)b(s)

] ( ds

ds∗

)2

+ [(1− λk (s)) t(s) + λr (s) b (s)]
d2s

ds∗2
.

From this equation, we get

k(s) = λ
(
k2(s) + r2(s)

)
.

Conversely, if k(s) = λ
(
k2(s) + r2(s)

)
, then we can easily see that α is a Mannheim curve. 2

Theorem 3.4 Let α : I ⊂ R → E
3 be spatial quaternionic Mannheim curve with arc-length

parameter s. Then β is the spatial quaternionic Mannheim partner curve of α if and only if the

curvature functions k∗ (s∗) and r∗(s∗) of β satisfy the following equation

dr∗

ds∗
=
k∗

µ

(
1 + µ2r∗

2
)
,

where µ is constant.

Proof Let α : I ⊂ R→ E
3 be spatial quaternionic Mannheim curve. Then, we can write

α (s∗) = β (s∗) + µ (s∗) b∗ (s∗) (3.3)

for some function µ (s∗). By taking the derivative of Eq.(3.3) with respect to s∗ and using the

Frenet equations, we obtain

t
ds

ds∗
= t∗ (s∗) + µp (s∗) b∗ (s∗)− µ (s∗) r∗ (s∗)n∗ (s∗) .

And then, we know that {n (s) , b∗ (s∗)} is a linearly dependent set, so we have

µp (s∗) = 0.
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This means that µ (s∗) is a constant function. Thus we have

t
ds

ds∗
= t∗ (s∗)− µr∗ (s∗)n∗ (s∗) . (3.4)

On the other hand, we have

t = t∗ cos θ + n∗ sin θ, (3.5)

where θ is the angle between t and t∗ at the corresponding points of the curves α and β. By

taking the derivative of Eq.(3.5) with respect to s∗ and using the Frenet equations, we obtain

kn
ds

ds∗
= −

(
k∗ +

dθ

ds∗

)
sin θt∗ +

(
k∗ +

dθ

ds∗

)
cos θn∗ + r∗ sin θb∗.

From this equation and the fact that the {n (s) , b∗ (s∗)} is a linearly dependent set, we get





(
k∗ + dθ

ds∗

)
sin θ = 0

(
k∗ + dθ

ds∗

)
cos θ = 0.

For this reason, we have
dθ

ds∗
= −k∗. (3.6)

From the Eq.(3.4), Eq.(3.5) and notice that t∗ is orthogonal to b∗, we find that

ds

ds∗
=

1

cos θ
= − µr∗

sin θ
.

Then we have

µr∗ = − tan θ.

By taking the derivative of this equation and applying Eq.(3-6), we get

µ
dr∗

ds∗
= k∗

(
1 + µ2r∗

2
)

that is
dr∗

ds∗
=
k∗

µ

(
1 + µ2r∗

2
)
.

Conversely, if the curvature k∗ and torsion r∗ of the curve β satisfy the equality:

dr∗

ds∗
=
k∗

µ

(
1 + µ2r∗

2
)

for constant µ, then we define a curve by

α (s∗) = β (s∗) + µb∗ (s∗) (3.7)

and we will show that α is a spatial quaternionic Mannheim curve and β is the spatial quater-

nionic Mannheim partner curve of α. By taking the derivative of Eq.(3.7) with respect to s∗

twice, we get

t
ds

ds∗
= t∗ − µr∗n∗, (3.8)

kn

(
ds

ds∗

)2

+ t
d2s

ds∗2
= µk∗r∗t∗ +

(
k∗ − µdr

∗

ds∗

)
n∗ − µr∗2

b∗, (3.9)
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respectively. Taking the cross product of Eq.(3.8) with Eq.(3.9) and noticing that

k∗ − µdr
∗

ds∗
+ µ2k∗r∗

2

= 0,

we have

kb

(
ds

ds∗

)3

= µ2r∗
3

t∗ + µr∗
2

n∗. (3.10)

By taking the cross product of Eq.(3.8) with Eq.(3.10), we get

kn

(
ds

ds∗

)4

= −µr∗2
(
1 + µ2r∗

2
)
b∗.

This means that the principal normal vector field of the spatial quaternionic curve α and

binormal vector field of the spatial quaternionic curve β are linearly dependent set. And so α is

a spatial quaternionic Mannheim curve and β is spatial quaternionic Mannheim partner curve

of α. 2
Theorem 3.5 Let {α, β} be a spatial quaternionic Mannheim curve couple in E

3.Then measure

of the angle θ between the tangent vector fields of spatial quaternionic curves α(s) and β(s∗) is

constant if and only if the spatial quaternionic curve β(s∗) is a geodesic.

Proof From Eq.(3-6), we know that dθ
ds∗

= −k∗, where θ is the angle between t and t∗ at

the corresponding points of the curves α and β.

If θ is a constant angle, the curvature of the curve β,

k∗ = 0,

that is the curve β is a geodesic.

Conversely, if the curve β is a geodesic, the angel θ between t and t∗ at the corresponding

points of the curves α and β satisfy the following equality:

dθ

ds∗
= 0,

that is θ is a constant angle. 2
Definition 3.6 A quaternionic curve α(4) : I ⊂ R→ E

4 is a quaternionic Mannheim curve if

there exists a quaternionic curve β(4) : I ⊂ R→ E
4 such that the second Frenet vector at each

point of α(4) is included the plane generated by the third Frenet vector and the fourth Frenet

vector of β(4) at corresponding point under ϕ, where ϕ is a bijection from α(4) to β(4). The

curve β(4) is called the quaternionic Mannheim partner curve of α(4).

Theorem 3.7 Let α(4) : I ⊂ R→ E
4 and β(4) : I ⊂ R→ E

4 be quaternionic Mannheim curve

couple with arc-length s and s, respectively. Then

d
(
α(4) (s) , β(4) (s)

)
= λ(s) = constant, for all s ∈ I (3.11)

Proof From the Definition 3.6, quaternionic Mannheim partner curve β(4) of α(4) is given

by the following equation

β(4) (s) = α(4)(s) + λ(s)N (s) ,
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where λ (s) is a smooth function. A smooth function ψ : s ∈ I → ψ (s) = s ∈ I is defined by

ψ (s) =

s∫

0

∥∥∥∥
dα(4) (s)

ds

∥∥∥∥ ds = s.

The bijection ϕ:α(4) → β(4) is defined by ϕ
(
α(4)(s)

)
= β(4)(ψ (s)). Since the second Frenet

vector at each point of α(4) is included the plane generated by the third Frenet vector and the

fourth Frenet vector of β(4) at corresponding point under ϕ, for each s ∈ I, the Frenet vector

N(s) is given by the linear combination of Frenet vectors B1 (ψ (s)) and B2 (ψ (s)) of β(4), that

is, we can write

N(s) = g(s)B1 (ψ (s)) + h(s)B2 (ψ (s)) ,

where g(s) and h(s) are smooth functions on I. So we can write

β(4) (ψ(s)) = α(4) (s) + λ(s)N (s) . (3.12)

Differentiating the Eq.(3.12) with respect to s and by using the Frenet equations, we get

T (ψ (s))ψp(s) = [(1− λK (s))T (s) + λ′ (s)N (s) + λ (s) k (s)B1 (s)] .

By the fact that:

h
(
T (ϕ (s)) , g(s)B1 (ψ (s)) + h(s)B2 (ψ (s))

)
= 0,

we have

λ′ (s) = 0

that is, λ (s) is constant function on I. This completes the proof. 2
Theorem 3.78 If the quaternionic curve α(4) : I ⊂ R→ E

4 is a quaternionic Mannheim curve,

then the first and second curvature functions of α(4) satisfy the equality:

K(s) = λ
{
K2(s) + k2(s)

}
,

where λ is constant.

Proof Let β(4) be a quaternionic Mannheim partner curve of α(4). Then we can write

β(4) (ψ (s)) = α(4) (s) + λN (s) .

Differentiating the above equation, we get

T (ψ (s))ψp(s) = [(1− λK (s))T (s) + λk (s)B1 (s)] ,

that is,

T (ψ (s)) =
1− λK (s)

ψp(s)
T (s) +

λk (s)

ψp(s)
B1 (s) ,
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where ψp(s) =

√
(1− λK(s))2 + (λk(s))2 for s ∈ I. By differentiation of both sides of the above

equality with respect to s, we have

ψp(s)K (s)N (s) =

(
1− λK (s)

ψp(s)

)p

T (s)

+

(
(1− λK (s))K(s)− λk (s)

2

ψp(s)

)
N(s)

+

(
λk (s)

ψp(s)

)p

B1 (s)− λk (s) (r(s)−K(s))

ψp(s)
B2 (s) .

By the fact:

h
(
N (ϕ (s)) , g(s)B1 (ψ (s)) + h(s)B2 (ψ (s))

)
= 0,

we have that coefficient of N in the above equation is zero, that is,

(1− λK (s))K(s)− λk (s)
2

= 0.

Thus, we have

K(s) = λ
{
K2(s) + k2(s)

}

for s ∈ I. This completes the proof. 2
Theorem 3.9 Let α(4) : I ⊂ R → E

4 be a quaternionic curve with arc-length s, whose

curvature functions K(s) and k(s) are non-constant functions and satisfy the equality: K(s) =

λ
{
K2(s) + k2(s)

}
, where λ is positive constant number. If the quaternıonic curve β(4) is given

by β(4) (s) = α(4) (s) + λN (s) , then α(4) is a quaternionic Mannheim curve and β(4) is the

quaternionic Mannheim partner curve of α(4).

Proof Let s be the arc-length of the quaternionic curve β(4). That is, s is defined by

s =

s∫

0

∥∥∥∥
dα(4) (s)

ds

∥∥∥∥ ds

for s ∈ I. We can write a smooth function ψ : s ∈ I → ψ (s) = s ∈ I. By the assumption of

the curvature functions K(s) and k(s), we have

ψp(s) =

√
(1− λK(s))

2
+ (λk(s))

2
,

ψp(s) =
√

1− λK(s)

for s ∈ I. Then we can easily write

β(4) (s) = β(4) (ψ (s))

= α(4) (s) + λN (s)

for the quaternionic curve β(4). If we differentiate both sides of the above equality with respect

to s, we get

ψp(s)T (ψ(s)) = T (s) + λ {−K(s)T (s) + k(s)B1(s)} .
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And so we have,

T (ψ(s)) =
√

1− λK(s)T (s) +
λk(s)√

1− λK(s)
B1(s). (3.13)

Differentiating the above equality with respect to s and by using the Frenet equations, we get

ψp(s)K (ψ(s))N (ψ(s)) =
(√

1− λK(s)
)p

T (s) +

(
K(s) (1− λK(s))− λk2(s)√

1− λK(s)

)
N(s)

+

(
λk(s)√

1− λK(s)

)p

B1(s) +
λk(s) (r(s) −K(s))√

1− λK(s)
B2(s)

From our assumption, it holds

K(s) (1− λK(s))− λk2(s)√
1− λK(s)

= 0.

We find the coefficient of N(s) in the above equality vanishes. Thus the vector N (ψ(s)) is given

by linear combination of T (s), B1(s) and B2(s) for each s ∈ I. And the vector T (ψ(s)) is given

by linear combination of T (s) and B1(s) for each s ∈ I in the Eq.(3.13). As the curve β(4) is

quaternionic curve in E
4, the vector N(s) is given by linear combination of B1 (s) and B2 (s).

For this reason, the second Frenet curve at each point of α(4) is included in the plane generated

the third Frenet vector and the fourth Frenet vector of β(4) at corresponding point under ϕ.

Here the bijection ϕ : α(4) → β(4) is defined by ϕ
(
α(4)(s)

)
= β(4)(ψ (s)). This completes the

proof. 2
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§1. Introduction

Bigroups are a very nice tool as the answers to a major problem faced by all groups, that is

the union of two subgroups do not form any algebraic structure but they find a nice bialgebraic

structure as bigroups. The study of bigroups was carried out in 1994-1996. Maggu [7,8] was

the first one to introduce the notion of bigroups. However, the concept of bialgebraic structures

was recently studied by Vasantha Kandasamy [11]. Agboola and Akinola in [1]studied bicoset

of a bivector space.

The theory of hyperstructures was introduced in 1934 by Marty [9] at the 8th Congress

of Scandinavian Mathematicians. In a classical algebraic structure, the composition of two

elements is an element, while in an algebraic hyperstructure, the composition of two elements is

a set. Several books have been written on this topic, see [2-4,6,13]. Hyperstructure theory both

extends some well-known group results and introduce new topics leading us to a wide variety

of applications, as well as to a broadening of the investigation fields.

§2. Basic Facts and Definitions

This section has two parts. In the first part we recall the definition of bigroups. In the second

part we recall the notion of hypergroups.

1Received April 28, 2013, Accepted June 15, 2013.
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2.1 Bigroups

Definition 2.1 Let ∗1 and ∗2 be any two binary operations defined on a non-empty set G.

Then, G is said to be a bigroup if there exists two proper subsets G1 and G2 such that

(1) G = G1 ∪G2;

(2) (G1, ∗1) is a group;

(3) (G2, ∗2) is a group.

Definition 2.2 Let G = G1 ∪G2 be a bigroup. A non-empty subset A of G is said to be a sub-

bigroup of G if A = A1 ∪A2, A is a bigroup under the binary operations inherited from G, A1

= A ∩G1 and A2 = A ∩G2.

Example 1([11]) Suppose that G = Z∪{i,−i} under the operations “+” and “·”. We consider

G = G1∪G2, where G1 = {−1, 1, i,−i} under the operation “·” and G2 = Z under the operation

“+” are groups. Take H = {−1, 0, 1} = H1 ∪H2, where H1 = {0} is a group under “+” and

H2 = {−1, 1} is a group under “·”. Thus, H is a sub-bigroup of G. Note that H is not a group

under “+” or “· ”.

Definition 2.3 Let G = G1 ∪G2 be a bigroup. Then, G is said to be commutative if both G1

and G2 are commutative.

Definition 2.4 Let A = A1 ∪A2 be a sub-bigroup of a bigroup G = G1 ∪G2. Then, A is said

to be a normal bi-subgroup of G if A1 is a normal subgroup of G1 and A2 is a normal subgroup

of G2.

2.2 Hypergroups

In this part, we present the notion of hypergroup and some well-known related concepts. These

concepts will be used in the building of bihypergroups, for more details we refer the readers to

see [2-4, 6, 13].

Let H be a non-empty set and ◦ : H×H → P∗(H) be a hyperoperation. The couple (H, ◦)
is called a hypergroupoid. For any two non-empty subsets A and B of H and x ∈ H , we define

A ◦B =
⋃

a∈A,b∈B

a ◦ b, A ◦ x = A ◦ {x} and x ◦B = {x} ◦B.

Definition 2.5 A hypergroupoid (H, ◦) is called a semihypergroup if for all a, b, c of H we have

(a ◦ b) ◦ c = a ◦ (b ◦ c), which means that

⋃
u∈a◦b

u ◦ c =
⋃

v∈b◦c

a ◦ v.

A hypergroupoid (H, ◦) is called a quasihypergroup if for all a of H we have a◦H = H ◦a = H.

This condition is also called the reproduction axiom.

Definition 2.6 A hypergroupoid (H, ◦) which is both a semihypergroup and a quasihypergroup

is called a hypergroup. For any x, y ∈ H, we define the right and the left extensions as follows:

x/y = {a ∈ H | x ∈ a ◦ y} and x\y = {b ∈ H | y ∈ x ◦ b}.



56 B.Davvaz and A.A.A.Agboola

Example 2 Let (S, ·) be a semigroup and let P be a non-empty subset of S. For all x, y of S,

we define x ◦ y = xPy. Then, (S, ◦) is a semihypergroup. If (S, ·) is a group. then (S, ◦) is a

hypergroup.

Example 3 If G is a group and for all x, y of G, < x, y > denotes the subgroup generated by

x and y, then we define x ◦ y =< x, y >. We obtain that (G, ◦) is a hypergroup.

Definition 2.7 Let (H, ◦) and (H ′, ◦′) be two hypergroupoids. A map φ : H → H ′, is called

(1) an inclusion homomorphism if for all x, y of H, we have φ(x ◦ y) ⊆ φ(x) ◦′ φ(y);

(2) a good homomorphism if for all x, y of H, we have φ(x ◦ y) = φ(x) ◦′ φ(y).

A good homomorphism φ is called a very good homomorphism if for all x, y ∈ H, φ(x/y) =

φ(x)/φ(y) and φ(x\y) = φ(x)\φ(y).

Let (H, ◦) be a semihypergroup and R be an equivalence relation on H . If A and B are

non-empty subsets of H , then

ARB means that ∀a ∈ A, ∃b ∈ B such that aRb and

∀b′ ∈ B, ∃a′ ∈ A such that a′Rb′;

ARB means that ∀a ∈ A, ∀b ∈ B, we have aRb.

Definition 2.8 The equivalence relation ρ is called

(1) regular on the right (on the left) if for all x of H, from aρb, it follows that (a◦x)ρ(b◦x)
((x ◦ a)ρ(x ◦ b) respectively);

(2) strongly regular on the right (on the left) if for all x of H, from aρb, it follows that

(a ◦ x)ρ(b ◦ x) ((x ◦ a)ρ(x ◦ b) respectively);

(3) ρ is called regular (strongly regular) if it is regular (strongly regular) on the right and

on the left.

Theorem 2.9 Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on H.

(1) If ρ is regular, then H/ρ is a semihypergroup, with respect to the following hyperopera-

tion: x⊗ y = {z | z ∈ x ◦ y};
(2) If the above hyperoperation is well defined on H/ρ, then ρ is regular.

Corollary 2.10 If (H, ◦) is a hypergroup and ρ is an equivalence relation on H, then R is

regular if and only if (H/ρ,⊗) is a hypergroup.

Theorem 2.11 Let (H, ◦) be a semihypergroup and ρ be an equivalence relation on H.

(1) If ρ is strongly regular, then H/ρ is a semigroup, with respect to the following operation:

x⊗ y = {z | z ∈ x ◦ y};
(2) If the above operation is well defined on H/ρ, then ρ is strongly regular.

Corollary 2.12 If (H, ◦) is a hypergroup and ρ is an equivalence relation on H, then ρ is

strongly regular if and only if (H/ρ,⊗) is a group.
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Definition 2.13 Let (H, ◦) is a semihypergroup and A be a non-empty subset of H. We say

that A is a complete part of H if for any nonzero natural number n and for all a1, . . . , an of H,

the following implication holds:

A ∩
n∏

i=1

ai 6= ∅ =⇒
n∏

i=1

ai ⊆ A.

Theorem 2.14 If (H, ◦) is a semihypergroup and R is a strongly regular relation on H, then

for all z of H, the equivalence class of z is a complete part of H.

§3. Bihypergroup Structures

In this section, we introduce the concept of bihypergroup and illustrate it with examples.

Definition 3.1 A set (H, ◦, ⋆) with two hyperoperations ◦ and ⋆ is called a bihypergroup if there

exist two proper subsets H1 and H2 such that

(1) H = H1 ∪H2;

(2) (H1, ◦) is a hypergroup;

(3) (H2, ⋆) is a hypergroup.

Theorem 3.2 Every hypergroup is a bihypergroup.

Proof Suppose that (H, ◦) is a hypergroup. If we consider H = H1 = H2 and ◦ = ⋆, then

(H, ◦, ⋆) is a bihypergroup. 2
Example 4 Let H = {a, b, c, d, e} and let ◦ and ⋆ be two hyperoperations on H defined by the

following tables:

◦ a b c d e

a a b c, d d b

b b a, b c, d c, d e

c c c, d a, b a, b e

d c, d c, d a, b a, b e

e b e e e e

and

⋆ a b c d e

a a b c, d d e

b b a, e c, d c, d b

c c c, d a, b a, b e

d c, d c, d a, b a, b e

e e b e e a
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It is not difficult to see that H1 = {a, b, c, d} is a hypergroup together with the hyper-

operation ◦ and H2 = {a, b, e} is a hypergroup together with the hyperoperation ⋆. Hence,

H = H1 ∪H2 is a bihypergroup.

Example 5 ([5]) Blood groups are inherited from both parents. The ABO blood type is

controlled by a single gene (the ABO gene) with three alleles: IA, IB and i. The gene encodes

glycosyltransferase that is an enzyme that modifies the carbohydrate content of the red blood

cell antigens. The gene is located on the long arm of the ninth chromosome (9q34).

People with blood type A have antigen A on the surfaces of their blood cells, and may be

of genotype IAIA or IAi. People with blood type B have antigen B on their red blood cell

surfaces, and may be of genotype IBIB or IBi. People with the rare blood type AB have both

antigens A and B on their cell surfaces, and are genotype IAIB. People with blood type O

have neither antigen, and are genotype ii. A type A and a type B couple can also have a type

O child if they are both heterozygous (IAi and IBi, respectively).

⊗ O A B AB

O O
O

A

O

B

A

B

A
O

A

O

A

AB

A

B

O

AB

A

B

B
O

B

AB

A

B

O

O

B

AB

A

B

AB
A

B

AB

A

B

AB

A

B

AB

A

B

Now, we consider H = {O,A,B}. If H1 = {O,A} and H2 = {O,B}, then H = H1 ∪H2 is

a bihypergroup.

Definition 3.3 Let H = H1 ∪ H2 be a bihypergroup. A non-empty subset A of H is said to

be a sub- bihypergroup of G if A = A1 ∪ A2, A is a bihypergroup under the binary operations

inherited from H, A1 = A ∩H1 and A2 = A ∩H2.

Remark 1 If (H, ◦, ⋆) is a bihypergroup and K is a sub-bihypergroup of H , then (K, ◦) and

(K, ⋆) in general are not hypergroups.
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Theorem 3.4 Let H = H1 ∪H2 be a bihypergroup. A non-empty subset A = A1 ∪A2 of H is

a sub-bihypergroup of H if and only if A1 = A ∩H1 and A2 = A ∩H2 are sub-hypergroups of

H1 and H2, respectively.

Proof Suppose that A = A1 ∪ A2 is a sub-bihypergroup of H . Then, Ai, i = 1, 2 are

sub-hypergroups of Hi and therefore Ai = A ∩Hi are sub-hypergroups of Hi.

Conversely, suppose that A1 = A ∩ G1 is a sub-hypergroup of H1 and A2 = A ∩H2 is a

sub-hypergroup of H2. It can be shown that A1 ∪A2 = (A ∩H1) ∪ (A ∩H2) = A. Hence, A is

sub-bihypergroup of H . 2
Theorem 3.5 Let H be any hypergroup and let A1 and A2 be any two sub-hypergroups of H

such that A1 6⊂ A2 and A2 6⊂ A1 but A1 ∩A2 6= ∅. Then, A = A1 ∪A2 is a bihypergroup.

Proof The required result follows from the definition of bihypergroup. 2
Theorem 3.6 Let (H, ◦, ⋆) and (H ′, ◦′, ⋆′) be any two bihypergroups, where H = H1 ∪H2 and

H ′ = H ′
1 ∪H ′

2. Then, (H ×H ′,⊙,⊗) is a bihypergroup, where

(1) H ×H ′ = (H1 ×H ′
1) ∪ (H2 ×H ′

2);

(2) (x1, x
′
1) ⊙ (y1, y

′
1) = {(z1, z′1) | z1 ∈ x1 ◦ y1, z′1 ∈ x′1 ⋆ y′1}, for all (x1, x

′
1), (y1, y

′
1) ∈

H1 ×H ′
1;

(3) (x2, x
′
2) ⊙ (y2, y

′
2) = {(z2, z′2) | z2 ∈ x2 ◦′ y2, z′2 ∈ x′2 ⋆′ y′2}, for all (x2, x

′
2), (y2, y

′
2) ∈

H2 ×H ′
2.

Definition 3.7 Let (H, ◦, ⋆) be a bihypergroup, where H = H1 ∪ H2. Then, H is said to be

commutative if both (H1, ◦) and (H2, ◦) are commutative.

Let H = H1 ∪H2 and ρ be an equivalence relation on H . The restriction of ρ to H1 and

H2 are the relations on H1 and H2 defined as

ρ|H1
:= ρ ∩ (H1 ×H1) and ρ|H2

:= ρ ∩ (H2 ×H2).

Lemma 3.8 Let H = H1 ∪H2 and ρ be an equivalence relation on H. Then, ρ|H1
and ρ|H2

are equivalence relations on H1 and H2, respectively.

Definition 3.9 Let (H, ◦, ⋆) be a bihypergroup, where H = H1 ∪H2 and let ρ be an equivalence

relation on H. We say that ρ is a (strongly) regular relation on H, if ρ|H1
is a (strongly) regular

relation on H1 and ρ|H2
is a (strongly) regular relation on H2.

Theorem 3.10 Let (H, ◦, ⋆) be a bihypergroup, where H = H1∪H2, and let ρ be an equivalence

relation on H.

(1) If ρ is regular, then H1/ρ|H1
∪H2/ρ|H2

is a bihypergroup;

(2) If ρ is strongly regular, then H1/ρ|H1
∪H2/ρ|H2

is a bigroup.

Proof The proof follows from Lemma 3.8 and Theorems 2.9 and 2.11. 2
Definition 3.11 Let (H, ◦, ⋆) and (H ′, ◦′, ⋆′) be any two bihypergroups, where H = H1∪H2 and
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H ′ = H ′
1 ∪H ′

2. The map φ : H → H ′ is said to be a bihypergroup (inclusion, good, very good,

respectively) homomorphism if φ restricted to H1 is a hypergroup (inclusion, good, very good,

respectively) homomorphism from H1 to H ′
1 and φ restricted to H2 is a hypergroup (inclusion,

good, very good, respectively) homomorphism from H2 to H ′
2.

Definition 3.12 Let φ = φ1 ∪ φ2 : (H = H1 ∪ H2, ◦, ⋆) → (H ′ = H ′
1 ∪ H ′

2, ◦′, ⋆′) be a good

homomorphism and A = A1 ∪ A2 and B = B1 ∪ B2 be non-empty subsets of H and H ′,

respectively.

(1) The image of A under φ denoted by φ(A) = φ1(A1)∪φ2(A2), is the set {φ1(a1), φ2(a2) | a1 ∈
A1, a2 ∈ A2};

(2) The inverse image of B under φ denoted by φ−1(B) = φ−1(B1) ∪ φ−1(B2), is the set

{h1 ∈ H1, h2 ∈ H2 | φ1(h1) ∈ B1, φ2(h2) ∈ B2}.

Lemma 3.13 Let H and H ′ be two hypergroups and φ : H → H ′ be a good homomorphism.

(1) If A is a sub-hypergroup of H, then φ(A) is a sub-hypergroup of H ′;

(2) If φ is a very good homomorphism and B is a subhypergroup of H ′, then φ−1(B) is a

sub-hypergroup of H.

Proof The proof of (1) is clear. We prove (2). Suppose that x, y ∈ φ−1(B) are arbitrary

elements. Then, φ(x), φ(y) ∈ B. For every z ∈ x ◦ y, φ(z) ∈ φ(x ◦ y) = φ(x) ⋆ φ(y) ⊆ B. So,

z ∈ φ−1(B). Hence, φ−1(B) ◦ φ−1(B) ⊆ φ−1(B).

Now, suppose that x, a ∈ φ−1(B) are arbitrary elements. Then, φ(x), φ(a) ∈ B. Since B is

a sub-hypergroup of H ′, by reproduction axiom, there exists u ∈ B such that φ(a) ∈ u ⋆ φ(x).

Thus, u ∈ φ(a)/φ(x). Since φ is very good homomorphism, u ∈ φ(a/x). Hence, there exists

y ∈ a/x such that u = φ(y). Thus, y ∈ φ−1(B) and a ∈ y ◦ x. Hence, for every x, a ∈ φ−1(B),

there exists y ∈ φ−1(B) such that a ∈ φ−1(B) ◦ x. This implies that φ−1(B) ⊆ φ−1(B) ◦ x for

all x ∈ φ−1(B). Similarly, we can prove that φ−1(B) ⊆ x ◦ φ−1(B) for all x ∈ φ−1(B). 2
Proposition 3.14 Let φ = φ1 ∪ φ2 : (H = H1 ∪ H2, ◦, ⋆) → (H ′ = H ′

1 ∪ H ′
2, ◦′, ⋆′) be a

good homomorphism and A = A1 ∪ A2 and B = B1 ∪ B2 be non-empty subsets of H and H ′,

respectively.

(1) φ(A) is a sub-bihypergroup of H ′;

(2) If φ is a very good homomorphism, then φ−1(B) is a sub-bihypergroup of H.

Proof (1) Suppose that A = A1∪A2 is a sub-bihypergroup ofH . By Lemma 3.13(1), φ1(A1)

is a sub-hypergroup ofH ′
1 and φ2(A2) is a sub-hypergroup ofH ′

2. Thus, φ(A) = φ1(A1)∪φ2(A2)

is a bihypergroup. Now,

φ(A) ∩H ′
1 =

(
φ1(A1) ∪ φ2(A2)

)
∩H ′

1

=
(
φ1(A1) ∩H ′

1

)
∪
(
φ2 ∩H ′

1

)

= φ(A1).
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Similarly, it can be shown that φ(A) ∩H ′
2 = φ2(A2). Accordingly, φ(A) is a sub-bihypergroup

of H ′.

The proof of (2) follows from Lemma 3.13(2) and is similar to the proof of (1). 2
Definition 3.15 Let (H, ◦, ⋆) be a bihypergroup where H = H1 ∪H2 and let A = A1 ∪A2 be a

non-empty subset of H. Then, A is said to be a complete part of H if A1 is a complete part of

H1 and A2 is a complete part of H2.

Theorem 3.16 Let (H, ◦, ⋆) be a bihypergroup where H = H1 ∪H2 and let ρ be an equivalence

relation on H. If ρ|H1
and ρ|H2

are strongly regular relations on H1 and H2 respectively, then

for all x = x1 ∪ x2 ∈ H, x1 ∪ x2 is a complete part of H.

Proof It is clear. 2
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§1. Introduction

In [5] and [6], W.B.Kandasamy defined new classes of Smarandache groupoids using Zn. In

this paper we define and prove some theorems for construction of Smarandache seminormal

subgroupoids according as n is even or odd.

Definition 1.1 A non-empty set of elements G is said to form a groupoid if in G is defined

a binary operation called the product, denoted by ∗ such that a ∗ b ∈ G ∀ a, b ∈ G. We denote

groupoids by (G, ∗).

Definition 1.2 Let (G, ∗) be a groupoid. A proper subset H ⊂ G is a subgroupoid if (H, ∗) is

itself a groupoid.

Definition 1.3 Let S be a non-empty set. S is said to be a semigroup if on S is defined a

binary operation ∗ such that

(1) for all a, b ∈ S we have a ∗ b ∈ S;

(2) for all a, b, c ∈ S we have a ∗ (b ∗ c) = (a ∗ b) ∗ c.
(S, ∗) is a semi-group.

Definition 1.4 A Smarandache groupoid G is a groupoid which has a proper subset S such

that S under the operation of G is a semigroup.

Definition 1.5 Let (G, ∗) be a Smarandache groupoid. A non-empty subgroupoid H of G is said

1Received April 3, 2013, Accepted June 18, 2013.
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to be a Smarandache subgroupoid if H contains a proper subset K such that K is a semigroup

under the operation ∗.

Definition 1.6 Let G be a Smarandache groupoid. V be a Smarandache subgroupoid of G. We

say V is a Smarandache seminormal subgroupoid if aV = V for all a ∈ G or V a = V for all a ∈
G.

For example, let (G, ∗) be groupoid given by the following table:

* a0 a1 a2 a3 a4 a5

a0 a0 a3 a0 a3 a0 a3

a1 a2 a5 a2 a5 a2 a5

a2 a4 a1 a4 a1 a4 a1

a3 a0 a3 a0 a3 a0 a3

a4 a2 a5 a2 a5 a2 a5

a5 a4 a1 a4 a1 a4 a1

It is a Smarandache groupoid as {a3} is a semigroup. V = {a1, a3, a5} is a Smarandache

subgroupoid,also aV = V . Therefore V is Smarandache seminormal subgroupoid in G.

Definition 1.7 Let Zn = {0, 1, · · · , n−1}, n > 3 and a, b ∈ Zn\{0}. Define a binary operation

∗ on Zn as follows:

a ∗ b = ta + ub (mod n), where t, u are two distinct elements in Zn\{0} and (t, u) = 1.

Here ′+′ is the usual addition of two integers and ′ta′ means the product of the two integers t

and a.

Elements of Zn form a groupoid with respect to the binary operation ∗. We denote these

groupoid by {Zn(t, u), ∗} or Zn(t, u) for fixed integer n and varying t, u ∈ Zn\{0} such that

(t, u) = 1. Thus we define a collection of groupoids Z(n) as follows

Z(n) = {{Zn(t, u), ∗}| for integers t, u ∈ Zn\{0} such that (t, u) = 1}.

§2. Smarandache Seminormal Subgroupoids When n ≡ 0(mod2)

When n is even we are interested in finding Smarandache seminormal subgroupoid in Zn(t, t+1).

Theorem 2.1 Let Zn(t, t+1) ∈ Z(n), n is even, n > 3 and t = 1, · · · , n− 2. Then Zn(t, t+1)

is Smarandache groupoid.

Proof Let x =
n

2
. Then

x ∗ x = xt+ x(t+ 1) = 2xt+ x

= (2t+ 1)x ≡ x mod n
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Consequently, {x} is a semigroup in Zn(t, t+ 1). Thus Zn(t, t+ 1) is a Smarandache groupoid

when n is even. 2
Remark In the above theorem we can also show that beside {n/2} the other semigroup is

{0, n/2} in Zn(t, t+ 1) ∈ Z(n).

Proof If t is even, 0∗t+ n
2 ∗(t+1) ≡ n

2
mod n,

n

2
∗t+0∗(t+1) ≡ 0 mod n,

n

2
∗t+n

2
∗(t+1) ≡

n

2
mod n and 0 ∗ t+ 0 ∗ (t + 1) ≡ 0 mod n. So {0, n

2
} is semigroup in Zn(t, t+ 1). If t is odd,

0 ∗ t+ n

2
∗ (t+ 1) ≡ 0 mod n,

n

2
∗ t+ 0 ∗ (t+ 1) ≡ n

2
mod n,

n

2
∗ t+ n

2
∗ (t+ 1) ≡ n

2
mod n and

0 ∗ t+ 0 ∗ (t+ 1) ≡ 0 mod n. So {0, n
2
} is a semigroup in Zn(t, t+ 1). 2

Theorem 2.2 Let n > 3 be even and t = 1, · · · , n− 2,

(1) If
n

2
is even then A0 = {0, 2, · · · , n− 2} ⊆ Zn is Smarandache subgroupoid in Zn(t, t+

1) ∈ Z(n).

(2) If
n

2
is odd then A1 = {1, 3, · · · , n−1} ⊆ Zn is Smarandache subgroupoid in Zn(t, t+1) ∈

Z(n).

Proof (1) Let
n

2
is even.⇒ n

2
∈ A0. We will show that A0 is subgroupoid.

Let xi, xj ∈ A0 and xi 6= xj . Then

xi ∗ xj = xit+ xj(t+ 1)

= (xi + xj)t+ xj ≡ xk mod n

for some xk ∈ A0 as (xi + xj)t + xj is even. So xi ∗ xj ∈ A0. Thus A0 is subgroupoid in

Zn(t, t+ 1).

Let x =
n

2
. Then

x ∗ x = xt+ x(t+ 1)

= (2t+ 1)x ≡ x mod n.

Therefore, {x} is a semigroup in A0. Thus A0 is a subgroupoid in Zn(t, t+ 1).

(2) Let
n

2
is odd. ⇒ n

2
∈ A1. We show that A1 is subgroupoid.

Let xi, xj ∈ A1 and xi 6= xj . Then

xi ∗ xj = xit+ xj(t+ 1)

= (xi + xj)t+ xj ≡ xk mod n

for some xk ∈ A1 as (xi + xj)t+ xj is odd. Therefore, xi ∗ xj ∈ A1. Thus A1 is subgroupoid in

Zn(t, t+ 1).

Let x =
n

2
. Then

x ∗ x = xt+ x(t+ 1)

= (2t+ 1)x ≡ x mod n.

So {x} is a semigroup in A1. Thus A1 is a Smarandache subgroupoid in Zn(t, t+ 1). 2
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Theorem 2.3 Let n > 3 be even and t = 1, · · · , n− 2,

(1) If
n

2
is even then A0 = {0, 2, · · · , n−2} ⊆ Zn is Smarandache seminormal subgroupoid

of Zn(t, t+ 1) ∈ Z(n).

(2) If
n

2
is odd then A1 = {1, 3, · · · , n− 1} ⊆ Zn is Smarandache seminormal subgroupoid

of Zn(t, t+ 1) ∈ Z(n).

Proof By Theorem 2.1, Zn(t, t+ 1) is a Smarandache groupoid.

(1) Let
n

2
is even. Then by Theorem 2.2, A0 = {0, 2, · · · , n−2} is Smarandache subgroupoid

of Zn(t, t+1). Now we show that either aA0 = A0 or A0a = A0 ∀ a ∈ Zn = {0, 1, 2, · · · , n−1}.

Case 1 t is even.

Let ai ∈ A0 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

a ∗ ai = at+ ai(t+ 1)

≡ aj mod n

for some aj ∈ A0 as at+ ai(t + 1) is even. Therefore, a ∗ ai ∈ A0 ∀ ai ∈ A0, aA0 = A0. Thus,

A0 is a Smarandache seminormal subgroupoid in Zn(t, t+ 1).

Case 2 t is odd.

Let ai ∈ A0 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

ai ∗ a = ait+ a(t+ 1)

≡ aj mod n

for some aj ∈ A0 as ait + a(t+ 1) is even. Therefore, ai ∗ a ∈ A0 ∀ ai ∈ A0, A0a = A0. Thus

A0 is a Smarandache seminormal subgroupoid in Zn(t, t+ 1).

(2) Let
n

2
is odd. Then by Theorem 2.2, A1 = {1, 3, 5, · · · , n − 1} is Smarandache sub-

groupoid of Zn(t, t + 1). Now we show that either aA1 = A1 or A1a = A1 ∀ a ∈ Zn =

{0, 1, 2, · · · , n− 1}.

Case 1 t is even.

Let ai ∈ A1 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

a ∗ ai = at+ ai(t+ 1)

= (a+ ai)t+ ai

≡ aj mod n

for some aj ∈ A1 as (a+ ai)t+ ai is odd. Therefore, a ∗ ai ∈ A1 ∀ ai ∈ A1, ∴ aA1 = A1. Thus

A1 is Smarandache seminormal subgroupoid in Zn(t, t+ 1).

Case 2 t is odd.

Let ai ∈ A1 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

ai ∗ a = ait+ a(t+ 1)

≡ aj mod n
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for some aj ∈ A1 as ait+ a(t+ 1) is odd. Therefore, ai ∗ a ∈ A1 ∀ ai ∈ A1, A1a = A1.

Thus A1 is Smarandache seminormal subgroupoid in Zn(t, t+ 1). 2
By the above theorem we can determine the Smarandache seminormal subgroupoid in

Zn(t, t+ 1) of Z(n) when n is even and n > 3.

n n/2 t Zn(t, t+ 1) Smarandache seminormal subgroupoid in Zn(t, t+ 1)

4 2 1 Z4(1, 2) {0, 2}
2 Z4(2, 3)

1 Z6(1, 2)

6 3 2 Z6(2, 3) {1, 3, 5}
3 Z6(3, 4)

4 Z6(4, 5)

1 Z8(1, 2)

2 Z8(2, 3)

8 4 3 Z8(3, 4) {0, 2, 4, 6}
4 Z8(4, 5)

5 Z8(5, 6)

6 Z8(6, 7)

1 Z10(1, 2)

2 Z10(2, 3)

3 Z10(3, 4)

10 5 4 Z10(4, 5) {1, 3, 5, 7, 9}
5 Z10(5, 6)

6 Z10(6, 7)

7 Z10(7, 8)

8 Z10(8, 9)

1 Z12(1, 2)

2 Z12(2, 3)

3 Z12(3, 4)

4 Z12(4, 5)

12 6 5 Z12(5, 6) {0, 2, 4, 6, 8}
6 Z12(6, 7)

7 Z12(7, 8)

8 Z12(8, 9)

9 Z12(9, 10)

10 Z12(10, 11)
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§3. Smarandache Seminormal Subgroupoids Depend on t, u when n ≡ 0(mod2)

When n is even we are interested in finding Smarandache seminormal subgroupoid in Zn(t, u) ∈
Z(n) when t is even and u is odd or when t is odd and u is even.

Theorem 3.1 Let Zn(t, u) ∈ Z(n),if n is even,n > 3 and for each t, u ∈ Zn,if one is even and

other is odd then Zn(t, u) is Smarandache groupoid.

Proof Let x =
n

2
. Then

x ∗ x = xt+ xu

= (t+ u)x ≡ x mod n.

So {x} is a semigroup in Zn(t, u). Thus Zn(t, u) is a Smarandache groupoid when n is even.2
Remark In the above theorem we can also show that beside {n/2} the other semigroup is

{0, n/2} in Zn(t, u) ∈ Z(n).

Proof If t is even and u is odd, 0 ∗ t +
n

2
∗ u ≡ n

2
mod n,

n

2
∗ t + 0 ∗ u ≡ 0 mod n,

n

2
∗ t+ n

2
∗ u ≡ n

2
mod n and 0 ∗ t+ 0 ∗ u ≡ 0 mod n. So {0, n

2
} is semigroup in Zn(t, u). If t is

odd and u is even, 0 ∗ t+ n

2
∗ u ≡ 0 mod n,

n

2
∗ t+ 0 ∗ u ≡ n

2
mod n,

n

2
∗ t+ n

2
∗ u ≡ n

2
mod n

and 0 ∗ t+ 0 ∗ u ≡ 0 mod n. So {0, n
2
} is semigroup in Zn(t, u). 2

Theorem 3.2 Let n > 3 be even and t, u ∈ Zn.

(1) If
n

2
is even then A0 = {0, 2, · · · , n−2} ⊆ Zn is Smarandache subgroupoid of Zn(t, u) ∈

Z(n) when one of t and u is odd and other is even.

(2) If
n

2
is odd then A1 = {1, 3, · · · , n− 1} ⊆ Zn is Smarandache subgroupoid of Zn(t, u) ∈

Z(n) when one of t and u is odd and other is even.

Proof (1) Let
n

2
be even. ⇒ n

2 ∈ A0. We show that A0 is subgroupoid.

Let xi, xj ∈ A0 and xi 6= xj . Then

xi ∗ xj = xit+ xju ≡ xk mod n

for some xk ∈ A0 as xit+ xju is even. So xi ∗ xj ∈ A0. Thus A0 is a subgroupoid in Zn(t, u).

Let x =
n

2
. Then

x ∗ x = xt+ xu

= x(t+ u) ≡ x mod n.

Whence, {x} is a semigroup in A0. Thus, A0 is a Smarandache subgroupoid in Zn(t, u).

(2) Let
n

2
be odd. ⇒ n

2 ∈ A1. We show that A1 is subgroupoid.

Let xi, xj ∈ A1 and xi 6= xj . Then

xi ∗ xj = xit+ xju ≡ xk mod n
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for some xk ∈ A1 as xi + xju is odd. So xi ∗ xj ∈ A1. Consequently, A1 is subgroupoid in

Zn(t, u).

Let x =
n

2
. Then

x ∗ x = xt+ xu

= x(t+ u) ≡ x mod n.

So {x} is a semigroup in A1. Thus A1 is a Smarandache subgroupoid in Zn(t, u). 2
Theorem 3.3 Let n > 3 be even and t = 1, · · · , n− 2.

(1) If
n

2
is even then A0 = {0, 2, · · · , n−2} ⊆ Zn is Smarandache seminormal subgroupoid

of Zn(t, u) ∈ Z(n) when one of t and u is odd and other is even;

(2) If
n

2
is odd then A1 = {1, 3, · · · , n− 1} ⊆ Zn is Smarandache seminormal subgroupoid

of Zn(t, u) ∈ Z(n) when one of t and u is odd and other is even.

Proof By Theorem 3.1, Zn(t, u) is a Smarandache groupoid.

(1) Let
n

2
is even. Then by Theorem 3.2, A0 = {0, 2, · · · , n − 2} is Smarandache sub-

groupoid of Zn(t, u). Now we show that either aA0 = A0 or A0a = A0 ∀ a ∈ Zn =

{0, 1, 2, · · · , n− 1}.

Case 1 t is even and u is odd.

Let ai ∈ A0 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

a ∗ ai = at+ aiu

≡ aj mod n

for some aj ∈ A0 as at + aiu is even. Whence, a ∗ ai ∈ A0 ∀ ai ∈ A0, aA0 = A0. Thus,

A0 is a Smarandache seminormal subgroupoid in Zn(t, u).

Case 2 t is odd and u is even.

Let ai ∈ A0 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

ai ∗ a = ait+ au

≡ aj mod n

for some aj ∈ A0 as ait + au is even. Therefore, ai ∗ a ∈ A0 ∀ ai ∈ A0, A0a = A0. Thus,

A0 is Smarandache seminormal subgroupoid in Zn(t, u).

(2) Let
n

2
is odd then by Theorem 3.2 is A1 = {1, 3, 5, · · · , n − 1} is Smarandache sub-

groupoid of Zn(t, u). We show that either aA1 = A1 orA1a = A1 ∀ a ∈ Zn = {0, 1, 2, · · · , n−1}.

Case 1 t is even and u is odd.

Let ai ∈ A1 and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

a ∗ ai = at+ aiu

≡ aj mod n
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for some aj ∈ A1 as at + aiu is odd. So, a ∗ ai ∈ A1 ∀ ai ∈ A1, ∴ aA1 = A1. Thus,

A1 is a Smarandache seminormal subgroupoid in Zn(t, u).

Case 2 t is odd and u is even.

Let ai ∈ A1 and a ∈ Zn = {0, 1, 2, · · · , n− 1}.

ai ∗ a = ait+ au

≡ aj mod n

for some aj ∈ A1 as ait + au is odd. Therefore, ai ∗ a ∈ A1 ∀ ai ∈ A1, A1a = A1. Thus,

A1 is a Smarandache seminormal subgroupoid in Zn(t, u). 2
By the above theorem we can determine Smarandache seminormal subgroupoid in Zn(t, u) ∈

Z(n) for n > 3, when n is even and when one of t and u is odd and other is even.

n n/2 t Zn(t, u) Smarandache seminormal subgroupoid

4 2 1 Z4(1, 2) {0, 2}
2 Z4(2, 3)

1 Z6(1, 2), Z6(1, 4)

6 3 2 Z6(2, 1), Z6(2, 3), Z6(2, 5) {1, 3, 5}
3 Z6(3, 2), Z6(3, 4)

4 Z6(4, 1), Z6(4, 3), Z6(4, 5)

5 Z6(5, 2), Z6(5, 4)

1 Z8(1, 2), Z8(1, 4), Z8(1, 6)

2 Z8(2, 1), Z8(2, 3), Z8(2, 5),

Z8(2, 7)

8 4 3 Z8(3, 2), Z8(3, 4) {0, 2, 4, 6}
4 Z8(4, 1), Z8(4, 3), Z8(4, 5),

Z8(4, 7)

5 Z8(5, 2), Z8(5, 4), Z8(5, 6)

6 Z8(6, 1), Z8(6, 5), Z8(6, 7),

7 Z8(7, 2), Z8(7, 4), Z8(7, 6),
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n n/2 t Zn(t, u) Smarandache seminormal subgroupoid

1 Z10(1, 2), Z10(1, 4), Z10(1, 6),

Z10(1, 8)

2 Z10(2, 1), Z10(2, 3), Z10(2, 5),

Z10(2, 7), Z10(2, 9)

3 Z10(3, 2), Z10(3, 4), Z10(3, 8),

10 5 4 Z10(4, 1), Z10(4, 3), Z10(4, 5),

Z10(4, 7), Z10(4, 9) {1, 3, 5, 7, 9}
5 Z10(5, 2), Z10(5, 4), Z10(5, 6),

Z10(5, 8)

6 Z10(6, 1), Z10(6, 5), Z10(6, 7),

7 Z10(7, 2), Z10(7, 4), Z10(7, 6),

Z10(7, 8)

8 Z10(8, 1), Z10(8, 3), Z10(8, 5),

Z10(8, 7), Z10(8, 9)

9 Z10(9, 2), Z10(9, 4), Z10(9, 8)

1 Z12(1, 2), Z12(1, 4), Z12(1, 6),

Z12(1, 8), Z12(1, 10)

2 Z12(2, 1), Z12(2, 3), Z12(2, 5),

Z12(2, 7), Z12(2, 9), Z12(2, 11)

3 Z12(3, 2), Z12(3, 4), Z12(3, 8),

Z12(3, 10)

4 Z12(4, 1), Z12(4, 3), Z12(4, 5),

Z12(4, 7), Z12(4, 9), Z12(4, 11)

12 6 5 Z12(5, 2), Z12(5, 4), Z12(5, 6),

Z12(5, 8) {0, 2, 4, 6, 8, 10}
6 Z12(6, 1), Z12(6, 3), Z12(6, 5),

Z12(6, 7), Z12(6, 11)

7 Z12(7, 2), Z12(7, 4), Z12(7, 6),

Z12(7, 8), Z12(7, 10)

8 Z12(8, 1), Z12(8, 3), Z12(8, 5),

Z12(8, 7), Z12(8, 9), Z12(8, 11)

9 Z12(9, 2), Z12(9, 4), Z12(9, 8),

Z12(9, 10)

10 Z12(10, 1), Z12(10, 3), Z12(10, 7),

Z12(10, 9), Z12(10, 11)

11 Z12(11, 2), Z12(11, 4), Z12(11, 6),

Z12(11, 8), Z12(11, 10)
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§4. Smarandache Seminormal Subgroupoids When n ≡ 1(mod2)

When n is odd we are interested in finding Smarandache seminormal subgroupoid in Zn(t, u) ∈
Z(n).We have proved the similiar result in [4].

Theorem 4.1 Let Zn(t, u) ∈ Z(n). If n is odd, n > 4 and for each t = 2, · · · , n− 1

2
and

u = n− (t− 1)(t, u) = 1, then Zn(t, u) is a Smarandache groupoid.

Proof Let x ∈ {0, · · · , n− 1}. Then

x ∗ x = xt+ xu = (n+ 1)x ≡ x mod n.

So {x} is semigroup in Zn. Thus Zn(t, u) is a Smarandache groupoid in Z(n). 2
Remark We note that all {x} where x ∈ {1, · · · , n−1} are proper subsets which are semigroups

in Zn(t, u).

Theorem 4.2 Let n > 4 be odd and t = 2, · · · , n− 1

2
and u = n− (t− 1) such that (t, u) = 1

if s = (n, t) or s = (n, u) then Ak = {k, k + s, · · · , k + (r − 1)s} for k = 0, 1, · · · , s− 1 where

r =
n

s
is a Smarandache subgroupoid in Zn(t, u) ∈ Z(n).

Proof Let xp, xq ∈ Ak. Then

xp 6= xq ⇒
xp = k + ps

xq = k + qs



 p, q ∈ {0, 1, · · · , r − 1}.

Also,

xp ∗ xq = xpt+ xqu

= (k + ps)t+ (k + qs)(n− (t− 1))

= k(n+ 1) + ((p− q)t+ q(n+ 1))s

≡ (k + ls) mod n

≡ xl mod n

xl ∈ Ak as xl = k + ls for some l ∈ {0, 1, · · · , r − 1}. Whence, xp ∗ xq ∈ Ak. Consequently, Ak

is a subgroupoid in Zn(t, u). By the above remark all singleton sets are semigroup. Thus,Ak is

a Smarandache subgroupoid. 2
Theorem 4.3 Let n > 4 be odd and t = 2, · · · , n− 1

2
and u = n− (t− 1) such that (t, u) = 1

if s = (n, t) or s = (n, u) then Ak = {k, k + s, · · · , k + (r − 1)s} for k = 0, 1, · · · , s− 1 where

r =
n

s
is a Smarandache seminormal subgroupoid in Zn(t, u) ∈ Z(n).

Proof By Theorem 4.1, Zn(t, u) is a Smarandache groupoid. Also by Theorem 4.2, Ak =

{k, k + s, · · · , k + (r − 1)s} for k = 0, 1, · · · , s− 1 is Smarandache subgroupoid of Zn(t, u).
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If s = (n, t), let xp ∈ Ak and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

a ∗ xp = at+ xpu

= at+ (k + ps)(n− t+ 1)

= k(n+ 1) + [(a− k)v1 + (pn− pt+ p)]s where t = v1s

≡ k + ls mod n

xl ∈ Ak as xl = k + ls for some l ∈ {0, 1, · · · , r − 1}. So, a ∗ xp ∈ Ak, a ∗Ak = Ak. Thus, Ak

is a Smarandache seminormal subgroupoid in Zn(t, u).

If s = (n, u), let xp ∈ Ak and a ∈ Zn = {0, 1, 2, · · · , n− 1}. Then

xp ∗ a = xpt+ au

= (k + ps)(n− u+ 1) + au

= k(n+ 1) + [(a− k)v2 + (pn− pu+ p)]s where t = v2s

≡ (k + ls) mod n

xl ∈ Ak as xl = k + ls for some l ∈ {0, 1, · · · , r − 1}. Therefore, a ∗ xp ∈ Ak, a ∗ Ak = Ak.

Thus Ak is a Smarandache seminormal subgroupoid in Zn(t, u). 2
By the above theorem we can determine Smarandache seminormal subgroupoid in Zn(t, u)

when n is odd and n > 4.

n t u Zn(t, u) s = (n, u) r = n/s Smarandache seminormal

or s = (n, t) subgroupoid in Zn(t, u)

A0 = {0, 3, 6}
9 3 7 Z9(3, 7) 3 = (9,3) 3 A1 = {1, 4, 7}

A2 = {2, 5, 8}
A0 = {0, 3, 6, 9, 12}

3 13 Z15(3, 13) 3 = (15,3) 5 A1 = {1, 4, 7, 10, 13}
A2 = {2, 5, 8, 11, 14}

15 A0 = {0, 5, 10}
A1 = {1, 6, 11}

5 11 Z15(5, 11) 5 = (15, 5) 3 A2 = {2, 7, 12}
A3 = {3, 8, 13}
A4 = {4, 9, 14}

A0 = {0, 3, 6, 9, 12}
7 9 Z15(7, 9) 3 = (15,9) 5 A1 = {1, 4, 7, 10, 13}

A2 = {2, 5, 8, 11, 14}
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n t u Zn(t, u) s = (n, u) r = n/s Smarandache seminormal

or s = (n, t) subgroupoid in Zn(t, u)

A0 = {0, 3, 6, 9, 12, 15, 18}
3 19 Z21(3, 19) 3 = (21,3) 7 A1 = {1, 4, 7, 10, 13, 16, 19}

A2 = {2, 5, 8, 11, 14, 17, 20}
A0 = {0, 7, 14}
A1 = {1, 8, 15}

21 A2 = {2, 9, 16}
7 = (21,7) 3 A3 = {3, 10, 17}

7 15 Z21(7, 15) A4 = {4, 11, 18}
A5 = {5, 12, 19}
A6 = {6, 13, 14}

A0 = {0, 3, 6, 9, 12, 15, 18}
3 = (21,15) 7 A1 = {1, 4, 7, 10, 13, 16, 19}

A2 = {2, 5, 8, 11, 14, 17, 20}
A0 = {0, 3, 6, 9, 12, 15, 18}

9 13 Z21(9, 13) 3 = (21,9) 7 A1 = {1, 4, 7, 10, 13, 16, 19}
A2 = {2, 5, 8, 11, 14, 17, 20}
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§1. Introduction

Let (Mn, L) be an n-dimensional Finsler space on a differentiable manifold Mn, equipped with

the fundamental function L(x, y). In 1971, Matsumoto [2] introduced the transformation of

Finsler metric:

L∗(x, y) = L(x, y) + β(x, y) (1.1)

where β(x, y) = bi(x)y
i is a differentiable one-form on Mn. In 1984 Shibata [6] has studied the

properties of Finsler space (Mn, L∗) whose metric function L∗(x, y) is obtained from L(x, y)

by the relation L∗(x, y) = f(L, β) where f is positively homogeneous of degree one in L and

β. This change of metric function is called a β−change. The change (1.1) is a particular case

of β−change called Randers change. The following theorem has importance under Randers

change.

Theorem (1.1)([2]) Let (Mn, L∗) be a locally Minkowskian n-space obtained from a locally

Minkowskian n-space (Mn, L) by the change (1.1). If the tangent Riemannian n-space (Mn
x , gx)

to (Mn, L) is of imbedding class r, then tangent Riemannian n-space (Mn
x , g

∗
x) to (Mn, L∗) is

of imbedding class at most r + 2.

In [5] it has been proved that Theorem (1.1) is valid for Kropina change of Finsler metric

1Received April 8, 2013, Accepted June 20, 2013.
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function given by

L∗(x, y) =
L2(x, y)

β(x, y)
. (1.2)

In 1990, Prasad, Shukla and Singh [4] proved that Theorem (1.1) is valid for the transformation

given by (1.1) in which bi(x) in β is replaced by h-vector bi(x, y) such that
∂bi
∂yj

is proportional

to angular metric tensor.

Recently Prasad, Shukla and Pandey [3] have proved that Theorem (1.1) is also valid for

exponential change of Finsler metric given by

L∗(x, y) = Leβ/L.

In the present paper we consider Kropina-Randers change of Finsler metric given by

L∗ =
L2

β
+ β

and prove that Theorem (1.1) is valid for this transformation also.

§2. The Finsler Space (Mn, L∗)

Let (Mn, L) be a given Finsler space and let bi(x)dx
i be a one-form on Mn. We shall define

on Mn a function L∗(x, y) (> 0) by the equation

L∗ =
L2

β
+ β, (2.1)

where we put β(x, y) = bi(x)y
i. To find the metric tensor g∗ij , the angular metric tensor h∗ij ,

the Cartan tensor C∗
ijk and the v-curvature tensor of (Mn, L∗) we use the following results:

∂̇iβ = bi ∂̇iL = li, ∂̇j li = L−1hij , (2.2)

where ∂̇i stands for
∂

∂yi
and hij are components of angular metric tensor of (Mn, L) given by

hij = gij − lilj = L∂̇i∂̇jL.

The successive differentiation of (2.1) with respect to yi and yj gives

l∗i =
2L

β
li +

(
1− L2

β2

)
bi, (2.3)

h∗ij = 2

(
L2

β2
+ 1

){
hij + lilj −

L

β
(libj + ljbi) +

L2

β2
bibj

}
. (2.4)

From (2.3) and (2.4) we get the following relation between metric tensors of (Mn, L) and

(Mn, L∗):

g∗ij = 2

(
L2

β2
+ 1

)
gij +

4L2

β2
lilj +

(
3L4

β4
+ 1

)
bibj −

4L3

β3
(libj + ljbi). (2.5)
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The contravariant components of the metric tensor of (Mn, L∗) is derived from (2.5) and are

given by

g∗ij =
β2

2(β2 + L2)
gij − β2{β2(β2 + L2) +△L2(L2 − β2)}

b2(β2 + L2)3
lilj (2.6)

+
β3L

b2(β2 + L2)2
(libj + ljbi)− β2

2b2(β2 + L2)
bibj

where we put li = gij lj , b
i = gijbj, b

2 = gijbibj and △ = b2 − β2

L2
.

Differentiating (2.5) with respect to yk and using (2.2) we get the following relation between

the Cartan tensors of (Mn, L) and (Mn, L∗):

C∗
ijk =

1

2
∂̇kg

∗
ij (2.7)

= 2

(
L2

β2
+ 1

)
Cijk −

2L2

β2
(hijmk + hjkmi + hikmj)−

6L4

β5
mimjmk,

where mi = bi −
β

L
li. It is to be noted that

mil
i = 0, mib

i = △ = mim
i, hij l

j = 0, hijm
j = hijb

j = mi, (2.8)

where mi = gijmj = bi − β

L
li.

The quantities corresponding to (Mn, L∗) will be denoted by putting ∗ on those quantities.

To find C∗i
jk = g∗ihC∗

jhk we use (2.6), (2.7) and (2.8). We get

C∗i
jk = Ci

jk −
L2

β(β2 + L2)
(hjkm

i + hi
jmk + hi

kmj) (2.9)

− β4

2b2L2(β2 + L2)
C.jkn

i − 3L4

b2β3(β2 + L2)
mjmkm

i

+
△β3

2b2(β2 + L2)2
hjkn

i +
β(2β2 + 3△L2)

2b2(β2 + L2)2
mjmkn

i,

where ni =
2L2

β4
{(β2 + L2)bi − 2βLli} and C.jk = Chjkb

h.

Throughout this paper we use the symbol . to denote the contraction with bi. To find the

v-curvature tensor of (Mn, L∗) we use the following:

Cijkm
i = C.ij , Cijkn

i =
2L2

β4
(β2 + L2)C.jk, (2.10)

min
i =

2△L2

β4
(β2 + L2), mimi = △,

hijn
i =

2L2

β4
(β2 + L2)mj , Ch

ijhhk = Cijk, hr
jh

i
r = hi

j .

The v-curvature tensor S∗
hijk of (Mn, L∗) is defined as

S∗
hijk = C∗r

hkC
∗
rij − C∗r

hjC
∗
rik (2.11)
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From (2.7), (2.8), (2.9), (2.10) and (2.11) we get the following relation between v-curvature

tensors of (Mn, L) and (Mn, L∗):

S∗
hijk = 2

(
L2

β2
+ 1

)
Shijk + dhjdik − dhkdij + EhkEij − EhjEik, (2.12)

where

dij =

√
2(β2 + L2)

bβ

[
C.ij +

β

β2 + L2
hij +

2L2

β(β2 + L2)
mimj

]
, (2.13)

Eij = −
√

2L

β
√
β2 + L2

[
hij +

2L2

β2
mimj

]
. (2.14)

By direct calculation we get the following results which will be used in the latter section of the

paper:

∂̇ib
2 = −2C..i, ∂̇i△ = −2C..i −

2β

L2
mi. (2.15)

§3. Imbedding Class Numbers

The tangent vector space Mn
x to Mn at every point x is considered as the Riemannian n-space

(Mn
x , gx) with the Riemannian metric gx = gij(x, y)dy

idyj . Then the components of the Cartan

tensor are the Christoffel symbols associated with gx:

Ci
jk =

1

2
gih(∂̇kgjh + ∂̇jghk − ∂̇hgjk).

Thus Ci
jk defines the components of the Riemannian connection on Mn

x and v-covariant deriva-

tive, say

Xi|j = ∂̇jXi −XhC
h
ij (3.0)

is the covariant derivative of covariant vector Xi with respect to Riemannian connection Ci
jk on

Mn
x . It is observed that the v-curvature tensor Shijk of (Mn, L) is the Riemannian Christoffel

curvature tensor of the Riemannian space (Mn, gx) at a point x. The space (Mn, gx) equipped

with such a Riemannian connection is called the tangent Riemannian n-space [2].

It is well known [1] that any Riemannian n-space V n can be imbedded isometrically in a

Euclidean space of dimension
n(n+ 1)

2
. If n+ r is the lowest dimension of the Euclidean space

in which V n is imbedded isometrically, then the integer r is called the imbedding class number

of V n. The fundamental theorem of isometric imbedding ([1] page 190) is that the tangent

Riemannian n-space (Mn
x , gx) is locally imbedded isometrically in a Euclidean (n+ r)−space if

and only if there exist r−number ǫP = ±1, r−symmetric tensors H(P )ij and
r(r − 1)

2
covariant

vector fields H(P,Q)i = −H(Q,P )i; P,Q = 1, 2, · · · , r, satisfying the Gauss equations

Shijk =
∑

P

ǫP {H(P )hjH(P )ik −H(P )ijH(P )hk}, (3.1)

The Codazzi equations

H(P )ij |k −H(P )ik|j =
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}, (3.2)
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and the Ricci-Kühne equations

H(P,Q)i|j −H(P,Q)j |i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i} (3.3)

+ ghk{H(P )hiH(Q)kj −H(P )hjH(Q)ki} = 0.

The numbers ǫP = ±1 are the indicators of unit normal vector NP to Mn and H(P )ij are the

second fundamental tensors of Mn with respect to the normals NP .

Proof of Theorem (1.1) In order to prove Theorem (1.1), we put

(a) H∗
(P )ij =

[
2

(
L2

β2
+ 1

)]1/2

H(P )ij , ǫ∗P = ǫP , P = 1, 2, · · · , r

(b) H∗
(r+1)ij = dij , ǫ∗r+1 = 1 (3.4)

(c) H∗
(r+2)ij = Eij , ǫ∗r+2 = −1.

Then it follows from (2.12) and (3.1) that

S∗
hijk =

r+2∑

λ=1

ǫ∗λ{H∗
(λ)hjH

∗
(λ)ik −H∗

(λ)hkH
∗
(λ)ij},

which is the Gauss equation of (Mn
x , g

∗
x).

Moreover, to verify Codazzi and Ricci Kühne equation of (Mn
x , g

∗
x), we put

(a) H∗
(P,Q)i = −H∗

(Q,P )i = H(P,Q)i, P,Q = 1, 2, , · · · , r

(b) H∗
(P,r+1)i = −H∗

(r+1,P )i =
1

b
H(P ).i, P = 1, 2, · · · , r

(c) H∗
(P,r+2)i = −H∗

(r+2,P )i = 0, P = 1, 2, · · · , r. (3.5)

(d) H∗
(r+1,r+2)i = −H∗

(r+2,r+1)i = − L2
√

2

b(β2 + L2)
√
βL

mi.

The Codazzi equations of (Mn
x , g

∗
x) consists of the following three equations:

(a) H∗
(P )ij

∗

|k −H∗
(P )ik

∗

|j=
∑

Q

ǫ∗Q{H∗
(Q)ijH

∗
(Q,P )k −H∗

(Q)ikH
∗
(Q,P )j} (3.6)

+ ǫ∗r+1{H∗
(r+1)ijH

∗
(r+1,P )k −H∗

(r+1)ikH
∗
(r+1,P )j}

+ ǫ∗r+2{H∗
(r+2)ijH

∗
(r+2,P )k −H∗

(r+2)ikH
∗
(r+2,P )j}

(b) H∗
(r+1)ij

∗

|k −H∗
(r+1)ik

∗

|j=
∑

Q

ǫ∗Q{H∗
(Q)ijH

∗
(Q,r+1)k −H∗

(Q)ikH
∗
(Q,r+1)j}

+ ǫ∗r+2{H∗
(r+2)ijH

∗
(r+2,r+1)k −H∗

(r+2)ikH
∗
(r+2,r+1)j}

(c) H∗
(r+2)ij

∗

|k −H∗
(r+2)ik

∗

|j=
∑

Q

ǫ∗Q{H∗
(Q)ijH

∗
(Q,r+2)k −H∗

(Q)ikH
∗
(Q,r+2)j}

+ ǫ∗r+1{H∗
(r+1)ijH

∗
(r+1,r+2)k −H∗

(r+1)ikH
∗
(r+1,r+2)j}.
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To prove these equations we note that for any symmetric tensorXij satisfyingXij l
i = Xij l

j = 0,

we have from (2.9) and (3.0),

Xij

∗

|k −Xik

∗

|j = Xij |k −Xik|j +
1

b2
{C.ikX.j − C.ijX.k} (3.7)

+
L2

β(L2 + β2)
(Xijmk −Xikmj) +

L2

b2β(L2 + β2)

×(X.jmk −X.kmj)mi +
β

b2(L2 + β2)
(hikX.j − hijX.k).

In view of (3.4) and (3.5), equation (3.6)a is equivalent to

(√
2

(
L2

β2
+ 1

)
.H(P )ij

)
∗∣∣∣
k
−
(√

2

(
L2

β2
+ 1

)
.H(P )ik

)
∗∣∣∣
j

(3.8)

=

√
2

(
L2

β2
+ 1

)
.
∑

Q

ǫQ{H(Q)ijH(Q,P )k −H(Q)ikH(Q,P )j}

−1

b
{H(P ).kdij −H(P ).jdik}.

Since

(√
2
(

L2

β2 + 1
))∗∣∣∣

k
= ∂̇k

(√
2
(

L2

β2 + 1
))

= −
√

2L2

β2
√
L2 + β2

mk, applying formula (3.7) for

H(P )ij and using equation (2.13), we get

(√
2

(
L2

β2
+ 1

)
.H(P )ij

)
∗∣∣∣
k
−
(√

2

(
L2

β2
+ 1

)
.H(P )ik

)
∗∣∣∣
j
=

√
2

(
L2

β2
+ 1

)

×{H(P )ij |k −H(P )ik|j} −
1

b
{H(P ).kdij −H(P ).jdik},

which after using equation (3.2), gives equation (3.8).

In view of (3.4) and (3.5), equation (3.6)b is equivalent to

dij

∗

|k −dik

∗

|j=
√

2(β2 + L2)

bβ

∑

Q

ǫQ{H(Q)ijH(Q).k −H(Q)ikH(Q).j} (3.9)

− L2
√

2

b(β2 + L2)
√
βL
{Eijmk − Eikmj}.

To verify (3.9), we note that

C.ij |k − C.ik|j = bhS
h
ijk (3.10)

b|k = −1

b
C..k, hij |k − hik|j = L−1(hij lk − hiklj) (3.11)

mi|k = −C.ik −
β

L2
hik − L−1limk. (3.12)

The v-covariant differentiation of (2.13) will give the value of dij |k. Then taking skew-symmetric

part of dij |k in j and k, we get

dij |k − dik|j = A(C.ij |k − C.ik|j) +B(hij |k − hik|j) +D(mi|kmj (3.13)

+mj|kmi −mi|jmk −mk|jmi) + (∂̇kA)C.ij − (∂̇jA)C.ik

+(∂̇kB)hij − (∂̇jB)hik + (∂̇kD)mimj − (∂̇jD)mimk,
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where A =

√
2(β2 + L2)

bβ
, B =

√
2

b
√

(β2 + L2)
, D =

4L2

bβ2
√

2(β2 + L2)
.

Applying formula (3.7) for dij and using (3.13), (3.10), (3.11), (3.12), (2.15), we get

dij

∗

|k −dik

∗

|j =

√
2(β2 + L2)

bβ
bhS

h
ijk (3.14)

+
2L3

bβ(L2 + β2)3/2
√
βL

(hijmk − hikmj).

Substituting (3.1) and (2.14) in the right hand side of (3.14), we get equation (3.9).

In view of (3.4) and (3.5), equation (3.6)c is equivalent to

Eij

∗

|k −Eik

∗

|j=
√

2L2

b(L2 + β2)
√
βL

(dijmk − dikmj). (3.15)

The v-covariant differentiation of (2.14) and use of (2.15) will give the value of Eij |k. Then

taking skew-symmetric part of Eij |k in j and k and using (3.11), (3.12), we get

Eij |k − Eik|j = − 2
√

2L3

β3
√
β2 + L2

(C.ijmk − C.ikmj) (3.16)

− 2
√

2L3

β2(L2 + β2)3/2
(hijmk − hikmj).

Applying formula (3.7) for Eij and using (3.16), we get (3.15). This completes the proof of

Codazzi equations of (Mn
x , g

∗
x).

The Ricci Kühne equations of (Mn
x , g

∗
x) consist of the following four equations:

(a) H∗
(P,Q)i

∗

|j −H∗
(P,Q)j

∗

|i +
∑

Q

ǫ∗Q{H∗
(R,P )iH

∗
(R,Q)j (3.17)

−H∗
(R,P )jH

∗
(R,Q)i}+ ǫ∗r+1{H∗

(r+1,P )iH
∗
(r+1,Q)j

−H∗
(r+1,P )jH

∗
(r+1,Q)i}+ ǫ∗r+2{H∗

(r+2,P )iH
∗
(r+2,Q)j

−H∗
(r+2,P )jH

∗
(r+2,Q)i}+ g∗hk{H∗

(P )hiH
∗
(Q)kj

−H∗
(P )hjH

∗
(Q)ki} = 0, P,Q = 1, 2, · · · , r

(b) H∗
(P,r+1)i

∗

|j −H∗
(P,r+1)j

∗

|i +
∑

R

ǫ∗R{H∗
(R,P )iH

∗
(R,r+1)j −H∗

(R,P )jH
∗
(R,r+1)i}

+ ǫ∗r+2{H∗
(r+2,P )iH

∗
(r+2,r+1)j −H∗

(r+2,P )jH
∗
(r+2,r+1)i}

+ g∗hk{H∗
(P )hiH

∗
(r+1)kj −H∗

(P )hjH
∗
(r+1)ki} = 0, P = 1, 2, · · · , r

(c) H∗
(P,r+2)i

∗

|j −H∗
(P,r+2)j

∗

|i +
∑

R

ǫ∗R{H∗
(R,P )iH

∗
(R,r+2)j −H∗

(R,P )jH
∗
(R,r+2)i}

+ ǫ∗r+1{H∗
(r+1,P )iH

∗
(r+1,r+2)j −H∗

(r+1,P )jH
∗
(r+1,r+2)i}

+ g∗hk{H∗
(P )hiH

∗
(r+2)kj −H∗

(P )hjH
∗
(r+2)ki} = 0, P = 1, 2, · · · , r

(d) H∗
(r+1,r+2)i

∗

|j −H∗
(r+1,r+2)j

∗

|i +
∑

R

ǫ∗R{H∗
(R,r+1)iH

∗
(R,r+2)j −H∗

(R,r+1)j

×H∗
(R,r+2)i}+ g∗hk{H∗

(r+1)hiH
∗
(r+2)kj −H∗

(r+1)hjH
∗
(r+2)ki} = 0.



The Kropina-Randers Change of Finsler Metric and Relation Between Imbedding Class Numbers 81

In view of (3.4) and (3.5), equation (3.17)a is equivalent to

H(P,Q)i

∗

|j −H(P,Q)j

∗

|i +
∑

R

ǫR{H(R,P )iH(R,Q)j −H(R,P )jH(R,Q)i} (3.18)

+
1

b2
{H(P ).iH(Q).j −H(P ).jH(Q).i}+ g∗hk{H(P )hiH(Q)kj

−H(P )hjH(Q)ki}.2
(
L2

β2
+ 1

)
= 0. P,Q = 1, 2, · · · , r.

Since H(P )ij l
i = 0 = H(P,Q)il

i, from (2.6), we get

g∗hk{H(P )hiH(Q)kj −H(P )hjH(Q)ki}
(
L2

β2
+ 1

)
= ghk

(
L2

β2
+ 1

)
{H(P )hi ×

H(Q)kj −H(P )hjH(Q)ki} −
1

2b2
{H(P ).iH(P ).j −H(P ).jH(P ).i}.

Also, we haveH(P,Q)i

∗

|j −H(P,Q)j

∗

|i= H(P,Q)i|j−H(P,Q)j |i. Hence equation (3.18) is satisfied

identically by virtue of (3.3).

In view of (3.4) and (3.5), equation (3.17)b is equivalent to

(
1

b
H(P ).i

)∗∣∣∣
j
−
(

1

b
H(P ).j

)∗∣∣∣
i
+

1

b

∑

R

ǫR{H(R,P )iH(R).j −H(R,P )jH(R).i} (3.19)

+ g∗hk{H(P )hidkj −H(P )hjdki}
√

2

(
L2

β2
+ 1

)
= 0. P,Q = 1, 2, · · · , r.

Since bh|j = −ghkC.jk, H(P )hil
i = 0, we have

H(P ).i

∗

|j −H(P ).j

∗

|i= H(P ).i|j −H(P ).j |i = [H(P )hi|j −H(P )hj |i]bh (3.20)

−ghk{H(P )hiC.kj −H(P )hjC.ki}

1

b

∗∣∣
j
= ∂̇j

(
1

b

)
=

1

b3
C..j (3.21)

and

g∗hk{H(P )hidkj −H(P )hjdki}
√

2

(
L2

β2
+ 1

)
=

β√
2(L2 + β2)

ghk × (3.22)

{H(P )hidkj −H(P )hjdki} −
β

b2
√

2(L2 + β2)
{H(P ).id.j −H(P ).jd.i}.

After using (2.13) the equation (3.22) may be written as

g∗hk{H(P )hidkj −H(P )hjdki}
√

2

(
L2

β2
+ 1

)
=

1

b
ghk × (3.23)

{H(P )hiC.kj −H(P )hjC.ki} −
1

b3
{H(P ).iC..j −H(P ).jC..i}.

From (3.2), (3.20), (3.21) and (3.23) it follows that equation (3.19) holds identically.
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In view of (3.4) and (3.5), equation (3.17)c is equivalent to

√
2L2

b2(L2 + β2)
√
βL
{H(P ).imj −H(P ).jmi) (3.24)

+

√
2

(
L2

β2
+ 1

)
g∗hk{H(P )hiEkj −H(P )hjEki} = 0,

Since Eij l
i = Eij l

j = 0, from (2.5), we have

√
2

(
L2

β2
+ 1

)
g∗hk{H(P )hiEkj −H(P )hjEki} =

β√
2(L2 + β2)

ghk ×

{H(P )hiEkj −H(P )hjEki} −
β

b2
√

2(L2 + β2)
{H(P ).iE.j −H(P ).jE.i}.

In view of (2.14) the right hand side of the last equation is equal to

−
√

2L2

b2(L2 + β2)
√
βL
{H(P ).imj −H(P ).jmi}.

Hence equation (3.24) is satisfied identically.

In view of (3.4) and (e3.5), equation (3.17)d is equivalent to

(
−

√
2L2

b(L2 + β2)
√
βL

mi

)
∗∣∣∣
j
−
(
−

√
2L2

b(L2 + β2)
√
βL

mj

)
∗∣∣∣
i

(3.25)

+ g∗hk(dhiEkj − dhjEki) = 0.

Since Eij l
i = 0, dij l

i = 0, from (2.6), it follows that

g∗hk{dhiEkj − dhjEki} =
β2

2(L2 + β2)
ghk{dhiEkj − dhjEki}

− β2

2b2(L2 + β2)
{d.iE.j − d.jE.i}.

In view of (2.13) the right hand side of the last equation is equal to

− 2L

b3(L2 + β2)
{C..imj − C..jmi}.

Also,

(
−

√
2L2

b(L2 + β2)
√
βL

mi

)
∗∣∣∣
j
−
(
−

√
2L2

b(L2 + β2)
√
βL

mj

)
∗∣∣∣
i

= −
√

2L2

b(L2 + β2)
√
βL

(mi

∗

|j −mj

∗

|i) + ∂̇j

(
−

√
2L2

b(L2 + β2)
√
βL

)
mi

−∂̇i

(
−

√
2L2

b(L2 + β2)
√
βL

)
mj .
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Since mi

∗

|j −mj

∗

|i= L−1(ljmi − limj) and

∂̇j

(
−

√
2L2

b(L2 + β2)
√
βL

)
= −

√
2L

b(L2 + β2)
√
βL

lj −
2L

b3(L2 + β2)
C..j ,

we have
(
−

√
2L2

b(L2 + β2)
√
βL

mi

)
∗∣∣∣
j
−

(
−

√
2L2

b(L2 + β2)
√
βL

mj

)
∗∣∣∣
i

(3.26)

= − 2L

b3(L2 + β2)
{C..jmi − C..imj}.

Hence equation (3.25) is satisfied identically. Therefore Ricci-Kühne equations are satisfied

for (Mn
x , g

∗
x) given in (3.17) are satisfied.

Hence Theorem (1.1) given in introduction is satisfied for Kropina-Randers change of

Finsler metric.
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§1. Introduction

Bisector construction plays an important role in many geometric computations, such as Voronoi

diagrams construction, medial axis transformation, shape decomposition, mesh generation,

collision-avoidance motion planning, and NC tool path generation (Dutta 1993, Elber 1998,

Pottmann 1995, Peternell 2000, Farouki 1994b).

Let R
3
1 be a Minkowski 3-space with Lorentzian metric

ds2 = dx2 + dy2 − dz2 (1)

If 〈X,Y 〉 = 0 for all X and Y , the vectors X and Y are called perpendicular in the sense

of Lorentz, where 〈, 〉 is the induced inner product in R
3
1. The norm of X ∈ R

3
1 is denoted by

‖X‖ and defined as

‖X‖ =
√
|〈X,X〉| (2)

We say that a Lorentzian vector X is spacelike, lightlike or timelike if 〈X,X〉 > 0 and

X = 0, 〈X,X〉 = 0, 〈X,X〉 < 0, respectively. A smooth regular curve is said to be a timelike,

spacelike or lightlike curve if the tangent vector is a timelike, spacelike, or lightlike vector,

respectively (Turgut 1998, Turgut 1997, O’Neill 1983) .

For any X = (x1, x2, x3), Y = (y1, y2, y3) ∈ R
3
1, the Lorentz vector product of X and Y is

defined as follows:

X ∧ Y = (x2y3 − x3y2, x1y3 − x3y1, x2y1 − x1y2).

This yields

1Received November 16, 2012, Accepted June 22, 2013.
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e1 ∧ e2 = −e3, e3 ∧ e1 = −e2, e2 ∧ e3 = e1

where {e1, e2, e3} are the base of the space R
3
1.

§2. Bisector Surface of Two Space Curves in Minkowski 3-Space

To introduce the subject of bisector in Minkowski 3-space, we deal with an elementary example.

Let A = (a, b, c) and N = (m,n, l) be two points in R
3
1. Since the bisector B = (x, y, z) is the

set of points equidistant from the two points A and N , we have

∣∣(x− a)2 + (y − b)2 − (z − c)2
∣∣ =

∣∣(x−m)2 + (y − n)2 − (z − l)2
∣∣ (3)

There are two cases in Equation (3). Now, let us discuss the following two cases.

Case 1 If (x− a)2 + (y− b)2 − (z − c)2 = (x−m)2 + (y− n)2 − (z − l)2 then, we have a plane

equation in R
3
1 given by

x(m− a) + y(n− b) + z(c− l) +
1

2
(a2 + b2 − c2 +m2 + n2 − l2) = 0 (4)

Case 2 If (x − a)2 + (y − b)2 − (z − c)2 = (z − l)2 − (x − m)2 − (y − n)2 then, we have a

hyperboloid equation in R
3
1 given by

x2 + y2 − z2 − x(a+m)− y(b+ n) + z(c+ l) +
1

2
(a2 + b2 − c2 +m2 + n2 − l2) = 0 (5)

We now investigate the bisector surface of two rational space curves. Let

C1(s) = (x1(s), y1(s), z1(s))

C2(t) = (x2(t), y2(t), z2(t))

(6)

be two regular parametric C1-continuous space curves in Minkowski 3-space. The tangent

vectors of C1(s) and C2(t) are determined by, respectively

T1(s) = (x′1(s), y
′
1(s), z

′
1(s))

T2(t) = (x′2(t), y
′
2(t), z

′
2(t))

(7)

When a point P is on the bisector of two curves, there exist (at least) two points C1(s)

and C2(t) such that point P is simultaneously contained in the normal planes L1(s) and L2(t).

As a result, the point P satisfies the following two linear equations:

L1(s) :< P − C1(s), T1(s) >= 0 (8)

L2(t) :< P − C2(t), T2(t) >= 0 (9)
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Moreover, point P is also contained in the bisector plane L12(s, t) between the two points

C1(s) and C2(t). The plane L12(s, t) is orthogonal to the vector C1(s) − C2(t) and passes

through the mid point [C1(s) + C2(t)]/2 of C1(s) and C2(t). Therefore, the bisector plane

L12(s, t) is defined by the following linear equation:

L12(s, t) :< P − C1(s) + C2(t)

2
, C1(s)− C2(t) >= 0 (10)

Any bisector point P must be a common intersection point of the three planes of L1(s),

L2(t), and L12(s, t), for some s and t. Therefore, the point P can be computed by solving the

following simultaneous linear equations in P :

L1(s) : < P, T1(s) >=< C1(s), T1(s) >

L2(t) : < P, T2(t) >=< C2(t), T2(t) >

L12(s, t) : < P,C1(s)− C2(t) >=
C1(s)

2 − C2(t)
2

2





(11)

Using Equations (6), we have

C1(s)− C2(t) = (x12(s, t), y12(s, t), z12(s, t)) (12)

where x12(s, t) = x1(s)− x2(t), y12(s, t) = y1(s)− y2(t) and z12(s, t) = z1(t)− z2(s).
Substituting Equations (12), (1) and (7) into Equation (11) then, we obtain the implicit

equations of the planes L1(s), L2(t), and L12(s, t) as

L1(s) : = x′1(s)Px + y′1(s)Py − z′1(s)Pz = d1(s)

L2(t) : = x′2(t)Px + y′2(t)Py − z′2(t)Pz = d2(t)

L12(s, t) : = x12(s, t)Px + y12(s, t)Py − z12(s, t)Pz = m(s, t)





(13)

where P = (Px, Py, Pz) is the bisector point, and d1(s), d2(t) and m(s, t) are given by

d1(s) =< C1(s), T1(s) >, d2(t) =< C2(t), T2(t) > (14)

m(s, t) =
C1(s)

2 − C2(t)
2

2
(15)

We may express results in the matrix form as




x′1(s) y′1(s) −z′1(s)
x′2(t) y′2(t) −z′2(t)
x12(s, t) y12(s, t) −z12(s, t)







Px

Py

Pz


 =




d1(s)

d2(t)

m(s, t)


 (16)
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By Cramer’s rule, Equation (13) can be solved as follows:

Px(s, t) =

∣∣∣∣∣∣∣∣

d1(s) y′1(s) −z′1(s)
d2(t) y′2(t) −z′2(t)
m(s, t) y12(s, t) −z12(s, t)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

x′1(s) y′1(s) −z′1(s)
x′2(t) y′2(t) −z′2(t)
x12(s, t) y12(s, t) −z12(s, t)

∣∣∣∣∣∣∣∣

, (17)

Py(s, t) =

∣∣∣∣∣∣∣∣

x′1(s) d1(s) −z′1(s)
x′2(t) d2(t) −z′2(t)
x12(s, t) m(s, t) −z12(s, t)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

x′1(s) y′1(s) −z′1(s)
x′2(t) y′2(t) −z′2(t)

x12(s, t) y12(s, t) −z12(s, t)

∣∣∣∣∣∣∣∣

, (18)

and

Pz(s, t) =

∣∣∣∣∣∣∣∣

x′1(s) y′1(s) d1(s)

x′2(t) y′2(t) d2(t)

x12(s, t) y12(s, t) m(s, t)

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣

x′1(s) y′1(s) −z′1(s)
x′2(t) y′2(t) −z′2(t)
x12(s, t) y12(s, t) −z12(s, t)

∣∣∣∣∣∣∣∣

. (19)

The bisector surface P (s, t) = (Px(s, t), Py(s, t), Pz(s, t)) has a simple rational representa-

tion as long as the common denominator of Px, Py and Pz in equation (13) does not vanish.

Example 2.1 Let C1(s) and C2(t) be two non-intersecting orthogonal straight lines in

Minkowski space given by parametrization

C1(s) = (1, s, 0), C2(t) = (0, 0, t) (20)

By using Equations (20), (14) and (15), we have

d1(s) = s, d2(t) = −t, m(s, t) =
1 + s2 + t2

2
(21)

Substituting Equation (21) into Equations (17), (18) and (19). Finally, we have the bisector

surface P (s, t) given by parametrization

P (s, t) = (
1− s2 − t2

2
, s, t)
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Figure 2.1a Figure 2.1b

where, Figure 2.1a shows the bisector surface of two lines in Euclidean space, Figure 2.1b shows

that the bisector surface of two lines in Minkowski space.

We observe that the bisector of C1(s) and C2(t) lines, shown in Fig. 1(a), is a hyperbolic

paraboloid of one sheet in Euclidean 3-space (Elber 1998). On the other hand, the bisector

surface of C1(s) and C2(t) lines, shown in Fig. 1(b), is elliptic paraboloid in Minkowski 3-space.

Example 2.2 Figure 2(a) and Figure 2(b) illustrates the bisector surfaces of a Euclidean

circle and a line, given by parametrization

C1(s) = (cos(s), sin(s), 0), C2(t) = (0, 0, t) (22)

Figure 2.2a Figure 2.2b

where, Figure 2.2a shows the bisector surface of a circle and a line in Euclidean space, Figure

2.2b shows that the bisector surface of a circle and a line in Minkowski space.

From (22), (12) and (13), we get

d1(s) = 0, d2(t) = −t, m(s, t) =
1 + t2

2
(23)

(x12(s, t), y12(s, t), z12(s, t)) = (cos(s), sin(s),−t) (24)
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Substituting above equations into Equations (17), (18) and (19), we have the bisector

surface given by parametrization

P (s, t) = (
1 − t2

2
cos(s),

1− t2
2

sin(s), t) (25)

Consequently, Fig.3(a) and Fig.3(b) shows an example of the bisector surface of a non-

planar curve (Euclidean helix) and a line.

Figure 2.3a Figure 2.3b

where, Figure 2.3a shows the bisector surface of a helix and a line in Euclidean space, Figure

2.3 shows that the bisector surface of a helix and a line in Minkowski space.

§3. Conclusions

In this paper, we have shown that the bisector surface of curve/curve in Minkowski 3-space.

Bisector surface of point/curve and surface/surface are not included in this paper. The different

studies on bisector surface in Minkowski 3-space may be presented in a future publication.
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Abstract: A connected graph with n vertices and q edges is called odd graceful if it is

possible to label the vertices x with pairwise distinct integers f(x) in {0, 1, 2, 3, · · · , 2q − 1}

so that when each edge, xy is labeled |f(x) − f(y)|, the resulting edge labels are pairwise

distinct and thus form the entire set {1, 3, 5, · · · , 2q − 1}. In this paper we study the odd

graceful labeling of class of Tn trees.
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§1. Introduction

Unless mentioned otherwise, a graph in this paper shall mean a simple finite graph without

isolated vertices.

For all terminology and notations in graph theory, we follow Harary [1] and for all termi-

nology regarding odd graceful labeling, we follow [2]. A connected graph with n vertices and q

edges is called odd graceful if it is possible to label the vertices x with pairwise distinct integers

f(x) in {0, 1, 2, 3, · · · , 2q− 1} so that each edge, xy, is labeled |f(x)− f(y)|, the resulting edge

labels are pairwise distinct. (and thus form the entire set {1, 3, 5, · · · , 2q − 1}). In this article

we study the odd graceful labeling of typical class of Tn trees.

§2. On Tn-Class of Trees

Definition 2.1([3]) Let T be a tree and x and y be two adjacent vertices in T . Let there be two

end vertices (non-adjacent vertices of degree one) x1, y1 ∈ T such that the length of the path

x− x1 is equal to the length of the path y − y1. If the edge xy is deleted from T and x1, y1 are

joined by an edge x1y1; then such a transformations of the edge from xy to x1y1 is called an

elementary parallel transformation (or an EPT of T) and the edge xy is called a transformable

edge.

1Received November 16, 2012, Accepted June 22, 2013.
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Definition 2.2 If by a sequence of EPT’s, the tree, T can be reduced to a Hamiltonian path,

then T is called a Tn-tree (transformed tree) and such a Hamiltonian path is denoted as PH(T ).

Any such sequence regarded as a composition mapping (EPT’s) denoted by P is called parallel

transformation of T [3].

A Tn-tree and a sequence of nine EPT’s reducing it to a hamiltonian path are illustrated

in Fig.1 to Fig.3.

In Fig.2, let d1, d2, · · · d9 are the deleted edges and e1, e2, · · · , e9 are the corresponding

added edges ( Given in broken lines).

An EPT PH
i (T ); for i = 1, 2, · · · , 9. The hamiltonian path PH(T ) for the tree in Fig. 1 is

given in Fig.3.

e2

e6

e1

e4

e5

e7

e8

e9

e3

X1

d8
d9

d7

d5

d3

d4

X66

d6

d2

d1

Fig.3

Theorem 2.3 Every Tn tree is odd graceful.

Proof Let T be a Tn tree with (n + 1) vertices. By definition there exist a path PH(T )

corresponding to Tn. Let Ed = {d1, d2, · · · , dr} be the set of edges deleted from tree T and

Ep is the set of edges newly added through the sequence {e1, e2, · · · , er} of the EPT’s used to

arrive at the path (Hamiltonian path) PH(T ). Clearly Ed and Ep have the same number of

edges. Now we have V (PH(T )) = V (T ) and E(PH(T )) = {E{T }−Ed} ∪Ep: Now denote the

vertices of PH(T ) successively as v1, v2, · · · , vn+1 starting from one pendant vertex of PH(T )

right up to other. Define the vertex numbering of f from V (PH(T ))→ {0, 1, 2, · · · , 2q − 1} as
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follows.

f(vi) = 2
[ i− 1

2

]
if i is odd, 1 6 i 6 n+ 1

= (2q − 1)− 2
[ i− 2

2

]
if i is even, 2 6 i 6 n+ 1

where, q is the number of edges of T and [.] denote the integer part.

Now it can be easily seen that f is injective. Let g∗f be the induced mapping defined from

the edge set of PH(T ) in to the set {1, 3, 5, · · · , 2q − 1} as follows:

g∗f (uv) = |f(u)− f(v)| whenever uv ∈ E(PH(T )).

Since PH(T ) is a path, every edge in PH(T ) is of the form vivi+1 for i = 1, 2, · · · , n.

Case 1 When i is even, then

g∗f(vivi+1) = |f(vi)− f(vi+1)|

=

∣∣∣∣∣(2q − 1)− 2

[
i− 2

2

]
− 2

[
i+ 1− 1

2

]∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 2

{[
i− 2

2

]
+

[
i

2

]}∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 2

[
i− 2 + i

2

]∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 2

[
2i− 2

2

]∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 4

[
i− 1

2

]∣∣∣∣∣ (1)

Case 2 When i is odd, then

g∗f(vivi+1) = |f(vi)− f(vi+1)|

=

[
2

[
i− 1

2

]
−
(

(2q − 1)− 2

[
i+ 1− 2

2

])]

=

∣∣∣∣∣2
[
i− 1

2

]
− (2q − 1) + 2

[
i− 1

2

]∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 4

[
i− 1

2

]∣∣∣∣∣ (2)

From (1) and (2), we get for all i,

g∗f(vivi+1) =

∣∣∣∣∣(2q − 1)− 4

[
i− 1

2

]∣∣∣∣∣ (3)

From (3), it is clear that g∗f is injective and its range is {1, 3, 5, · · · , 2q − 1}. Then f is odd

graceful on PH(T ).

In order to prove that f is also odd graceful on Tn, it is enough to show that g∗f (ds) = g∗f(es).

Let ds = vivj be an edge of T for same indices i and j, 1 6 i 6 n+ 1; 1 6 j 6 n+ 1 and ds be



A Note on Odd Graceful Labeling of a Class of Trees 95

deleted and es be the corresponding edge joined to obtain PH(T ) at a distance k from ui and

uj . Then es = vi+kvj−k. Since es is an edge in PH(T ), it must be of the form es = vi+kvi+k+1.

We have (vi+k, vj−k) = (vi+k, vi+k+1) =⇒ j − k = i+ k + 1 =⇒ j = i+ 2k + 1. Therefore

i and j are of opposite parity =⇒ one of i, j is odd and other is even.

Case a When i is odd, 1 6 i 6 n. The value of the edge es = vivj is given by

g∗f(ds) = g∗f (vivj)

= g∗f (vivi+2k+1)

= |f(vi)− f(vi+2k+1| (4)

=

∣∣∣∣∣(2q − 1)− 2

[
i− 2

2

]
− 2

[
i+ 2k + 1− 1

2

]∣∣∣∣∣

=

∣∣∣∣∣(2q − 1)− 2

{[
i− 2

2

]
+ 2

[
i+ 2k

2

]}∣∣∣∣∣
= |(2q − 1)− (2i+ 2k − 2)|
= |(2q − 1)− 2(i+ k − 1)| (5)

Case b When i is even, 2 6 i 6 n.

g∗f(ds) = |f(vi)− f(vi+2k+1)|

=

∣∣∣∣∣2
[
i− 2

2

]
−
(

(2q − 1)− 2

[
i+ 2k + 1− 2

2

])∣∣∣∣∣

=

∣∣∣∣∣2
[
i− 2

2

]
+ 2

[
i+ 2k − 1

2

]
− (2q − 1)

∣∣∣∣∣
= |(2i+ 2k − 2)− 2− (2q − 1)|
= |(2q − 1)− 2(i+ k − 1)| (6)

From (4), (5) and (6) it follows that

g∗f(ds) = g∗f (vivj) = |(2q − 1)− 2(i+ k − 1)|, 1 6 i 6 n (7)

Now again,

g∗f (es) = g∗f (vi+kvj−k) = g∗f(vkvi+k+1)

= |f(vi+k)− f(vi+k+1)|

=

∣∣∣∣∣(2q − 1)− 2

[
i+ k − 2

2

]
− 2

[
i+ k + 1− 1

2

]

= |(2q − 1)− (2i+ 2k − 2)|
= |(2q − 1)− 2(i+ k − 1)|, 1 6 i 6 n (8)

From (7) and (8), it follows that

g∗f (es) = g∗f (ds).
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Then f is odd graceful on Tn also. Hence the graph Tn-tree is odd graceful. The proof is

complete. 2
For example, an odd graceful labelling of a Tn-tree using 2.3, is shown in Fig.4.
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Fig.4

An odd graceful labeling of a Tn-tree using Theorem 2.3.
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§1. Introduction

By a simple graph G, we mean that a graph with no loops or multiple edges. Let G1 = (V1, E1)

and G2 = (V2, E2) be simple graphs. Then

(1) The simple graph G = (V,E), where V = V1

⋃
V2 and E = E1

⋃
E2 is called the union

of G1 and G2, and is denoted by G1

⋃
G2 ([2]). When G1 and G2 are vertex disjoint, G1

⋃
G2

is denoted by G1 +G2 and is called the sum of the graphs G1 and G2.

(2) If V1

⋂
V2 6= ∅, the graph G = (V,E), where V = V1

⋂
V2 and E = E1

⋂
E2 is called

the intersection of G1, G2 and is written as G1

⋂
G2 ([2]).

(3) If G1 and G2 are vertex-disjoint graphs. Then the join, G1 ∨ G2 is the supergraph of

G1 +G2, in which each vertex of G1 is adjacent to every vertex of G2.

(4) The cartesian product G1×G2 is the simple graph with vertex set V (G1×G2) = V1×V2

and edge set E(G1 × G2) = (E1 × V2)
⋃

(V1 × E2) such that two vertices (u1, u2) and (v1, v2)

are adjacent in G1 ×G2 iff either

(i) u1 = v1 and u2 is adjacent to v2 in G2 , or

(ii) u1 is adjacent to v1 in G1 and u2 = v2 ([1]).

(5) The composition, or lexicographic product G1[G2] is the simple graph with V1 × V2 as

the vertex set in which the vertices (u1, u2) , (v1, v2) are adjacent if either u1 is adjacent to v1

1Received September 25, 2011, Accepted June 24, 2013.
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or u1 = v1 and u2 is adjacent to v2.

The graph G1[G2] need not to be isomorphic to G2[G1] ([2]).

(6) The normal product, or the strong productG1◦G2 is the simple graph with V (G1◦G2) =

V1 × V2, where (u1, u2) and (v1, v2) are adjacent in G1 ◦G2 iff either

(i) u1 = v1 and u2 is adjacent to v2 , or

(ii) u1 is adjacent to v1 and u2 = v2, or

(iii) u1 is adjacent to v1 and u2 is adjacent to v2 ([2]).

(7) The tensor product or Kronecher productG1⊗G2 is the simple graph with V (G1⊗G2) =

V1 × V2, where (u1, u2) and (v1, v2) are adjacent in G1 ⊗G2 iff u1 is adjacent to v1 in G1 and

u2 is adjacent to v2 in G2.

Notice that G1 ◦G2 = (G1 ⊗G2)
⋃

(G1 ⊗G2) ([2]).

§2. Graph Folding

Let G1 and G2 be graphs and f : G1 → G2 be a continuous function. Then f is called a graph

map, if

(i) for each vertex v ∈ V (G1), f(v) is a vertex in V (G2);

(ii) for each edge e ∈ E(G1), dim(f(e)) ≤ dim(e).

A graph map f : G1 → G2 is called a graph folding iff f maps vertices to vertices and

edges to edges, i.e., for each v ∈ V (G1), f(v) ∈ V (G2) and for e ∈ E(G1), f(e) ∈ E(G2) ([3]).

The set of graph foldings between graphs G1 and G2 is denoted by µ(G1, G2) and the set

of graph foldings of G1 into itself by µ(G1).

§3. Incidence Matrices

Let G be a finite graph with the set of vertices V (G) = {v1, · · · , vr1
, vr1+1, · · · , vr} and the set

of edges E(G) = {e12, · · · , e1r1
, · · · , e1r, e23, · · · , e2r, · · · , e(r−1)r}.

The incidence matrix denoted by I = (λkd) is defined by λkd = 1 if vk, k = 1, · · · , r1, · · · , r
is a face of ed, d = 12, · · · , 1r1, · · · , 1r, 23, · · · , 2r, · · · , r(r − 1) in G, λkd = 0 if vk is not a face

of ed in G. The matrix I has order s × r, where s is the number of edges of G and r is the

number of vertices in G.

Let G1, G2 be finite graphs and f ∈ µ(G1, G2). Then f(G1) is a subgraph of G2. In

particular, if f ∈ µ(G1) with f(G1) = G′
1 6= G1, then G′

1 is a subgraph of G1. This suggests

that the incidence matrix I ′ of f(G1) = G′
1 is a submatrix of the incidence matrix I of G1

possibly after rearranging its rows and columns.

We claim that the matrix I can be partition into four blocks, such that I ′ appears in

the upper left corner block and a zero matrix O in the upper right one. The matrix R, the

complement of I ′ will be a submatrix of I ′ possibly after deleting the rows and columns of I ′

which are not images of any of the edges e1(r1+1), · · · , e1r, e2(r1+1), · · · , e2r, · · · , er1r and the

vertices vr1+1, · · · , vr, respectively.
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The zero matrix O is due to the fact that non of the vertices vr1+1, · · · , vr is incidence with

any edge of the image.

I =

v1 v2


I ′ O

Q R




e1

e2

where

v1 = (v1, v2, · · · , , vr1
),

v2 = (vr1+1, · · · , vr),

e1 = (e12, · · · , e1r1
, e23, · · · , e2r1

, · · · , e(r1−1)r1
)T and

e2 = (e1(r1+1), · · · , e1r, e2(r1+1), · · · , e2r, · · · , er1(r1+1), · · · , er1r)
T .

Conversely, if the incidence matrix I of a graph G1 can be partitioned into four blocks with

a zero matrix at the right hand corner block. Then a graph folding may be defined, if there is

any, as a map f of G1 to an image f(G1) characterized by the incidence matrix I ′ which lie in

the upper left corner of I. This map can be defined by mapping:

(i) the vertices vj , j = r1 + 1, · · · , r to the vertices vi, i = 1, · · · , r1 if the jth column in R

is the same as the ith column in I ′, after deleting the zero from ith column;

(ii) the edges ek, k = 1(r1 + 1), · · · , r1r to the edges el, l = 12, · · · , (r1 − 1)r1 if ek and el

are incidence.

Example 3.1 Let G be a graph whose V (G) = {v1, v2, · · · , v8}, E(G) = {e12, e13, e15, e24, e26,
e34, e37, e48, e56, e57, e68, e78} and f : G→ G′ be a graph folding, see Fig.1.

-f

v1

v2

v3
v4

v5

v6

v7

v8

v1

v2

v5

v6

e12 e24

e13 e34

e15

e26

e37 e48

e56

e57

e68

e78

e15

e26

e12

e56

G G′

Fig.1
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Then

I =

v1 v2 v5 v6 v3 v4 v7 v8


1 1 0 0 0 0 0 0

1 0 1 0 0 0 0 0

0 1 1 0 0 0 0 0

0 0 1 1 0 0 0 0

1 0 0 0 1 0 0 0

0 1 0 0 0 1 0 0

0 0 0 0 1 1 0 0

0 0 0 0 1 0 1 0

0 0 0 0 0 1 0 1

0 0 1 0 0 0 1 0

0 0 0 1 0 0 0 1

0 0 0 0 0 0 1 1




e12

e13

e15

e24

e26

e34

e37

e48

e56

e57

e68

e78

§4. Incidence Matrices and Operations on Graph Foldings

Let G1 and G2 be finite graphs with V1 = V (G1) = {v1, v2, · · · , vr1
, vr1+1, · · · , vr}, V2 =

V (G2) = {v1, v2, · · · , vs1
, vs1+1, · · · , vs}, E1 = E(G1) = {e12, · · · , e1r, e23, · · · , e2r, · · · er1r, · · · ,

e(r−1)r} and E2 = E(G2) = {e12, · · · , e1s, e23, · · · , e2s, · · · , es1s, · · · , e(s−1)s}.
Let f ∈ µ(G1) such that f(G1) = G′

1 6= G1 and g ∈ µ(G2) such that g(G2) = G′
2 6= G2,

and the incidence matrices I(G1) = (λk1d1
), where k1 = {1, 2, · · · , r1, r1 + 1, · · · , r}, d1 =

{12, · · · , 1r, 23, · · · , 2r, · · · , r1r, · · · , (r−1)r} and I(G2) = (λk2d2
), where k2 = {1, 2, · · · , s1, s1+

1, · · · , s} and d2 = {12, · · · , 1s, 23, · · · , 2s, · · · , s1s, · · · , (s− 1)s}, respectively.

Then the graph maps f
⋃
g : G1

⋃
G2 → G′

1

⋃
G′

2 defined by

(i) ∀v ∈ V1

⋃
V2, (f

⋃
g)(v) =





f(v) if v ∈ V1,

g(v) if v ∈ V2.

(ii) ∀e ∈ E1

⋃
E2, (f

⋃
g)(e) =





f(e) if e ∈ E1,

g(e) if e ∈ E2

and f
⋂
g : G1

⋂
G2 → G′

1

⋂
G′

2 defined by:

(i) ∀v ∈ V1

⋂
V2, (f

⋂
g)(v) = f(v) or g(v), where V1

⋂
V2 6= ∅.

(ii) ∀e ∈ E1

⋂
E2, (f

⋂
g)(e) = f(e) or g(e),

are graph foldings iff f and g are graph foldings.

The incidence matrices I(G1

⋃
G2) and I(G1

⋂
G2) can be obtained from I(G1) and I(G2)

as follows:

I(G1

⋃
G2) = (λkd), where k = {1, 2, · · · , r1, r1+1, · · · , r}⋃{1, 2, · · · , s1, s1+1, · · · , s} and

d = {12, · · · , 1r, 23, · · · , 2r, · · · , r1r, · · · , (r1 − 1)r}⋃{12, · · · , 1s, 23, · · · , 2s, · · · , s1s, · · · , (s1 −
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1)s} such that

λkd = 1 if λk1dl
= 1 in I(G1) or λk2d2

= 1 in I(G2) and λkd = 0 if λk1dl
= 0 in I(G1) or

λk2d2
= 0 in I(G2)

and I(G1

⋂
G2) = (λkd), where k = {1, 2, · · · , r1, r1+1, · · · , r}⋂{1, 2, · · · , s1, s1+1, · · · , s}, d =

{12, · · · , 1r, 23, · · · , 2r, · · · , r1r, · · · , (r1 − 1)r}⋂{12, · · · , 1s, 23, · · · , 2s, · · · , s1s, · · · , (s1 − 1)s}
such that

λkd = 1 if λk1dl
= 1 in I(G1) and λk2d2

= 1 in I(G2) and λkd = 0 if λk1dl
= 0 in I(G1)

and λk2d2
= 0 in I(G2).

Example 4.1 Let G1, G2 be two graphs with V (G1) = {v1, v2, v3, v4}, E(G1) = {e12, e14, e23,
e24, e34}, V (G2) = {v1, v2, v3, v5} and E(G2) = {v1, v2, v3, v5} and let f : G1 → G′

1, g : G2 →
G′

2 be graph foldings.

-
-

v1 v1

v2G1 v2

v3

v4 v4 G′
1

v1 v1

v2 v2 G′
2

v3

v5G2 v5

f

g

e12

e23

e14

e24

e34

e12
e14

e24

e15

e25

e35

e12

e23

e15

e25

e12

Fig.2

Then

I(G1) =

v1 v2 v4 v3


1 1 0 0

1 0 1 0

0 1 1 0

0 1 0 1

0 0 1 1




e12

e14

e24

e23

e34

I(G2) =

v1 v2 v5 v3


1 1 0 0

1 0 1 0

0 1 1 0

0 1 0 1

0 0 1 1




e12

e15

e25

e23

e35
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I(G1

⋃
G2) =

v1 v2 v4 v5 v3


1 1 0 0 0

1 0 1 0 0

1 0 0 1 0

0 1 1 0 0

0 1 0 1 0

0 1 0 0 1

0 0 1 0 1

0 0 0 1 1




e12

e14

e15

e24

e25

e23

e34

e35

I(G1

⋂
G2) =

v1 v2 v3
 1 1 0

0 1 1


 e12

e23

Let G1, G2 be finite graphs such that V1 = V (G1) = {v1, v2, · · · , vr1
, vr1+1, · · · , vr}, E1 =

E(G1) = {e12, · · · , e1r1
, · · · , e1r, e23, · · · , e2r1

, · · · , e2r, · · · , er1r, · · · , e(r−1)r}, V2 = V (G2) =

{vr+1, · · · , vs1
, vs1+1, · · · , vs}, E2 = E(G2) = {e(r+1)(r+2), · · · , e(r+1)s1

, · · · , e(r+1)s, e(r+2)(r+3),

· · · , e(r+2)s1
, · · · , e(r+2)s, · · · , es1s, · · · , e(s−1)s}, where eij is the edge incidence with vi and vj ,

eij = eji. Let f ∈ µ(G1) such that f(G1) = G′
1 6= G1 and g ∈ µ(G2) such that g(G2) = G′

2 6= G2

with incidence matrices are I(G1) and I(G2) respectively. Then

(1) The join graph map f ∨ g : G1 ∨G2 → G′
1 ∨G′

2 defined by

(i) ∀v ∈ V1

⋃
V2, (f ∨ g){v} =





f{v} if v ∈ V1,

g{v} if v ∈ V2.

(ii) ∀e = (v1, v2), v1 ∈ V1, v2 ∈ V2,

(f ∨ g){e} = (f ∨ g){(v1, v2)} = {(f(v1), f(v2))} ∈ G′
1 ∨G′

2.

(iii) if e = (u1, v1) ∈ E1, then (f ∨ g){e} = (f ∨ g){(u1, v1)} = {(f(u1), g(v1))}. Also,

if e = (u2, v2) ∈ E2, then (f ∨ g){e} = (f ∨ g){(u2, v2)} = {(g(u2), g(v2))}. Note that if

f{u1} = f{v1}, then the image of the join graph map (f ∨ g){e} will be a vertex of G′
1 ∨ G′

2,

otherwise it will be an edge of G′
1 ∨G′

2 ([4]), is a graph folding iff f and g are graph foldings.

The incident matrix I(G1

⋃
G2) can be defined from I(G1) and I(G2) as follows:

I(G1) =

v1 v′1


I(G′
1) O

Q R




e1

e′1

I(G2) =

v2 v′2


I(G′
2) O

Q R




e2

e′2

where, v1 = (v1, v2, · · · , vr1
), v′1 = (vr1+1, · · · , vr), e1 =

(
e12, · · · , e1r1

, e23, · · · , e2r1
, · · · , e(r1−1)r1

)T
,

e′1 =
(
e1(r1+1), · · · , e1r, e2(r1+1), · · · , e2r, · · · , er1(r1+1), · · · , er1r

)T
, v2 = {vr+1, · · · , vs1

}, v′2 =
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{vs1+1, · · · , vs}, e1 =
(
e(r+1)(r+2), · · · , e(r+1)s1

, e(r+2)(r+3), · · · , e(r+2)s1
, · · · , e(s1−1)s1

)T
, e′1 =(

e(r+1)(s1+1), · · · , e(r+1)s, e(r+2)(s1+1), · · · , e(r+2)s, · · · , es1(s1+1), · · · , es1s

)T
.

Then

I(G1 ∨G2) =

v∨ v′∨


I(G′
1 ∨G′

2) O

Q R




e∨

e′∨

where,

v∨ = (v1, v2, · · · , vr1
, vr1+1, · · · , vs1

), v′∨ = {vr1+1, · · · , vr, vs1+1, · · · , vs},
e∨ = (e12, · · · , e1r1

, e23, · · · , e2r1
, · · · , e(r1−1)r1

, e(r+1)(r+2), · · · , e(r+1)s1
, e(r+2)(r+3), · · · ,

e(r+2)s1
, · · · , e(s1−1)s1

, e1(r+1), · · · , e1s1
, e2(r+1), · · · , e2s1

, · · · , er1(r+1), · · · .er1s1

)T
and

e′∨ =
(
e1(r1+1), · · · , e1r, e2(r1+1), · · · , e2r, · · · , er1(r1+1), · · · , er1r, e(r+1)(s1+1), · · · , e(r+1)s,

e(r+2)(s1+1), · · · , e(r+2)s, · · · , es1(s1+1), · · · , es1s, e1(s1+1), · · · , e1s, e2(s1+1), · · · , e2s,

· · · , er1(s1+1), · · · , er1s, e(r1+1)(r+1), · · · , e(r1+1)s, · · · , er(r+1), · · · , ers1
, e(r1+1)(s1+1),

· · · , e(r1+1)s, · · · , er(s1+1), · · · , ers

)T
.

Thus, I(G1 ∨ G2) = (λkd), where k = 1, 2, · · · , r1, r1 + 1, · · · , r, r + 1, · · · , s1, s1 + 1, · · · , s,
d = ij, i 6= j and i, j = 1, 2, · · · , r1, r1 + 1, · · · , r, r + 1, · · · , s1, s1 + 1, · · · , s. It is clear

that if I(G1) has order m1 × n1 and I(G2) has order m2 × n2, then I(G1 ∨ G2) has order

(m1 +m2 + n1n2)(n1 + n2).

(2) The cartesian product graph map f × g : G1 ×G2 → G′
1 ×G′

2 defined by

(i) if v = (v1, v2) ∈ V1 × V2, v1 ∈ V1, v2 ∈ V2, then (f × g){(v1, v2)} = {(f{v1}, g{v2})} ∈
G′

1 ×G′
2.

(ii) if e = {({v1}i, {v2}j), ({v1}i, {v2}k)}, {v1}i ∈ V (G1) and {v2}j , {v2}k ∈ V (G2), then

f × g{({v1}i, {v2}j), ({v1}i, {v2}k)} = {({v1}i, g{v2}j), ({v1}i, g{v2}k)}.

But if e = {({v1}i, {v2}j), ({v1}k, {v2}j)}, where {v1}i, {v1}k ∈ V (G1), {v2}j ∈ V (G2), then

(f × g){({v1}i, {v2}j), ({v1}k, {v2}j)} = {(f{v1}i, {v2}j), (f{v1}k, {v2}j)}.

Note that if g{v2}j = g{v2}k , or f{v1}i = f{v1}k, the image of the edge e will be a vertex

([4]), is a graph folding iff f and g are graph foldings. The incidence matrix I(G1×G2) can be

defined from I(G1) and I(G2) as follows:
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I(G1 ×G2) =

v× v′×


I(G′
1 ∨G′

2) O

Q R




e×

e′×

where,

v× = ((v1, vr+1), · · · , (v1, vs1
), · · · , (vr1

, vr+1), · · · , (vr1
, vs1

)),

v′× = ((v1, vs1+1), · · · , (v1, vs), · · · , (vr1
, vs), (vr1+1, vr+1), · · · , (vr1+1, vs1

), · · · , (vr, vs1
)),

e× =
(
(e12, vr+1), · · · , (e12, vs1

), · · · , (e1r1
, vr+1), · · · , (e1r1

, vs1
), · · · (e(r1−1)r1

, vr+1), · · · ,
(e(r1−1)r1

, vs1
), (v1, e(r+1)(r+2)), · · · , (vr1

, e(r+1)(r+2)), · · · , (v1, e(r+1)s1
), · · · ,

(vr1
, e(r+1)s1

), · · · , (v1, e(s1−1)s1
), · · · , (vr1

, e(s1−1)s1
)
)T

and

e′× = ( (e1(r1+1), vr+1), · · · , (e1(r1+1), vs1
), · · · , (e1r, vr+1), · · · , (e1r, vs1

), · · · , er1r, vr+1),

· · · , (er1r, vs1
), (v1, e(r+1)(s1+1)), · · · , (vr1

, e(r+1)(s1+1)), · · · , (v1, e(r+1)s), · · · ,
(e(r+1)s, vr1

), · · · , (v1, es1s), · · · , (vr1
, es1s), (e12, vs1+1), · · · , (e12, vs), · · · , (e1r, vs1+1),

· · · , (e1r, vs), · · · , (e(r1−1)r1
, vs1+1), (e(r1−1)r1

, vs), (vr1+1, e(r+1)(r+2)), · · · ,
(vr , e(r+1)(r+2)), · · · , (vr1+1, e(r+1)s1

), · · · , (vr, e(r+1)s1
), · · · , (vr+1, e(s1−1)s1

), · · · ,
(vr , e(s1−1)s1

), (e1(r1+1), vs1+1), · · · , (e1(r1+1), vs+1), · · · , (e1r, vs1+1), · · · , (e1r, vs),

· · · , (er1r, vs1+1), · · · , (er1r, vs), (vr1+1, e(r+1)(s1+1)), · · · , (vr1+1, e(r+1)s1
), · · · ,

(vr1+1, es1s), · · · , (vr, e(r+1)(s1+1)), · · · , (vr, e(r+1)s), · · · , (vr, es1s)
)T

.

It is clear that if I(G1) has order m1 × n1 and I(G2) has order m2 × n2, then I(G1 ×G2)

has order (m1n2 +m2n1)× (n1n2).

(3) The tensor product graph map f ⊗ g : G1 ⊗G2 → G′
1 ⊗G′

2 defined by:

(i) if v = (v1, v2) ∈ V (G1 ⊗ G2) = V1 × V2, then (f ⊗ g){(v1, v2)} = {(f{v1}, g{v2})} ∈
V (G′

1 ⊗G′
2);

(ii) let e = {({v1}i, {v2}j), ({v1}k, {v2}l)}, where {v1}i is adjacent to {v2}k and {v2}j is

adjacent to {v2}l, then (f⊗g){e} = f{({v1}i, {v1}k)}⊗g{({v2}j , {v2}l, i.e., (f⊗g)(G1⊗G2) =

f(G1)× g(G2) ([4]) is a graph folding is a graph folding iff f and g are graph foldings.

The incidence matrix I(G1 ⊗G2) can be defined from I(G1) and I(G2) as follows:

I(G1 ⊗G2) =

v⊗ v′⊗


I(G′
1 ⊗G′

2) O

Q R




e⊗

e′⊗
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where,

v⊗ = ((v1, vr+1), · · · , (v1, vs1
), · · · , (vr1

, vr+1), · · · , (vr1
, vs1

)),

v′⊗ = ((v1, vs1+1), · · · , (v1, vs), · · · , (vr1
, vs), (vr1+1, vr+1), · · · , (vr1+1, vs1

), · · · , (vr, vs1
)),

e⊗ =
(
e(1,r+1)(2,r+2), e1,r+2)(2,r+1), · · · , e(1,s1−1)(2,s1), e(1,s1)(2,s1−1), · · · , e(r1−1,r+1)(r1,r+2),

e(r1−1,r+2)(r1,r+1), · · · , e(r1−1,s1−1)(r1,s1), e(r1−1,s1)(r1,s1−1))
T and

e′⊗ = (e(1,r+1)(2,s1+1), e(1,s1+1)(2,r+1), · · · , e(1,s1)(2,s), e(1,s)(2,s1), · · · , e(r1−1,r+1)(r1,s1+1),

e(r1−1,s1+1)(r1,r+1), · · · , e(r1−1,s1)(r1,s), e(r1−1,s)(r1,s1), e(1,r+1)(r1+1,r+2),

e(1,r+2)(r1+1,r+1), · · · , e(1,s1−1)(r1+1,s1), e(1,s1)(r1+1,s1−1) · · · , e(r1,r+1)(r,r+2),

e(r1,r+2)(r,r+1), · · · , e(r1,s1−1)(r,s1), e(r1,s1)(r,s1−1), e(1,r+1)(r1+1,s1+1), e(1,s1+1)(r1+1,r+1),

· · · , e(1,s1)(r1+1,s), e(1,s)(r1+1,s1), · · · , e(r1,r+1)(r,s1+1), e(r1,s1+1)(r,r+1), · · · , e(r1,s1)(r,s),

e(r1,s)(r,s1)

)T
.

It is clear that if I(G1) has order m1 × n1 and I(G2) has order m2 × n2, then I(G1 ⊗G2)

has order (2m1m2)× (n1n2).

(4) The normal product graph map f ◦ g : G1 ◦G2 → G′
1 ◦G2 defined by

(i) for any vertex v = (v1, v2) ∈ V (G1 ◦G2) = V1 ×G2, then

(f ◦ g){(v1, v2)} = {(f{v1}, g{v2})} ∈ V (G′
1 ◦G′

2);

(ii) for any edge e = {({v1}i, {v2}j), ({v1}k, {v2}l)}, then

(f ◦ g){e} = (f ◦ g){({v1}i, {v2}j), ({v1}k, {v2}l)}
= f{({v1}i, g{v2}j), ({v1}k, g{v2}l)}
= {(f{v1}i, g{v2}j), (f{v1}k, g{v2}l)}.

Note that if f{v1}i = f{v1}k and g{v2}j = g{v2}l, then (f ◦ g){e} will be a vertex ([4])

is a graph folding is a graph folding if f and g are graph foldings.

The incidence matrix I(G1 ◦G2) can be obtained from I(G1 ×G2) and I(G1 ⊗G2), since

G1 ◦G2 = (G1 ×G2)
⋃

(G1 ⊗G2).

It is clear that if I(G1) has order m1 × n1 and I(G2) has order m2 × n2, then If◦g has

order (m1n2 +m2n1 + 2m1m2)× (n1n2).

(5) The composition product graph map f [g] : G1[G2]→ G′
1[G

′
2] defined by:

(i) if v = (v1, v2) ∈ V (G1[G2]) = V 1 × V2, then f [g]{(v1, v2)} = {(f{v1}, g{v2})} ∈
(G′

1[G
′
2]);

(ii) let e = {({v1}i, {v2}j), ({v1}k, {v2}l)}. If {v1}i is adjacent to {v1}k, then f [g]{e} =

{({v1}i, g{v2}j), (f{v1}k, g{v2}l)}. If {v1}i = {v1}k and {v2}j is adjacent to {v2}l, then

f [g]{e} = {({v1}i, g{v2}j), (f{v1}i, g{v2}l)}.

Note that if f{v1}i = f{v1}k and g{v2}j = g{v2}l, then f [g]{e} will be a vertex, also if

g{v2}j = g{v2}l, then f [g] will be a vertex ([4]) is a graph folding is a graph folding if f , g are

graph foldings and the incidence matrix I(G1[G2]) can be obtained from I(G1) and I(G2) as

follows:
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I(G1[G2]) =

v2 v′2


I(G′
1[G

′
2]) O

Q R




e2
e′2

where,

v2 = ((v1, vr+1), · · · , (v1, vs1
), · · · , (vr1

, vr+1), · · · , (vr1
, vs1

)),

v′2 = ((v1, vs1+1), · · · , (v1, vs), · · · , (vr1
, vs), (vr1+1, vr+1), · · · , (vr1+1, vs1

), · · · , (vr, vs1
)),

e2 =
(
(v1, e(r+1)(r+2), · · · , (v1, e(s1−1)s1

), · · · , (vr1
, e(r+1)(r+2)), · · · , (vr1

, e(s1−1)s1
),

e(1,r+1)(2,r+1), · · · , e(r1−1,r+1)(r1,r+1), e(1,r+1)(2,r+2)), e(1,r+2)(2,r+1), · · · ,
e(r1−1,r+1)(r1,r+2), e(r1−1,r+2)(r1,r+1), · · · , e(1,r+1)(2,s1), e(1,s1)(2,r+1), · · · ,
e(r1−1,r+1)(r1,s1), e(r1−1,s1)(r1,r+1), e(1,r+2)(2,r+2), · · · , e(r1−1,r+2)(r1,r+2),

· · · , e(1,r+2)(2,s1), e(1,s1)(2,r+2), · · · , e(r1−1,r+2)(r1,s1), e(r1−1,s1)(r1,r+2), · · · ,
e(1,s1−1)(2,s1), e(1,s1)(2,s1−1), · · · , e(r1−1,s1−1)(r1,s1), e(r1−1,s1)(r1,s1−1), e(1,s1)(2,s1),

· · · , e(r1−1,s1)(r1,s1)

)T
and

e′2 =
(
(v1, e(r+1)(s1+1)), · · · , (v1, es1s), · · · , (vr1

, e(r+1)(s1+1)), · · · , (vr1
, es1s),

(vr1+1, e(r+1)(r+2)), · · · , (vr1+1, e(r+1)(r+2)), · · · , (vr1+1, e(s1−1)s1
),

(vr1+1, e(r+1)(s1+1)), · · · , (vr1+1, es1s), · · · , (vr, e(r+1)(r+2)), · · · , (vr, e(s1−1)s1
),

(vr , e(r+1)(s1+1)), · · · , (vr, es1s), e(1,r+1)(r1+1,r+1), · · · , e(r1,r+1)(r,r+1),

e(1,r+1)(r1+1,r+2), e(1,r+2)(r1+1,r+1), · · · , e(r1,r+1)(r,r+2), e(r1,r+2)(r,r+1), · · · ,
e(1,r+1)(r1+1,s1), e(1,s1)(r1+1,r+1), · · · , e(r1,r+1)(r,s1), e(r1,s1)(r,r+1), · · · ,
e(1,r+1)(r1+1,s), e(1,s)(r1+1,r+1), · · · , e(r1,r+1)(r,s), e(r1,s)(r,r+1), e(1,r+2)(r1+1,r+2), · · · ,
e(r1,r+2)(r,r+2), · · · , e(1,r+2)(r1+1,s), e(1,s)(r1+1,r+2), · · · , e(r1,r+2)(r,s), e(r1,s)(r,r+2),

· · · , e(1,s1)(r1+1,s1), · · · , e(r1,s1)(r,s1), · · · , e(1,s1)(r,s1), e(1,s)(r1+1,s1), · · · , e(r1,s1)(r,s),

e(r1,s)(r,s1), · · · , e(1,s)(r1+1,s), · · · , e(r1,s)(r,s), e(1,r+1)(2,s1+1), e(1,s1+1)(2,r+1), · · · ,
e(r1−1,r+1)(r1,s1+1), e(r1−1,s1+1)(r1,r+1), · · · , e(1,r+1)(2,s), e(1,s)(2,r+1), · · · ,
e(r1−1,r+1)(r1,s), e(r1−1,s)(r1,r+1), · · · , e(1,s1)(2,s), e(1,s)(2,s1), · · · , e(r1−1,s1)(r1,s),

e(r1−1,s)(r1,s1), e(1,s1+1)(2,s1+1), · · · , e(r1−1,s1+1)(r1,s1+1), · · · , e(1,s1+1)(2,s),

e(1,s)(2,s1+1), · · · , e(r1−1,s1+1)(r1,s), e(r1−1,s)(r1,s1+1), · · · , e(1,s)(2,s), · · · , e(r1−1,s)(r1,s))
T

It is clear that if I(G1) has order m1 × n1 and I(G2) has order m2 × n2, then I(G1[G2])

has order (n1m2 + n2m1)× n1n2.

Example 4.2 Let G1 and G2 be two graphs such that V (G1) = {v1, v2, v3, v4}, E(G1) =

{e12, e13, e14, e23, e34}, V (G2) = {v5, v6, v7}, E(G2) = {e56, e57}, and f : G1 → G′
1, g : G2 →

G′
2 be graph foldings, see Fig.3.
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-v1 -v2

v3

v4
f

v1

v2

v3

v5

v6

v7

g

v5

v6

e12

e13

e14

e23 e34

e12

e23

e13

e56

e67

e56

G1 G′
1 G2 G′

2

Fig.3

Their incidence matrixes are shown in the following.

I(G1) =

v1 v2 v3 v4


1 1 0 0

1 0 1 0

0 1 1 0

1 0 0 1

0 0 1 1




e12

e13

e23

e14

e34

I(G2) =

v5 v6 v7
 1 1 0

0 1 1


 e56

e67

Then we know that f ∨ g is a graph folding, see Fig.4.

-f ∨ g

v1

v2

v3

v4

v5

v6

v7

v1

v2

v3

v6

v5

G1 ∨G2 G′
1 ∨G′

2

Fig.4
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I(G1 ∨G2) =

v1 v2 v3 v5 v6 v4 v7


1 1 0 0 0 0 0

1 0 1 0 0 0 0

0 1 1 0 0 0 0

0 0 0 1 1 0 0

1 0 0 1 0 0 0

1 0 0 0 1 0 0

0 1 0 1 0 0 0

0 1 0 0 1 0 0

0 0 1 1 0 0 0

0 0 1 0 1 0 0

1 0 0 0 0 1 0

0 0 1 0 0 1 0

0 0 0 0 1 0 1

1 0 0 0 0 0 1

0 1 0 0 0 0 1

0 0 1 0 0 0 1

0 0 0 1 0 1 0

0 0 0 0 1 1 0

0 0 0 0 0 1 1




e12

e13

e23

e56

e15

e16

e25

e26

e35

e36

e14

e34

e67

e17

e27

e37

e45

e46

e47

We also know that f × g is a graph folding, seeing Fig.5,

-f × g

v15 v45

v25 v35

v26

v16

v36

v46

v27

v17

v37

v47

v15

v25 v35

v26

v16

v36

G1 ×G2 G′
1 ×G′

2

Fig.5

where v15 = (v1, v5), v
16 = (v1, v6), v

25 = (v2, v5), v
16 = (v2, v6), v

35 = (v3, v5), v
36 = (v3, v6), v

17 =

(v1, v7), v
27 = (v2, v7), v

37 = (v3, v7), v
45 = (v4, v5), v

46 = (v4, v6), v
47 = (v4, v7).
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I(G1 ×G2) =

v15 v16 v25 v26 v35 v36 v17 v27v37 v45 v46 v47




1 0 1 0 0 0 0 0 0 0 0 0

0 1 0 1 0 0 0 0 0 0 0 0

1 0 0 0 1 0 0 0 0 0 0 0

0 1 0 0 0 1 0 0 0 0 0 0

0 0 1 0 1 0 0 0 0 0 0 0

0 0 0 1 0 1 0 0 0 0 0 0

1 1 0 0 0 0 0 0 0 0 0 0

0 0 1 1 0 0 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 1 0

0 0 0 0 1 0 0 0 0 1 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 1 0 0 0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 1 0 0 0

0 0 0 0 0 0 1 1 0 0 0 0

0 0 0 0 0 0 1 0 1 0 0 0

0 0 0 0 0 0 0 1 1 0 0 0

0 0 0 0 0 0 0 0 0 1 1 0

0 0 0 0 0 0 1 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 0 1

0 0 0 0 0 0 0 0 0 0 1 1




(e12, v5)

(e12, v6)

(e13, v5)

(e13, v6)

(e23, v5)

(e23, v6)

(v1, e56)

(v2, e56)

(v3, e56)

(e14, v5)

(e14, v6)

(e34, v5)

(e34, v6)

(v1, e67)

(v2, e67)

(v3, e67)

(e12, v7)

(e13, v7),

(e23, v7)

(v4, e56)

(e14, v7)

(e34, v7)

(v4, e67)

Similarly, we know that f ⊗ g, f ◦ g and f [g] are also graph foldings, seeing Fig 6- Fig.8,

where vij = (vi, vj) for integers 1 ≤ i, j ≤ 7.

f ⊗ g G′
1 ⊗G′

2-v15 v25 v35 v45

v17 v27 v37 v47

v16G1 ⊗G2 v26 v36 v46

v15 v25 v35

v16 v26 v36

Fig.6
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I(G1 ⊗G2) =

v15 v16 v25 v26 v35 v36 v17 v27v37 v45 v46 v47




1 0 0 1 0 0 0 0 0 0 0 0

0 1 1 0 0 0 0 0 0 0 0 0

1 0 0 0 0 1 0 0 0 0 0 0

0 1 0 0 1 0 0 0 0 0 0 0

0 0 1 0 0 1 0 0 0 0 0 0

0 0 0 1 1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 1 0 0 0 0

0 0 0 1 0 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 1 0 0 0 0 0

0 0 0 1 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0

1 0 0 0 0 0 0 0 0 0 1 0

0 1 0 0 0 0 0 0 0 1 0 0

0 0 0 0 1 0 0 0 0 0 1 0

0 0 0 0 0 1 0 0 0 1 0 0

0 1 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 1 0 0 0 1 0

0 0 0 0 0 1 0 0 0 0 0 1

0 0 0 0 0 0 0 0 1 0 1 0




e(1,5)(2,6)

e(1,6)(2,5)

e(1,5)(3,6)

e(1,6)(3,5)

e(2,5)(3,6)

e(2,6)(3,5)

e(1,6)(3,7)

e(1,7)(2,6)

e(1,6)(3,7)

e(1,7)(3,6)

e(2,6)(3,7)

e(2,7)(3,6)

e(1,5)(4,6)

e(1,6)(4,5)

e(3,5)(4,6)

e(3,6)(4,5)

e(1,6)(4,7)

e(1,7)(4,6)

e(3,6)(4,7)

e(3,7)(4,6)

-f ◦ g

v15 v45

v25 v35

v26

v16

v36

v46

v27

v17

v37

v47

v15

v25 v35

v26

v16

v36

G1 ◦G2 G′
1 ◦G′

2

Fig.7
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I(G1 ◦G2) =




I(G′
1 ◦G′

2) O

Q R




where,

I(G′
1 ◦G′

2) =

v15 v16 v25 v26 v35 v36




1 0 1 0 0 0

0 1 0 1 0 0

1 0 0 0 1 0

0 1 0 0 0 1

0 0 1 0 1 0

0 0 0 1 0 1

1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 0 1 0 0

0 1 1 0 0 0

1 0 0 0 0 1

0 1 0 0 1 0

0 0 1 0 0 1

0 0 0 1 1 0




(e12, v5)

(e12, v6)

(e13, v5)

(e13, v6)

(e23, v5)

(e23, v6)

(v1, e56)

(v2, e56)

(v3, e56)

e(1,5)(2,6)

e(1,6)(2,5)

e(1,5)(3,6)

e(1,6)(3,5)

e(2,5)(3,6)

e(2,6)(3,5)

O = (0)15×6
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Q =

v15 v16 v25 v26 v35 v36




1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 1 0 0 0 0

0 0 0 1 0 0

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 0 0 1

1 0 0 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0




(e14, v5)

(e14, v6)

(e34, v5)

(e34, v6)

(v1, e67)

(v2, e67)

(v3, e67)

(e12, v7)

(e13, v7),

(e23, v7)

(v4, e56)

(e14, v7)

(e34, v7)

(v4, e67)

e(1,6)(2,7)

e(1,7)(2,6)

e(1,6)(3,7)

e(1,7)(3,6)

e(2,6)(3,7)

e(2,7)(3,6)

e(1,5)(4,6)

e(1,6)(4,5)

e(3,5)(4,6)

e(3,6)(4,5)

e(1,6)(4,7)

e(1,7)(4,6)

e(3,6)(4,7)

e(3,7)(4,6)

R =

v15 v16 v25 v26 v35 v36




0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

1 1 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

0 0 0 1 1 0

1 0 0 0 0 1

0 0 1 0 0 1

0 0 0 0 1 1

0 1 0 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

1 0 0 0 0 0

0 0 1 0 0 0

0 1 0 0 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 1 0 0

0 0 0 0 0 1

1 0 0 0 1 0

0 0 0 0 0 1

0 0 1 0 1 0




(e14, v5)

(e14, v6)

(e34, v5)

(e34, v6)

(v1, e67)

(v2, e67)

(v3, e67)

(e12, v7)

(e13, v7),

(e23, v7)

(v4, e56)

(e14, v7)

(e34, v7)

(v4, e67)

e(1,6)(2,7)

e(1,7)(2,6)

e(1,6)(3,7)

e(1,7)(3,6)

e(2,6)(3,7)

e(2,7)(3,6)

e(1,5)(4,6)

e(1,6)(4,5)

e(3,5)(4,6)

e(3,6)(4,5)

e(1,6)(4,7)

e(1,7)(4,6)

e(3,6)(4,7)

e(3,7)(4,6)
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-f [g]

v15 v45

v25 v35

v26

v16

v36

v46

v27

v17

v37

v47

v15

v25 v35

v26
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G1[G2] G′
1[G

′
2]

Fig.8

I(G1[G2]) =




I(G′
1[G

′
2]) O

Q R




, I(G′
1[G

′
2]) =

v15 v16 v25 v26 v35 v36




1 1 0 0 0 0

0 0 1 1 0 0

0 0 0 0 1 1

1 0 1 0 0 0

1 0 0 0 1 0

0 0 1 0 1 0

1 0 0 1 0 0

1 0 0 0 0 1

0 0 1 0 0 1

0 1 1 0 0 0

0 1 0 0 1 0

0 0 1 1 0 0

0 1 0 1 0 0

0 1 0 0 0 1

0 0 0 1 0 1




,

(v1, e56)

(v2, e56)

(v3, e56)

e(1,5)(2,5)

e(1,5)(3,5)

e(2,5)(3,5)

e(1,5)(2,6)

e(1,6)(2,5)

e(1,5)(3,6)

e(1,6)(3,5)

e(2,5)(3,6)

e(3,5)(2,6)

e(1,6)(2,6)

e(1,6)(3,6)

e(2,6)(3,6)

O = (0)15×6 and
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Q =

v15 v16 v25 v26 v35 v36




0 1 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 1 0

1 0 0 0 0 0

0 0 0 0 1 0

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 1

0 1 0 0 0 0

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 1 0 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0

0 0 0 0 0 0




(v1, e67)

(v2, e67)

(v3, e67)

(v4, e56)

(v4, e67)

e(1,5)(4,5)

e(3,5)(4,5)

e(1,5)(4,6)

e(1,6)(4,5)

e(3,5)(4,6)

e(3,6)(4,5)

e(1,5)(4,7)

e(1,7)(4,5)

e(3,5)(4,7)

e(3,7)(4,5)

e(1,6)(4,6)

e(3,6)(4,6)

e(1,6)(4,7)

e(1,7)(4,6)

e(3,6)(4,7)

e(3,7)(4,6)

e(1,7)(4,7)

e(3,7)(4,7)

e(1,5)(2,7)

e(1,7)(2,5)

e(1,5)(3,7)

e(1,7)(3,5)

e(2,5)(3,7)

e(2,7)(3,7)

e(2,7)(3,5)

e(1,6)(2,7)

e(1,7)(2,6)

e(1,6)(3,7)

e(1,7)(3,6)

e(2,6)(3,7)

e(1,7)(2,7)

e(1,7)(3,7)

e(2,7)(3,7)

R =

v15 v16 v25 v26 v35 v36




1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 1 0

0 0 0 0 1 1

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

0 0 0 1 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 0 0 0 1

1 0 0 1 0 0

0 0 1 1 0 0

1 0 0 0 1 0

0 0 1 0 1 0

1 0 0 0 0 1

0 0 1 0 0 1

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 1 0 0

0 0 1 1 0 0

1 0 0 0 0 0

1 0 0 0 0 0

0 1 0 0 0 0

1 0 0 0 1 0

0 0 1 0 1 0

1 1 0 0 0 0

1 0 1 0 0 0

0 1 1 0 0 0

1 0 0 0 0 1

0 0 1 0 0 1




(v1, e67)

(v2, e67)

(v3, e67)

(v4, e56)

(v4, e67)

e(1,5)(4,5)

e(3,5)(4,5)

e(1,5)(4,6)

e(1,6)(4,5)

e(3,5)(4,6)

e(3,6)(4,5)

e(1,5)(4,7)

e(1,7)(4,5)

e(3,5)(4,7)

e(3,7)(4,5)

e(1,6)(4,6)

e(3,6)(4,6)

e(1,6)(4,7)

e(1,7)(4,6)

e(3,6)(4,7)

e(3,7)(4,6)

e(1,7)(4,7)

e(3,7)(4,7)

e(1,5)(2,7)

e(1,7)(2,5)

e(1,5)(3,7)

e(1,7)(3,5)

e(2,5)(3,7)

e(2,7)(3,7)

e(2,7)(3,5)

e(1,6)(2,7)

e(1,7)(2,6)

e(1,6)(3,7)

e(1,7)(3,6)

e(2,6)(3,7)

e(1,7)(2,7)

e(1,7)(3,7)

e(2,7)(3,7)
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The First International Conference on

Smarandache Multispace and Multistructure was held in China

In recent decades, Smarandache’s notions of multispace and multistructure were widely

spread and have shown much importance in sciences around the world. Organized by Prof.

Linfan Mao, a professional conference on multispaces and multistructures, named the First

International Conference on Smarandache Multispace and Multistructure was held in Beijing

University of Civil Engineering and Architecture of P. R. China on June 28-30, 2013, which

was announced by American Mathematical Society in advance.

The Smarandache multispace and multistructure are qualitative notions, but both can be

applied to metric and non-metric systems. There were 46 researchers haven taken part in this

conference with 14 papers on Smarandache multispaces and geometry, birings, neutrosophy,

neutrosophic groups, regular maps and topological graphs with applications to non-solvable

equation systems.

Prof.Yanpei Liu reports on topological graphs
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Prof.Linfan Mao reports on non-solvable systems of equations

Prof.Shaofei Du reports on regular maps with developments

Applications of Smarandache multispaces and multistructures underline a combinatorial

mathematical structure and interchangeability with other sciences, including gravitational fields,

weak and strong interactions, traffic network, etc.

All participants have showed a genuine interest on topics discussed in this conference and

would like to carry these notions forward in their scientific works.



Progress is the activity of today and the assurance of tomorrow.

By Emerson, an American thinker.
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BY O.ZEKİ OKUYUCU. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44

Introduction to Bihypergroups BY B.DAVVAZ AND A.A.A.AGBOOLA . . . . . . . . . . 54

Smarandache Seminormal Subgroupoids

BY H.J.SIAMWALLA AND A.S.MUKTIBODH . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

The Kropina-Randers Change of Finsler Metric and Relation Between

Imbedding Class Numbers of Their Tangent Riemannian Spaces

BY H.S.SHUKLA, O.P.PANDEY AND HONEY DUTT JOSHI . . . . . . . . . . . . . . . . . . . . . . . . . 74

The Bisector Surface of Rational Space Curves in Minkowski 3-Space

BY MUSTAFA DEDE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

A Note on Odd Graceful Labeling of a Class of Trees

BY MATHEW VARKEY T.K. AND SHAJAHAN A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .91

Graph Folding and Incidence Matrices

BY E.M.EL-KHOLY, EL-SAID R.LASHIN AND SALAMA N.DAOUD . . . . . . . . . . . . . . . . 97

The First International Conference on Smarandache Multispace and

Multistructure was held in China . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

An International Journal on Mathematical Combinatorics




