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Ordinary Differential Equations With Applications
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Abstract: Different from the system in classical mathematics, a Smarandache system is

a contradictory system in which an axiom behaves in at least two different ways within the

same system, i.e., validated and invalided, or only invalided but in multiple distinct ways.

Such systems exist extensively in the world, particularly, in our daily life. In this paper, we

discuss such a kind of Smarandache system, i.e., non-solvable ordinary differential equation

systems by a combinatorial approach, classify these systems and characterize their behaviors,

particularly, the global stability, such as those of sum-stability and prod-stability of such

linear and non-linear differential equations. Some applications of such systems to other

sciences, such as those of globally controlling of infectious diseases, establishing dynamical

equations of instable structure, particularly, the n-body problem and understanding global

stability of matters with multilateral properties can be also found.

Key Words: Global stability, non-solvable ordinary differential equation, general solution,

G-solution, sum-stability, prod-stability, asymptotic behavior, Smarandache system, inherit

graph, instable structure, dynamical equation, multilateral matter.

AMS(2010): 05C15, 34A30, 34A34, 37C75, 70F10, 92B05

§1. Introduction

Finding the exact solution of an equation system is a main but a difficult objective unless some

special cases in classical mathematics. Contrary to this fact, what is about the non-solvable

case for an equation system? In fact, such an equation system is nothing but a contradictory

system, and characterized only by having no solution as a conclusion. But our world is overlap

and hybrid. The number of non-solvable equations is much more than that of the solvable

and such equation systems can be also applied for characterizing the behavior of things, which

reflect the real appearances of things by that their complexity in our world. It should be noted

that such non-solvable linear algebraic equation systems have been characterized recently by

the author in the reference [7]. The main purpose of this paper is to characterize the behavior

of such non-solvable ordinary differential equation systems.

1Received November 16, 2012. Accepted March 1, 2013.
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Assume m, n ≥ 1 to be integers in this paper. Let

Ẋ = F (X) (DES1)

be an autonomous differential equation with F : Rn → Rn and F (0) = 0, particularly, let

Ẋ = AX (LDES1)

be a linear differential equation system and

x(n) + a1x
(n−1) + · · · + anx = 0 (LDEn)

a linear differential equation of order n with

A =




a11 a12 · · · a1n

a21 a22 · · · a2n

· · · · · · · · · · · ·
an1 an2 · · · ann




X =




x1(t)

x2(t)

· · ·
xn(t)




and F (t, X) =




f1(t, X)

f2(t, X)

· · ·
fn(t, X)




,

where all ai, aij , 1 ≤ i, j ≤ n are real numbers with

Ẋ = (ẋ1, ẋ2, · · · , ẋn)T

and fi(t) is a continuous function on an interval [a, b] for integers 0 ≤ i ≤ n. The following

result is well-known for the solutions of (LDES1) and (LDEn) in references.

Theorem 1.1([13]) If F (X) is continuous in

U(X0) : |t − t0| ≤ a, ‖X − X0‖ ≤ b (a > 0, b > 0)

then there exists a solution X(t) of differential equation (DES1) in the interval |t − t0| ≤ h,

where h = min{a, b/M}, M = max
(t,X)∈U(t0,X0)

‖F (t, X)‖.

Theorem 1.2([13]) Let λi be the ki-fold zero of the characteristic equation

det(A − λIn×n) = |A − λIn×n| = 0

or the characteristic equation

λn + a1λ
n−1 + · · · + an−1λ + an = 0

with k1 + k2 + · · · + ks = n. Then the general solution of (LDES1) is

n∑

i=1

ciβi(t)e
αit,
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where, ci is a constant, βi(t) is an n-dimensional vector consisting of polynomials in t deter-

mined as follows

β1(t) =




t11

t21

· · ·
tn1




β2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βk1
(t) =




t11
(k1−1)! t

k1−1 + t12
(k1−2)! t

k1−2 + · · · + t1k1

t21
(k1−1)! t

k1−1 + t22
(k1−2)! t

k1−2 + · · · + t2k1

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn1

(k1−1)! t
k1−1 + tn2

(k1−2)! t
k1−2 + · · · + tnk1




βk1+1(t) =




t1(k1+1)

t2(k1+1)

· · · · · ·
tn(k1+1)




βk1+2(t) =




t11t + t12

t21t + t22

· · · · · · · · ·
tn1t + tn2




· · · · · · · · · · · · · · · · · · · · · · · · · · ·

βn(t) =




t1(n−ks+1)

(ks−1)! tks−1 +
t1(n−ks+2)

(ks−2)! tks−2 + · · · + t1n

t2(n−ks+1)

(ks−1)! tks−1 +
t2(n−ks+2)

(ks−2)! tks−2 + · · · + t2n

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ·
tn(n−ks+1)

(ks−1)! tks−1 +
tn(n−ks+2)

(ks−2)! tks−2 + · · · + tnn




with each tij a real number for 1 ≤ i, j ≤ n such that det([tij ]n×n) 6= 0,

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;

λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ n.
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The general solution of linear differential equation (LDEn) is

s∑

i=1

(ci1t
ki−1 + ci2t

ki−2 + · · · + ci(ki−1)t + ciki
)eλit,

with constants cij , 1 ≤ i ≤ s, 1 ≤ j ≤ ki.

Such a vector family βi(t)e
αit, 1 ≤ i ≤ n of the differential equation system (LDES1) and

a family tleλit, 1 ≤ l ≤ ki, 1 ≤ i ≤ s of the linear differential equation (LDEn) are called the

solution basis, denoted by

B = { βi(t)e
αit | 1 ≤ i ≤ n } or C = { tleλit | 1 ≤ i ≤ s, 1 ≤ l ≤ ki }.

We only consider autonomous differential systems in this paper. Theorem 1.2 implies that

any linear differential equation system (LDES1) of first order and any differential equation

(LDEn) of order n with real coefficients are solvable. Thus a linear differential equation system

of first order is non-solvable only if the number of equations is more than that of variables, and

a differential equation system of order n ≥ 2 is non-solvable only if the number of equations

is more than 2. Generally, such a contradictory system, i.e., a Smarandache system [4]-[6] is

defined following.

Definition 1.3([4]-[6]) A rule R in a mathematical system (Σ;R) is said to be Smarandachely

denied if it behaves in at least two different ways within the same set Σ, i.e., validated and

invalided, or only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule R.

Generally, let (Σ1;R1) (Σ2;R2), · · · , (Σm;Rm) be mathematical systems, where Ri is a

rule on Σi for integers 1 ≤ i ≤ m. If for two integers i, j, 1 ≤ i, j ≤ m, Σi 6= Σj or Σi = Σj but

Ri 6= Rj , then they are said to be different, otherwise, identical. We also know the conception

of Smarandache multi-space defined following.

Definition 1.4([4]-[6]) Let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m ≥ 2 mathematical spaces,

different two by two. A Smarandache multi-space Σ̃ is a union
m⋃

i=1

Σi with rules R̃ =
m⋃

i=1

Ri on

Σ̃, i.e., the rule Ri on Σi for integers 1 ≤ i ≤ m, denoted by
(
Σ̃; R̃

)
.

A Smarandache multi-space
(
Σ̃; R̃

)
inherits a combinatorial structure, i.e., a vertex-edge

labeled graph defined following.

Definition 1.5([4]-[6]) Let
(
Σ̃; R̃

)
be a Smarandache multi-space with Σ̃ =

m⋃
i=1

Σi and R̃ =

m⋃
i=1

Ri. Its underlying graph G
[
Σ̃, R̃

]
is a labeled simple graph defined by

V
(
G
[
Σ̃, R̃

])
= {Σ1, Σ2, · · · , Σm},

E
(
G
[
Σ̃, R̃

])
= { (Σi, Σj) | Σi

⋂
Σj 6= ∅, 1 ≤ i, j ≤ m}
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with an edge labeling

lE : (Σi, Σj) ∈ E
(
G
[
S̃, R̃

])
→ lE(Σi, Σj) = ̟

(
Σi

⋂
Σj

)
,

where ̟ is a characteristic on Σi

⋂
Σj such that Σi

⋂
Σj is isomorphic to Σk

⋂
Σl if and only

if ̟(Σi

⋂
Σj) = ̟ (Σk

⋂
Σl) for integers 1 ≤ i, j, k, l ≤ m.

Now for integers m, n ≥ 1, let

Ẋ = F1(X), Ẋ = F2(X), · · · , Ẋ = Fm(X) (DES1
m)

be a differential equation system with continuous Fi : Rn → Rn such that Fi(0) = 0, particu-

larly, let

Ẋ = A1X, · · · , Ẋ = AkX, · · · , Ẋ = AmX (LDES1
m)

be a linear ordinary differential equation system of first order and





x(n) + a
[0]
11x(n−1) + · · · + a

[0]
1nx = 0

x(n) + a
[0]
21x(n−1) + · · · + a

[0]
2nx = 0

· · · · · · · · · · · ·
x(n) + a

[0]
m1x

(n−1) + · · · + a
[0]
mnx = 0

(LDEn
m)

a linear differential equation system of order n with

Ak =




a
[k]
11 a

[k]
12 · · · a

[k]
1n

a
[k]
21 a

[k]
22 · · · a

[k]
2n

· · · · · · · · · · · ·
a
[k]
n1 a

[k]
n2 · · · a

[k]
nn




and X =




x1(t)

x2(t)

· · ·
xn(t)




where each a
[k]
ij is a real number for integers 0 ≤ k ≤ m, 1 ≤ i, j ≤ n.

Definition 1.6 An ordinary differential equation system (DES1
m) or (LDES1

m) (or (LDEn
m))

are called non-solvable if there are no function X(t) (or x(t)) hold with (DES1
m) or (LDES1

m)

(or (LDEn
m)) unless the constants.

The main purpose of this paper is to find contradictory ordinary differential equation

systems, characterize the non-solvable spaces of such differential equation systems. For such

objective, we are needed to extend the conception of solution of linear differential equations in

classical mathematics following.

Definition 1.7 Let S0
i be the solution basis of the ith equation in (DES1

m). The ∨-solvable, ∧-

solvable and non-solvable spaces of differential equation system (DES1
m) are respectively defined

by
m⋃

i=1

S0
i ,

m⋂

i=1

S0
i and

m⋃

i=1

S0
i −

m⋂

i=1

S0
i ,

where S0
i is the solution space of the ith equation in (DES1

m).
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According to Theorem 1.2, the general solution of the ith differential equation in (LDES1
m)

or the ith differential equation system in (LDEn
m) is a linear space spanned by the elements

in the solution basis Bi or Ci for integers 1 ≤ i ≤ m. Thus we can simplify the vertex-edge

labeled graph G
[∑̃

, R̃
]

replaced each
∑

i by the solution basis Bi (or Ci) and
∑

i

⋂∑
j by

Bi

⋂
Bj (or Ci

⋂
Cj) if Bi

⋂
Bj 6= ∅ (or Ci

⋂
Cj 6= ∅) for integers 1 ≤ i, j ≤ m. Such a vertex-

edge labeled graph is called the basis graph of (LDES1
m) ((LDEn

m)), denoted respectively by

G[LDES1
m] or G[LDEn

m] and the underlying graph of G[LDES1
m] or G[LDEn

m], i.e., cleared

away all labels on G[LDES1
m] or G[LDEn

m] are denoted by Ĝ[LDES1
m] or Ĝ[LDEn

m].

Notice that
m⋂

i=1

S0
i =

m⋃
i=1

S0
i , i.e., the non-solvable space is empty only if m = 1 in

(LDEq). Thus G[LDES1] ≃ K1 or G[LDEn] ≃ K1 only if m = 1. But in general, the

basis graph G[LDES1
m] or G[LDEn

m] is not trivial. For example, let m = 4 and B0
1 =

{eλ1t, eλ2t, eλ3t}, B0
2 = {eλ3t, eλ4t, eλ5t}, B0

3 = {eλ1t, eλ3t, eλ5t} and B0
4 = {eλ4t, eλ5t, eλ6t},

where λi, 1 ≤ i ≤ 6 are real numbers different two by two. Then its edge-labeled graph

G[LDES1
m] or G[LDEn

m] is shown in Fig.1.1.

B0
1 B0

2

B0
3 B0

4

{eλ3t}

{eλ4t, eλ5t}

{eλ5t}

{eλ3t, eλ5t}{eλ1t, eλ3t}

Fig.1.1

If some functions Fi(X), 1 ≤ i ≤ m are non-linear in (DES1
m), we can linearize these

non-linear equations Ẋ = Fi(X) at the point 0, i.e., if

Fi(X) = F ′
i (0)X + Ri(X),

where F ′
i (0) is an n× n matrix, we replace the ith equation Ẋ = Fi(X) by a linear differential

equation

Ẋ = F ′
i (0)X

in (DES1
m). Whence, we get a uniquely linear differential equation system (LDES1

m) from

(DES1
m) and its basis graph G[LDES1

m]. Such a basis graph G[LDES1
m] of linearized differen-

tial equation system (DES1
m) is defined to be the linearized basis graph of (DES1

m) and denoted

by G[DES1
m].

All of these notions will contribute to the characterizing of non-solvable differential equation

systems. For terminologies and notations not mentioned here, we follow the [13] for differential

equations, [2] for linear algebra, [3]-[6], [11]-[12] for graphs and Smarandache systems, and [1],

[12] for mechanics.
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§2. Non-Solvable Linear Ordinary Differential Equations

2.1 Characteristics of Non-Solvable Linear Ordinary Differential Equations

First, we know the following conclusion for non-solvable linear differential equation systems

(LDES1
m) or (LDEn

m).

Theorem 2.1 The differential equation system (LDES1
m) is solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1

i.e., (LDEq) is non-solvable if and only if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) = 1.

Similarly, the differential equation system (LDEn
m) is solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) 6= 1,

i.e., (LDEn
m) is non-solvable if and only if

(P1(λ), P2(λ), · · · , Pm(λ)) = 1,

where Pi(λ) = λn + a
[0]
i1 λn−1 + · · · + a

[0]
i(n−1)λ + a

[0]
in for integers 1 ≤ i ≤ m.

Proof Let λi1, λi2, · · · , λin be the n solutions of equation |Ai − λIn×n| = 0 and Bi the

solution basis of ith differential equation in (LDES1
m) or (LDEn

m) for integers 1 ≤ i ≤ m.

Clearly, if (LDES1
m) ((LDEn

m)) is solvable, then

m⋂

i=1

Bi 6= ∅, i.e.,

m⋂

i=1

{λi1, λi2, · · · , λin} 6= ∅

by Definition 1.5 and Theorem 1.2. Choose λ0 ∈
m⋂

i=1

{λi1, λi2, · · · , λin}. Then (λ − λ0) is a

common divisor of these polynomials |A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|. Thus

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1.

Conversely, if

(|A1 − λIn×n, |A2 − λIn×n|, · · · , |Am − λIn×n|) 6= 1,

let (λ−λ01), (λ−λ02), · · · , (λ−λ0l) be all the common divisors of polynomials |A1−λIn×n, |A2−
λIn×n|, · · · , |Am − λIn×n|, where λ0i 6= λ0j if i 6= j for 1 ≤ i, j ≤ l. Then it is clear that

C1e
λ01 + C2e

λ02 + · · · + Cle
λ0l

is a solution of (LEDq) ((LDEn
m)) for constants C1, C2, · · · , Cl. �

For discussing the non-solvable space of a linear differential equation system (LEDS1
m) or

(LDEn
m) in details, we introduce the following conception.
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Definition 2.2 For two integers 1 ≤ i, j ≤ m, the differential equations





dXi

dt
= AiX

dXj

dt
= AjX

(LDES1
ij)

in (LDES1
m) or





x(n) + a
[0]
i1 x(n−1) + · · · + a

[0]
inx = 0

x(n) + a
[0]
j1x(n−1) + · · · + a

[0]
jnx = 0

(LDEn
ij)

in (LDEn
m) are parallel if Bi

⋂
Bj = ∅.

Then, the following conclusion is clear.

Theorem 2.3 For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) (or (LDEn

ij))

are parallel if and only if

(|Ai| − λIn×n, |Aj | − λIn×n) = 1 (or (Pi(λ), Pj(λ)) = 1),

where (f(x), g(x)) is the least common divisor of f(x) and g(x), Pk(λ) = λn + a
[0]
k1λ

n−1 + · · ·+
a
[0]
k(n−1)λ + a

[0]
kn for k = i, j.

Proof By definition, two differential equations (LEDS1
ij) in (LDES1

m) are parallel if and

only if the characteristic equations

|Ai − λIn×n| = 0 and |Aj − λIn×n| = 0

have no same roots. Thus the polynomials |Ai| − λIn×n and |Aj | − λIn×n are coprime, which

means that

(|Ai − λIn×n, |Aj − λIn×n) = 1.

Similarly, two differential equations (LEDn
ij) in (LDEn

m) are parallel if and only if the

characteristic equations Pi(λ) = 0 and Pj(λ) = 0 have no same roots, i.e., (Pi(λ), Pj(λ)) = 1.�

Let f(x) = a0x
m + a1x

m−1 + · · · + am−1x + am, g(x) = b0x
n + b1x

n−1 + · · ·+ bn−1x + bn

with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. A resultant R(f, g) of f(x) and g(x)

is defined by

R(f, g) = am
0 bn

0

∏

i,j

(xi − yj).

The following result is well-known in polynomial algebra.

Theorem 2.4 Let f(x) = a0x
m + a1x

m−1 + · · · + am−1x + am, g(x) = b0x
n + b1x

n−1 + · · · +
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bn−1x + bn with roots x1, x2, · · · , xm and y1, y2, · · · , yn, respectively. Define a matrix

V (f, g) =




a0 a1 · · · am 0 · · · 0 0

0 a0 a1 · · · am 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 a0 a1 · · · am

b0 b1 · · · bn 0 · · · 0 0

0 b0 b1 · · · bn 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · 0 0 b0 b1 · · · bn




Then

R(f, g) = detV (f, g).

We get the following result immediately by Theorem 2.3.

Corollary 2.5 (1) For two integers 1 ≤ i, j ≤ m, two differential equations (LDES1
ij) are

parallel in (LDES1
m) if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

particularly, the homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T if |Ai − λIn×n| = a0λ
n + a1λ

n−1 + · · · + an−1λ + an and

|Aj − λIn×n| = b0λ
n + b1λ

n−1 + · · · + bn−1λ + bn.

(2) For two integers 1 ≤ i, j ≤ m, two differential equations (LDEn
ij) are parallel in

(LDEn
m) if and only if

R(Pi(λ), Pj(λ)) 6= 0,

particularly, the homogenous equations V (Pi(λ), Pj(λ))X = 0 have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T .

Proof Clearly, |Ai − λIn×n| and |Aj − λIn×n| have no same roots if and only if

R(|Ai − λIn×n|, |Aj − λIn×n|) 6= 0,

which implies that the two differential equations (LEDS1
ij) are parallel in (LEDS1

m) and the

homogenous equations

V (|Ai − λIn×n|, |Aj − λIn×n|)X = 0

have only solution (0, 0, · · · , 0︸ ︷︷ ︸
2n

)T . That is the conclusion (1). The proof for the conclusion (2)

is similar. �
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Applying Corollary 2.5, we can determine that an edge (Bi, Bj) does not exist in G[LDES1
m]

or G[LDEn
m] if and only if the ith differential equation is parallel with the jth differential equa-

tion in (LDES1
m) or (LDEn

m). This fact enables one to know the following result on linear

non-solvable differential equation systems.

Corollary 2.6 A linear differential equation system (LDES1
m) or (LDEn

m) is non-solvable if

Ĝ(LDES1
m) 6≃ Km or Ĝ(LDEn

m) 6≃ Km for integers m, n > 1.

2.2 A Combinatorial Classification of Linear Differential Equations

There is a natural relation between linear differential equations and basis graphs shown in the

following result.

Theorem 2.7 Every linear homogeneous differential equation system (LDES1
m) (or (LDEn

m))

uniquely determines a basis graph G[LDES1
m] (G[LDEn

m]) inherited in (LDES1
m) (or in (LDEn

m)).

Conversely, every basis graph G uniquely determines a homogeneous differential equation system

(LDES1
m) ( or (LDEn

m)) such that G[LDES1
m] ≃ G (or G[LDEn

m] ≃ G).

Proof By Definition 1.4, every linear homogeneous differential equation system (LDES1
m)

or (LDEn
m) inherits a basis graph G[LDES1

m] or G[LDEn
m], which is uniquely determined by

(LDES1
m) or (LDEn

m).

Now let G be a basis graph. For ∀v ∈ V (G), let the basis Bv at the vertex v be Bv =

{ βi(t)e
αit | 1 ≤ i ≤ nv} with

αi =





λ1, if 1 ≤ i ≤ k1;

λ2, if k1 + 1 ≤ i ≤ k2;

· · · · · · · · · · · · · · · · · · · · · ;

λs, if k1 + k2 + · · · + ks−1 + 1 ≤ i ≤ nv

We construct a linear homogeneous differential equation (LDES1) associated at the vertex v.

By Theorem 1.2, we know the matrix

T =




t11 t12 · · · t1nv

t21 t22 · · · t2nv

· · · · · · · · · · · ·
tnv1 tnv2 · · · tnvnv




is non-degenerate. For an integer i, 1 ≤ i ≤ s, let

Ji =




λi 1 0 · · · 0 0

0 λi 1 0 · · · 0

· · · · · · · · · · · · · · · · · ·
0 0 · · · 0 0 λi
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be a Jordan black of ki × ki and

A = T




J1 O

J2

. . .

O Js




T−1.

Then we are easily know the solution basis of the linear differential equation system

dX

dt
= AX (LDES1)

with X = [x1(t), x2(t), · · · , xnv
(t)]T is nothing but Bv by Theorem 1.2. Notice that the Jordan

black and the matrix T are uniquely determined by Bv. Thus the linear homogeneous differen-

tial equation (LDES1) is uniquely determined by Bv. It should be noted that this construction

can be processed on each vertex v ∈ V (G). We finally get a linear homogeneous differential

equation system (LDES1
m), which is uniquely determined by the basis graph G.

Similarly, we construct the linear homogeneous differential equation system (LDEn
m) for

the basis graph G. In fact, for ∀u ∈ V (G), let the basis Bu at the vertex u be Bu = { tleαit | 1 ≤
i ≤ s, 1 ≤ l ≤ ki}. Notice that λi should be a ki-fold zero of the characteristic equation P (λ) = 0

with k1 + k2 + · · · + ks = n. Thus P (λi) = P ′(λi) = · · · = P (ki−1)(λi) = 0 but P (ki)(λi) 6= 0

for integers 1 ≤ i ≤ s. Define a polynomial Pu(λ) following

Pu(λ) =

s∏

i=1

(λ − λi)
ki

associated with the vertex u. Let its expansion be

Pu(λ) = λn + au1λ
n−1 + · · · + au(n−1)λ + aun.

Now we construct a linear homogeneous differential equation

x(n) + au1x
(n−1) + · · · + au(n−1)x

′ + aunx = 0 (LhDEn)

associated with the vertex u. Then by Theorem 1.2 we know that the basis solution of (LDEn)

is just Cu. Notices that such a linear homogeneous differential equation (LDEn) is uniquely

constructed. Processing this construction for every vertex u ∈ V (G), we get a linear homoge-

neous differential equation system (LDEn
m). This completes the proof. �

Example 2.8 Let (LDEn
m) be the following linear homogeneous differential equation system





ẍ − 3ẋ + 2x = 0 (1)

ẍ − 5ẋ + 6x = 0 (2)

ẍ − 7ẋ + 12x = 0 (3)

ẍ − 9ẋ + 20x = 0 (4)

ẍ − 11ẋ + 30x = 0 (5)

ẍ − 7ẋ + 6x = 0 (6)
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where ẍ =
d2x

dt2
and ẋ =

dx

dt
. Then the solution basis of equations (1) − (6) are respectively

{et, e2t}, {e2t, e3t}, {e3t, e4t}, {e4t, e5t}, {e5t, e6t}, {e6t, et} and its basis graph is shown in

Fig.2.1.

{et, e2t} {e2t, e3t}

{e3t, e4t}

{e4t, e5t}{e5t, e6t}

{e6t, et}

{e2t}

{e3t}

{e4t}
{e5t}

{e6t}

{et}

Fig.2.1 The basis graph H

Theorem 2.7 enables one to extend the conception of solution of linear differential equation

to the following.

Definition 2.9 A basis graph G[LDES1
m] (or G[LDEn

m]) is called the graph solution of the

linear homogeneous differential equation system (LDES1
m) (or (LDEn

m)), abbreviated to G-

solution.

The following result is an immediately conclusion of Theorem 3.1 by definition.

Theorem 2.10 Every linear homogeneous differential equation system (LDES1
m) (or (LDEn

m))

has a unique G-solution, and for every basis graph H, there is a unique linear homogeneous

differential equation system (LDES1
m) (or (LDEn

m)) with G-solution H.

Theorem 2.10 implies that one can classifies the linear homogeneous differential equation

systems by those of basis graphs.

Definition 2.11 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear homo-

geneous differential equation systems with G-solutions H, H ′. They are called combinato-

rially equivalent if there is an isomorphism ϕ : H → H ′, thus there is an isomorphism

ϕ : H → H ′ of graph and labelings θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for

∀x ∈ V (H)
⋃

E(H), denoted by (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′).

{e−t, e−2t} {e−2t, e−3t}

{e−3t, e−4t}

{e−4t, e−5t}{e−5t, e−6t}

{−e6t, e−t}

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}

Fig.2.2 The basis graph H’
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Example 2.12 Let (LDEn
m)′ be the following linear homogeneous differential equation system





ẍ + 3ẋ + 2x = 0 (1)

ẍ + 5ẋ + 6x = 0 (2)

ẍ + 7ẋ + 12x = 0 (3)

ẍ + 9ẋ + 20x = 0 (4)

ẍ + 11ẋ + 30x = 0 (5)

ẍ + 7ẋ + 6x = 0 (6)

Then its basis graph is shown in Fig.2.2.

Let ϕ : H → H ′ be determined by ϕ({eλit, eλjt}) = {e−λit, e−λjt} and

ϕ({eλit, eλjt}
⋂

{eλkt, eλlt}) = {e−λit, e−λjt}
⋂

{e−λkt, e−λlt}

for integers 1 ≤ i, k ≤ 6 and j = i + 1 ≡ 6(mod6), l = k + 1 ≡ 6(mod6). Then it is clear that

H
ϕ≃ H ′. Thus (LDEn

m)′ is combinatorially equivalent to the linear homogeneous differential

equation system (LDEn
m) appeared in Example 2.8.

Definition 2.13 Let G be a simple graph. A vertex-edge labeled graph θ : G → Z
+ is called

integral if θ(uv) ≤ min{θ(u), θ(v)} for ∀uv ∈ E(G), denoted by GIθ .

Let GIθ

1 and GIτ

2 be two integral labeled graphs. They are called identical if G1
ϕ≃ G2 and

θ(x) = τ(ϕ(x)) for any graph isomorphism ϕ and ∀x ∈ V (G1)
⋃

E(G1), denoted by GIθ

1 = GIτ

2 .

For example, these labeled graphs shown in Fig.2.3 are all integral on K4−e, but GIθ

1 = GIτ

2 ,

GIθ

1 6= GIσ

3 .

3 4

4 3

1

2

2

1 2 2 1 1

4 2

2 4

3

3

3 3

4 4

2

GIθ

1 GIτ

2

2 2

1

1

GIσ

3

Fig.2.3

Let G[LDES1
m] (G[LDEn

m]) be a basis graph of the linear homogeneous differential equa-

tion system (LDES1
m) (or (LDEn

m)) labeled each v ∈ V (G[LDES1
m]) (or v ∈ V (G[LDEn

m]))

by Bv. We are easily get a vertex-edge labeled graph by relabeling v ∈ V (G[LDES1
m]) (or

v ∈ V (G[LDEn
m])) by |Bv| and uv ∈ E(G[LDES1

m]) (or uv ∈ E(G[LDEn
m])) by |Bu

⋂
Bv|.

Obviously, such a vertex-edge labeled graph is integral, and denoted by GI [LDES1
m] (or

GI [LDEn
m]). The following result completely characterizes combinatorially equivalent linear

homogeneous differential equation systems.

Theorem 2.14 Let (LDES1
m), (LDES1

m)′ (or (LDEn
m), (LDEn

m)′) be two linear homogeneous
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differential equation systems with integral labeled graphs H, H ′. Then (LDES1
m)

ϕ≃ (LDES1
m)′

(or (LDEn
m)

ϕ≃ (LDEn
m)′) if and only if H = H ′.

Proof Clearly, H = H ′ if (LDES1
m)

ϕ≃ (LDES1
m)′ (or (LDEn

m)
ϕ≃ (LDEn

m)′) by defini-

tion. We prove the converse, i.e., if H = H ′ then there must be (LDES1
m)

ϕ≃ (LDES1
m)′ (or

(LDEn
m)

ϕ≃ (LDEn
m)′).

Notice that there is an objection between two finite sets S1, S2 if and only if |S1| = |S2|.
Let τ be a 1 − 1 mapping from Bv on basis graph G[LDES1

m] (or basis graph G[LDEn
m]) to

Bv′ on basis graph G[LDES1
m]′ (or basis graph G[LDEn

m]′) for v, v′ ∈ V (H ′). Now if H = H ′,

we can easily extend the identical isomorphism idH on graph H to a 1 − 1 mapping id∗H :

G[LDES1
m] → G[LDES1

m]′ (or id∗H : G[LDEn
m] → G[LDEn

m]′) with labelings θ : v → Bv and

θ′v′ : v′ → Bv′ on G[LDES1
m], G[LDES1

m]′ (or basis graphs G[LDEn
m], G[LDEn

m]′). Then

it is an immediately to check that id∗Hθ(x) = θ′τ(x) for ∀x ∈ V (G[LDES1
m])

⋃
E(G[LDES1

m])

(or for ∀x ∈ V (G[LDEn
m])

⋃
E(G[LDEn

m])). Thus id∗H is an isomorphism between basis graphs

G[LDES1
m] and G[LDES1

m]′ (or G[LDEn
m] and G[LDEn

m]′). Thus (LDES1
m)

id∗

H≃ (LDES1
m)′

(or (LDEn
m)

id∗

H≃ (LDEn
m)′). This completes the proof. �

According to Theorem 2.14, all linear homogeneous differential equation systems (LDES1
m)

or (LDEn
m) can be classified by G-solutions into the following classes:

Class 1. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on Km and

any two linear differential equations in (LDES1
m) or (LDEn

m) are parallel, which characterizes

m isolated systems in this class.

For example, the following differential equation system





ẍ + 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ + 2ẋ − 3x = 0

is of Class 1.

Class 2. Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km for integers m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on complete

graphs Km in this class. By Corollary 2.6, we know that Ĝ[LDES1
m] ≃ Km or Ĝ[LDEn

m] ≃ Km

if (LDES1
m) or (LDEn

m) is solvable. In fact, this implies that

⋂

v∈V (Km)

Bv =
⋂

u,v∈V (Km)

(Bu

⋂
Bv) 6= ∅.

Otherwise, (LDES1
m) or (LDEn

m) is non-solvable.

For example, the underlying graphs of linear differential equation systems (A) and (B) in
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the following

(A)





ẍ − 3ẋ + 2x = 0

ẍ − x = 0

ẍ − 4ẋ + 3x = 0

ẍ + 2ẋ − 3x = 0

(B)





ẍ − 3ẋ + 2x = 0

ẍ − 5ẋ + 6x = 0

ẍ − 4ẋ + 3x = 0

are respectively K4, K3. It is easily to know that (A) is solvable, but (B) is not.

Class 3. Ĝ[LDES1
m] ≃ G or Ĝ[LDEn

m] ≃ G with |G| = m but G 6≃ Km, Km for integers

m, n ≥ 1.

The G-solutions of differential equation systems are labeled by solution bases on G and all

linear differential equation systems (LDES1
m) or (LDEn

m) are non-solvable in this class, such

as those shown in Example 2.12.

2.3 Global Stability of Linear Differential Equations

The following result on the initial problem of (LDES1) and (LDEn) are well-known for differ-

ential equations.

Lemma 2.15([13]) For t ∈ [0,∞), there is a unique solution X(t) for the linear homogeneous

differential equation system
dX

dt
= AX (LhDES1)

with X(0) = X0 and a unique solution for

x(n) + a1x
(n−1) + · · · + anx = 0 (LhDEn)

with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0) = x
(n−1)
0 .

Applying Lemma 2.15, we get easily a conclusion on the G-solution of (LDES1
m) with

Xv(0) = Xv
0 for ∀v ∈ V (G) or (LDEn

m) with x(0) = x0, x
′(0) = x′

0, · · · , x(n−1)(0) = x
(n−1)
0 by

Theorem 2.10 following.

Theorem 2.16 For t ∈ [0,∞), there is a unique G-solution for a linear homogeneous dif-

ferential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with initial values

xv(0), x′
v(0), · · · , x

(n−1)
v (0) for ∀v ∈ V (G).

For discussing the stability of linear homogeneous differential equations, we introduce the

conceptions of zero G-solution and equilibrium point of that (LDES1
m) or (LDEn

m) following.

Definition 2.17 A G-solution of a linear differential equation system (LDES1
m) with initial

value Xv(0) or (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0) for ∀v ∈ V (G) is called

a zero G-solution if each label Bi of G is replaced by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.
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Definition 2.18 Let dX/dt = AvX, x(n) + av1x
(n−1) + · · ·+ avnx = 0 be differential equations

associated with vertex v and H a spanning subgraph of G[LDES1
m] (or G[LDEn

m]). A point

X∗ ∈ Rn is called a H-equilibrium point if AvX∗ = 0 in (LDES1
m) with initial value Xv(0)

or (X∗)n + av1(X
∗)n−1 + · · · + avnX∗ = 0 in (LDEn

m) with initial values xv(0), x′
v(0), · · · ,

x
(n−1)
v (0) for ∀v ∈ V (H).

We consider only two kind of stabilities on the zero G-solution of linear homogeneous

differential equations in this section. One is the sum-stability. Another is the prod-stability.

2.3.1 Sum-Stability

Definition 2.19 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with

initial values xv(0), x′
v(0), · · · , x

(n−1)
v (0). Then G[LDES1

m] or G[LDEn
m] is called sum-stable

or asymptotically sum-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEn

m) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∑
v∈V (H)

Yv(t)−
∑

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0

| ∑
v∈V (H)

Yv(t) − ∑
v∈V (H)

Xv(t)| = 0.

Clearly, an asymptotic sum-stability implies the sum-stability of that G[LDES1
m] or G[LDEn

m].

The next result shows the relation of sum-stability with that of classical stability.

Theorem 2.20 For a G-solution G[LDES1
m] of (LDES1

m) with initial value Xv(0) (or G[LDEn
m]

of (LDEn
m) with initial values xv(0), x′

v(0), · · · , x
(n−1)
v (0)), let H be a spanning subgraph of

G[LDES1
m] (or G[LDEn

m]) and X∗ an equilibrium point on subgraphs H. If G[LDES1
m] (or

G[LDEn
m]) is stable on any ∀v ∈ V (H), then G[LDES1

m] (or G[LDEn
m]) is sum-stable on H.

Furthermore, if G[LDES1
m] (or G[LDEn

m]) is asymptotically sum-stable for at least one vertex

v ∈ V (H), then G[LDES1
m] (or G[LDEn

m]) is asymptotically sum-stable on H.

Proof Notice that

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv|Yv(t) − Xv(t)|

and

lim
t→0

|
∑

v∈V (H)

pvYv(t) −
∑

v∈V (H)

pvXv(t)| ≤
∑

v∈V (H)

pv lim
t→0

|Yv(t) − Xv(t)|.

Then the conclusion on sum-stability follows. �

For linear homogenous differential equations (LDES1) (or (LDEn)), the following result

on stability of its solution X(t) = 0 (or x(t) = 0) is well-known.

Lemma 2.21 Let γ = max{ Reλ| |A − λIn×n| = 0}. Then the stability of the trivial solution

X(t) = 0 of linear homogenous differential equations (LDES1) (or x(t) = 0 of (LDEn)) is

determined as follows:

(1) if γ < 0, then it is asymptotically stable;
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(2) if γ > 0, then it is unstable;

(3) if γ = 0, then it is not asymptotically stable, and stable if and only if m′(λ) = m(λ)

for every λ with Reλ = 0, where m(λ) is the algebraic multiplicity and m′(λ) the dimension of

eigenspace of λ.

By Theorem 2.20 and Lemma 2.21, the following result on the stability of zero G-solution

of (LDES1
m) and (LDEn

m) is obtained.

Theorem 2.22 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEn
m)) is asymptotically sum-stable on a spanning subgraph H of G[LDES1

m] (or G[LDEn
m])

if and only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) or Reλv < 0 for each tlveλvt ∈ Cv

in (LDEn
m) hold for ∀v ∈ V (H).

Proof The sufficiency is an immediately conclusion of Theorem 2.20.

Conversely, if there is a vertex v ∈ V (H) such that Reαv ≥ 0 for βv(t)e
αvt ∈ Bv in

(LDES1) or Reλv ≥ 0 for tlveλvt ∈ Cv in (LDEn
m), then we are easily knowing that

lim
t→∞

βv(t)eαvt → ∞

if αv > 0 or βv(t) 6=constant, and

lim
t→∞

tlveλvt → ∞

if λv > 0 or lv > 0, which implies that the zero G-solution of linear homogenous differential

equation systems (LDES1) or (LDEn) is not asymptotically sum-stable on H . �

The following result of Hurwitz on real number of eigenvalue of a characteristic polynomial

is useful for determining the asymptotically stability of the zero G-solution of (LDES1
m) and

(LDEn
m).

Lemma 2.23 Let P (λ) = λn + a1λ
n−1 + · · ·+ an−1λ+ an be a polynomial with real coefficients

ai, 1 ≤ i ≤ n and

∆1 = |a1|, ∆2 =

∣∣∣∣∣∣
a1 1

a3 a2

∣∣∣∣∣∣
, · · ·∆n =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

a1 1 0 · · · 0

a3 a2 a1 0 · · · 0

a5 a4 a3 a2 a1 0 · · · 0

· · · · · · · · · · · · · · · · · · · · · · · ·
0 · · · an

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

Then Reλ < 0 for all roots λ of P (λ) if and only if ∆i > 0 for integers 1 ≤ i ≤ n.

Thus, we get the following result by Theorem 2.22 and lemma 2.23.

Corollary 2.24 Let ∆v
1, ∆

v
2 , · · · , ∆v

n be the associated determinants with characteristic polyno-

mials determined in Lemma 4.8 for ∀v ∈ V (G[LDES1
m]) or V (G[LDEn

m]). Then for a spanning

subgraph H < G[LDES1
m] or G[LDEn

m], the zero G-solutions of (LDES1
m) and (LDEn

m) is

asymptotically sum-stable on H if ∆v
1 > 0, ∆v

2 > 0, · · · , ∆v
n > 0 for ∀v ∈ V (H).
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Particularly, if n = 2, we are easily knowing that Reλ < 0 for all roots λ of P (λ) if and

only if a1 > 0 and a2 > 0 by Lemma 2.23. We get the following result.

Corollary 2.25 Let H < G[LDES1
m] or G[LDEn

m] be a spanning subgraph. If the characteristic

polynomials are λ2 + av
1λ + av

2 for v ∈ V (H) in (LDES1
m) (or (LhDE2

m)), then the zero G-

solutions of (LDES1
m) and (LDE2

m) is asymptotically sum-stable on H if av
1 > 0, av

2 > 0 for

∀v ∈ V (H).

2.3.2 Prod-Stability

Definition 2.26 Let H be a spanning subgraph of G[LDES1
m] or G[LDEn

m] of the linear

homogeneous differential equation systems (LDES1
m) with initial value Xv(0) or (LDEn

m) with

initial values xv(0), x′
v(0), · · · , x

(n−1)
v (0). Then G[LDES1

m] or G[LDEn
m] is called prod-stable

or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of the linear differential

equations of (LDES1
m) or (LDEn

m) with |Yv(0)−Xv(0)| < δv exists for all t ≥ 0, | ∏
v∈V (H)

Yv(t)−
∏

v∈V (H)

Xv(t)| < ε, or furthermore, lim
t→0

| ∏
v∈V (H)

Yv(t) − ∏
v∈V (H)

Xv(t)| = 0.

We know the following result on the prod-stability of linear differential equation system

(LDES1
m) and (LDEn

m).

Theorem 2.27 A zero G-solution of linear homogenous differential equation systems (LDES1
m)

(or (LDEn
m)) is asymptotically prod-stable on a spanning subgraph H of G[LDES1

m] (or G[LDEn
m])

if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)eαvt ∈ Bv in (LDES1) or
∑

v∈V (H)

Reλv < 0 for

each tlveλvt ∈ Cv in (LDEn
m).

Proof Applying Theorem 1.2, we know that a solution Xv(t) at the vertex v has the form

Xv(t) =

n∑

i=1

ciβv(t)e
αvt.

Whence,
∣∣∣∣∣∣

∏

v∈V (H)

Xv(t)

∣∣∣∣∣∣
=

∣∣∣∣∣∣

∏

v∈V (H)

n∑

i=1

ciβv(t)e
αvt

∣∣∣∣∣∣

=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)e
αvt

∣∣∣∣∣∣
=

∣∣∣∣∣∣

n∑

i=1

∏

v∈V (H)

ciβv(t)

∣∣∣∣∣∣
e

∑
v∈V (H)

αvt

.

Whence, the zero G-solution of homogenous (LDES1
m) (or (LDEn

m)) is asymptotically sum-

stable on subgraph H if and only if
∑

v∈V (H)

Reαv < 0 for ∀βv(t)eαvt ∈ Bv in (LDES1) or

∑
v∈V (H)

Reλv < 0 for ∀tlveλvt ∈ Cv in (LDEn
m). �

Applying Theorem 2.22, the following conclusion is a corollary of Theorem 2.27.

Corollary 2.28 A zero G-solution of linear homogenous differential equation systems (LDES1
m)
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(or (LDEn
m)) is asymptotically prod-stable if it is asymptotically sum-stable on a spanning

subgraph H of G[LDES1
m] (or G[LDEn

m]). Particularly, it is asymptotically prod-stable if the

zero solution 0 is stable on ∀v ∈ V (H).

Example 2.29 Let a G-solution of (LDES1
m) or (LDEn

m) be the basis graph shown in Fig.2.4,

where v1 = {e−2t, e−3t, e3t}, v2 = {e−3t, e−4t}, v3 = {e−4t, e−5t, e3t}, v4 = {e−5t, e−6t, e−8t},
v5 = {e−t, e−6t}, v6 = {e−t, e−2t, e−8t}. Then the zero G-solution is sum-stable on the triangle

v4v5v6, but it is not on the triangle v1v2v3. In fact, it is prod-stable on the triangle v1v2v3.

{e−8t} {e3t}

v1

v2

v3v4

{e−2t}

{e−3t}

{e−4t}

{e−5t}

{e−6t}

{e−t}
v5

v6

Fig.2.4 A basis graph

§3. Global Stability of Non-Solvable Non-Linear Differential Equations

For differential equation system (DES1
m), we consider the stability of its zero G-solution of

linearized differential equation system (LDES1
m) in this section.

3.1 Global Stability of Non-Solvable Differential Equations

Definition 3.1 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). A point X∗ ∈ Rn is called a H-equilibrium point of

differential equation system (DES1
m) if fv(X

∗) = 0 for ∀v ∈ V (H).

Clearly, 0 is a H-equilibrium point for any spanning subgraph H of G[DES1
m] by definition.

Whence, its zero G-solution of linearized differential equation system (LDES1
m) is a solution

of (DES1
m).

Definition 3.2 Let H be a spanning subgraph of G[DES1
m] of the linearized differential equation

systems (DES1
m) with initial value Xv(0). Then G[DES1

m] is called sum-stable or asymptoti-

cally sum-stable on H if for all solutions Yv(t), v ∈ V (H) of (DES1
m) with ‖Yv(0) − Xv(0)‖ < δv

exists for all t ≥ 0,
∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,
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lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Yv(t) −
∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0,

and prod-stable or asymptotically prod-stable on H if for all solutions Yv(t), v ∈ V (H) of

(DES1
m) with ‖Yv(0) − Xv(0)‖ < δv exists for all t ≥ 0,

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
< ε,

or furthermore,

lim
t→0

∥∥∥∥∥∥

∏

v∈V (H)

Yv(t) −
∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
= 0.

Clearly, the asymptotically sum-stability or prod-stability implies respectively that the

sum-stability or prod-stability.

Then we get the following result on the sum-stability and prod-stability of the zero G-

solution of (DES1
m).

Theorem 3.3 For a G-solution G[DES1
m] of differential equation systems (DES1

m) with initial

value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m]. If the zero G-solution of (DES1

m)

is sum-stable or asymptotically sum-stable on H1 and H2, then the zero G-solution of (DES1
m)

is sum-stable or asymptotically sum-stable on H1

⋃
H2.

Similarly, if the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1 and Xv(t) is bounded for ∀v ∈ V (H2), then the zero G-solution of (DES1
m) is prod-stable

or asymptotically prod-stable on H1

⋃
H2.

Proof Notice that

‖X1 + X2‖ ≤ ‖X1‖ + ‖X2‖ and ‖X1X2‖ ≤ ‖X1‖‖X2‖

in Rn. We know that
∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t) +
∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

and
∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)
∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥

≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
.
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Whence, ∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ or lim

t→0

∥∥∥∥∥∥

∑

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
= 0

if ǫ = ǫ1 + ǫ2 with ∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ1 and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ ǫ2

or

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
= 0 and lim

t→0

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= 0.

This is the conclusion (1). For the conclusion (2), notice that

∥∥∥∥∥∥

∏

v∈V (H1)
⋃

V (H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ Mǫ

if ∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ and

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ M.

Consequently, the zero G-solution of (DES1
m) is prod-stable or asymptotically prod-stable on

H1

⋃
H2. �

Theorem 3.3 enables one to get the following conclusion which establishes the relation of

stability of differential equations at vertices with that of sum-stability and prod-stability.

Corollary 3.4 For a G-solution G[DES1
m] of differential equation system (DES1

m) with initial

value Xv(0), let H be a spanning subgraph of G[DES1
m]. If the zero solution is stable or

asymptotically stable at each vertex v ∈ V (H), then it is sum-stable, or asymptotically sum-

stable and if the zero solution is stable or asymptotically stable in a vertex u ∈ V (H) and Xv(t)

is bounded for ∀v ∈ V (H) \ {u}, then it is prod-stable, or asymptotically prod-stable on H.

It should be noted that the converse of Theorem 3.3 is not always true. For example, let

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ a + ǫ and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ −a + ǫ.

Then the zero G-solution G[DES1
m] of differential equation system (DES1

m) is not sum-stable

on subgraphs H1 and H2, but

∥∥∥∥∥∥

∑

v∈V (H1

⋃
H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∑

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
+

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

Thus the zero G-solution G[DES1
m] of differential equation system (DES1

m) is sum-stable on

subgraphs H1

⋃
H2. Similarly, let
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∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥
≤ ǫ

tr
and

∥∥∥∥∥∥

∑

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
≤ tr

for a real number r. Then the zero G-solution G[DES1
m] of (DES1

m) is not prod-stable on

subgraphs H1 and Xv(t) is not bounded for v ∈ V (H2) if r > 0. However, it is prod-stable on

subgraphs H1

⋃
H2 for

∥∥∥∥∥∥

∏

v∈V (H1
⋃

H2)

Xv(t)

∥∥∥∥∥∥
≤

∥∥∥∥∥∥

∏

v∈V (H1)

Xv(t)

∥∥∥∥∥∥

∥∥∥∥∥∥

∏

v∈V (H2)

Xv(t)

∥∥∥∥∥∥
= ǫ.

3.2 Linearized Differential Equations

Applying these conclusions on linear differential equation systems in the previous section, we

can find conditions on Fi(X), 1 ≤ i ≤ m for the sum-stability and prod-stability at 0 following.

For this objective, we need the following useful result.

Lemma 3.5([13]) Let Ẋ = AX + B(X) be a non-linear differential equation, where A is a

constant n×n matrix and Reλi < 0 for all eigenvalues λi of A and B(X) is continuous defined

on t ≥ 0, ‖X‖ ≤ α with

lim
‖X‖→0

‖B(X)‖
‖X‖ = 0.

Then there exist constants c > 0, β > 0 and δ, 0 < δ < α such that

‖X(0)‖ ≤ ε ≤ δ

2c
implies that ‖X(t)‖ ≤ cεe−βt/2.

Theorem 3.6 Let (DES1
m) be a non-linear differential equation system, H a spanning subgraph

of G[DES1
m] and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (DES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (DES1

m).

Proof Define c = max{cv, v ∈ V (H)}, ε = min{εv, v ∈ V (H)} and β = min{βv, v ∈
V (H)}. Applying Lemma 3.5, we know that for ∀v ∈ V (H),

‖Xv(0)‖ ≤ ε ≤ δ

2c
implies that ‖Xv(t)‖ ≤ cεe−βt/2.
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Whence,
∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∑

v∈V (H)

‖Xv(t)‖ ≤ |H |cεe−βt/2

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
≤

∏

v∈V (H)

‖Xv(t)‖ ≤ c|H|ε|H|e−|H|βt/2.

Consequently,

lim
t→0

∥∥∥∥∥∥

∑

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0 and lim

t→0

∥∥∥∥∥∥

∏

v∈V (H)

Xv(t)

∥∥∥∥∥∥
→ 0.

Thus the zero G-solution (DESn
m) is asymptotically sum-stable or asymptotically prod-stable

on H by definition. �

3.3 Liapunov Functions on G-Solutions

We have know Liapunov functions associated with differential equations. Similarly, we introduce

Liapunov functions for determining the sum-stability or prod-stability of (DES1
m) following.

Definition 3.7 Let (DES1
m) be a differential equation system, H < G[DES1

m] a spanning

subgraph and a H-equilibrium point X∗ of (DES1
m). A differentiable function L : O → R

defined on an open subset O ⊂ Rn is called a Liapunov sum-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∑

v∈V (H)

Xv(t)

)
> 0 if

∑
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∑

v∈V (H)

Xv(t)

)
≤ 0 for

∑
v∈V (H)

Xv(t) 6= X∗,

and a Liapunov prod-function on X∗ for H if

(1) L(X∗) = 0 and L

(
∏

v∈V (H)

Xv(t)

)
> 0 if

∏
v∈V (H)

Xv(t) 6= X∗;

(2) L̇

(
∏

v∈V (H)

Xv(t)

)
≤ 0 for

∏
v∈V (H)

Xv(t) 6= X∗.

Then, the following conclusions on the sum-stable and prod-stable of zero G-solutions of

differential equations holds.

Theorem 3.8 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium point of

(DES1
m) on H.

(1) If there is a Liapunov sum-function L : O → R on X∗, then the zero G-solution

G[DES1
m] is sum-stable on X∗ for H. Furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0
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for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically sum-stable on X∗

for H.

(2) If there is a Liapunov prod-function L : O → R on X∗ for H, then the zero G-solution

G[DES1
m] is prod-stable on X∗ for H. Furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[DES1
m] is asymptotically prod-stable on X∗

for H.

Proof Let ǫ > 0 be a so small number that the closed ball Bǫ(X
∗) centered at X∗ with

radius ǫ lies entirely in O and ̟ the minimum value of L on the boundary of Bǫ(X
∗), i.e.,

the sphere Sǫ(X
∗). Clearly, ̟ > 0 by assumption. Define U = {X ∈ Bǫ(X

∗)|L(X) < ̟}.
Notice that X∗ ∈ U and L is non-increasing on

∑
v∈V (H)

Xv(t) by definition. Whence, there are

no solutions Xv(t), v ∈ V (H) starting in U such that
∑

v∈V (H)

Xv(t) meet the sphere Sǫ(X
∗).

Thus all solutions Xv(t), v ∈ V (H) starting in U enable
∑

v∈V (H)

Xv(t) included in ball Bǫ(X
∗).

Consequently, the zero G-solution G[DES1
m] is sum-stable on H by definition.

Now assume that

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗. Thus L is strictly decreasing on
∑

v∈V (H)

Xv(t). If Xv(t), v ∈ V (H) are

solutions starting in U − X∗ such that
∑

v∈V (H)

Xv(tn) → Y ∗ for n → ∞ with Y ∗ ∈ Bǫ(X
∗),

then it must be Y ∗ = X∗. Otherwise, since

L


 ∑

v∈V (H)

Xv(t)


 > L(Y ∗)

by the assumption

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for all
∑

v∈V (H)

Xv(t) 6= X∗ and

L


 ∑

v∈V (H)

Xv(tn)


→ L(Y ∗)

by the continuity of L, if Y ∗ 6= X∗, let Yv(t), v ∈ V (H) be the solutions starting at Y ∗. Then

for any η > 0,

L


 ∑

v∈V (H)

Yv(η)


 < L(Y ∗).



Global Stability of Non-Solvable Ordinary Differential Equations With Applications 25

But then there is a contradiction

L


 ∑

v∈V (H)

Xv(tn + η)


 < L(Y ∗)

yields by letting Yv(0) =
∑

v∈V (H)

Xv(tn) for sufficiently large n. Thus, there must be Y ∗
v = X∗.

Whence, the zero G-solution G[DES1
m] is asymptotically sum-stable on H by definition. This

is the conclusion (1).

Similarly, we can prove the conclusion (2). �

The following result shows the combination of Liapunov sum-functions or prod-functions.

Theorem 3.9 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], X∗ an equilibrium point of

(DES1
m) on H1

⋃
H2 and

R+(x, y) =
∑

i≥0,j≥0

ai,jx
iyj

be a polynomial with ai,j ≥ 0 for integers i, j ≥ 0. Then R+(L1, L2) is a Liapunov sum-function

or Liapunov prod-function on X∗ for H1

⋃
H2 with conventions for integers i, j, k, l ≥ 0 that

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




= aijL
i
1


 ∑

v∈V (H1)

Xv(t)


Lj

2


 ∑

v∈V (H2)

Xv(t)




+aklL
k
1


 ∑

v∈V (H1)

Xv(t)


Ll

2


 ∑

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov sum-functions and

aijL
i
1L

j
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1
⋃

V (H2)

Xv(t)




= aijL
i
1


 ∏

v∈V (H1)

Xv(t)


Lj

2


 ∏

v∈V (H2)

Xv(t)




+aklL
k
1


 ∏

v∈V (H1)

Xv(t)


Ll

2


 ∏

v∈V (H2)

Xv(t)




if L1, L2 are Liapunov prod-functions on X∗ for H1 and H2, respectively. Particularly, if

there is a Liapunov sum-function (Liapunov prod-function) L on H1 and H2, then L is also a

Liapunov sum-function (Liapunov prod-function) on H1

⋃
H2.

Proof Notice that

d
(
aijL

i
1L

j
2

)

dt
= aij

(
iLi−1

1 L̇1L
j
2 + jLi

1L
j−1
1 L̇2

)
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if i, j ≥ 1. Whence,

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≥ 0

if

L1


 ∑

v∈V (H1)

Xv(t)


 ≥ 0 and L2


 ∑

v∈V (H2)

Xv(t)


 ≥ 0

and

d(aijL
i
1L

j
2)

dt


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


 ≤ 0

if

L̇1


 ∑

v∈V (H1)

Xv(t)


 ≤ 0 and L̇2


 ∑

v∈V (H2)

Xv(t)


 ≤ 0.

Thus R+(L1, L2) is a Liapunov sum-function on X∗ for H1

⋃
H2.

Similarly, we can know that R+(L1, L2) is a Liapunov prod-function on X∗ for H1

⋃
H2 if

L1, L2 are Liapunov prod-functions on X∗ for H1 and H2. �

Theorem 3.9 enables one easily to get the stability of the zero G-solutions of (DES1
m).

Corollary 3.10 For a differential equation system (DES1
m), let H < G[DES1

m] be a spanning

subgraph. If Lv is a Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively Liapunov sum-function and Liapunov prod-function on graph H. Particularly,

if L = Lv for ∀v ∈ V (H), then L is both a Liapunov sum-function and a Liapunov prod-function

on H.

Example 3.11 Let (DES1
m) be determined by





dx1/dt = λ11x1

dx2/dt = λ12x2

· · · · · · · · ·
dxn/dt = λ1nxn





dx1/dt = λ21x1

dx2/dt = λ22x2

· · · · · · · · ·
dxn/dt = λ2nxn

· · ·





dx1/dt = λn1x1

dx2/dt = λn2x2

· · · · · · · · ·
dxn/dt = λnnxn

where all λij , 1 ≤ i ≤ m, 1 ≤ j ≤ n are real and λij1 6= λij2 if j1 6= j2 for integers 1 ≤ i ≤ m.

Let L = x2
1 + x2

2 + · · · + x2
n. Then

L̇ = λi1x
2
1 + λi2x

2
2 + · · · + λinx2

n

for integers 1 ≤ i ≤ n. Whence, it is a Liapunov function for the ith differential equation if

λij < 0 for integers 1 ≤ j ≤ n. Now let H < G[LDES1
m] be a spanning subgraph of G[LDES1

m].

Then L is both a Liapunov sum-function and a Liapunov prod-function on H if λvj < 0 for

∀v ∈ V (H) by Corollaries 3.10.
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Theorem 3.12 Let L : O → R be a differentiable function with L(0) = 0 and L

(
∑

v∈V (H)

X

)
>

0 always holds in an area of its ǫ-neighborhood U(ǫ) of 0 for ε > 0, denoted by U+(0, ε) such

area of ε-neighborhood of 0 with L

(
∑

v∈V (H)

X

)
> 0 and H < G[DES1

m] be a spanning subgraph.

(1) If ∥∥∥∥∥∥
L


 ∑

v∈V (H)

X



∥∥∥∥∥∥
≤ M

with M a positive number and

L̇


 ∑

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists a positive number c1, c2 such that

L


 ∑

v∈V (H)

X


 ≥ c1 > 0 implies L̇


 ∑

v∈V (H)

X


 ≥ c2 > 0,

then the zero G-solution G[DES1
m] is not sum-stable on H. Such a function L : O → R is

called a non-Liapunov sum-function on H.

(2) If ∥∥∥∥∥∥
L


 ∏

v∈V (H)

X



∥∥∥∥∥∥
≤ N

with N a positive number and

L̇


 ∏

v∈V (H)

X


 > 0

in U+(0, ǫ), and for ∀ǫ > 0, there exists positive numbers d1, d2 such that

L


 ∏

v∈V (H)

X


 ≥ d1 > 0 implies L̇


 ∏

v∈V (H)

X


 ≥ d2 > 0,

then the zero G-solution G[DES1
m] is not prod-stable on H. Such a function L : O → R is

called a non-Liapunov prod-function on H.

Proof Generally, if ‖L(X)‖ is bounded and L̇ (X) > 0 in U+(0, ǫ), and for ∀ǫ > 0, there

exists positive numbers c1, c2 such that if L (X) ≥ c1 > 0, then L̇ (X) ≥ c2 > 0, we prove that

there exists t1 > t0 such that ‖X(t1, t0)‖ > ǫ0 for a number ǫ0 > 0, where X(t1, t0) denotes

the solution of (DESn
m) passing through X(t0). Otherwise, there must be ‖X(t1, t0)‖ < ǫ0 for

t ≥ t0. By L̇ (X) > 0 we know that L(X(t)) > L(X(t0)) > 0 for t ≥ t0. Combining this fact

with the condition L̇ (X) ≥ c2 > 0, we get that

L(X(t)) = L(X(t0)) +

t∫

t0

dL(X(s))

ds
≥ L(X(t0)) + c2(t − t0).
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Thus L(X(t)) → +∞ if t → +∞, a contradiction to the assumption that L(X) is bounded.

Whence, there exists t1 > t0 such that

‖X(t1, t0)‖ > ǫ0.

Applying this conclusion, we immediately know that the zero G-solution G[DES1
m] is not sum-

stable or prod-stable on H by conditions in (1) or (2). �

Similar to Theorem 3.9, we know results for non-Liapunov sum-function or prod-function

by Theorem 3.12 following.

Theorem 3.13 For a G-solution G[DES1
m] of a differential equation system (DES1

m) with

initial value Xv(0), let H1, H2 be spanning subgraphs of G[DES1
m], 0 an equilibrium point of

(DES1
m) on H1

⋃
H2. Then R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov

prod-function on 0 for H1

⋃
H2 with conventions for

aijL
i
1L

j
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∑

v∈V (H1

⋃
V (H2)

Xv(t)




and

aijL
i
1L

j
2


 ∏

v∈V (H1

⋃
V (H2)

Xv(t)


+ aklL

k
1L

l
2


 ∏

v∈V (H1

⋃
V (H2)

Xv(t)




the same as in Theorem 3.9 if L1, L2 are non-Liapunov sum-functions or non-Liapunov prod-

functions on 0 for H1 and H2, respectively. Particularly, if there is a non-Liapunov sum-

function (non-Liapunov prod-function) L on H1 and H2, then L is also a non-Liapunov sum-

function (non-Liapunov prod-function) on H1

⋃
H2.

Proof Similarly, we can show that R+(L1, L2) satisfies these conditions on H1

⋃
H2 for

non-Liapunov sum-functions or non-Liapunov prod-functions in Theorem 3.12 if L1, L2 are

non-Liapunov sum-functions or non-Liapunov prod-functions on 0 for H1 and H2, respectively.

Thus R+(L1, L2) is a non-Liapunov sum-function or non-Liapunov prod-function on 0. �

Corollary 3.14 For a differential equation system (DES1
m), let H < G[DES1

m] be a spanning

subgraph. If Lv is a non-Liapunov function on vertex v for ∀v ∈ V (H), then the functions

LH
S =

∑

v∈V (H)

Lv and LH
P =

∏

v∈V (H)

Lv

are respectively non-Liapunov sum-function and non-Liapunov prod-function on graph H. Par-

ticularly, if L = Lv for ∀v ∈ V (H), then L is both a non-Liapunov sum-function and a non-

Liapunov prod-function on H.

Example 3.15 Let (DES1
m) be





ẋ1 = λ1x
2
1 − λ1x

2
2

ẋ2 =
λ1

2
x1x2





ẋ2 = λ2x
2
1 − λ2x

2
2

ẋ2 =
λ2

2
x1x2

· · ·





ẋ1 = λmx2
1 − λmx2

2

ẋ2 =
λm

2
x1x2
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with constants λi > 0 for integers 1 ≤ i ≤ m and L(x1, x2) = x2
1 − 2x2

2. Then L̇(x1, x2) =

4λix1L(x1, x2) for the i-th equation in (DES1
m). Calculation shows that L(x1, x2) > 0 if

x1 >
√

2x2 or x1 < −
√

2x2 and L̇(x1, x2) > 4c
3
2 for L(x1, x2) > c in the area of L(x1, x2) > 0.

Applying Theorem 3.12, we know the zero solution of (DES1
m) is not stable for the i-th equation

for any integer 1 ≤ i ≤ m. Applying Corollary 3.14, we know that L is a non-Liapunov sum-

function and non-Liapunov prod-function on any spanning subgraph H < G[DES1
m].

§4. Global Stability of Shifted Non-Solvable Differential Equations

The differential equation systems (DES1
m) discussed in previous sections are all in a same

Euclidean space Rn. We consider the case that they are not in a same space Rn, i.e., shifted

differential equation systems in this section. These differential equation systems and their

non-solvability are defined in the following.

Definition 4.1 A shifted differential equation system (SDES1
m) is such a differential equation

system

Ẋ1 = F1(X1), Ẋ2 = F2(X2), · · · , Ẋm = Fm(Xm) (SDES1
m)

with

X1 = (x1, x2, · · · , xl, x1(l+1), x1(l+2), · · · , x1n),

X2 = (x1, x2, · · · , xl, x2(l+1), x2(l+2), · · · , x2n),

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ,

Xm = (x1, x2, · · · , xl, xm(l+1), xm(l+2), · · · , xmn),

where x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l are distinct variables and Fs : Rn → Rn

is continuous such that Fs(0) = 0 for integers 1 ≤ s ≤ m.

A shifted differential equation system (SDES1
m) is non-solvable if there are integers i, j, 1 ≤

i, j ≤ m and an integer k, 1 ≤ k ≤ l such that x
[i]
k (t) 6= x

[j]
k (t), where x

[i]
k (t), x

[j]
k (t) are solutions

xk(t) of the i-th and j-th equations in (SDES1
m), respectively.

The number dim(SDES1
m) of variables x1, x2, · · · , xl, xi(l+j), 1 ≤ i ≤ m, 1 ≤ j ≤ n − l in

Definition 4.1 is uniquely determined by (SDES1
m), i.e., dim(SDES1

m) = mn − (m − 1)l. For

classifying and finding the stability of these differential equations, we similarly introduce the

linearized basis graphs G[SDES1
m] of a shifted differential equation system to that of (DES1

m),

i.e., a vertex-edge labeled graph with

V (G[SDES1
m]) = {Bi|1 ≤ i ≤ m},

E(G[SDES1
m]) = {(Bi, Bj)|Bi

⋂
Bj 6= ∅, 1 ≤ i, j ≤ m},

where Bi is the solution basis of the i-th linearized differential equation Ẋi = F ′
i (0)Xi for

integers 1 ≤ i ≤ m, called such a vertex-edge labeled graph G[SDES1
m] the G-solution of

(SDES1
m) and its zero G-solution replaced Bi by (0, · · · , 0) (|Bi| times) and Bi

⋂
Bj by

(0, · · · , 0) (|Bi

⋂
Bj | times) for integers 1 ≤ i, j ≤ m.

Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of shifted differential

equation systems (SDES1
m) and (SDES1

m) with G-solutions H, H ′. Similarly, they are called
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combinatorially equivalent if there is an isomorphism ϕ : H → H ′ of graph and labelings

θ, τ on H and H ′ respectively such that ϕθ(x) = τϕ(x) for ∀x ∈ V (H)
⋃

E(H), denoted by

(SDES1
m)

ϕ≃ (SDES1
m)′. Notice that if we remove these superfluous variables from G[SDES1

m],

then we get nothing but the same vertex-edge labeled graph of (LDES1
m) in Rl. Thus we can

classify shifted differential similarly to (LDES1
m) in Rl. The following result can be proved

similarly to Theorem 2.14.

Theorem 4.2 Let (LDES1
m), (LDES1

m)′ be linearized differential equation systems of two

shifted differential equation systems (SDES1
m), (SDES1

m)′ with integral labeled graphs H, H ′.

Then (SDES1
m)

ϕ≃ (SDES1
m)′ if and only if H = H ′.

The stability of these shifted differential equation systems (SDES1
m) is also similarly to

that of (DES1
m). For example, we know the results on the stability of (SDES1

m) similar to

Theorems 2.22, 2.27 and 3.6 following.

Theorem 4.3 Let (LDES1
m) be a shifted linear differential equation systems and H < G[LDES1

m]

a spanning subgraph. A zero G-solution of (LDES1
m) is asymptotically sum-stable on H if and

only if Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1) hold for ∀v ∈ V (H) and it is asymptot-

ically prod-stable on H if and only if
∑

v∈V (H)

Reαv < 0 for each βv(t)e
αvt ∈ Bv in (LDES1).

Theorem 4.4 Let (SDES1
m) be a shifted differential equation system, H < G[SDES1

m] a

spanning subgraph and

Fv(X) = F ′
v

(
0
)
X + Rv(X)

such that

lim
‖X‖→0

‖Rv(X)‖
‖X‖ = 0

for ∀v ∈ V (H). Then the zero G-solution of (SDES1
m) is asymptotically sum-stable or asymp-

totically prod-stable on H if Reαv < 0 for each βv(t)e
αvt ∈ Bv, v ∈ V (H) in (SDES1

m).

For the Liapunov sum-function or Liapunov prod-function of a shifted differential equation

system (SDES1
m), we choose it to be a differentiable function L : O ⊂ Rdim(SDES1

m) → R with

conditions in Definition 3.7 hold. Then we know the following result similar to Theorem 3.8.

Theorem 4.5 For a G-solution G[SDES1
m] of a shifted differential equation system (SDES1

m)

with initial value Xv(0), let H be a spanning subgraph of G[DES1
m] and X∗ an equilibrium

point of (SDES1
m) on H.

(1) If there is a Liapunov sum-function L : O ⊂ Rdim(SDES1
m) → R on X∗, then the zero

G-solution G[SDES1
m] is sum-stable on X∗ for H, and furthermore, if

L̇


 ∑

v∈V (H)

Xv(t)


 < 0

for
∑

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically sum-stable on

X∗ for H.
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(2) If there is a Liapunov prod-function L : O ⊂ Rdim(SDES1
m) → R on X∗ for H, then

the zero G-solution G[SDES1
m] is prod-stable on X∗ for H, and furthermore, if

L̇


 ∏

v∈V (H)

Xv(t)


 < 0

for
∏

v∈V (H)

Xv(t) 6= X∗, then the zero G-solution G[SDES1
m] is asymptotically prod-stable on

X∗ for H.

§5. Applications

5.1 Global Control of Infectious Diseases

An immediate application of non-solvable differential equations is the globally control of infec-

tious diseases with more than one infectious virus in an area. Assume that there are three kind

groups in persons at time t, i.e., infected I(t), susceptible S(t) and recovered R(t), and the

total population is constant in that area. We consider two cases of virus for infectious diseases:

Case 1 There are m known virus V1, V2, · · · , Vm with infected rate ki, heal rate hi for integers

1 ≤ i ≤ m and an person infected a virus Vi will never infects other viruses Vj for j 6= i.

Case 2 There are m varying V1, V2, · · · , Vm from a virus V with infected rate ki, heal rate hi

for integers 1 ≤ i ≤ m such as those shown in Fig.5.1.

V1 V2
- - - Vm

Fig.5.1

We are easily to establish a non-solvable differential model for the spread of infectious

viruses by applying the SIR model of one infectious disease following:





Ṡ = −k1SI

İ = k1SI − h1I

Ṙ = h1I





Ṡ = −k2SI

İ = k2SI − h2I

Ṙ = h2I

· · ·





Ṡ = −kmSI

İ = kmSI − hmI

Ṙ = hmI

(DES1
m)

Notice that the total population is constant by assumption, i.e., S + I + R is constant.

Thus we only need to consider the following simplified system





Ṡ = −k1SI

İ = k1SI − h1I





Ṡ = −k2SI

İ = k2SI − h2I
· · ·





Ṡ = −kmSI

İ = kmSI − hmI
(DES1

m)

The equilibrium points of this system are I = 0, the S-axis with linearization at equilibrium
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points




Ṡ = −k1S

İ = k1S − h1





Ṡ = −k2S

İ = k2S − h2

· · ·





Ṡ = −kmS

İ = kmS − hm

(LDES1
m)

Calculation shows that the eigenvalues of the ith equation are 0 and kiS−hi, which is negative,

i.e., stable if 0 < S < hi/ki for integers 1 ≤ i ≤ m. For any spanning subgraph H < G[LDES1
m],

we know that its zero G-solution is asymptotically sum-stable on H if 0 < S < hv/kv for

v ∈ V (H) by Theorem 2.22, and it is asymptotically sum-stable on H if

∑

v∈V (H)

(kvS − hv) < 0 i.e., 0 < S <
∑

v∈V (H)

hv

/
∑

v∈V (H)

kv

by Theorem 2.27. Notice that if Ii(t), Si(t) are probability functions for infectious viruses

Vi, 1 ≤ i ≤ m in an area, then
m∏

i=1

Ii(t) and
m∏

i=1

Si(t) are just the probability functions for

all these infectious viruses. This fact enables one to get the conclusion following for globally

control of infectious diseases.

Conclusion 5.1 For m infectious viruses V1, V2, · · · , Vm in an area with infected rate ki, heal

rate hi for integers 1 ≤ i ≤ m, then they decline to 0 finally if

0 < S <

m∑

i=1

hi

/
m∑

i=1

ki ,

i.e., these infectious viruses are globally controlled. Particularly, they are globally controlled if

each of them is controlled in this area.

5.2 Dynamical Equations of Instable Structure

There are two kind of engineering structures, i.e., stable and instable. An engineering structure

is instable if its state moving further away and the equilibrium is upset after being moved

slightly. For example, the structure (a) is engineering stable but (b) is not shown in Fig.5.2,

A1

B1 C1

A2

B2

C2

D2

(a) (b)

Fig.5.2

where each edge is a rigid body and each vertex denotes a hinged connection. The motion of

a stable structure can be characterized similarly as a rigid body. But such a way can not be

applied for instable structures for their internal deformations such as those shown in Fig.5.3.
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A B

C D

BA

C D

moves

Fig.5.3

Furthermore, let P1, P2, · · · , Pm be m particles in R3 with some relations, for instance,

the gravitation between particles Pi and Pj for 1 ≤ i, j ≤ m. Thus we get an instable structure

underlying a graph G with

V (G) = {P1, P2, · · · , Pm};
E(G) = {(Pi, Pj)|there exists a relation between Pi and Pj}.

For example, the underlying graph in Fig.5.4 is C4. Assume the dynamical behavior of particle

Pi at time t has been completely characterized by the differential equations Ẋ = Fi(X, t),

where X = (x1, x2, x3). Then we get a non-solvable differential equation system

Ẋ = Fi(X, t), 1 ≤ i ≤ m

underlying the graph G. Particularly, if all differential equations are autonomous, i.e., depend

on X alone, not on time t, we get a non-solvable autonomous differential equation system

Ẋ = Fi(X), 1 ≤ i ≤ m.

All of these differential equation systems particularly answer a question presented in [3] for

establishing the graph dynamics, and if they satisfy conditions in Theorems 2.22, 2.27 or 3.6,

then they are sum-stable or prod-stable. For example, let the motion equations of 4 members

in Fig.5.3 be respectively

AB : ẌAB = 0; CD : ẌCD = 0, AC : ẌAC = aAC , BC : ẌBC = aBC ,

where XAB, XCD, XAC and XBC denote central positions of members AB, CD, AC, BC and

aAC , aBC are constants. Solving these equations enable one to get

XAB = cABt + dAB, XAC = aACt2 + cACt + dAC ,

XCD = cCDt + dCD, XBC = aBCt2 + cBCt + dBC ,

where cAB, cAC , cCD, cBC , dAB, dAC , dCD, dBC are constants. Thus we get a non-solvable dif-

ferential equation system

Ẍ = 0; Ẍ = 0, Ẍ = aAC , Ẍ = aBC ,
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or a non-solvable algebraic equation system

X = cABt + dAB, X = aACt2 + cACt + dAC ,

X = cCDt + dCD, X = aBCt2 + cBCt + dBC

for characterizing the behavior of the instable structure in Fig.5.3 if constants cAB, cAC , cCD, cBC ,

dAB, dAC , dCD, dBC are different.

Now let X1, X2, · · · , Xm be the respectively positions in R3 with initial values X0
1 , X0

2 , · · · , X0
m,

Ẋ0
1 , Ẋ0

2 , · · · , Ẋ0
m and M1, M2, · · · , Mm the masses of particles P1, P2, · · · , Pm. If m = 2, then

from Newton’s law of gravitation we get that

Ẍ1 = GM2
X2 − X1

|X2 − X1|3
, Ẍ2 = GM1

X1 − X2

|X1 − X2|3
,

where G is the gravitational constant. Let X = X2 −X1 = (x1, x2, x3). Calculation shows that

Ẍ = −G (M1 + M2)
X

|X |3
.

Such an equation can be completely solved by introducing the spherical polar coordinates





x1 = r cosφ cos θ

x2 = r cosφ cos θ

x3 = r sin θ

with r ≥ 0, 0 ≤ φ ≤ π, 0 ≤ θ < 2π, where r = ‖X‖, φ = ∠Xoz, θ = ∠X ′ox with X ′

the projection of X in the plane xoy are parameters with r = α/(1 + ǫ cosφ) hold for some

constants α, ǫ. Whence,

X1(t) = GM2

∫ (∫
X

|X |3
dt

)
dt and X2(t) = −GM1

∫ (∫
X

|X |3
dt

)
dt.

Notice the additivity of gravitation between particles. The gravitational action of particles

P1, P2, · · · , Pm on P can be regarded as the respective actions of P1, P2, · · · , Pm on P,

such as those shown in Fig.5.4.

P1 P2 Pm

P

F1

K >}
F2 Fm

Fig.5.4
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Thus we can establish the differential equations two by two, i.e., P1 acts on P, P2 acts on

P, · · · , Pm acts on P and get a non-solvable differential equation system

Ẍ = GMi
Xi − X

|Xi − X |3
, Pi 6= P, 1 ≤ i ≤ m.

Fortunately, each of these differential equations in this system can be solved likewise that of

m = 2. Not loss of generality, assume X̂i(t) to be the solution of the differential equation in

the case of Pi 6= P, 1 ≤ i ≤ m. Then

X(t) =
∑

Pi 6=P

X̂i(t) = G
∑

Pi 6=P

Mi

∫ (∫
Xi − X

|Xi − X |3
dt

)
dt

is nothing but the position of particle P at time t in R3 under the actions of Pi 6= P for

integers 1 ≤ i ≤ m, i.e., its position can be characterized completely by the additivity of

gravitational force.

5.3 Global Stability of Multilateral Matters

Usually, one determines the behavior of a matter by observing its appearances revealed before

one’s eyes. If a matter emerges more lateralities before one’s eyes, for instance the different

states of a multiple state matter. We have to establish different models, particularly, differential

equations for understanding that matter. In fact, each of these differential equations can be

solved but they are contradictory altogether, i.e., non-solvable in common meaning. Such a

multilateral matter is globally stable if these differential equations are sum or prod-stable in all.

Concretely, let S1, S2, · · · , Sm be m lateral appearances of a matter M in R3 which are

respectively characterized by differential equations

Ẋi = Hi(Xi, t), 1 ≤ i ≤ m,

where Xi ∈ R3, a 3-dimensional vector of surveying parameters for Si, 1 ≤ i ≤ m. Thus we get

a non-solvable differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

in R3. Noticing that all these equations characterize a same matter M , there must be equilib-

rium points X∗ for all these equations. Let

Hi(X, t) = H ′
i(X

∗)X + Ri(X
∗),

where

H ′
i(X

∗) =




h
[i]
11 h

[i]
12 · · · h

[i]
1n

h
[i]
21 h

[i]
22 · · · h

[i]
2n

· · · · · · · · · · · ·
h

[i]
n1 h

[i]
n2 · · · h

[i]
nn




is an n × n matrix. Consider the non-solvable linear differential equation system

Ẋ = H ′
i(X

∗)X, 1 ≤ i ≤ m (LDES1
m)
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with a basis graph G. According to Theorem 3.6, if

lim
‖X‖→X∗

‖Ri(X)‖
‖X‖ = 0

for integers 1 ≤ i ≤ m, then the G-solution of these differential equations is asymptotically

sum-stable or asymptotically prod-stable on G if each Reα
[i]
k < 0 for all eigenvalues α

[i]
k of

matrix H ′
i(X

∗), 1 ≤ i ≤ m. Thus we therefore determine the behavior of matter M is globally

stable nearly enough X∗. Otherwise, if there exists such an equation which is not stable at the

point X∗, then the matter M is not globally stable. By such a way, if we can determine these

differential equations are stable in everywhere, then we can finally conclude that M is globally

stable.

Conversely, let M be a globally stable matter characterized by a non-solvable differential

equation

Ẋ = Hi(X, t)

for its laterality Si, 1 ≤ i ≤ m. Then the differential equations

Ẋ = Hi(X, t), 1 ≤ i ≤ m (DES1
m)

are sum-stable or prod-stable in all by definition. Consequently, we get a sum-stable or prod-

stable non-solvable differential equation system.

Combining all of these previous discussions, we get an interesting conclusion following.

Conclusion 5.2 Let M GS , M
GS

be respectively the sets of globally stable multilateral matters,

non-stable multilateral matters characterized by non-solvable differential equation systems and

DE , DE the sets of sum or prod-stable non-solvable differential equation systems, not sum or

prod-stable non-solvable differential equation systems. then

(1) ∀M ∈ M GS ⇒ ∃(DES1
m) ∈ DE ;

(2) ∀M ∈ M
GS ⇒ ∃(DES1

m) ∈ DE .

Particularly, let M be a multiple state matter. If all of its states are stable, then M is

globally stable. Otherwise, it is unstable.
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Abstract: In this paper, we introduce a mth-root Randers changed Finsler metric as

L̄(x, y) = L(x, y) + β(x, y),

where L = {ai1i2···im (x)yi1yi2 · · · yim}
1
m is a mth-root metric and β-is one form. Further

we obtained the relation between the v- and hv- curvature tensor of mth-root Finsler space

and its mth-root Randers changed Finsler space and obtained some theorems for its S3 and

S4-likeness of Finsler spaces and when this changed Finsler space will be Berwald space

(resp. Landsberg space). Also we obtain T-tensor for the mth-root Randers changed Finsler

space F̄ n.

Key Words: Randers change, mth-root metric, Berwald space, Landsberg space, S3 and

S4-like Finsler space.

AMS(2010): 53B40, 53C60

§1. Introduction

Let Fn = (Mn, L) be a n-dimensional Finsler space, whose Mn is the n-dimensional differen-

tiable manifold and L(x, y) is the Finsler fundamental function. In general, L(x, y) is a function

of point x = (xi) and element of support y = (yi), and positively homogeneous of degree one

in y. In the year 1971 Matsumoto [6] introduced the transformations of Finsler metric given by

L
′

(x, y) = L(x, y) + β(x, y)

L
′′2(x, y) = L2(x, y) + β2(x, y),

where, β = bi(x)yi is a one-form [1] and bi(x) are components of covariant vector which is a

function of position alone. If L(x, y) is a Riemannian metric, then the Finsler space with a

metric L(x, y) = α(x, y)+β(x, y) is known as Randers space which is introduced by G.Randers

[5]. In papers [3, 7, 8, 9], Randers spaces have been studied from a geometrical viewpoint and

various theorem were obtained. In 1978, Numata [10] introduced another β-change of Finsler

metric given by L(x, y) = µ(x, y) + β(x, y) where µ = {aij(y)yiyj} 1
2 is a Minkowski metric

and β as above. This metric is of similar form of Randers one, but there are different tensor

1Received October 25, 2012. Accepted March 4, 2013.
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properties, because the Riemannian space with the metric α is characterized by Ci
jk = 0 and

on the other hand the locally Minkowski space with the metric µ by Rhijk = 0, Chij|k = 0.

In the year 1979, Shimada [4] introduced the concept of mth root metric and developed it as

an interesting example of Finsler metrics, immediately following M.Matsumoto and S.Numatas

theory of cubic metrics [2]. By introducing the regularity of the metric various fundamental

quantities as a Finsler metric could be found. In particular, the Cartan connection of a Finsler

space with m-th root metric could be discussed from the theoretical standpoint. In 1992-1993,

the m-th root metrics have begun to be applied to theoretical physics [11, 12], but the results

of the investigations are not yet ready for acceding to the demands of various applications.

In the present paper we introduce a mth-root Randers changed Finsler metric as

L̄(x, y) = L(x, y) + β(x, y)

where L = {ai1i2···im
(x)yi1yi2···y

im} 1
m is a mth-root metric. This metric is of the similar form to

the Randers one in the sense that the Riemannian metric is replaced with the mth-root metric,

due to this we call this change as mth-root Randers change of the Finsler metric. Further we

obtained the relation between the v-and hv-curvature tensor of mth-root Finsler space and its

mth-root Randers changed Finsler space and obtained some theorems for its S3 and S4-likeness

of Finsler spaces and when this changed Finsler space will be Berwald space (resp. Landsberg

space). Also we obtain T-tensor for the mth-root Randers changed Finsler space F̄n.

§2. The Fundamental Tensors of F̄n

We consider an n-dimensional Finsler space F̄n with a metric L̄(x, y) given by

L̄(x, y) = L(x, y) + bi(x)yi (1)

where

L = {ai1i2···im
(x)yi1yi2 · · · yim} 1

m (2)

By putting

(I). Lm−1ai(x, y) = aii2···im
(x)yi2yi3 · · · yim (3)

(II). Lm−2aij(x, y) = aiji3i4···im
(x)yi3yi4 · · · yim

(III). Lm−3aijk(x, y) = aijki4i5···im
(x)yi4yi5 · · · yim

Now differentiating equation (1) with respect to yi, we get the normalized supporting element

l̄i = ∂̇iL̄ as

l̄i = ai + bi (4)

where ai = li is the normalized supporting element for the mth-root metric. Again differen-

tiating above equation with respect to yj, the angular metric tensor h̄ij = L̄∂̇i∂̇jL̄ is given

as
h̄ij

L̄
=

hij

L
(5)
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where hij is the angular metric tensor of mth-root Finsler space with metric L given by [4]

hij = (m − 1)(aij − aiaj) (6)

The fundamental metric tensor ḡij = ∂̇i∂̇j
L̄2

2
= h̄ij + l̄il̄j of Finsler space Fn are obtained from

equations (4), (5) and (6), which is given by

ḡij = (m − 1)τaij + {1 − (m − 1)τ}aiaj + (aibj + ajbi) + bibj (7)

where τ =
L̄

L
. It is easy to show that

∂̇iτ =
{(1 − τ)ai + bi}

L
, ∂̇jai =

(m − 1)(aij − aiaj)

L
, ∂̇kaij =

(m − 2)(aijk − aijak)

L

Therefore from (7), it follows (h)hv-torsion tensor C̄ijk = ∂̇k
ḡij

2
of the Cartan’s connection CΓ

are given by

2LC̄ijk = (m − 1)(m − 2)τaijk + [{1 − (m − 1)τ}(m − 1)](aijak (8)

+ajkai + akiaj) + (m − 1)(aijbk + ajkbi + akibj) −
(m − 1)(aiajbk + ajakbi + aiakbj) + (m − 1){(2m − 1)τ − 3}aiajak

In view of equation (6) the equation (8) may be written as

C̄ijk = τCijk +
(hijmk + hjkmi + hkimj)

2L
(9)

where mi = bi −
β

L
ai and Cijk is the (h)hv-torsion tensor of the Cartan’s connection CΓ of the

mth-root Finsler metric L given by

2LCijk = (m − 1)(m − 2){aijk − (aijak + ajkai + akiaj) + 2aiajak} (10)

Let us suppose that the intrinsic metric tensor aij(x, y) of the mth-root metric L has non-

vanishing determinant. Then the inverse matrix (aij) of (aij) exists. Therefore the reciprocal

metric tensor ḡij of F̄n is obtain from equation (7) which is given by

ḡij =
1

(m − 1)τ
aij +

b2 + (m − 1)τ − 1

(m − 1)τ(1 + q)2
aiaj − (aibj + ajbi)

(m − 1)τ(1 + q)
(11)

where ai = aijaj , bi = aijbj, b2 = bibi, q = aibi = aib
i = β/L.

Proposition 2.1 The normalized supporting element li, angular metric tensor hij, metric

tensor gij and (h)hv-torsion tensor Cijk of Finsler space with mth-root Randers changed metric

are given by (4), (5), (7) and (9) respectively.

§3. The v-Curvature Tensor of F̄n

From (6), (10) and definition of mi and ai, we get the following identities

aiai = 1, aijkai = ajk, Cijkai = 0, hija
i = 0, (12)

mia
i = 0, hijb

j = 3mi, mib
i = (b2 − q2)
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To find the v-curvature tensor of Fn, we first find (h)hv-torsion tensor C̄i
jk = ḡirC̄jrk

C̄i
jk =

1

m − 1
Ci

jk +
1

2(m − 1)L̄
(hi

jmk + hi
kmj + hjkmi) − (13)

ai

L̄(1 + q)
{mjmk +

1

(m − 1)(m − 2)
hjk} −

1

(m − 1)(1 + q)
aiCjrkbr

where LCi
jk = LCjrkair = (m − 1){ai

jk − (δi
jak + δi

kaj + aiajk) + 2aiajak},

hi
j = hjra

ir = (m − 1)(δi
j − aiaj) (14)

mi = mra
ir = bi − qai, and ai

jk = airajrk

From (12) and (14), we have the following identities

Cijrh
r
p = Cr

ijhpr = (m − 1)Cijp, Cijrm
r = Cijrb

r, (15)

mrh
r
i = (m − 1)mi, mim

i = (b2 − q2),

hirh
r
j = (m − 1)hij , hirm

r = (m − 1)mi

From (9) and (13), we get after applying the identities (15)

C̄ijrC̄
r
hk =

τ

(m − 1)
CijrC

r
hk +

1

2L
(Cijhmk + Cijkmh + Chjkmi + Chikmj) (16)

+
1

2(m − 1)
(Cijrhhk + Chrkhij)b

r +
1

4(m − 1)LL̄
(b2 − q2)hijhhk

+
1

4LL̄
(2hijmhmk + 2hkhmimj + hjhmimk

+hjkmimh + hihmjmk + hikmjmh)

Now we shall find the v-curvature tensor S̄hijk = C̄ijrC̄
r
hk − C̄ikrC̄

r
hj . The tensor is obtained

from (16) and given by

S̄hijk = Θ(jk){
τ

m − 1
CijrC

r
hk + hijmhk + hhkmij} (17)

=
τ

(m − 1)
Shijk + Θ(jk){hijmhk + hhkmij}

where

mij =
1

2(m − 1)L
{Cijrb

r +
(b2 − q2)

4L̄
hij +

(m − 1)

2
L̄−1mimj} (18)

and the symbol Θ(jk){· · · } denotes the exchange of j, k and subtraction.

Proposition 3.1 The v-curvature tensor S̄hijk of mth-root Randers changed Finsler space F̄n

with respect to Cartan’s connection CΓ is of the form (17).

It is well known [13] that the v-curvature tensor of any three-dimensional Finsler space is

of the form

L2Shijk = S(hhjhik − hhkhij) (19)

Owing to this fact M. Matsumoto [13] defined the S3-like Finsler space Fn (n ≥ 3) as such a

Finsler space in which v-curvature tensor is of the form (19). The scalar S in (19) is a function

of x alone.
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The v-curvature tensor of any four-dimensional Finsler space may be written as [13]

L2Shijk = Θ(jk){hhjKki + hikKhj} (20)

where Kij is a (0, 2) type symmetric Finsler tensor field which is such that Kijy
j = 0. A Finsler

space Fn(n ≥ 4) is called S4-like Finsler space [13] if its v-curvature tensor is of the form (20).

From (17), (19), (20) and (5) we have the following theorems.

Theorem 3.1 The mth-root Randers changed S3-like or S4-like Finsler space is S4-like Finsler

space.

Theorem 3.2 If v-curvature tensor of mth-root Randers changed Finsler space F̄n vanishes,

then the Finsler space with mth-root metric Fn is S4-like Finsler space.

If v-curvature tensor of Finsler space with mth-root metric Fn vanishes then equation (17)

reduces to

S̄hijk = hijmhk + hhkmij − hikmhj − hhjmik (21)

By virtue of (21) and (11) and the Ricci tensor S̄ik = ḡhkS̄hijk is of the form

S̄ik = (− 1

(m − 1)τ
){mhik + (m − 1)(n − 3)mik},

where m = mija
ij , which in view of (18) may be written as

S̄ik + H1hik + H2Cikrb
r = H3mimk, (22)

where

H1 =
m

(m − 1)τ
+

(n − 3)(b2 − q2)

8(m − 1)L̄2
,

H2 =
(n − 3)

2(m − 1)L̄
,

H3 = − (n − 3)

2L̄2
.

From (22), we have the following

Theorem 3.3 If v-curvature tensor of mth-root Randers changed Finsler space F̄n vanishes

then there exist scalar H1 and H2 in Finsler space with mth-root metric Fn(n ≥ 4) such that

matrix ‖ S̄ik + H1hik + H2Cikrb
r ‖ is of rank two.

§4. The (v)hv-Torsion Tensor and hv-Curvature Tensor of F̄n

Now we concerned with (v)hv-torsion tensor Pijk and hv-curvature tensor Phijk . With respect

to the Cartan connection CΓ, L|i = 0, li|j = 0, hij|k = 0 hold good [13].

Taking h-covariant derivative of equation (9) and using (4) and li = ai = 0 we have

C̄ijk|h = τCijk|h +
bi|h

L
Cijk +

(hijbk|h + hjkbi|h + hkibj|h)

2L
(23)
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From equation (6) and using relation hij|h = 0 We have

aij|h = 0, and aijk|h =
2LCijk|h

(m − 1)(m − 2)
(24)

The (v)hv-torsion tensor Pijk and the hv-curvature tensor Phijk of the Cartan connection CΓ

are written in the form, respectively

Pijk = Cijk|0, (25)

Phijk = Cijk|h − Chjk|i + PikrC
r
jk − PhkrC

r
ji

where the subscript ’0’ means the contraction for the supporting element yi. Therefore the

(v)hv-torsion tensor P̄ijk and the hv-curvature tensor P̄hijk of the Cartan connection CΓ for

the Finsler space with mth-root Randers metric by using (10), (23), (24) and (25) we have

P̄ijk =
(m − 1)(m − 2)

2L
τaijk|0 +

bi|0

L
Cijk +

(hijbk|0 + hjkbi|0 + hkibj|0)

2L
(26)

and

P̄hijk = (m − 1)(m − 2)(2L)−1Θ(jk)(aijk|h + P̄ikrC̄
r
jh) (27)

Definition 4.1([13]) A Finsler space is called a Berwald space (resp. Landsberg space) if

Cijk|h = 0 (resp. Pijk = 0) holds good.

Consequently, from (24) and (26) we have

Theorem 4.1 A Finsler space with the mth-root Randers changed metric is a Berwald space

(resp. Landsberg space), if and only if aijk|h = 0 (resp. aijk|0 = 0 and bi|h is covariently

constant.

Proposition 4.1 The v(hv)-torsion tensor and hv-curvature tensor P̄hijk of mth-root Randers

changed Finsler space F̄n with respect to Cartan’s connection CΓ is of the form (26) and (27).

§5. T-Tensor of F̄n

Now, the T-tensor is given by [11,13]

Thijk = LChij |k + liChjk + ljChik + lkChij + lhCijk

The above equation for mth-root Randers changed Finsler space F̄n is given as

T̄hijk = L̄C̄hij |k + l̄iC̄hjk + l̄jC̄hik + l̄kC̄hij + l̄hC̄ijk (28)

The v-derivative of hij and L is given by [13]

hij |k = − 1

L
(hiklj + hjkli), and L|i = li (29)
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Now using (29), the v-derivative of Cijk is given as

L̄C̄ijk|h = τ
(Lbh − βlh)

L
Cijk + L̄τCijk |h − τ

1

2L
(hihljmk + hjhlimk (30)

+hjhlkmi + hkhljmi + hihlkmj + hkhlimj + hij lhmk

+hjklhmi + hkilhmj) +
τ

2
(hijmk|h + hjkmi|h + hkimj |h)

Using (4), (9) and (30), the T-tensor for mth-root Randers changed Finsler space F̄n is given

by

T̄hijk = τ(Thijk + Bhijk) +
τ

2L
(hjkmhli + hikmhlj + hijmhlk (31)

+hkimj lh) +
1

2L
(hhjmkbi + hjkmhbi + hkhmjbi + hikmhbj

+hihmkbj + hkhmibj + hijmhbk + hihmjbk + hjhmibk + hijmkbh

+hkimjbh + hjkmibh) +
τ

2
(hijmk|h + hjkmi|h + hkimj|h)

+τ
(Lbh − βlh)

L
Cijk

where Bhijk = βChij |k + biChjk + bjChik + bkChij + bhCijk. Thus, we know

Proposition 5.1 The T-tensor T̄hijk for mth-root Randers changed Finsler space F̄n is given

by (31).
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§1. Introduction

The theory of pseudosymmetric manifold has been developed by many authors by two ways.

One is the Chaki sense [8], [3] and another is Deszcz sense [2], [9], [11]. In this paper we

shall study some properties of pseudosymmetric and Ricci-symmetric Lorentzian α− Sasakian

manifolds with respect to quarter-symmetric metric connection in Deszcz sense. The notion

of pseudo-symmetry is a natural generalization of semi-symmetry, along the line of spaces of

constant sectional curvature and locally symmetric space.

A Riemannian manifold (M, g) of dimension n is said to be pseudosymmetric if the Rie-

mannian curvature tensor R satisfies the conditions ([1]):

1. (R(X, Y ).R)(U, V, W ) = LR[((X ∧ Y ).R)(U, V, W )] (1)

for all vector fields X, Y, U, V, W on M , whereLR ∈ C∞(M), R(X, Y )Z = ∇[X,Y ]Z−[∇X ,∇Y ]Z

and X ∧ Y is an endomorphism defined by

(X ∧ Y )Z = g(Y, Z)X − g(X, Z)Y (2)

1Received October 6, 2012. Accepted March 6, 2013.
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2. (R(X, Y ).R)(U, V, W ) = R(X, Y )(R(U, V )W ) − R(R(X, Y )U, V )W

−R(U, R(X, Y )V )W − R(U, V )(R(X, Y )W ) (3)

3. ((X ∧ Y ).R)(U, V, W ) = (X ∧ Y )(R(U, V )W ) − R((X ∧ Y )U, V )W

−R(U, (X ∧ Y )V )W − R(U, V )((X ∧ Y )W ). (4)

M is said to be pseudosymmetric of constant type if L is constant. A Riemannian manifold

(M, g) is called semi-symmetric if R.R = 0, where R.R is the derivative of R by R.

Remark 1.1 We know, the (0, k + 2) tensor fields R.T and Q(g, T ) are defined by

(R.T )(X1, · · · , Xk; X, Y ) = (R(X, Y ).T )(X1, · · · , Xk)

= −T (R(X, Y )X1, · · · , Xk) − · · · − T (X1, · · · , R(X, Y )Xk)

Q(g, T )(X1, · · · , Xk; X, Y ) = −((X ∧ Y ).T )(X1, · · · , Xk)

= T ((X ∧ Y )X1, · · · , Xk) + · · · + T (X1, · · · , (X ∧ Y )Xk),

where T is a (0, k) tensor field ([4],[5]).

Let S and r denote the Ricci tensor and the scalar curvature tensor of M respectively. The

operator Q and the (0, 2)−tensor S2 are defined by

S(X, Y ) = g(QX, Y ) (5)

and

S2(X, Y ) = S(QX, Y ) (6)

The Weyl conformal curvature operator C is defined by

C(X, Y ) = R(X, Y ) − 1

n − 2
[X ∧ QY + QX ∧ Y − r

n − 1
X ∧ Y ]. (7)

If C = 0, n ≥ 3 then M is called conformally flat. If the tensor R.C and Q(g, C) are linearly

dependent then M is called Weyl-pseudosymmetric. This is equivalent to

R.C(U, V, W ; X, Y ) = LC [((X ∧ Y ).C)(U, V )W ], (8)

holds on the set UC = {x ∈ M : C 6= 0 at x}, where LC is defined on UC . If R.C = 0, then M

is called Weyl-semi-symmetric. If ∇C = 0, then M is called conformally symmetric ([6],[10]).

§2. Preliminaries

A n-dimensional differentiable manifold M is said to be a Lorentzian α−Sasakian manifold if

it admits a (1, 1)−tensor field φ, a contravariant vector field ξ, a covariant vector field η and

Lorentzian metric g which satisfy the following conditions,

φ2 = I + η ⊗ ξ, (9)
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η(ξ) = −1, φξ = 0, η ◦ φ = 0, (10)

g(φX, φY ) = g(X, Y ) + η(X)η(Y ), (11)

g(X, ξ) = η(X) (12)

and

(∇Xφ)(Y ) = α{g(X, Y )ξ + η(Y )X} (13)

for ∀X, Y ∈ χ(M) and for smooth functions α on M, ∇ denotes covariant differentiation

operator with respect to Lorentzian metric g ([6], [7]).

For a Lorentzian α−Sasakian manifold,it can be shown that ([6],[7]):

∇Xξ = αφX, (14)

(∇Xη)Y = αg(φX, Y ). (15)

Further on a Lorentzian α−Sasakian manifold, the following relations hold ([6])

η(R(X, Y )Z) = α2[g(Y, Z)η(X) − g(X, Z)η(Y )], (16)

R(ξ, X)Y = α2[g(Y, Z)ξ − η(Y )X ], (17)

R(X, Y )ξ = α2[η(Y )X − η(X)Y ], (18)

S(ξ, X) = S(X, ξ) = (n − 1)α2η(X), (19)

S(ξ, ξ) = −(n − 1)α2, (20)

Qξ = (n − 1)α2ξ. (21)

The above relations will be used in following sections.

§3. Quarter-Symmetric Metric Connection on Lorentzian α−Sasakian Manifold

Let M be a Lorentzian α-Sasakian manifold with Levi-Civita connection ∇ and X, Y, Z ∈ χ(M).

We define a linear connection D on M by

DXY = ∇XY + η(Y )φ(X) (22)

where η is 1−form and φ is a tensor field of type (1, 1). D is said to be quarter-symmetric

connection if T̄ , the torsion tensor with respect to the connection D, satisfies

T̄ (X, Y ) = η(Y )φX − η(X)φY. (23)

D is said to be metric connection if

(DXg)(Y, Z) = 0. (24)

A linear connection D is said to be quarter-symmetric metric connection if it satisfies (22), (23)

and (24).

Now we shall show the existence of the quarter-symmetric metric connection D on a

Lorentzian α−Sasakian manifold M.
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Theorem 3.1 Let X, Y, Z be any vectors fields on a Lorentzian α−Sasakian manifold M and

let a connection D is given by

2g(DXY, Z) = Xg(Y, Z) + Y g(Z, X) − Zg(X, Y ) + g([X, Y ], Z)

−g([Y, Z], X) + g([Z, X ], Y ) + g(η(Y )φX − η(X)φY, Z)

+g(η(X)φZ − η(Z)φX, Y ) + g(η(Y )φZ − η(Z)φY, X). (25)

Then D is a quarter-symmetric metric connection on M.

Proof It can be verified that D : (X, Y ) → DXY satisfies the following equations:

DX(Y + Z) = DXY + DXZ, (26)

DX+Y Z = DXZ + DY Z, (27)

DfXY = fDXY, (28)

DX(fY ) = f(DXY ) + (Xf)Y (29)

for all X, Y, Z ∈ χ(M) and for all f, differentiable function on M.

From (26), (27), (28) and (29), we can conclude that D is a linear connection on M. From

(25) we have,

g(DXY, Z) − g(DY X, Z) = g([X, Y ], Z) + η(Y )g(φX, Z) − η(X)g(φY, Z)

or,

DXY − DY X − [X, Y ] = η(Y )φX − η(X)φY

or,

T̄ (X, Y ) = η(Y )φX − η(X)φY (30)

Again from (25) we get,

2g(DXY, Z) + 2g(DXZ, Y ) = 2Xg(Y, Z), or, (DXg)(Y, Z) = 0.

This shows that D is a quarter-symmetric metric connection on M. �

§4. Curvature Tensor and Ricci Tensor with Respect to Quarter-Symmetric

Metric Connection D in a Lorentzian α−Sasakian Manifold

Let R̄(X, Y )Z and R(X, Y )Z be the curvature tensors with respect to the quarter-symmetric

metric connection D and with respect to the Riemannian connection ∇ respectively on a

Lorentzian α− Sasakian manifold M. A relation between the curvature tensors R̄(X, Y )Z and

R(X, Y )Z on M is given by

R̄(X, Y )Z = R(X, Y )Z + α[g(φX, Z)φY

−g(φY, Z)φX ] + αη(Z)[η(Y )X − η(X)Y ]. (31)

Also from (31), we obtain

S̄(X, Y ) = S(X, Y ) + α[g(X, Y ) + nη(X)η(Y )], (32)
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where S̄ and S are the Ricci tensors of the connections D and ∇ respectively.

Again

S̄2(X, Y ) = S2(X, Y ) − α(n − 2)S(X, Y ) − α2(n − 1)g(X, Y )

+α2n(n − 1)(α − 1)η(X)η(Y ). (33)

Contracting (32), we get

r̄ = r, (34)

where r̄ and r are the scalar curvature with respect to the connection D and ∇ respectively.

Let C̄ be the conformal curvature tensors on Lorentzian α− Sasakian manifolds with

respect to the connections D. Then

C̄(X, Y )Z = R̄(X, Y )Z − 1

n − 2
[S̄(Y, Z)X − g(X, Z)Q̄Y + g(Y, Z)Q̄X

−S̄(X, Z)Y ] +
r̄

(n − 1)(n − 2)
[g(Y, Z)X − g(X, Z)Y ], (35)

where Q̄ is Ricci operator with the connection D on M and

S̄(X, Y ) = g(Q̄X, Y ), (36)

S̄2(X, Y ) = S̄(Q̄X, Y ). (37)

Now we shall prove the following theorem.

Theorem 4.1 Let M be a Lorentzian α−Sasakian manifold with respect to the quarter-

symmetric metric connection D, then the following relations hold:

R̄(ξ, X)Y = α2[g(X, Y )ξ − η(Y )X ] + αη(Y )[X + η(X)ξ], (38)

η(R̄(X, Y )Z) = α2[g(Y, Z)η(X) − g(X, Z)η(Y )], (39)

R̄(X, Y )ξ = (α2 − α)[η(Y )X − η(X)Y ], (40)

S̄(X, ξ) = S̄(ξ, X) = (n − 1)(α2 − α)η(X), (41)

S̄2(X, ξ) = S̄2(ξ, X) = α2(n − 1)2(α − 1)2η(X), (42)

S̄(ξ, ξ) = −(n − 1)(α2 − α), (43)

Q̄X = QX − α(n − 1)X, (44)

Q̄ξ = (n − 1)(α2 − α)ξ. (45)

Proof Since M is a Lorentzian α−Sasakian manifold with respect to the quarter-symmetric

metric connection D, then replacing X = ξ in (31) and using (10) and (17) we get (38). Using

(10) and (16), from (31) we get (39). To prove (40), we put Z = ξ in (31) and then we use

(18). Replacing Y = ξ in (32) and using (19) we get (41). Putting Y = ξ in (33) and using (6)

and (19) we get (42). Again putting X = Y = ξ in (32) and using (20) we get (43). Using (36)

and (41) we get (44). Then putting X = ξ in (44) we get (45). �
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§5. Lorentzian α−Sasakian Manifold with Respect to the Quarter-Symmetric

Metric Connection D Satisfying the Condition C̄.S̄ = 0.

In this section we shall find out the characterization of Lorentzian α−Sasakian manifold with

respect to the quarter-symmetric metric connection D satisfying the condition C̄.S̄ = 0. We

define C̄.S̄ = 0 on M by

(C̄(X, Y ).S̄)(Z, W ) = −S̄(C̄(X, Y )Z, W ) − S̄(Z, C̄(X, Y )W ), (46)

where X, Y, Z, W ∈ χ(M).

Theorem 5.1 Let M be an n−dimensional Lorentzian α− Sasakian manifold with respect to

the quarter-symmetric metric connection D. If C̄.S̄ = 0, then

1

n − 2
S̄2(X, Y ) = [(α2 − α) +

r̄

(n − 1)(n − 2)
]S̄(X, Y )

+
α2 − α

n − 2
[α(n − 1)(α − n + 1) − r̄]g(X, Y )

−α(n − 1)(α2 − α)η(X)η(Y ). (47)

Proof Let us consider M be an n-dimensional Lorentzian α−Sasakian manifold with

respect the quarter-symmetric metric connection D satisfying the condition C̄.S̄ = 0. Then

from (46), we get

S̄(C̄(X, Y )Z, W ) + S̄(Z, C̄(X, Y )W ) = 0, (48)

where X, Y, Z, W ∈ χ(M). Now putting X = ξ in (48), we get

S̄(C̄(ξ, X)Y, Z) + S̄(Y, C̄(ξ, X)Z) = 0. (49)

Using (35), (37), (38) and (41), we have

S̄(C̄(ξ, X)Y, Z) = (n − 1)(α2 − α)[α2 − (n − 1)(α2 − α)

n − 2
+

r̄

(n − 1)(n − 2)
]η(Z)g(X, Y )

+[α − α2 +
(n − 1)(α2 − α)

n − 2
− r̄

(n − 1)(n − 2)
]η(Y )S̄(X, Z)

+α(α2 − α)(n − 1)η(X)η(Y )η(Z)

− 1

n − 2
[(n − 1)(α2 − α)η(Z)S̄(X, Y ) − S̄2(X, Z)η(Y )] (50)

and

S̄(Y, C̄(ξ, X)Z) = (n − 1)(α2 − α)[α2 − (n − 1)(α2 − α)

n − 2
+

r̄

(n − 1)(n − 2)
]η(Y )g(X, Z)

+[α − α2 +
(n − 1)(α2 − α)

n − 2
− r̄

(n − 1)(n − 2)
]η(Z)S̄(Y, X)

+α(α2 − α)(n − 1)η(X)η(Y )η(Z)

− 1

n − 2
[(n − 1)(α2 − α)η(Y )S̄(X, Z) − S̄2(X, Y )η(Z)]. (51)
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Using (50) and (51) in (49), we get

(n − 1)(α2 − α)[α2 − (n − 1)(α2 − α)

n − 2
+

r̄

(n − 1)(n − 2)
][g(X, Y )η(Z)

+g(X, Z)η(Y )] + 2α(α2 − α)(n − 1)η(X)η(Y )η(Z)

+[α − α2 +
(n − 1)(α2 − α)

n − 2
− r̄

(n − 1)(n − 2)
][η(Y )S̄(X, Z) + η(Z)S̄(Y, X)]

− 1

n − 2
[(n − 1)(α2 − α){η(Z)S̄(X, Y ) + η(Y )S̄(X, Z)}

−{S̄2(X, Z)η(Y ) + S̄2(X, Y )η(Z)}] = 0. (52)

Replacing Z = ξ in (52) and using (41) and (42), we get

1

n − 2
S̄2(X, Y ) = [(α2 − α) +

r̄

(n − 1)(n − 2)
]S̄(X, Y )

+
α2 − α

n − 2
[α(n − 1)(α − n + 1) − r̄]g(X, Y )

−α(n − 1)(α2 − α)η(X)η(Y ). �

An n−dimensional Lorentzian α−Sasakian manifold M with the quarter-symmetric metric

connection D is said to be η−Einstein if its Ricci tensor S̄ is of the form

S̄(X, Y ) = Ag(X, Y ) + Bη(X)η(Y ), (53)

where A, B are smooth functions of M. Now putting X = Y = ei, i = 1, 2, · · · , n in (53) and

taking summation for 1 ≤ i ≤ n we get

An − B = r̄. (54)

Again replacing X = Y = ξ in (53) we have

A − B = (n − 1)(α2 − α). (55)

Solving (54) and (55) we obtain

A =
r̄

n − 1
− (α2 − α) and B =

r̄

n − 1
− n(α2 − α).

Thus the Ricci tensor of an η−Einstein manifold with the quarter-symmetric metric connection

D is given by

S̄(X, Y ) = [
r̄

n − 1
− (α2 − α)]g(X, Y ) + [

r̄

n − 1
− n(α2 − α)]η(X)η(Y ). (56)

§6. η−Einstein Lorentzian α−Sasakian Manifold with Respect to the

Quarter-Symmetric Metric Connection D Satisfying the Condition C̄.S̄ = 0.

Theorem 6.1 Let M be an η−Einstein Lorentzian α−Sasakian manifold of dimension. Then

C̄.S̄ = 0 iff
nα − 2α

nα2 − 2α
[η(R̄(X, Y )Z)η(W ) + η(R̄(X, Y )W )η(Z)] = 0,
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where X, Y, Z, W ∈ χ(M).

Proof Let M be an η−Einstein Lorentzian α−Sasakian manifold with respect to the

quarter-symmetric metric connection D satisfying C̄.S̄ = 0. Using (56) in (48), we get

η(C̄(X, Y )Z)η(W ) + η(C̄(X, Y )W )η(Z) = 0,

or,
nα − 2α

nα2 − 2α
[η(R̄(X, Y )Z)η(W ) + η(R̄(X, Y )W )η(Z)] = 0.

Conversely, using (56) we have

(C̄(X, Y ).S̄)(Z, W ) = −[
r̄

n − 1
− n(α2 − α)][η(C̄(X, Y )Z)η(W ) + η(C̄(X, Y )W )η(Z)]

= − nα − 2α

nα2 − 2α
[η(R̄(X, Y )Z)η(W ) + η(R̄(X, Y )W )η(Z)] = 0. �

§7. Ricci Pseudosymmetric Lorentzian α−Sasakian Manifolds with

Quarter-Symmetric Metric Connection D

Theorem 7.1 A Ricci pseudosymmetric Lorentzian α- Sasakian manifolds M with quarter-

symmetric metric connection D with restriction Y = W = ξ and LS̄ = 1 is an η−Einstein

manifold.

Proof Lorentzian α−Sasakian manifolds M with quarter-symmetric metric connection D

is called a Ricci pseudosymmetric Lorentzian α−Sasakian manifolds if

(R̄(X, Y ).S̄)(Z, W ) = LS̄ [((X ∧ Y ).S̄)(Z, W )], (57)

or,

S̄(R̄(X, Y )Z, W ) + S̄(Z, R̄(X, Y )W ) = LS̄[S̄((X ∧ Y )Z, W ) + S̄(Z, (X ∧ Y )W )]. (58)

Putting Y = W = ξ in (58) and using (2), (38) and (41), we have

LS̄ [S̄(X, Z) − (n − 1)(α2 − α)g(X, Z)]

= (α2 − α)S̄(X, Z) − α2(α2 − α)(n − 1)g(X, Z) − α(α2 − α)(n − 1)η(X)η(Z). (59)

Then for LS̄ = 1,

(α2 − α − 1)S̄(X, Z) = (α2 − α)(n − 1)[(α2 − 1)g(X, Z) + αη(X)η(Z)].

Thus M is an η−Einstein manifold. �

Corollary 7.1 A Ricci semisymmetric Lorentzian α-Sasakian manifold M with quarter-symmetric

metric connection D with restriction Y = W = ξ is an η−Einstein manifold.
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Proof Sine M is Ricci semisymmetric Lorentzian α-Sasakian manifolds with quarter-

symmetric metric connection D, then LC̄ = 0. Putting LC̄ = 0 in (59) we get

S̄(X, Z) = α2(n − 1)g(X, Z) + α(n − 1)η(X)η(Z). �

§8. Pseudosymmetric Lorentzian α−Sasakian Manifold and Weyl-pseudosymmetric

Lorentzian α−Sasakian Manifold with Quarter-Symmetric Metric Connection

In the present section we shall give the definition of pseudosymmetric Lorentzian α−Sasakian

manifold and Weyl-pseudosymmetric Lorentzian α−Sasakian manifold with quarter-symmetric

metric connection and discuss some properties on it.

Definition 8.1 A Lorentzian α−Sasakian manifold M with quarter-symmetric metric connec-

tion D is said to be pseudosymmetric Lorentzian α−Sasakian manifold with quarter-symmetric

metric connection if the curvature tensorR̄ of M with respect to D satisfies the conditions

(R̄(X, Y ).R̄)(U, V, W ) = LR̄[((X ∧ Y ).R̄)(U, V, W )], (60)

where

(R̄(X, Y ).R̄)(U, V, W ) = R̄(X, Y )(R̄(U, V )W ) − R̄(R̄(X, Y )U, V )W

−R̄(U, R̄(X, Y )V )W − R̄(U, V )(R(X, Y )W ), (61)

and

((X ∧ Y ).R̄)(U, V, W ) = (X ∧ Y )(R̄(U, V )W ) − R̄((X ∧ Y )U, V )W

−R̄(U, (X ∧ Y )V )W − R̄(U, V )((X ∧ Y )W ). (62)

Definition 8.2 A Lorentzian α−Sasakian manifold M with quarter-symmetric metric con-

nection D is said to be Weyl- pseudosymmetric Lorentzian α−Sasakian manifold with quarter-

symmetric metric connection if the curvature tensorR̄ of M with respect to D satisfies the

conditions

(R̄(X, Y ).C̄)(U, V, W ) = LC̄ [((X ∧ Y ).C̄)(U, V, W )], (63)

where

(R̄(X, Y ).C̄)(U, V, W ) = R̄(X, Y )(C̄(U, V )W ) − C̄(R̄(X, Y )U, V )W

−C̄(U, R̄(X, Y )V )W − C̄(U, V )(R(X, Y )W ) (64)

and

((X ∧ Y ).C̄)(U, V, W ) = (X ∧ Y )(C̄(U, V )W ) − C̄((X ∧ Y )U, V )W

−C̄(U, (X ∧ Y )V )W − C̄(U, V )((X ∧ Y )W ). (65)

Theorem 8.1 LetM be an n dimensional Lorentzian α−Sasakian manifold. If M is Weyl-

pseudosymmetric then M is either conformally flat and M is η−Einstein manifold or LC̄ = α2.
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Proof Let M be an Weyl-pseudosymmetric Lorentzian α−Sasakian manifold and X, Y,

U, V, W ∈ χ(M). Then using (64) and (65) in (63), we have

R̄(X, Y )(C̄(U, V )W ) − C̄(R̄(X, Y )U, V )W

−C̄(U, R̄(X, Y )V )W − C̄(U, V )(R(X, Y )W )

= LC̄ [(X ∧ Y )(C̄(U, V )W ) − C̄((X ∧ Y )U, V )W (66)

−C̄(U, (X ∧ Y )V )W − C̄(U, V )((X ∧ Y )W )]. (67)

Replacing X with ξ in (66) we obtain

R̄(ξ, Y )(C̄(U, V )W ) − C̄(R̄(ξ, Y )U, V )W

−C̄(U, R̄(ξ, Y )V )W − C̄(U, V )(R(ξ, Y )W )

= LC̄ [(ξ ∧ Y )(C̄(U, V )W ) − C̄((ξ ∧ Y )U, V )W

−C̄(U, (ξ ∧ Y )V )W − C̄(U, V )((ξ ∧ Y )W )]. (68)

Using (2), (38) in (67) and taking inner product of (67) with ξ, we get

α2[−C̄(U, V, W, Y ) − η(C̄(U, V )W )η(Y ) − g(Y, U)η(C̄(ξ, V )W )

+η(U)η(C̄(Y, V )W ) − g(Y, V )η(C̄(U, ξ)W ) + η(V )η(C̄(U, Y )W )

+η(W )η(C̄(U, V )Y )] − α[η(U)η(C̄(φ2Y, V )W )

+η(V )η(C̄(U, φ2Y )W ) + η(W )η(C̄(U, V )φ2Y )]

= LC̄ [−C̄(Y, U, V, W ) − η(Y )η(C̄(U, V )W ) − g(Y, U)η(C̄(ξ, V )W )

+η(U)η(C̄(Y, V )W ) − g(Y, V )η(C̄(U, ξ)W ) + η(V )η(C̄(U, Y )W )

+η(W )η(C̄(U, V )Y )]. (69)

Putting Y = U, we get

[LC̄ − α2][g(U, U)η(C̄(ξ, V )W ) + g(U, V )η(C̄(U, ξ)W )] + αη(V )η(C̄(φ2U, V )W ) = 0. (70)

Replacing U = ξ in (68), we obtain

[LC̄ − α2]η(C̄(ξ, V )W ) = 0. (71)

The formula (69) gives either η(C̄(ξ, V )W ) = 0 or LC̄ − α2 = 0.

Now LC̄ − α2 6= 0, then η(C̄(ξ, V )W ) = 0, then we have M is conformally flat and which

gives

S̄(V, W ) = Ag(V, W ) + Bη(V )η(W ),

where

A = [α2 − (n − 1)(α2 − α)

n − 2
+

r

(n − 1)(n − 2)
](n − 2)

and

B = [α2 − 2(n − 1)(α2 − α)

n − 2
+

r

(n − 1)(n − 2)
](n − 2),

which shows that M is an η−Einstein manifold. Now if η(C̄(ξ, V )W ) 6= 0, then LC̄ = α2. �
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Theorem 8.2 LetM be an n dimensional Lorentzian α−Sasakian manifold. If M is pseu-

dosymmetric then eitherM is a space of constant curvature and αg(X, Y ) = η(X)η(Y ), for

α 6= 0 or LR̄ = α2, for X, Y ∈ χ(M).

Proof Let M be a pseudosymmetric Lorentzian α−Sasakian manifold and X, Y, U, V, W ∈
χ(M). Then using (61) and (62) in (60), we have

R̄(X, Y )(R̄(U, V )W ) − R̄(R̄(X, Y )U, V )W

−R̄(U, R̄(X, Y )V )W − R̄(U, V )(R(X, Y )W )

= LR̄[(X ∧ Y )(R̄(U, V )W ) − R̄((X ∧ Y )U, V )W

−R̄(U, (X ∧ Y )V )W − R̄(U, V )((X ∧ Y )W )]. (72)

Replacing X with ξ in (70) we obtain

R̄(ξ, Y )(R̄(U, V )W ) − R̄(R̄(ξ, Y )U, V )W

−R̄(U, R̄(ξ, Y )V )W − R̄(U, V )(R(ξ, Y )W )

= LR̄[(ξ ∧ Y )(R̄(U, V )W ) − R̄((ξ ∧ Y )U, V )W

−R̄(U, (ξ ∧ Y )V )W − R̄(U, V )((ξ ∧ Y )W )]. (73)

Using (2), (38) in (71) and taking inner product of (71) with ξ, we get

α2[−R̄(U, V, W, Y ) − η(R̄(U, V )W )η(Y ) − g(Y, U)η(R̄(ξ, V )W )

+η(U)η(R̄(Y, V )W ) − g(Y, V )η(R̄(U, ξ)W ) + η(V )η(R̄(U, Y )W )

+η(W )η(R̄(U, V )Y )] − α[η(U)η(R̄(φ2Y, V )W )

+η(V )η(R̄(U, φ2Y )W ) + η(W )η(R̄(U, V )φ2Y )]

= LR̄[−R̄(Y, U, V, W ) − η(Y )η(R̄(U, V )W ) − g(Y, U)η(R̄(ξ, V )W )

+η(U)η(R̄(Y, V )W ) − g(Y, V )η(R̄(U, ξ)W ) + η(V )η(R̄(U, Y )W )

+η(W )η(R̄(U, V )Y )].

Putting Y = U, we get

[LR̄ − α2][g(U, U)η(R̄(ξ, V )W ) + g(U, V )η(R̄(U, ξ)W )] + αη(V )η(R̄(φ2U, V )W ) = 0. (74)

Replacing U = ξ in (72), we obtain

[LR̄ − α2]η(R̄(ξ, V )W ) = 0. (75)

The formula (73) gives either η(R̄(ξ, V )W ) = 0 or LR̄ − α2 = 0. Now LR̄ − α2 6= 0, then

η(R̄(ξ, V )W ) = 0. We have M is a space of constant curvature and η(R̄(ξ, V )W ) = 0 gives

αg(V, W ) = η(X)η(Y ) for α 6= 0. If η(R̄(ξ, V )W ) 6= 0, then we have LR̄ = α2. �

§9. Examples

Let us consider the three dimensional manifold M = {(x1, x2, x3) ∈ R3 : x1, x2, x3 ∈ R}, where

(x1, x2, x3) are the standard coordinates of R3. We consider the vector fields

e1 = ex3
∂

∂x2
, e2 = ex3(

∂

∂x1
+

∂

∂x2
) and e3 = α

∂

∂x3
,
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where α is a constant.

Clearly, {e1, e2, e3} is a set of linearly independent vectors for each point of M and hence

a basis of χ(M). The Lorentzian metric g is defined by

g(e1, e2) = g(e2, e3) = g(e1, e3) = 0,

g(e1, e1) = g(e2, e2) = g(e3, e3) = −1.

Then the form of metric becomes

g =
1

(ex3)2
(dx2)

2 − 1

α2
(dx3)

2,

which is a Lorentzian metric.

Let η be the 1−form defined by η(Z) = g(Z, e3) for any Z ∈ χ(M) and the (1, 1)−tensor

field φ is defined by

φe1 = −e1, φe2 = −e2, φe3 = 0.

From the linearity of φ and g, we have

η(e3) = −1,

φ2(X) = X + η(X)e3 and

g(φX, φY ) = g(X, Y ) + η(X)η(Y )

for any X ∈ χ(M). Then for e3 = ξ, the structure (φ, ξ, η, g) defines a Lorentzian paracontact

structure on M .

Let ∇ be the Levi-Civita connection with respect to the Lorentzian metric g. Then we have

[e1, e2] = 0, [e1, e3] = −αe1, [e2, e3] = −αe2.

Koszul’s formula is defined by

2g(∇XY, Z) = Xg(Y, Z) + Y g(Z, X) − Zg(X, Y )

−g(X, [Y, Z])− g(Y, [X, Z]) + g(Z, [X, Y ]).

Then from above formula we can calculate the followings,

∇e1e1 = −αe3, ∇e1e2 = 0, ∇e1e3 = −αe1,

∇e2e1 = 0, ∇e2e2 = −αe3, ∇e2e3 = −αe2,

∇e3e1 = 0, ∇e3e2 = 0, ∇e3e3 = 0.

Hence the structure (φ, ξ, η, g) is a Lorentzian α−Sasakian manifold [7].

Using (22), we find D, the quarter-symmetric metric connection on M following:

De1e1 = −αe3, De1e2 = 0, De1e3 = e1(1 − α),

De2e1 = 0, De2e2 = −αe3, De2e3 = e2(1 − α),

De3e1 = 0, De3e2 = 0, De3e3 = 0.
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Using (23), the torson tensor T̄ , with respect to quarter-symmetric metric connection D as

follows:

T̄ (ei, ei) = 0, ∀i = 1, 2, 3

T̄ (e1, e2) = 0, T̄ (e1, e3) = e1, T̄ (e2, e3) = e2.

Also (De1g)(e2, e3) = (De2g)(e3, e1) = (De3g)(e1, e2) = 0. Thus M is Lorentzian α−Sasakian

manifold with quarter-symmetric metric connection D.

Now we calculate curvature tensor R̄ and Ricci tensors S̄ as follows:

R̄(e1, e2)e3 = 0, R̄(e1, e3)e3 = −(α2 − α)e1,

R̄(e3, e2)e2 = α2e3, R̄(e3, e1)e1 = α2e3,

R̄(e2, e1)e1 = (α2 − α)e2, R̄(e2, e3)e3 = −α2e2,

R̄(e1, e2)e2 = (α2 − α)e1.

S̄(e1, e1) = S̄(e2, e2) = −α and S̄(e3, e3) = −2α2 + (n − 1)α.

Again using (2), we get

(e1, e2)e3 = 0, (ei ∧ ei)ej = 0, ∀i, j = 1, 2, 3,

(e1 ∧ e2)e2 = (e1 ∧ e3)e3 = −e1, (e2 ∧ e1)e1 = (e2 ∧ e3)e3 = −e2,

(e3 ∧ e2)e2 = (e3 ∧ e1)e1 = −e3.

Now,

R̄(e1, e2)(R̄(e3, e1)e2) = 0, R̄(R̄(e1, e2)e3, e1)e2 = 0,

R̄(e3, R̄(e1, e2)e1)e2 = −α2(α2 − α)e3,

(R̄(e3, e1)(R̄(e1, e2)e2) = α2(α2 − α)e3.

Therefore, (R̄(e1, e2).R̄)(e3, e1, e2) = 0.

Again,

(e1 ∧ e2)(R̄(e3, e1)e2) = 0, R̄((e1 ∧ e2)e3, e1)e2 = 0,

R̄(e3, (e1 ∧ e2)e1)e2 = α2e3, R̄(e3, e1)((e1 ∧ e2)e2) = −α2e3.

Then ((e1, e2).R̄)(e3, e1, e2) = 0. Thus (R̄(e1, e2).R̄)(e3, e1, e2) = LR̄[((e1, e2).R̄)(e3, e1, e2)] for

any function = LR̄ ∈ C∞(M).

Similarly, any combination of e1, e2 and e3 we can show (60). Hence M is a pseudosym-

metric Lorentzian α−Sasakian manifold with quarter-symmetric metric connection.
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Abstract: This paper is motivated by the skew energy of a digraph as vitiated by C.Adiga,

R.Balakrishnan and Wasin So [1]. We introduce and investigate the skew energy of a Cayley

digraphs of cyclic groups and dihedral groups and establish sharp upper bound for the same.
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§1. Introduction

Let G be a non trivial finite group and S be an non-empty subset of G such that for x ∈ S, x−1 /∈
S and IG /∈ S, then the Cayley digraph Γ = Cay(G, S) of G with respect to S is defined as a

simple directed graph with vertex set G and arc set E(Γ) = {(g, h)|hg−1 ∈ S}. If S is inverse

closed and doesn’t contain identity then Cay(G, S) is viewed as undirected graph and is simply

the Cayley graph of G with respect to S. It easily follows that valency of Cay(G, S) is |S| and

Cay(G, S) is connected if and only if 〈S〉 = G. For an elaborate literature on Cayley graphs

one may refer [5]. A dihedral group D2n is a group with 2n elements such that it contains an

element ′a′ of order 2 and an element ′b′ of order n with a−1ba = b−1. Thus D2n = 〈a, b|a2 =

bn = 1, a−1ba = b−1〉 = 〈a, b|a2 = bn = 1, a−1ba = bα, α 6≡ 1(mod n), α2 ≡ 1(mod n)〉.
If n = 2, then D4 is Abelian; for n ≥ 3, D2n is not abelian. The elements of diheral group

can be explicitly listed as

D2n = {1, a, ab, ab2, · · · , abn−1, b, b2, · · · , bn−1}.

In short, its elements can be listed as aibk where i = 0, 1 and k = 0, 1, · · · , (n− 1). It is easy to

explicitly describe the product of any two elements aibkajbl = arbs as follows:

1. If j = 0 then r = i and s equals the remainder of k + l modulo n.

2. If j = 1 , then r is the remainder of i + j modulo 2 and s is the remainder of kα + l

modulo n.

1Received October 16, 2012. Accepted March 8, 2013.
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The orders of the elements in the Dihedral group D2n are: o(1) = 1, o(abi) = 2, where;

0 ≤ i ≤ n − 1, o(bi) = n, where; 0 < i ≤ n − 1 and if n is even than o(b
n
2 ) = 2.

Let Γ be a digraph of order n with vertex set V (Γ) = {v1, · · · , vn},and arc set Λ(Γ) ⊂
V (Γ) × V (Γ). We assume that Γ does not have loops and multiple arcs, i.e.,(vi, vi) /∈ Λ(Γ) for

all i , and (vi, vj) ∈ Λ(Γ) implies that (vj , vi) /∈ Λ(Γ). Hence the underlying undirected graph

GΓ of Γ is a simple graph. The skew-adjacency matrix of Γ is the n × n matrix S(Γ) = [sij ],

where sij = 1 whenever (vi, vj) ∈ Λ(Γ),sij = −1 whenever (vj , vi) ∈ Λ(Γ), and sij = 0

otherwise. Because of the assumptions on Γ, S(Γ) is indeed a skew-symmetric matrix. Hence

the eigenvalues {λ1, · · · , λn} of S(Γ) are all purely imaginary numbers, and the singular values

of S(Γ) coincide with the absolute values {|λ1|, · · · , |λn|} , of its eigenvalues. Consequently, the

energy of S(Γ) , which is defined as the sum of its singular values [6], is also the sum of the

absolute values of its eigenvalues. For the sake of convenience, we simply refer the energy of

S(Γ) as the skew energy of the digraph Γ. If we denote the skew energy of Γ by εs(Γ) then,

εs(Γ) =
n∑

i=1

|λi|.

The degree of a vertex in a digraph Γ is the degree of the corresponding vertex of the

underlying graph of Γ. Let D(Γ) = diag(d1, d2, · · · , dn), the diagonal matrix with vertex degrees

d1, d2, · · · , dn of v1, v2, · · · , vn and S(Γ) be the skew adjacency matrix of a simple digraph Γ,

possessing n vertices and m edges. Then L(Γ) = D(Γ)−S(Γ) is called the Laplacian matrix of

the digraph Γ. If λi, i = 1, 2, · · · , n are the eigenvalues of the Laplacian matrix L(Γ) then the

skew Laplacian energy of the digraph Γ is defined as SLE(Γ) =

n∑

i=1

|λi −
2m

n
|.

An n×n matrix S is said to be a circulant matrix if its entries satisfy sij = s1,j−i+1 , where

the subscripts are reduced modulo n and lie in the set {1, 2, ..., n}. In other words, ith row of S

is obtained from the first row of S by a cyclic shift of i− 1 steps, and so any circulant matrix is

determined by its first row. It is easy to see that the eigenvalues of S are λk =

n∑

j=1

s1jω
(j−1)k,

k = 0, 1, · · · , n − 1. For any positive integer n, let τn = {ωk : 0 ≤ k < n} be the set of all nth

roots of unity, where ω = e
2πi
n = cos(2π

n ) + i sin(2π
n ) that i2 = −1. τn is an abelian group with

respect to multiplication. A circulant graph is a graph Γ whose adjacency matrix A(Γ) is a

circulant matrix. More details about circulant graphs can be found in [3].

Ever since the concept of the energy of simple undirected graphs was introduced by Gutman

in [7], there has been a constant stream of papers devoted to this topic. In [1], Adiga, et al. have

studied the skew energy of digraphs. In [4], Gui-Xian Tian, gave the skew energy of orientations

of hypercubes. In this paper we introduce and investigate the skew energy of a Cayley digraphs

of cyclic groups and dihedral groups and establish sharp upper bound for the same.

§2. Main Results

First we present some facts that are needed to prove our main results.

Lemma 2.1([2]) Let Γ is disconnected graph into the λ components Γ1, Γ2, · · · , Γλ, then
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Spec(Γ) =

λ⋃

i=1

Spec(Γi).

Lemma 2.2 Let ω = e
2kπi

n = cos(2kπ
n ) + i sin(2kπ

n ) for 1 ≤ k ≤ n, where n is a positive integer

and i2 = −1. Then

(i) ωt + ωn−t = 2 cos(2ktπ
n ) for 1 ≤ k ≤ n,

(ii) ωt − ωn−t = 2i sin(2ktπ
n ) for 1 ≤ k ≤ n.

Lemma 2.3([1]) Let n be a positive integer. Then

(i)

n−1
2∑

k=1

sin
2kπ

n
=

1

2
cot

π

2n
, n ≡ 1(mod2),

(ii)

n−2
2∑

k=1

sin
2kπ

n
= cot

π

n
, n ≡ 0(mod2),

(iii)

n−1
2∑

k=1

| cos
2kπ

n
| =

1

2
csc

π

2n
− 1

2
, n ≡ 1(mod2),

(iv)

n−1∑

k=0

| cos
2kπ

n
| = 2 cot

π

n
, n ≡ 0(mod4),

(iv)

n−1∑

k=0

| cos
2kπ

n
| = 2 csc

π

n
, n ≡ 2(mod4),

(vi)

n
2∑

k=1

sin
(2k − 1)π

n
= csc

π

n
, n ≡ 0(mod2),

(vii)

n−1∑

k=1

sin
kπ

n
= cot

π

2n
, n ≡ 1(mod2),

(viii)

n−1∑

k=1

| cos
2kπ

n
| = csc

π

2n
− 1, n ≡ 1(mod2).

Lemma 2.4 Let n be a positive integer. Then

(i)

n−2
2∑

k=1

| cos
2kπ

n
| = cot

π

n
− 1, n ≡ 0(mod4),

(ii)

n−2
2∑

k=1

| cos
2kπ

n
| = csc

π

n
− 1, n ≡ 2(mod4).



The Skew Energy of Cayley Digraphs of Cyclic Groups and Dihedral Groups 63

Proof The proof of (i) follows directly from Lemma 2.3(iv), and (ii) is a consequence of

Lemma 2.3(v). �

Lemma 2.5 Let n be a positive integer. Then

(i)

n−1
2∑

k=0

sin
2kπ

n
=

n−1
2∑

k=0

| sin 4kπ

n
|, n ≡ 1(mod2),

(ii)

n−2
2∑

k=0

sin
2kπ

n
=

n−2
2∑

k=0

| sin 4kπ

n
|, n ≡ 2(mod4),

(iii)

n−2
2∑

k=1

sin
2kπ

n
= 1 + 2

n−4
4∑

k=1

sin
2kπ

n
, n ≡ 0(mod4),

(iv)

n−2
2∑

k=1

| sin 4kπ

n
| = 2

n−4
4∑

k=1

| sin 4kπ

n
|, n ≡ 0(mod4),

(v)

n−4
4∑

k=1

sin
4kπ

n
= csc

4π

n
+ cot

4π

n
, n ≡ 0(mod8),

(vi)

n−4
4∑

k=1

sin
4kπ

n
= cot

2π

n
, n ≡ 4(mod8).

Proof (i) Let n ≡ 1(mod2), f(k) = sin
2kπ

n
and g(k) = sin

4kπ

n
, where k ∈ {0, 1, 2, · · · ,

n − 1

2
}.

Then it is easy to check that

g(k) =





f(2k) if 0 ≤ k ≤ ⌊n−1
4 ⌋,

−f(n− 2k) if ⌊n−1
4 ⌋ < k ≤ n−1

2 .

This implies (i).

(ii) Let n ≡ 2(mod4), f(k) = sin
2kπ

n
and g(k) = sin

4kπ

n
, where k ∈ {0, 1, 2, · · · ,

n − 2

2
}.

Then it follows that

g(k) =





f(2k) if 1 ≤ k ≤ n−2
4 ,

−f(−n
2 + 2k) if n−2

4 < k ≤ n−2
2 .

This implies (ii). Proofs of (iii) and (iv) are similar to that of (i) and (ii).
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(v) Let n ≡ 0(mod8). Then n = 8m, m ∈ N and

n−4
4∑

k=1

sin
4kπ

n
=

2m−1∑

k=1

sin
kπ

2m
=

(
sin

π

2m
+ sin

3π

2m
+ · · · + sin

(2m − 1)π

2m

)

+

(
sin

2π

2m
+ sin

4π

2m
+ · · · + sin

(2m − 2)π

2m

)

= csc
π

2m
+ cot

π

2m

= csc
4π

n
+ cot

4π

n
(Using Lemma2.3(vi) and (ii)).

(vi) Let n ≡ 4(mod8). Then n = 8m + 4, m ∈ N and

n−4
4∑

k=1

sin
4kπ

n
=

2m∑

k=1

sin
kπ

2m + 1

= cot
π

2(2m + 1)
= cot

2π

n
. (using Lemma 2.3(vii)) �

Lemma 2.6 Let n be a positive integer. Then

(i)
n−1∑

k=1

| sin 2kπ

n
| = cot

π

2n
, n ≡ 1(mod2),

(ii)
n−1∑

k=1

| sin 2kπ

n
| = 2 cot

π

n
, n ≡ 0(mod2).

Now we compute skew energy of some Cayley digraphs.

Theorem 2.7 Let G = {v1 = e, v2, · · · , vn} be a group, S = {vi} ⊂ G with vi 6= v−1
i , vi 6= e

and Γ = Cay(G, S) be a Cayley digraph on G with respect to S. Suppose H = 〈S〉, |H | = m,

|G : H | = λ. Then

εs(Γ) =





2λcot π
2m if m ≡ 1(mod2),

4λcot π
m if m ≡ 0(mod2).

Proof Let G = {v1 = e, v2, v3, · · · , vn}, S = {vi}, vi ∈ G with vi 6= v−1
i , vi 6= e and suppose

H = 〈S〉, |H | = m, |G : H | = λ. If λ = 1 then G = {e, vi, v
2
i , · · · , vn−1

i } and hence the the

skew-adjacency matrix of Γ = Cay(G, S) is a circulant matrix. Its first row is [0, 1, 0, · · · , 0,−1].

So all eigenvalues of Γ are λk = ωk − ωkn−k = ωk − ω−k = 2isin 2kπ
n , k = 0, 1, · · · , n− 1 where

ω = e
2πi
n and i2 = −1. Applying Lemma 2.2(ii), we obtain λk = 2isin 2kπ

n , k = 0, 1, · · · , n − 1.

Now by Lemma 2.6 we have

εs(Γ) =

n−1∑

k=0

|2isin
2kπ

n
| = 2

n−1∑

k=1

|sin2kπ

n
| =





2cot π
2n if n ≡ 1(mod2),

4cotπ
n if n ≡ 0(mod2).

If λ > 1, then Γ is disconnected graph in to the Γi, i = 1, · · · , λ components and all

components are isomorphic with Cayley digraph Γm = Cay(H, S) where H = 〈vi : vm
i = 1〉
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and m|n, S = {vi}. Since Γ is not connected, by Lemma 2.1, its energy is the sum of the

energies of its connected components. Thus

εs(Γ) =

λ∑

i=1

εs(Γi) = λεs(Cay(H, S)) =





2λcot π
2m if m ≡ 1(mod2),

4λcot π
m if m ≡ 0(mod2).

This completes the proof. �

Theorem 2.8 Let G = {e, b, b2, · · · , bn−1} be a cyclic group of order n, and Γ = Cay(G, S) be

a Cayley digraph on G with respect to S = {bi, bj}, 0 < i, j ≤ n − 1, i 6= j H = 〈S〉, |H | = m,

and |G : H | = λ. Then

(i) εs(Γ) ≤ 4λ cot π
2m if m ≡ 1(mod2),

(ii) εs(Γ) ≤ 8λ cot π
m if m ≡ 2(mod4),

(iii) εs(Γ) ≤ 4λ(cot π
m + 2 csc 4π

m + 2 cot 4π
m ) if m ≡ 0(mod8),

(iv) εs(Γ) ≤ 4λ(cot π
m + 2 cot 2π

m )) if m ≡ 4(mod8).

Proof Let G = {e, b, b2, · · · , bn−1} be a cyclic group of order n and Γ = Cay(G, S) be a

Cayley digraph on G with respect to S = {bi, bj}, 0 < i, j ≤ n−1, i 6= j, H = 〈S〉, |H | = m, and

|G : H | = λ. If λ = 1, then G = H and hence the the skew-adjacency matrix of Γ = Cay(G, S)

is a circulant matrix. So all eigenvalues of Γ areλk = ωk−ω−k +ω2k−ω−2k, k = 0, 1, · · · , n−1,

where ω = e
2πi
n and i2 = −1. Hence

λk = ωk − ω−k + ω2k − ω−2k = 2isin
2kπ

n
+ 2isin

4kπ

n
= 2i(sin

2kπ

n
+ sin

4kπ

n
)

for k = 0, 1, · · · , n − 1.

(i) Suppose n ≡ 1(mod2). Then

εs(Γ) =

n−1∑

k=0

|λk| =

n−1∑

k=0

|2i(sin
2kπ

n
+ sin

4kπ

n
)|

=

n−1∑

k=1

|2i(sin
2kπ

n
+ sin

4kπ

n
)|

= 4

n−1
2∑

k=1

|sin2kπ

n
+ sin

4kπ

n
|

≤ 4(

n−1
2∑

k=1

|sin2kπ

n
| +

n−1
2∑

k=1

|sin4kπ

n
|)

= 4(

n−1
2∑

k=1

sin
2kπ

n
+

n−1
2∑

k=1

sin
2kπ

n
) (using Lemma 2.5(i))

= 4cot
π

2n
(applying Lemma 2.3(i)).
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Thus (i) holds for λ = 1.

Suppose λ > 1. Then Γ is disconnected graph in to the Γi, i = 1, · · · , λ components and all

components are isomorphic with Cayley digraph Γm = Cay(H, S) where H = 〈vi : vm
i = 1〉 and

m|n, S = {vi}. Since Γ is not connected, its energy is the sum of the energies of its connected

components. Thus

εs(Γ) =
λ∑

i=1

εs(Γi)λεs(Cay(H, S)) ≤ 4λ cot
π

2m
.

Now we shall prove (ii),(iii) and (iv) only for λ = 1. For λ > 1, proofs are similar to that

of (i).

(ii) If n ≡ 2(mod4), then

εs(Γ) =

n−1∑

k=0

|λk| =

n−1∑

k=0

|2i(sin
2kπ

n
+ sin

4kπ

n
)|

=

n−1∑

k=1

|2i(sin
2kπ

n
+ sin

4kπ

n
)|

= 4

n−2
2∑

k=1

|sin2kπ

n
+ sin

4kπ

n
|

≤ 4(

n−2
2∑

k=1

|sin2kπ

n
| +

n−2
2∑

k=1

|sin4kπ

n
|)

= 4(

n−2
2∑

k=1

sin
2kπ

n
+

n−2
2∑

k=1

sin
2kπ

n
) (using Lemma 2.5(ii))

= 8cot
π

n
.

Here we used the Lemma 2.3(ii).

(iii) If n ≡ 0(mod8), then

εs(Γ) = 4

n−2
2∑

k=1

|sin2kπ

n
+ sin

4kπ

n
|

≤ 4(

n−2
2∑

k=1

|sin2kπ

n
| +

n−2
2∑

k=1

|sin4kπ

n
|)

= 4(

n−2
2∑

k=1

sin
2kπ

n
+ 2

n−4
4∑

k=1

sin
4kπ

n
) (using Lemma 2.5(iv))

= 4cot
π

n
+ 8csc

4π

n
+ 8cot

4π

n
.

To get the last equality we have used Lemma 2.3(ii) and 2.5(v).
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(iv) If n ≡ 4(mod8), then

εs(Γ) ≤ 4(

n−2
2∑

k=1

|sin2kπ

n
| +

n−2
2∑

k=1

|sin4kπ

n
|)

= 4(

n−2
2∑

k=1

sin
2kπ

n
+ 2

n−4
4∑

k=1

sin
4kπ

n
) (using Lemma 2.5(iv))

= 4(cot
π

n
+ 2cot

2π

n
)).

To get the last equality we have used Lemma 2.3(ii) and 2.5(vi). �

Lemma 2.9 Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, St), t ∈ {1, · · · , ⌊n−1
2 ⌋},be

a Cayley digraph on G with respect to St = {bl, b2l, · · · , btl}, where l ∈ U(n) = {r : 1 ≤ r <

n, gcd(n, r) = 1}. Then the eigenvalues of Γ are

λk =

|St|∑

j=0

2isin
2kjπ

n
, k = 0, 1, · · · , n − 1,

where i2 = −1.

Proof The proof directly follows from the definition of cyclic group and is similar to that

of Theorem 2.7. �

Lemma 2.10 Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, St), t ∈ {1, · · · , ⌊n−1
2 ⌋},be

a Cayley digraph on G with respect to St = {bl, b2l, · · · , btl} where l ∈ U(n) = {r : 1 ≤ r <

n, gcd(n, r) = 1}. Also suppose εs(Γ), SLE(Γ) denote the skew energy and the skew Laplacian

energy of Γ respectively. Then εs(Γ) = SLE(Γ).

Proof The proof directly follows from the definition of the skew energy and the skew

Laplacian energy. �

Lemma 2.11 Let n be a positive integer. Then

(i)

n−1
2∑

k=1

cos
4kπ

n
=

n−1
2∑

k=1

cos
2kπ

n
, n ≡ 1(mod2),

(ii)

n−2
2∑

k=1

| cos
4kπ

n
| = csc

π

n
− 1, n ≡ 2(mod4),

(iii)

n−2
2∑

k=1

cos
4kπ

n
= −1, n ≡ 0(mod4).

Proof (i) Let n ≡ 1(mod2), f(k) = cos
2kπ

n
, g(k) = cos

4kπ

n
, where k ∈ {1, 2, · · · ,

n − 1

2
}.
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It is easy to verify that

g(k) =





f(2k) if 1 ≤ k ≤ ⌊n−1
4 ⌋,

f(n − 2k) if ⌊n−1
4 ⌋ < k ≤ n−1

2 .

This implies (i).

(ii) Let n ≡ 2(mod4). Then n = 4m + 2 for some m ∈ N. We have

n−2
2∑

k=1

| cos
4kπ

n
| =

n−2
2∑

k=1

| cos
4kπ

n
| =

2m∑

k=1

| cos
4kπ

4m + 2
|

=

2m∑

k=1

| cos
2kπ

2m + 1
| = csc

π

2(2m + 1)
− 1 (using Lemma 2.3(viii)

= csc
π

n
− 1.

(iii) Suppose n = 4m, m ∈ N. Then

n−2
2∑

k=1

cos
4kπ

n
=

2m−1∑

k=1

cos
kπ

m
= cos

mπ

m
+

m−1∑

k=1

cos
kπ

m
+

2m−1∑

k=m+1

cos
kπ

m
.

Changing k to k + m in the last summation we get

n−2
2∑

k=1

cos
4kπ

n
= −1. �

Theorem 2.12 Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, S),be a Cayley digraph

on G with respect to S = {bl} where l ∈ U(n) = {r : 1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ) be

the skew-adjacency matrix of Γ , D(Γ) = diag(d1, d2, · · · , dn), the diagonal matrix with vertex

degrees d1, d2, · · · , dn of e, b, b2, · · · , bn−1. Suppose L(Γ) = D(Γ) − Cs(Γ) and µ1, · · · , µn are

eigenvalues of L(Γ). We define α(Γ) =

n∑

i=1

µ2
i . Then

(i) α(Γ) ≤ 2n + 2csc π
2n if n ≡ 1(mod2),

(ii) α(Γ) ≤ 2(n − 1) + 4 csc π
n if n ≡ 2(mod4),

(iii) α(Γ) = 2(n − 2) if n ≡ 4(mod0).

Proof Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, S),be a Cayley digraph

on G with respect to S = {bl} where l ∈ U(n) = {r : 1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ)

be the skew-adjacency matrix of Γ. Note that underlying graph of Γ is a 2−regular graph.

Hence D(Γ) = diag(2, 2, · · · , 2). Suppose L(Γ) = D(Γ)−Cs(Γ) then L(Γ) is a circulant matrix

and its first row is [2,−1, 0, · · · , 0, 1]. This implies that the eigenvalues of L(Γ) are µk =

2 − ωk + ωkn−k = 2 − ωk + ω−k = 2 − (ωk − ω−k) = 2 − 2i sin 2kπ
n , k = 0, 1, · · · , n − 1 where

ω = e
2πi
n and i2 = −1.
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If n ≡ 1(mod2), then

α(Γ) =

n−1∑

k=0

µ2
k

=

n−1∑

k=0

(2 − 2i sin
2kπ

n
)2 = 4 +

n−1∑

k=1

(2 − 2i sin
2kπ

n
)2

= 4 +

n−1
2∑

k=1

(2 − 2i sin
2kπ

n
)2 +

n−1∑

k= n+1
2

(2 − 2i sin
2kπ

n
)2

= 4 +

n−1
2∑

k=1

(2 − 2i sin
2kπ

n
)2 +

n−1
2∑

k=1

(2 + 2i sin
2kπ

n
)2

= 4 +

n−1
2∑

k=1

2(4 − 4sin2 2kπ

n
) = 4 + 8(

n − 1

2
) − 8

n−1
2∑

k=1

sin2 2kπ

n

= 4 + 8(
n − 1

2
) − 8

n−1
2∑

k=1

(
1

2
− 1

2
cos

4kπ

n
) = 4 + 4(

n − 1

2
) + 4

n−1
2∑

k=1

cos
4kπ

n

= 4 + 4(
n − 1

2
) + 4

n−1
2∑

k=1

cos
2kπ

n
(using Lemma 2.11(i))

≤ 4 + 4(
n − 1

2
) + 4

n−1
2∑

k=1

| cos
2kπ

n
|

= 4 + 4(
n − 1

2
) + 4(

1

2
csc

π

2n
− 1

2
) (using Lemma 2.3(iii))

= 2n + 2 csc
π

2n
.

If n ≡ 0(mod2), then

α(Γ) =

n−1∑

k=0

µ2
k

=

n−1∑

k=0

(2 − 2i sin
2kπ

n
)2 = 4 +

n−1∑

k=1

(2 − 2i sin
2kπ

n
)2

= 4 +

n−2
2∑

k=1

(2 − 2i sin
2kπ

n
)2 + (2 − 2i sin

2(n
2 )π

n
)2 +

n−1∑

k= n+2
2

(2 − 2i sin
2kπ

n
)2

= 8 +

n−2
2∑

k=1

(2 − 2i sin
2kπ

n
)2 +

n−2
2∑

k=1

(2 + 2i sin
2kπ

n
)2

= 8 +

n−2
2∑

k=1

2(4 − 4sin2 2kπ

n
) = 4 + 8(

n − 2

2
) − 8

n−2
2∑

k=1

sin2 2kπ

n

= 4 + 8(
n − 2

2
) − 8

n−2
2∑

k=1

(
1

2
− 1

2
cos

4kπ

n
) = 4 + 4(

n − 2

2
) + 4

n−2
2∑

k=1

cos
4kπ

n
.
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If n ≡ 2(mod4), then

α(Γ) ≤ 4 + 4(
n − 2

2
) + 4

n−2
2∑

k=1

| cos
4kπ

n
|

= 4 + 4(
n − 1

2
) + 4(csc

π

n
− 1) (using Lemma2.11(ii))

= 2(n − 1) + 4 csc
π

n
.

This completes the proof of (ii).

If n ≡ 0(mod4), then

α(Γ) = 4 + 4(
n − 2

2
) + 4

n−2
2∑

k=1

cos
4kπ

n

= 4 + 4(
n − 2

2
) + 4(−1) (using Lemma2.11(iii))

= 2(n − 2).

This completes the proof of (iii). �

Lemma 2.13 Let n be a positive integer. Then

(i)

n−1
2∑

k=1

| cos
6kπ

n
| =

3

2
csc

3π

2n
+

1

2
, n ≡ 3(mod6),

(ii)

n−1
2∑

k=1

| cos
6kπ

n
| =

n−1
2∑

k=1

| cos
2kπ

n
|, n ≡ 1(mod6),

(iii)

n−1
2∑

k=1

| cos
6kπ

n
| =

n−1
2∑

k=1

| cos
2kπ

n
|, n ≡ 5(mod6),

(iv)

n−2
2∑

k=1

cos
6kπ

n
= 0, n ≡ 0(mod6),

(v)

n−2
2∑

k=1

cos
6kπ

n
=

n−2
2∑

k=1

cos
2kπ

n
, n ≡ 2(mod6),

(vi)

n−2
2∑

k=1

cos
6kπ

n
=

n−2
2∑

k=1

cos
2kπ

n
, n ≡ 4(mod6),

vii)

n−1
2∑

k=1

cos
8kπ

n
=

n−1
2∑

k=1

cos
4kπ

n
, n ≡ 1(mod2),

(vii)

n−2
2∑

k=1

cos
8kπ

n
=

n−2
2∑

k=1

cos
4kπ

n
, n ≡ 2(mod4),
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(viii)

n−2
2∑

k=1

| cos
8kπ

n
| = −1 + 2 csc

2π

n
, n ≡ 4(mod8),

(ix)

n−2
2∑

k=1

| cos
8kπ

n
| = −1 + 4 cot

4π

n
, n ≡ 0(mod16),

(x)

n−2
2∑

k=1

| cos
8kπ

n
| = −1 + 4 csc

4π

n
, n ≡ 8(mod16) and n ≡ 2 or 4(mod6).

Proof (i) Suppose n = 6m + 3, then

n−1
2∑

k=1

| cos
6kπ

n
| =

3m+1∑

k=1

| cos
2kπ

2m + 1
|

=

2m∑

k=1

| cos
2kπ

2m + 1
| +

3m+1∑

k=2m+1

| cos
2kπ

2m + 1
|

=

2m∑

k=1

| cos
2kπ

2m + 1
| +

m∑

k=0

| cos
2kπ

2m + 1
|

(changing k to k + (2m + 1) in the last summation)

=
3

2
csc

3π

2n
+

1

2
(using Lemma 2.3(viii), (iii)).

(ii) Let n = 6m + 1, f(k) = cos
2kπ

n
, g(k) = cos

6kπ

n
, where k ∈ {1, 2, · · · ,

n − 1

2
}. Then

we have

g(k) =





f(3k) if 1 ≤ k ≤ m,

f(n − 3k) if m < k ≤ 2m,

f(3k − n) if 2m < k ≤ 3m.

This implies (ii).

The proofs of (iii), (iv), (v), (vi), (vii) and (viii) are similar to the proof of (ii).

Suppose n = 4m then

n−2
2∑

k=1

| cos
8kπ

n
| =

2m−1∑

k=1

| cos
2kπ

m
|

= 1 +

m−1∑

k=1

| cos
2kπ

m
| +

2m−1∑

k=m+1

| cos
2kπ

m
|

= 1 + 2
m−1∑

k=1

| cos
2kπ

m
| = −1 + 2

m−1∑

k=0

| cos
2kπ

m
|



72 C.Adiga, S.N.Fathima and Haidar Ariamanesh

=





−1 + 2 csc π
2m if m ≡ 1(mod2)

−1 + 4 cot π
m if m ≡ 0(mod4)

−1 + 4 csc π
m if m ≡ 2(mod4)

=





−1 + 2 csc 2π
n if n ≡ 4(mod8),

−1 + 4 cot 4π
n if n ≡ 0(mod16),

−1 + 4 csc 4π
n if n ≡ 8(mod16).

This completes the proof of (viii),(ix),(x). �

Theorem 2.14 Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, S),be a Cayley digraph

on G with respect to S = {bl, b2l} where l ∈ U(n) = {r : 1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ) be

the skew-adjacency matrix of Γ , D(Γ) = diag(d1, d2, · · · , dn), the diagonal matrix with vertex

degrees d1, d2, · · · , dn of e, b, b2, · · · , bn−1. Suppose L(Γ) = D(Γ) − Cs(Γ) and µ1, · · · , µn are

eigenvalues of L(Γ). Define α(Γ) =
n∑

i=1

µ2
i . Then

(i) α(Γ) ≤ 4(3n + 2) − 12 csc 3π
2n if n ≡ 3(mod6).

(ii) α(Γ) ≤ 4(3n + 2) − 4 csc π
2n if n ≡ 1 or 5(mod6).

(iii) α(Γ) ≤ 4(3n − 2) + 16 csc π
n if n ≡ 2(mod4) and n ≡ 0(mod6).

(iv) α(Γ) ≤ 4(3n − 2) + 24 csc π
n if n ≡ 2(mod4)and n ≡ 2 or 4(mod6).

(v) α(Γ) ≤ 4(3n − 2) + 8 cot π
n + 8 csc 2π

n if n ≡ 4(mod8) and n ≡ 0(mod6).

(vi) α(Γ) ≤ 4(3n − 4) + 16 cot π
n + 8 csc 2π

n if n ≡ 4(mod8) and n ≡ 2 or 4(mod6).

(vii) α(Γ) ≤ 4(3n − 2) + 8 cot π
n + 16 cot 4π

n if n ≡ 0(mod16), and n ≡ 0(mod6).

(viii) α(Γ) ≤ 2(n − 8) + 16 cot π
n + 16 cot 4π

n if n ≡ 0(mod16) and n ≡ 2 or 4(mod6).

(ix) α(Γ) ≤ 4(3n − 2) + 8 cot π
n + 16 csc 4π

n if n ≡ 8(mod16) and n ≡ 0(mod6).

(x) α(Γ) ≤ 4(3n − 4) + 16 cot π
n + 16 csc 4π

n if n ≡ 8(mod16) and n ≡ 2 or 4(mod6).

Proof Let G = 〈b : bn = 1〉 be a cyclic group and Γ = Cay(G, S),be a Cayley digraph on

G with respect to S = {bl, b2l} where l ∈ U(n) = {r : 1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ) be

the skew-adjacency matrix of Γ. Note that underlying graph of Γ is a 4−regular graph. Hence

D(Γ) = diag(4, 4, · · · , 4). Suppose L(Γ) = D(Γ) − Cs(Γ) then L(Γ) is circulant matrix and its

first row is [4,−1,−1, · · · , 0, 1, 1]. This implies that the eigenvalues of L(Γ) are

µk = 4 − ωk − ω2k + ω−2k + ω−k = 4 − 2i(sin
2kπ

n
+ sin

4kπ

n
), k = 0, 1, · · · , n − 1,

where ω = e
2πi
n and i2 = −1. It is clear that

µn−k = 4 + 2i(sin
2kπ

n
+ sin

4kπ

n
) and µk + µn−k = 8
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for k = 1, 2, · · · , ⌊n − 1

2
⌋. So

µ2
k + µ2

n−k = 64 − 2µkµn−k

= 64 − 2(4 − 2i(sin
2kπ

n
+ sin

4kπ

n
))(4 + 2i(sin

2kπ

n
+ sin

4kπ

n
))

= 64 − 2(16 + 4(sin
2kπ

n
+ sin

4kπ

n
)2)

= 24 − 8 cos
2kπ

n
+ 4 cos

4kπ

n
− 8 cos

6kπ

n
+ 4 cos

8kπ

n

for k = 1, 2, · · · , ⌊n − 1

2
⌋. Let n ≡ 1(mod2), then

α(Γ) =
n−1∑

k=0

µ2
k

= µ2
0 +

n−1∑

k=1

λ2
k

= 16 +

n−1
2∑

k=1

(µ2
k + µ2

n−k)

= 16 +

n−1
2∑

k=1

(24 − 8 cos
2kπ

n
+ 4 cos

4kπ

n
− 8 cos

6kπ

n
+ 4 cos

8kπ

n
)

= 4(3n + 1) − 8

n−1
2∑

k=1

cos
2kπ

n
+ 4

n−1
2∑

k=1

cos
4kπ

n
− 8

n−1
2∑

k=1

cos
6kπ

n
+ 4

n−1
2∑

k=1

cos
8kπ

n

= 4(3n + 1) − 8

n−1
2∑

k=1

cos
2kπ

n
+ 4

n−1
2∑

k=1

cos
2kπ

n
− 8

n−1
2∑

k=1

cos
6kπ

n
+ 4

n−1
2∑

k=1

cos
2kπ

n

(using Lemma2.11(i), 2.13(vii))

= 4(3n + 1) − 8

n−1
2∑

k=1

cos
6kπ

n
≤ 4(3n + 1) − 8

n−1
2∑

k=1

| cos
6kπ

n
|. (2.1)

(i) If n ≡ 3(mod6) then using Lemma 2.13(i) in above inequelity, we get

α(Γ) ≤ 4(3n + 1) − 8(
3

2
csc

3π

2n
− 1

2
) = 4(3n + 2) − 12 csc

3π

2n
.

This completes the proof of (i).

(ii) If n ≡ 1 or 5(mod6) and using Lemma 2.13(ii) and (iii), we get

α(Γ) ≤ 4(3n + 1) − 8

n−1
2∑

k=1

| cos
2kπ

n
|

= 4(3n + 1) − 8(
1

2
csc

π

2n
− 1

2
) = 4(3n + 2) − 4 csc

π

2n
.
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Let n ≡ 0(mod2). Then

α(Γ) =

n−1∑

k=0

µ2
k = µ2

0 + µ2
n
2

+

n−1∑

k=1,k 6= n
2

µ2
k = 16 + 16 +

n−2
2∑

k=1

(µ2
k + µ2

n−k)

= 32 +

n−2
2∑

k=1

(24 − 8 cos
2kπ

n
+ 4 cos

4kπ

n
− 8 cos

6kπ

n
+ 4 cos

8kπ

n
)

= 4(3n + 2) − 8

n−2
2∑

k=1

cos
2kπ

n
+ 4

n−2
2∑

k=1

cos
4kπ

n
− 8

n−2
2∑

k=1

cos
6kπ

n
+ 4

n−2
2∑

k=1

cos
8kπ

n
. (2.2)

If n ≡ 2(mod 4), then employing Lemma 2.13(viii) in (2.2), we get

α(Γ) = 4(3n + 2) − 8

n−2
2∑

k=1

cos
2kπ

n
+ 4

n−2
2∑

k=1

cos
4kπ

n
− 8

n−2
2∑

k=1

cos
6kπ

n
+ 4

n−2
2∑

k=1

cos
4kπ

n

= 4(3n + 2) − 8

n−2
2∑

k=1

cos
2kπ

n
+ 8

n−2
2∑

k=1

cos
4kπ

n
− 8

n−2
2∑

k=1

cos
6kπ

n
. (2.3)

(iii) If n ≡ 2(mod4) and n ≡ 0(mod 6), then using Lemma 2.13(iv) in (2.3) we deduce

that

α(Γ) ≤ 4(3n + 2) + 8

n−2
2∑

k=1

| cos
2kπ

n
| + 8

n−2
2∑

k=1

| cos
4kπ

n
|

= 4(3n + 2) + 16(csc
π

n
− 1) = 4(3n − 2) + 16 csc

π

n

by using Lemma 2.4(ii) and 2.11(ii).

(iv) If n ≡ 2(mod4) and n ≡ 2 or 4(mod6), then using Lemma 2.13(v) and (vi) in (2.3) we

see that

α(Γ) = 4(3n + 2) − 8

n−2
2∑

k=1

cos
2kπ

n
+ 8

n−2
2∑

k=1

cos
4kπ

n
− 8

n−2
2∑

k=1

cos
2kπ

n

≤ 4(3n + 2) + 16

n−2
2∑

k=1

| cos
2kπ

n
| + 8

n−2
2∑

k=1

| cos
4kπ

n
|

≤ 4(3n + 2) + 24(csc
π

n
− 1) = 4(3n − 2) + 24 csc

π

n
.

Similarly we can prove (v) to (x). �

We give few interesting results on the skew energy of Cayley digraphs on dihedral groups

D2n.

Theorem 2.15 Let D2n = 〈a, b|a2 = bn = 1, a−1ba = b−1〉 the dihedral group of order 2n and

Γ = Cay(D2n, S) be a Cayley digraph on D2n with respect to S = {bi}, 1 ≤ i ≤ n − 1 , and
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H = 〈S〉, |H | = m, |D′

2n : H | = λ that,D
′

2n is the commutator subgroup of D2n. Then

εs(Γ) =





4λcot π
2m if m ≡ 1(mod2),

8λcot π
m if m ≡ 0(mod2).

Proof The proof of Theorem 2.15 directly follows from the definition of dihedral group

and Theorem 2.7. �

Theorem 2.16 Let D2n = 〈a, b|a2 = bn = 1, a−1ba = b−1〉 the dihedral group of order 2n and

Γ = Cay(D2n, S) be a Cayley digraph on D2n with respect to S = {bi, bj}, 1 ≤ i, j ≤ n−1, i 6= j,

and H = 〈S〉, |H | = m, |D′

2n : H | = λ Then Γ = Cay(D2n, S) is a circulant digraph and its

skew energy

(i) εs(Γ) ≤ 8λcot π
2m if m ≡ 1(mod2),

(ii) εs(Γ) ≤ 16λcot π
m if m ≡ 2(mod4),

(iii) εs(Γ) ≤ 8λ(cot π
m + 2csc 4π

m + 2cot 4π
m ) if m ≡ 0(mod8),

(iv) εs(Γ) ≤ 8λ(cot π
m + 2cot 2π

m )) if m ≡ 4(mod8).

Proof The proof of Theorem 2.16 directly follows from the definition of dihedral group

and Theorem 2.8. �

Theorem 2.17 Let D2n = 〈a, b|a2 = bn = 1, a−1ba = b−1〉 the dihedral group of order 2n and

Γ = Cay(D2n, S) be a Cayley digraph on D2n with respect to S = {bl} where l ∈ U(n) = {r :

1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ) be the skew-adjacency matrix of Γ, D(Γ) is the n × n

matrix such that dij = 2 whenever i = j otherwise dij = 0. Suppose L(Γ) = D(Γ) − Cs(Γ) and

λ1, · · · , λn are eigenvalues of L(Γ). Define α(Γ) =

n∑

i=1

λ2
i . Then

(i) α(Γ) ≤ 4n + 4 csc π
2n if n ≡ 1(mod 2),

(ii) α(Γ) ≤ 4(n − 1) + 8 csc π
n if n ≡ 2(mod 4)

(iii) α(Γ) = 4(n − 2) if n ≡ 0(mod 4)

Proof The proof of Theorem 2.17 directly follows from the definition of dihedral group

and Theorem 2.12. �

Theorem 2.18 Let D2n = 〈a, b|a2 = bn = 1, a−1ba = b−1〉 the dihedral group of order 2n and

Γ = Cay(D2n, S) be a Cayley digraph on D2n with respect to S = {bl, b2l} where l ∈ U(n) =

{r : 1 ≤ r < n, gcd(n, r) = 1} and Cs(Γ) be the skew-adjacency matrix of Γ , D(Γ) is the n× n

matrix such that dij = 4 whenever i = j otherwise dij = 0. Suppose L(Γ) = D(Γ) − Cs(Γ) and

λ1, · · · , λn are eigenvalues of L(Γ). Define α(Γ) =
n∑

i=1

λ2
i . Then
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(i) α(Γ) ≤ 8(3n + 2) − 24 csc 3π
2n if n ≡ 3(mod6).

(ii) α(Γ) ≤ 8(3n + 2) − 8 csc π
2n if n ≡ 1 or 5(mod6).

(iii) α(Γ) ≤ 8(3n − 2) + 32 csc π
n if n ≡ 2(mod4) and n ≡ 0(mod6).

(iv) α(Γ) ≤ 8(3n − 2) + 48 csc π
n if n ≡ 2(mod4)and n ≡ 2 or 4(mod6).

(v) α(Γ) ≤ 8(3n − 2) + 16 cot π
n + 16 csc 2π

n if n ≡ 4(mod8) and n ≡ 0(mod6).

(vi) α(Γ) ≤ 8(3n − 4) + 32 cot π
n + 16 csc 2π

n if n ≡ 4(mod8) and n ≡ 2 or 4(mod6).

(vii) α(Γ) ≤ 8(3n − 2) + 16 cot π
n + 32 cot 4π

n if n ≡ 0(mod16), and n ≡ 0(mod6).

(viii) α(Γ) ≤ 4(n − 8) + 32 cot π
n + 32 cot 4π

n if n ≡ 0(mod16) and n ≡ 2 or 4(mod6).

(ix) α(Γ) ≤ 8(3n − 2) + 16 cot π
n + 32 csc 4π

n if n ≡ 8(mod16) and n ≡ 0(mod6).

(x) α(Γ) ≤ 8(3n − 4) + 32 cot π
n + 32 csc 4π

n if n ≡ 8(mod16) and n ≡ 2 or 4(mod6).

Proof The proof of Theorem 2.18 directly follows from the definition of dihedral group

and Theorem 2.14. �
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Abstract: A change of Finsler metric L(x, y) → L(x, y) is called Kropina change if

L(x, y) =
L2

β
, where β(x, y) = bi(x) yi is a one-form on a smooth manifold Mn. The

change L → L is called projective change if every geodesic of one space is transformed to a

geodesic of the other. The purpose of the present paper is to find the necessary and sufficient

condition under which a Kropina change becomes a projective change.

Key Words: Kropina change, projective change, Finsler space.

AMS(2010): 53C60, 53B40

§1. Preliminaries

Let Fn = (Mn, L) be a Finsler space equipped with the fundamental function L(x, y) on the

smooth manifold Mn. Let β = bi(x)yi be a one-form on the manifold Mn, then L → L2

β
is called

Kropina change of Finsler metric [5]. If we write L =
L2

β
and F

n
= (Mn, L), then the Finsler

space F
n

is said to be obtained from Fn by Kropina change. The quantities corresponding to

F
n

are denoted by putting bar on those quantities.

The fundamental metric tensor gij , the normalized element of support li and angular metric

tensor hij of Fn are given by

gij =
1

2

∂2L2

∂yi∂yj
, li =

∂L

∂yi
and hij = L

∂2L

∂yi∂yj
= gij − lilj.

We shall denote the partial derivative with respect to xi and yi by ∂i and ∂̇i respectively

and write

Li = ∂̇iL, Lij = ∂̇i∂̇jL, Lijk = ∂̇i∂̇j ∂̇kL.

1Received November 9, 2012. Accepted March 10, 2013.
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Thus

Li = li, L−1 hij = Lij

The geodesic of Fn are given by the system of differential equations

d2xi

ds2
+ 2Gi

(
x,

dx

ds

)
= 0,

where Gi(x, y) are positively homogeneous of degree two in yi and is given by

2Gi = gij(yr∂̇j∂rF − ∂jF ), F =
L2

2

where gij are the inverse of gij .

The well known Berwald connection BΓ = {Gi
jk, Gi

j} of a Finsler space is constructed from

the quantity Gi appearing in the equation of geodesic and is given by [6]

Gi
j = ∂̇jG

i, Gi
jk = ∂̇kGi

j .

The Cartan’s connection CΓ = {F i
jk, Gi

j , C
i
jk} is constructed from the metric function L

by the following five axioms [6]:

(i) gij|k = 0; (ii) gij |k = 0; (iii) F i
jk = F i

kj ; (iv) F i
0k = Gi

k; (v) Ci
jk = Ci

kj .

where |k and |k denote h and v−covariant derivatives with respect to CΓ. It is clear that

the h−covariant derivative of L with respect to BΓ and CΓ are same and vanishes identically.

Furthermore the h−covariant derivatives of Li, Lij with respect to CΓ are also zero.

We denote

2rij = bi|j + bj|i, 2sij = bi|j − bj|i.

§2. Kropina Change of Finsler Metric

The Kropina change of Finsler metric L is given by

(2.1) L =
L2

β
, where β(x, y) = bi(x) yi.

We may put

(2.2) G
i
= Gi + Di.

Then G
i

j = Gi
j + Di

j and G
i

jk = Gi
jk + Di

jk, where Di
j = ∂̇jD

i and Di
jk = ∂̇kDi

j . The tensors

Di, Di
j and Di

jk are positively homogeneous in yi of degree two, one and zero respectively.

To find Di we deal with equations Lij|k = 0 [2], where Lij|k is the h−covariant derivative

of Lij = hij/L with respect to Cartan’s connection CΓ. Then

(2.3) ∂kLij − LijrG
r
k − LrjF

r
ik − LirF

r
jk = 0.

Since ∂̇iβ = bi, from (2.1), we have
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(2.4) (a) Li =
2L

β
Li −

L2

β2
bi;

(b) Lij =
2L

β
Lij +

2

β
LiLj −

2L

β2
(Libj + Ljbi) +

2L2

β3
bibj;

(c) ∂kLi =
2L

β
(∂kLi) +

(
2

β
Li −

2L

β2
bi

)
∂kL +

(
2L2

β3
bi −

2L

β2
Li

)
∂kβ − L2

β2
(∂kbi);

(d) ∂kLij =
2L

β
(∂kLij) +

[
2

β
Lij −

2

β2
(Libj + Ljbi) +

4L

β3
bibj

]
(∂kL)

−
[
2L

β2
Lij +

2

β2
LiLj +

6L2

β4
bibj −

4L

β3
(Libj + Ljbi)

]
(∂kβ)

+

[
2

β
Lj −

2L

β2
bj

]
(∂kLi) +

[
2

β
Li −

2L

β2
bi

]
(∂kLj)

+

[
2L2

β3
bj −

2L

β2
Lj

]
(∂kbi) +

[
2L2

β3
bi −

2L

β2
Li

]
(∂kbj)

(e) Lijk =
2L

β
Lijk +

2

β
(LjLjk + LjLik + LkLij) −

2L

β
(Lijbk + Likbj + Ljkbi)

− 2

β2
(LiLjbk + LiLkbj + LjLkbi) +

4L

β3
(bibjLk + bibkLj + bjbkLi)

−6L2

β4
bibjbk.

Since Lij|k = 0 in F
n
, after using (2.2), we have

∂kLij − Lijr(G
r
k + Dr

k) − Lrj(F
r
ik + cDr

ik) − Lir(F
r
jk + cDr

jk) = 0,

where F
i

jk − F i
jk = cDi

jk.

Using equations (2.3) and (2.4)(b), (d), (e), the above equation may be written as

(2.5)

− 2L

β
[LijrD

r
k + Lrj

cDr
ik + Lir

cDr
jk] +

[
2

β
Lij −

2

β2
(Libj + Ljbi)

+
4L

β3
bibj

]
LrG

r
k −

[
2L

β2
Lij +

2

β2
LiLj +

6L2

β4
bibj −

4L

β3
(Libj + Ljbi)

]
×

(r0k + sok + brG
r
k) +

(
2

β
Lj −

2L

β2
bj

)
(LirG

r
k + LrF

r
ik) +

(
2

β
Li −

2L

β2
bi

)
×

(LjrG
r
k + LrF

r
jk) +

(
2L2

β3
bj −

2L2

β2
Lj

)
(rik + sik + brF

r
ik)

+

(
2L2

β3
bi −

2L

β2
Li

)
(rjk + sjk + brF

r
jk) +

{
2L

β2
(Lijbr + Lirbj + Ljrbi)

+
2

β2
(LiLjbr + LiLrbj + LjLrbi) −

2

β
(LiLjr + LjLir + LrLij)

− 4L

β3
(bibjLr + bjbrLi + bibrLj) +

6L2

β4
bibjbr

}
(Gr

k + Dr
k)

+

{
2L

β2
(Lrbj + Ljbr) −

2

β
LrLj −

2L2

β3
brbj

}
(F r

ik + cDr
ik)

+

{
2L

β2
(Libr + Lrbi) −

2

β
LiLr −

2L2

β3
bibr

}
(F r

jk + cDr
jk) = 0,
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where ‘0’ stands for contraction with respect to yi viz. r0k = rikyi, r00 = rijy
iyj .

Contracting (2.5) with yk, we get

(2.6)

2

{
2L

β
Lijr −

2L

β2
(Lijbr + Lirbj + Ljrbi) −

2

β2
(LiLjbr + LiLrbj + LjLrbi)

+
2

β
(LiLjr + LjLir + LrLij) +

4L

β3
(bibjLr + bjbrLi + bibrLj) −

6L2

β4
bibjbr

}
Dr

+

{
2L

β2
Lij +

2

β2
LiLj +

6L2

β4
bibj −

4L

β3
(Libj + Ljbi)

}
r00

+

{
2L

β
Lrj −

2L

β2
(Lrbj + Ljbr) +

2

β
LrLj +

2L2

β3
brbj

}
Dr

i

+

{
2L

β
Lir −

2L

β2
(Libr + Lrbi) +

2

β
LiLr +

2L2

β3
bibr

}
Dr

j

+

(
2L

β2
Lj −

2L2

β3
bj

)
(ri0 + si0) +

(
2L

β2
Li −

2L2

β3
bi

)
(rj0 + sj0) = 0,

where we have used the fact that Di
jkyj = cDi

jkyj = Di
k [3].

Next, we deal with Li|j = 0, that is ∂jLi − LirG
r

j − LrF
r

ij = 0. Then

(2.7) ∂jLi − Lir(G
r
j + Dr

j ) − Lr(F
r
ij + cDr

ij) = 0.

Putting the values of ∂jLi, Lir and Lr from (2.4) in (2.7) and using equation

Li|j = ∂jLi − LirG
r
j − LrF

r
ij = 0,

we get

−L2

β2
bi|j =

[
2L

β
Lir +

2

β
LiLr −

2L

β2
(Libr + Lrbi) +

2L2

β3
bibr

]
Dr

j

+

(
2L

β2
Li −

2L2

β3
bi

)
(rj0 + sj0) +

[
2L

β
Lr −

L2

β2
br

]
cDr

ij ,

where bi|k = ∂kbi − brF
r
ik.

Since 2rij = bi|j + bj|i, 2sij = bi|j − bj|i, the above equation gives

(2.8)

−2L2

β2
rij =

[
2L

β
Lir +

2

β
LiLr −

2L

β2
(Libr + Lrbi) +

2L2

β3
bibr

]
Dr

j

+

[
2L

β
Ljr +

2

β
LjLr −

2L

β2
(Ljbr + Lrbj) +

2L2

β3
bjbr

]
Dr

i

+

(
2L

β2
Li −

2L2

β3
bi

)
(rj0 + sj0) +

(
2L

β2
Lj −

2L2

β3
bj

)
(ri0 + si0)

+ 2

[
2L

β
Lr −

L2

β2
br

]
cDr

ij

and

(2.9)

−2L2

β2
sij =

[
2L

β
Lir +

2

β
LiLr −

2L

β2
(Libr + Lrbi) +

2L2

β3
bibr

]
Dr

j

−
[
2L

β
Ljr +

2

β
LjLr −

2L

β2
(Ljbr + Lrbj) +

2L2

β3
bjbr

]
Dr

i

+

(
2L

β2
Li −

2L2

β3
bi

)
(rj0 + sj0) −

(
2L

β2
Lj −

2L2

β3
bj

)
(ri0 + si0).
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Subtracting (2.8) from (2.6) and re-arranging the terms, we get

(2.10)

{
2L

β
Lijr −

2L

β2
(Lijbr + Lirbj + Ljrbi) −

2

β2
(LiLjbr + LiLrbj + LjLrbi)

+
2

β
(LiLjr + LjLir + LrLij) +

4L

β3
(bibjLr + bjbrLi + bibrLj) −

6L2

β4
bibjbr

}
Dr

+

[
L

β2
Lij +

1

β2
LiLj +

3L2

β4
bibj −

2L

β3
(Libj + Ljbi)

]
r00 −

L2

β2
rij

=

[
2L

β
Lr −

L2

β2
br

]
cDr

ij .

Contracting (2.10) by yi, we obtain

(2.11)

[
−2L

β
Ljr +

2L

β2
(Ljbr + Lrbj) −

2

β
LjLr −

2L2

β3
bjbr

]
Dr

+

[
L2

β3
bj −

L

β2
Lj

]
r00 −

L2

β2
r0j =

[
2L

β
Lr −

L2

β2
br

]
Dr

j .

Subtracting (2.9) from (2.6) and re-arranging the terms, we get

(2.12)

{
2L

β
Lijr −

2L

β2
(Lijbr + Lirbj + Ljrbi) −

2

β2
(LiLjbr + LiLrbj + LjLrbi)

+
2

β
(LiLjr + LjLir + LrLij) +

4L

β3
(bibjLr + bjbrLi + bibrLj) −

6L2

β4
bibjbr

}
Dr

+

[
L

β2
Lij +

1

β2
LiLj +

3L2

β4
bibj −

2L

β3
(Libj + Ljbi)

]
r00

+

(
2L

β2
Li −

2L2

β3
bi

)
(rj0 + sj0) +

[
2L

β
Lir −

2L

β2
(Libr + Lrbi) +

2

β
LiLr

+
2L2

β3
bibr

]
Dr

j = −L2

β2
sij .

Contracting (2.11) and (2.12) by yj, we get

(2.13)

[
2L

β
Lr −

L2

β2
br

]
Dr = − L2

2β2
r00

and

(2.14)

[
2L

β
Lir −

2L

β2
(Libr + Lrbi) +

2

β
LiLr +

2L2

β3
bibr

]
Dr = −L2

β2
si0 +

(
L2

β3
bi −

L

β2
Li

)
r00.

In view of LLir = gir − LiLr, the equation (2.14) can be written as

(2.15)
2

β
girD

r +

[
2L2

β3
bi −

2L

β2
Li

]
(brD

r) − 2L

β2
bi(LrD

r) = −L2

β2
si0 +

(
L2

β3
bi −

L

β2
Li

)
r00.

Contracting (2.15) by bi = gijbj , we get

(2.16) 2b2L2(brD
r) − 2b2βL(LrD

r) = −βL2s0 + (L2b2 − β2)r00,
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where we have written s0 for sr0b
r.

Equation (2.13) can be written as

(2.17) −2L2(brD
r) + 4βL(LrD

r) = −L2r00.

The equation (2.16) and (2.17) constitute the system of algebraic equations in LrD
r and

brD
r. Solving equations (2.16) and (2.17) for brD

r and LrD
r, we get

(2.18) brD
r =

1

2L2b2
[(b2L2 − 2β2)r00 − 2βL2s0]

and

(2.19) LrD
r = − 1

2L2b2
[L3s0 + βLr00].

Contracting (2.15) by gji and re-arranging terms, we obtain

(2.20) Dj =

[
2βL(brD

r) − βLr00

2β2

]
lj +

[
L2r00 + 2βL(LrD

r) − 2L2(brD
r)

2β2

]
bj − L2

2β
sj
0

Putting the values of brD
r and LrD

r from equations (2.18) and (2.19) respectively in (2.20),

we get

(2.21) Di =

(
βr00 + L2s0

2b2β

)
bi −

(
βr00 + L2s0

b2L2

)
yi − L2

2β
si
0, where li =

yi

L
.

Proposition 2.1 The difference tensor Di = G
i − Gi of Kropina change of Finsler metric is

given by (2.21).

§3. Projective Change of Finsler Metric

The Finsler space F
n

is said to be projective to Finsler space Fn if every geodesic of Fn is

transformed to a geodesic of F
n
. Thus the change L → L is projective if G

i
= Gi + P (x, y)yi,

where P (x, y) is a homogeneous scalar function of degree one in yi, called projective factor [4].

Thus from (2.2) it follows that L → L is projective iff Di = Pyi. Now we consider that

the Kropina change L → L =
L2

β
is projective. Then from equation (2.21), we have

(3.1) Pyi =

(
βr00 + L2s0

2b2β

)
bi −

(
βr00 + L2s0

b2L2

)
yi − L2

2β
si
0.

Contracting (3.1) by yi (= gij yj) and using the fact that si
0yi = 0 and yi yi = L2, we get

(3.2) P = − 1

2b2L2
(βr00 + L2s0).

Putting the value of P from (3.2) in (3.1), we get

(3.3)

(
βr00 + L2s0

2b2L2

)
yi =

(
βr00 + L2s0

2b2β

)
bi − L2

2β
si
0.
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Transvecting (3.3) by bi, we get

(3.4) r00 = −βs0

△ , where △ =

(
β

L

)2

− b2 6= 0.

Substituting the value of r00 from (3.4) in (3.2), we get

(3.5) P =
1

2△s0.

Eliminating P and r00 from (3.5), (3.4) and (3.2), we get

(3.6) si
0 =

[
β

L2
yi − bi

]
s0

△ .

The equations (3.4) and (3.6) give the necessary conditions under which a Kropina change

becomes a projective change.

Conversely, if conditions (3.4) and (3.6) are satisfied, then putting these conditions in

(2.21), we get

Di =
s0

2△ yi i.e. Di = Pyi, where P =
s0

2△ .

Thus F
n

is projective to Fn.

Theorem 3.1 The Kropina change of a Finsler space is projective if and only if (3.4) and

(3.6) hold and then the projective factor P is given by P = s0

2△ , where △ =
(

β
L

)2

− b2.

§4. A Particular Case

Let us assume that L is a metric of a Riemannian space i.e. L =
√

aij(x)yiyj = α. Then

L =
α2

β
which is the metric of Kropina space. In this case bi|j = bi;j where ; j denotes the

covariant derivative with respect to Christoffel symbols constructed from Riemannian metric α.

Thus rij and sij are functions of coordinates only and in view of theorem (3.1) it follows that

the Riemannian space is projective to Kropina space iff r00 = − β

△s0 and si
0 =

(
β

α2
yi − bi

)
s0

△ ,

where △ =

(
β

α

)2

− b2 6= 0. These equations may be written as

(4.1) (a) r00β
2 = α2(b2r00 − βs0); (b) si

0(β
2 − b2α2) = (β2yi − α2bi)s0.

From (4.1)(a), it follows that if α2 6≡ o(mod β) i.e. β is not a factor of α2, then there exists

a scalar function f(x) such that

(4.2) (a) b2r00 − βs0 = β2f(x); (b) r00 = α2f(x).

From (4.2)(b), we get rij = f(x)aij and therefore (4.2)(a) reduces to

βs0 = (b2α2 − β2)f(x).
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This equation may be written as

bisj + bjsi = 2(b2aij − bibj)f(x)

which after contraction with bj gives b2si = 0. If b2 6= 0 then we get si = 0, i.e. sij = 0.

Hence equation (4.1) holds identically and (4.2)(a) and (b) give

(b2α2 − β2)f(x) = 0 i.e. f(x) = 0 as b2α2 − β2 6= 0.

Thus r00 = 0, i.e. rij = 0. Hence bi;j = 0, i.e. the pair (α, β) is parallel pair.

Conversely, if bi;j = 0, the equation (4.1)(a) and (4.1)(b) hold identically. Thus we get the

following theorem which has been proved in [1], [7].

Theorem 4.1 The Riemannian space with metric α is projective to a Kropina space with

metric
α2

β
iff the (α, β) is parallel pair.
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Abstract: A function f is called a geometric mean labeling of a graph G(V, E) if f :

V (G) → {1, 2, 3, . . . , q + 1} is injective and the induced function f∗ : E(G) → {1, 2, 3, . . . , q}

defined as

f
∗(uv) =

⌊√
f(u)f(v)

⌋
, ∀uv ∈ E(G),

is bijective. A graph that admits a geometric mean labeling is called a geometric mean

graph. In this paper, we have discussed the geometric meanness of graphs obtained from

some graph operations.
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§1. Introduction

Throughout this paper, by a graph we mean a finite, undirected and simple graph. Let G(V, E)

be a graph with p vertices and q edges. For notations and terminology, we follow [3]. For a

detailed survey on graph labeling, we refer [2].

Cycle on n vertices is denoted by Cn and a path on n vertices is denoted by Pn. A tree T

is a connected acyclic graph. Square of a graph G, denoted by G2, has the vertex set as in G

and two vertices are adjacent in G2 if they are at a distance either 1 or 2 apart in G. A graph

obtained from a path of length m by replacing each edge by Cn is called as mCn-snake, for

m ≥ 1 ad n ≥ 3.

The total graph T (G) of a graph G is the graph whose vertex set is V (G) ∪E(G) and two

vertices are adjacent if and only if either they are adjacent vertices of G or adjacent edges of

G or one is a vertex of G and the other one is an edge incident on it. The graph Tadpoles

T (n, k) is obtained by identifying a vertex of the cycle Cn to an end vertex of the path Pk. The

H-graph is obtained from two paths u1, u2, . . . , un and v1, v2, · · · , vn of equal length by joining

an edge u n+1
2

vn+1
2

when n is odd and u n+2
2

vn
2

when n is even. An arbitrary supersubdivision

P (m1, m2, · · · , mn−1) of a path Pn is a graph obtained by replacing each ith edge of Pn by

identifying its end vertices of the edge with a partition of K2,mi
having 2 elements, where mi is

1Received November 23, 2012. Accepted March 12, 2013.
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any positive integer. G ⊙ K1 is the graph obtained from G by attaching a new pendant vertex

to each vertex of G.

The study of graceful graphs and graceful labeling methods was first introduced by Rosa

[5]. The concept of mean labeling was first introduced by S.Somasundaram and R.Ponraj [6]

and it was developed in [4,7]. S.K.Vaidya et al. [11] have discussed the mean labeling in the

context of path union of cycle and the arbitrary supersubdivision of the path Pn. S.K.Vaidya

et al. [8-10] have discussed the mean labeling in the context of some graph operations. In [1],

A.Durai Baskar et al. introduced geometric mean labeling of graph.

A function f is called a geometric mean labeling of a graph G(V, E) if f : V (G) →
{1, 2, 3, · · · , q + 1} is injective and the induced function f∗ : E(G) → {1, 2, 3, · · · , q} defined as

f∗(uv) =
⌊√

f(u)f(v)
⌋

, ∀uv ∈ E(G),

is bijective. A graph that admits a geometric mean labeling is called a geometric mean graph.

In this paper we have obtained the geometric meanness of the graphs, union of two cycles

Cm and Cn, union of the cycle Cm and a path Pn, P 2
n , mCn-snake for m ≥ 1 and n ≥ 3, the

total graph T (Pn) of Pn, the Tadpoles T (n, k), the graph obtained by identifying a vertex of

any two cycles Cm and Cn, the graph obtained by identifying an edge of any two cycles Cm

and Cn, the graph obtained by joining any two cycles Cm and Cn by a path Pk, the H-graph

and the arbitrary supersubdivision of a path P (1, 2, · · · , n − 1).

§2. Main Results

Theorem 2.1 Union of any two cycles Cm and Cn is a geometric mean graph.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycles Cm and Cn re-

spectively. We define f : V (Cm ∪ Cn) → {1, 2, 3, · · · , m + n + 1} as follows:

f(ui) =





i if 1 ≤ i ≤
⌊√

m + 2
⌋
− 1

i + 1 if
⌊√

m + 2
⌋
≤ i ≤ m − 1,

f(um) = m + 2 and

f(vi) =





m + n + 3 − 2i if 1 ≤ i ≤
⌊

n
2

⌋

m + 1 if i =
⌊

n
2

⌋
+ 1

m − n + 2i if
⌊

n
2

⌋
+ 2 ≤ i ≤ n.

The induced edge labeling is as follows:

f∗(uiui+1) =





i if 1 ≤ i ≤
⌊√

m + 2
⌋
− 1

i + 1 if
⌊√

m + 2
⌋
≤ i ≤ m − 1,
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f∗(u, um) =
⌊√

m + 2
⌋
,

f∗(vivi+1) =





m + n + 1 − 2i if 1 ≤ i ≤
⌊

n
2

⌋

m + 1 if i =
⌊

n
2

⌋
+ 1 and n is odd

m + 2 if i =
⌊

n
2

⌋
+ 1 and n is even

m − n + 2i if
⌊

n
2

⌋
+ 2 ≤ i ≤ n − 1

and f∗(v1vn) = m + n.

Hence, f is a geometric mean labeling of the graph Cm ∪ Cn. Thus the graph Cm ∪ Cn is

a geometric mean graph, for any m, n ≥ 3. �

A geometric mean labeling of C7 ∪ C10 is shown in Fig.1.

u1

u2

u3

u4

u5

u6

u7

1
3

9

7

7

6

6

5
5

4

4

2

2
v1

v2

v3

v4

v5

v6

v7

v8

v9

v10

18
16

16
14

14

12

12

10

10

8
8

9
11

11

13

13

15
15

17

Fig.1

The graph Cm ∪nT, n ≥ 2 cannot be a geometric mean graph. But the graph Cm ∪T may

be a geometric mean graph.

Theorem 2.2 The graph Cm ∪ Pn is a geometric mean graph.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycle Cm and the path

Pn respectively. We define f : V (Cm ∪ Pn) → {1, 2, 3, · · · , m + n} as follows:

f(ui) =





m + n + 2 − 2i if 1 ≤ i ≤
⌊m

2

⌋

n if i =
⌊m

2

⌋
+ 1

n − m − 1 + 2i if
⌊m

2

⌋
+ 2 ≤ i ≤ m,

f(vi) = i, for 1 ≤ i ≤ n − 1 and

f(vn) = n + 1.
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The induced edge labeling is as follows:

f∗(uiui+1) =





m + n − 2i if 1 ≤ i ≤
⌊m

2

⌋

n if i =
⌊m

2

⌋
+ 1 and m is odd

n + 1 if i =
⌊m

2

⌋
+ 1 and m is even

n − m − 1 + 2i if
⌊m

2

⌋
+ 2 ≤ i ≤ m − 1,

f∗(u1um) = m + n − 1 and

f∗(vivi+1) = i, for 1 ≤ i ≤ n − 1.

Hence, f is a geometric mean labeling of the graph Cm ∪ Pn. Thus the graph Cm ∪ Pn is a

geometric mean graph, for any m ≥ 3 and n ≥ 2. �

A geometric mean labeling of C12 ∪ P7 is shown in Fig.2.

u1
u2

u3

u4

u5

u6
u7

u8

u9

u10

u11

u12

19
17

17
15

15

13

13

11

11

9

97
7

8
10

10

12

12
14

14

16

16

18 18 v1

v2

v3

v4

v5

v6

v7

1
1
2

2
3

3
4

4
5
5
6
6

8

Fig.2

The T -graph Tn is obtained by attaching a pendant vertex to a neighbor of the pendant

vertex of a path on (n − 1) vertices.

Theorem 2.3 For a T -graph Tn, Tn ∪ Cm is a geometric mean graph, for n ≥ 2 and m ≥ 3.

Proof Let u1, u2, · · · , un−1 be the vertices of the path Pn−1 and un be the pendant vertex

identified with u2. Let v1, v2, · · · , vm be the vertices of the cycle Cm.

V (Tn ∪ Cm) = V (Cm) ∪ V (Pn) ∪ {un} and

E(Tn ∪ Cm) = E(Cm) ∪ E(Pn) ∪ {u2un}.

We define f : V (Tn ∪ Cm) → {1, 2, 3, · · · , m + n} as follows:

f(ui) = i + 1, for 1 ≤ i ≤ n − 2,

f(un−1) = n − 1,

f(un) = 1,
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f(vi) =





m + n + 2 − 2i if 1 ≤ i ≤
⌊m

2

⌋

n if i =
⌊m

2

⌋
+ 1

n − m − 1 + 2i if
⌊m

2

⌋
+ 2 ≤ i ≤ m.

The induced edge labeling is as follows:

f∗(uiui+1) = i + 1, for 1 ≤ i ≤ n − 2,

f∗(u2un) = 1,

f∗(vivi+1) =





m + n − 2i if 1 ≤ i ≤
⌊m

2

⌋

n if i =
⌊m

2

⌋
+ 1 and m is odd

n + 1 if i =
⌊m

2

⌋
+ 1 and m is even

n − m − 1 + 2i if
⌊m

2

⌋
+ 2 ≤ i ≤ m − 1

and

f∗(v1vm) = m + n − 1.

Hence f is a geometric mean labeling of Tn ∪Cm. Thus the graph Tn ∪Cm is a geometric mean

graph, for n ≥ 2 and m ≥ 3. �

A geometric mean labeling of T7 ∪ C6 is as shown in Fig.3.

2
2 3 1 1

3

4

4

5

5

6

6

8

13

11

11

9

9

7
7

8

10

10

12

12

Fig.3

Theorem 2.4 P 2
n is a geometric mean graph, for n ≥ 3.

Proof Let v1, v2, · · · , vn be the vertices of the path Pn. We define f : V (P 2
n) → {1, 2, 3, · · · , 2(n−

1)} as follows:

f(vi) = 2i − 1, for 1 ≤ i ≤ n − 1 and

f(vn) = 2(n − 1).
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The induced edge labeling is as follows:

f∗(vivi+1) = 2i − 1, for 1 ≤ i ≤ n − 1 and

f∗(vivi+2) = 2i, for 1 ≤ i ≤ n − 2.

Hence, f is a geometric mean labeling of the graph P 2
n . Thus the graph P 2

n is a geometric mean

graph, for n ≥ 3. �

A geometric mean labeling of P 2
9 is shown in Fig.4.

v1 v2 v3 v4 v5 v6 v7 v8 v9
1 1 3 3 5 5 7 7 9 9 11 11 13 13 15 15 16

2 6 10 14

4 8 12

Fig.4

Theorem 2.5 mCn-snake is a geometric mean graph, for any m ≥ 1 and n = 3, 4.

Proof The proof is divided into two cases.

Case 1 n = 3.

Let v
(i)
1 , v

(i)
2 and v

(i)
3 be the vertices of the ith copy of the cycle C3, for 1 ≤ i ≤ m.

The mC3-snake G is obtained by identifying v
(i)
3 and v

(i+1)
1 , for 1 ≤ i ≤ m − 1. We define

f : V (G) → {1, 2, 3 · · · , 3m + 1} as follows:

f(v
(i)
1 ) = 3i − 2, for 1 ≤ i ≤ m

f(v
(i)
2 ) = 3i, for 1 ≤ i ≤ m and

f(v
(i)
3 ) = 3i + 1, for 1 ≤ i ≤ m.

The induced edge labeling is as follows:

f∗(v
(i)
1 v

(i)
2 ) = 3i − 2, for 1 ≤ i ≤ m,

f∗(v
(i)
2 v

(i)
3 ) = 3i, for 1 ≤ i ≤ m and

f∗(v
(i)
1 v

(i)
3 ) = 3i − 1, for 1 ≤ i ≤ m.

Hence, f is a geometric mean labeling of the graph mC3-snake. For example, a geometric mean

labeling of 6C3-snake is shown in Fig.5.

1 2 4 5 7 8 10 11 13 14 16 17 19

1 3 4 6 7 9 10 12 13 15 16 18

3 6 9 12 15 18

Fig.5
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Case 2 n = 4.

Let v
(i)
1 , v

(i)
2 , v

(i)
3 and v

(i)
4 be the vertices of the ith copy of the cycle C4, for 1 ≤ i ≤ m.

The mC4-snake G is obtained by identifying v
(i)
4 and v

(i+1)
1 , for 1 ≤ i ≤ m − 1. We define

f : V (G) → {1, 2, 3, · · · , 4m + 1} as follows:

f(v
(i)
1 ) = 4i − 3, for 1 ≤ i ≤ m,

f(v
(i)
2 ) = 4i − 1, for 1 ≤ i ≤ m,

f(v
(i)
3 ) = 4i, for 1 ≤ i ≤ m and

f(v
(i)
4 ) = 4i + 1, for 1 ≤ i ≤ m.

The induced edge labeling is as follows:

f∗(v
(i)
1 v

(i)
2 ) = 4i − 3, for 1 ≤ i ≤ m,

f∗(v
(i)
2 v

(i)
3 ) = 4i − 1, for 1 ≤ i ≤ m

f∗(v
(i)
3 v

(i)
4 ) = 4i, for 1 ≤ i ≤ m and

f∗(v
(i)
1 v

(i)
4 ) = 4i − 2, for 1 ≤ i ≤ m.

Hence, f is a geometric mean labeling of the graph mC4-snake. �

A geometric mean labeling of 5C4-snake is shown in Fig.6.

1 2 5 6 9 10 13 14 17 18 21

1

3 3 4

4 5

7 7 8

8 9

11 11 12

12 13

15 15 16

16 17

19 19 20

20

Fig.6

Theorem 2.6 T (Pn) is a geometric mean graph, for n ≥ 2.

Proof Let V (Pn) = {v1, v2, · · · , vn} and E(Pn) = {ei = vivi+1; 1 ≤ i ≤ n − 1} be the

vertex set and edge set of the path Pn. Then

V (T (Pn)) = {v1, v2, . . . , vn, e1, e2, · · · , en−1} and

E(T (Pn)) = {vivi+1, eivi, eivi+1; 1 ≤ i ≤ n − 1} ∪ {eiei+1; 1 ≤ i ≤ n − 2}.

We define f : V (T (Pn)) → {1, 2, 3, · · · , 4(n − 1)} as follows:

f(vi) = 4i − 3, for 1 ≤ i ≤ n − 1,

f(vn) = 4n− 4 and

f(ei) = 4i − 1, for 1 ≤ i ≤ n − 1.
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The induced edge labeling is as follows:

f∗(vivi+1) = 4i − 2, for 1 ≤ i ≤ n − 1,

f∗(eiei+1) = 4i, for 1 ≤ i ≤ n − 2,

f∗(eivi) = 4i − 3, for 1 ≤ i ≤ n − 1 and

f∗(eivi+1) = 4i − 1, for 1 ≤ i ≤ n − 1.

Hence, f is a geometric mean labeling of the graph T (Pn). Thus the graph T (Pn) is a geometric

mean graph, for n ≥ 2. �

A geometric mean labeling of T (P5) is shown in Fig.7.

v1 v2 v3 v4 v5

e1 e2 e3 e4

1

1

3

3

2

5

5

7

7

9

9

11

11

13

13

14

15

15

16
106

4 8 12

Fig.7

Theorem 2.7 Tadpoles T (n, k) is a geometric mean graph.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vk be the vertices of the cycle Cn and the path Pk

respectively. Let T (n, k) be the graph obtained by identifying the vertex un of the cycle Cn to

the end vertex v1 of the path Pk. We define f : V (T (n, k)) → {1, 2, 3, · · · , n + k} as follows:

f(ui) =





i if 1 ≤ i ≤
⌊√

n + 1
⌋
− 1

i + 1 if
⌊√

n + 1
⌋
≤ i ≤ n

and

f(vi) = n + i, for 2 ≤ i ≤ k.

The induced edge labeling is as follows:

f∗(uiui+1) =





i if 1 ≤ i ≤
⌊√

n + 1
⌋
− 1

i + 1 if
⌊√

n + 1
⌋
≤ i ≤ n − 1,

f∗(u1un) =
⌊√

n + 1
⌋

and

f∗(vivi+1) = n + i, for 1 ≤ i ≤ k − 1.

Hence, f is a geometric mean labeling of the graph T (n, k). Thus the graph T (n, k) is a geometric

mean graph. �

A geometric mean labeling of the Tadpoles T (7, 5) is shown in Fig.8.
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u2

u3

u4

u5

u6

u7

u1

3
1

1

2

7

7

6
6

5

5

4

4

v1 v2 v3 v4 v5

8 8 9 9 10 10 11 11 12

3

Fig.8

Theorem 2.8 The graph obtained by identifying a vertex of any two cycles Cm and Cn is a

geometric mean graph.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycles Cm and Cn re-

spectively. Let G be the resultant graph obtained by identifying the vertex um of the cycle Cm

to the vertex vn of the cycle Cn. We define f : V (G) → {1, 2, 3, · · · , m + n + 1} as follows:

f(ui) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m

and

f(vi) =





m + 1 + i if 1 ≤ i ≤
⌊√

(m + 1)(m + n + 1)
⌋
− m − 2

m + 2 + i if
⌊√

(m + 1)(m + n + 1)
⌋
− m − 1 ≤ i ≤ n − 1.

The induced edge labeling is as follows:

f∗(uiui+1) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1,

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m − 1,

f∗(vivi+1) =





m + 1 + i if 1 ≤ i ≤
⌊√

(m + 1)(m + n + 1)
⌋
− m − 2,

m + 2 + i if
⌊√

(m + 1)(m + n + 1)
⌋
− m − 1 ≤ i ≤ n − 2,

f∗(u1um) =
⌊√

m + 1
⌋
,

f∗(vn−1vn) =
⌊√

(m + 1)(m + n + 1)
⌋

and

f∗(v1vn) = m + 1.

Hence, f is a geometric mean labeling of the graph G. Thus the resultant graph G is a geometric

mean graph. �

A geometric mean labeling of the graph G obtained by identifying a vertex of the cycles

C8 and C12, is shown in Fig.9.
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10

v9
v8

v7

v6

v5

v4

v3

v2

v1

v11

v10

19
18

18
17

17

16

16

15

15

14

1412
12

11
11

10

21

20

20 19

u8

u1

u2

u3

u4

u5
u6

u7

2
2

4

4

5

5

6
6

7
7

8

8

3

1
1

v12
9

13

9

Fig.9

Theorem 2.9 The graph obtained by identifying an edge of any two cycles Cm and Cn is a

geometric mean graph.

Proof Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycles Cm and Cn re-

spectively. Let G be the resultant graph obtained by identifying an edge um−1um of cycle Cm

with an edge vn−1vn of the cycle Cn. We define f : V (G) → {1, 2, 3, · · · , m + n} as follows:

f(ui) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m

and

f(vi) =





m + 1 + i if 1 ≤ i ≤
⌊√

m(m + n)
⌋
− m − 2

m + 2 + i if
⌊√

m(m + n)
⌋
− m − 1 ≤ i ≤ n − 2.

The induced edge labeling is as follows:

f∗(uiui+1) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m − 1,

f∗(vivi+1) =





m + 1 + i if 1 ≤ i ≤
⌊√

m(m + n
⌋
− m − 2

m + 2 + i if
⌊√

m(m + n)
⌋
− m − 1 ≤ i ≤ n − 3,

f∗(u1um) =
⌊√

m + 1
⌋
,

f∗(v1vn) = m + 1 and

f∗(vn−2vn−1) =
⌊√

m(m + n)
⌋

.

Hence, f is a geometric mean labeling of the graph G. Thus the resultant graph G is a geometric

mean graph. �

A geometric mean labeling of the graph G obtained by identifying an edge of the cycles

C10 and C13, is shown in Fig.10.



Geometric Mean Labeling of Graphs Obtained from Some Graph Operations 95

v3
v4

v5

v6

v7

v8

v9

v10

v11

v1

v2u1

u2
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u8

2
2

4

4
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7
7

8
8

9

9

3

1
1
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5

6
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v12
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13 13
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17
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18
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20
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22
23

1510
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Fig.10

Theorem 2.10 The graph obtained by joining any two cycles Cm and Cn by a path Pk is a

geometric mean graph.

Proof Let G be a graph obtained by joining any two cycles Cm and Cn by a path Pk.

Let u1, u2, · · · , um and v1, v2, · · · , vn be the vertices of the cycles Cm and Cn respectively.

Let w1, w2, . . . , wk be the vertices of the path Pk with um = w1 and wk = vn. We define

f : V (G) → {1, 2, 3, · · · , m + k + n} as follows:

f(ui) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m,

f(wi) = m + i, for 2 ≤ i ≤ k and

f(vi) =





m + k + i if 1 ≤ i ≤
⌊√

(m + k)(m + k + n)
⌋
− m − k − 1

m + k + 1 + i if
⌊√

(m + k)(m + k + n)
⌋
− m − k ≤ i ≤ n − 1.

The induced edge labeling is as follows:

f∗(uiui+1) =





i if 1 ≤ i ≤
⌊√

m + 1
⌋
− 1

i + 1 if
⌊√

m + 1
⌋
≤ i ≤ m − 1,

f∗(wiwi+1) = m + i, for 1 ≤ i ≤ k − 1,

f∗(vivi+1) =





m + k + i if 1 ≤ i ≤
⌊√

(m + k)(m + k + n)
⌋
− m − k − 1

m + k + 1 + i if
⌊√

(m + k)(m + k + n)
⌋
− m − k ≤ i ≤ n − 2,

f∗(u1um) =
⌊√

m + 1
⌋
,

f∗(vnvn−1) =
⌊√

(m + k)(m + k + n)
⌋

and

f∗(v1vn) = m + k.

Hence, f is a geometric mean labeling of the graph G. Thus the resultant graph G is a geometric

mean graph. �
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A geometric mean labeling of the graph G obtained by joining two cycles C7 and C10 by

a path P4, is shown in Fig.11.

v7

v8

v9

v10

v2
v3

v4

20
20

21

15

13
13

14
14

16

18

19
19

v1

11

12

v6

v5

u1

u2

u4

u5

u6

u7

1

1
3

3

4

4

5

5

u3

6
6

7

7

8

2

w1 w2 w3 w4

12

111010998

18

17

17

16

Fig.11

Theorem 2.11 Any H-graph G is a geometric mean graph.

Proof Let u1, u2, · · · , un and v1, v2, · · · , vn be the vertices on the paths of length n in G.

Case 1 n is odd.

We define f : V (G) → {1, 2, 3, · · · , 2n} as follows:

f(ui) = i, for 1 ≤ i ≤ n and

f(vi) =





n + 2i if 1 ≤ i ≤
⌊n

2

⌋

n + 2i − 1 if i =
⌊n

2

⌋
+ 1

3n + 1 − 2i if
⌊n

2

⌋
+ 2 ≤ i ≤ n.

The induced edge labeling is as follows:

f∗(uiui+1) = i, for 1 ≤ i ≤ n − 1,

f∗(uivi) = n, for i =
⌊n

2

⌋
+ 1 and

f∗(vivi+1) =





n + 2i if 1 ≤ i ≤
⌊n

2

⌋

3n − 1 − 2i if
⌊n

2

⌋
+ 1 ≤ i ≤ n − 1.

Case 2 n is even.

We define f : V (G) → {1, 2, 3, · · · , 2n} as follows:

f(ui) = i, for 1 ≤ i ≤ n and

f(vi) =





n + 2i if 1 ≤ i ≤
⌊n

2

⌋

3n + 1 − 2i if
⌊n

2

⌋
+ 1 ≤ i ≤ n.



Geometric Mean Labeling of Graphs Obtained from Some Graph Operations 97

The induced edge labeling is as follows:

f∗(uiui+1) = i, for 1 ≤ i ≤ n − 1,

f∗(ui+1vi) = n, for i =
⌊n

2

⌋
and

f∗(vivi+1) =





n + 2i if 1 ≤ i ≤
⌊n

2

⌋
− 1

3n − 1 − 2i if
⌊n

2

⌋
≤ i ≤ n − 1.

Hence, H-graph admits a geometric mean labeling. �

A geometric mean labeling of H-graphs G1 and G2 are shown in Fig.12.
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8

9 10
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G1 G2

Fig.12

Theorem 2.12 For any n ≥ 2, P (1, 2, 3, · · · , n − 1) is a geometric mean graph.

Proof Let v1, v2, · · · , vn be the vertices of the path Pn and let uij be the vertices of

the partition of K2,mi
with cardinality mi, 1 ≤ i ≤ n − 1 and 1 ≤ j ≤ mi. We define f :

V (P (1, 2, · · · , n − 1)) → {1, 2, 3, . . . , n(n − 1) + 1} as follows:

f(vi) = i(i − 1) + 1, for 1 ≤ i ≤ n and

f(uij) = i(i − 1) + 2j, for 1 ≤ j ≤ i and 1 ≤ i ≤ n − 1.

The induced edge labeling is as follows:

f∗(viuij) = i(i − 1) + j, for 1 ≤ j ≤ i and 1 ≤ i ≤ n − 1

f∗(uijvi+1) = i2 + j, for 1 ≤ j ≤ i and 1 ≤ i ≤ n − 1.
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Hence, f is a geometric mean labeling of the graph P (1, 2, · · · , n−1). Thus the graph P (1, 2, · · · , n−
1) is a geometric mean graph. �

A geometric mean labeling of P (1, 2, 3, 4, 5) is shown in Fig.13.

u11 u21 u31

u41

u42

v1 v2 v3 v4 v5
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u44
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6

6 9
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14

16

18

21

19
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15

16 20

20

17
13
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Fig.13
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§1. Introduction

All graphs considered in this paper are finite, simple and undirected. Let C be a cycle with

given orientation in graph X ,
⇀

C(
⇀

C = C) with anticlockwise direction and
↼

C with clockwise

direction. If x ∈ V (C), then we use x+ to denote the successor of x on C and x− to denote its

predecessor. Use C[x, y] denote (x, y)-path on C; C(x, y) denote (x, y)-path missing x, y on C.

Any undefined notation follows that of [1, 2].

Definition 1.1([1]) Let G be a group and let C be a subset of G that is closed under taking

inverses and does not contain the identity, then the Cayley graph X(G, C) is the graph with

vertex set G and edge set E(X(G, C)) = {gh : hg−1 ∈ C}.

For a Cayley graph G, it may not be a hamiltonian graph, but a Cayley graph of Abelian

group is a hamiltonian graph. And(k) is a family of Cayley graph, which is named by the

Hungarian mathematician Andrásfai, it is a k-regular graph with the order n = 3k − 1 and it

is a hamiltonian graph.

Definition 1.2([1]) For any integer k ≥ 1, let G = Z3k−1 denote the additive group of integer

modulo 3k−1 and let C be the subset of Z3k−1 consisting of the elements congruent to 1 modulo

3. Then we denote the Cayley graph X(G, C) by And(k).

For convenience, we note Z3k−1 = {u0, u1, . . . , u3k−2}. For ui, uj ∈ V [And(k)], ui ∼ uj if

and only if j − i ≡ ±1mod3. The result are directly by the definition of Andrásfai graph.

1Supported by Natural Science Foundation of Inner Mongolia, 2010MS0113; Inner Mongolia Normal Univer-

sity Graduate Students’ Research and Innovation Fund. CXJJS11042.
2Received November 7, 2012. Accepted March 15, 2013.
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Lemma 1.3 Let C be any hamiltonian cycle in And(k)(k ≥ 2).

(1) If ∀u, x ∈ V (And(k)), u ∼ x is a chord of C, then u− ∼ x−, u+ ∼ x+.

(2) If ∀u, x, y ∈ V (And(k)), u ∼ x, u ∼ y are two chords of C, then x ∼ y+.

The definition of k-ordered hamiltonian graph was given in 1997 by Lenhard as follows.

Definition 1.4([3]) A hamiltonian graph G of order ν is k-ordered, 2 ≤ k ≤ ν, if for ev-

ery sequence (v1, v2, . . . , vk) of k distinct vertices of G, there exists a hamiltonian cycle that

encounters (v1, v2, . . . , vk) in this order.

Faudree developed above definition into a k-ordered graph.

Definition 1.5([4]) For a positive integer k, a graph G is k-ordered if for every ordered set of

k vertices, there is a cycle that encounters the vertices of the set in the given order.

It has been shown that And(k)(k ≥ 4) is 4-ordered hamiltonian graph by in [5]. The

concept of expansion transformation graph of a graph was given in 2009 by A Yongga at first.

Then an equivalence definition of complete expansion graph was given by her, that is, the

method defined by Cartesian product in [6] as follows.

Definition 1.6([6]) Let G be any graph and L(G) be the line graph of G. Non-trivial component

of G�L(G) is said complete expansion graph (CEG for short) of G, denoted by ϑ(G), said the

map ϑ be a complete expansion transformation of G.

The proof of main result in this paper is mainly according to the following conclusions.

Theorem 1.7([1]) The Cayley graph X(G, C) is vertex transitive.

Theorem 1.8([5]) And(k)(k ≥ 4) is 4-ordered hamiltonian graph.

Theorem 1.9([7]) Every even regular graph has a 2-factor.

The notations following is useful throughout the paper. For u ∈ V (G), the clique with

the order dG(u) in ϑ(G) by u is denoted as ϑ(u). All cliques are the cliques in ϑ(And(k))

determined by the vertices in And(k), that is maximum Clique. For u, v ∈ V (G), ϑ(u) ∼ ϑ(v)

means there exist x ∈ V (ϑ(u)), y ∈ V (ϑ(v)), s.t.x ∼ y in V (ϑ(G)), edge (x, y) is said an edge

stretching out from ϑ(u). Use Gϑ(u)[x, y; s, t] to denote (x, y)-longest path missing s, t in ϑ(u),

where x, y, s, t ∈ V (ϑ(u)).

§2. Main Results with Proofs

We consider that whether ϑ(And(k)) (k ≥ 4) is 4-ordered hamiltonian graph or not in this

section.

Theorem 2.1 ϑ(And(k)) (k ≥ 6) is a 4-ordered hamiltonian graph.
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The following lemmas are necessary for the proof of Theorem 2.1.

Lemma 2.2 For any u ∈ V (And(k))(k ≥ 2), ∀x, y ∈ N(u), there exists a hamiltonian

cycle C in And(k), s.t. ux ∈ E(C) and uy ∈ E(C).

Proof Let C0 is a hamiltonian cycle u0 ∼ u1 ∼ u2 ∼ . . . ∼ u3k−2 ∼ u0 in And(k)(k ≥ 2).

For u ∈ V (And(k))(k ≥ 2), ∀x, y ∈ N(u), then we consider the following cases.

Case 1 x ∼ u ∼ y on
↼

C0. Then C = C0 is that so, since C0 is a hamiltonian cycle.

Case 2 x ∼ u and u 6∼ y on
↼

C0 or x 6∼ u and u ∼ y on
↼

C0. If x ∼ u and u 6∼ y on
↼

C0, then

we can find a hamiltonian cycle C in And(k)(k ≥ 2) according to Lemma 1, that is,

C = u ∼ x ∼
⇀

C0(x, y−) ∼ y− ∼ u− ∼
↼

C0(u
−, y) ∼ y ∼ u;

If x 6∼ u and u ∼ y on
↼

C0, then we can find a hamiltonian cycle C in And(k)(k ≥ 2) according

to Lemma 1.3, that is,

C = u ∼ x ∼
↼

C0(x, u+) ∼ u+ ∼ x+ ∼
⇀

C0(x
+, y) ∼ y ∼ u.

Case 3 x 6∼ u 6∼ y on
↼

C0. Then we can find a hamiltonian cycle C in And(k)(k ≥ 2) according

to Lemma 1.3, that is,

C = u ∼ x ∼ y+ ∼
⇀

C0(y
+, u−) ∼ u− ∼ x− ∼

↼

C0(x
−, u+) ∼ u+ ∼

⇀

C0[x
+, y] ∼ u.

For any u ∈ V (And(k))(k ≥ 2), Lemma 2.2 is true since And(k) is vertex transitive. �

Corollary 2.3 For any two edges which stretch out from any Clique, there exists a hamiltonian

cycle in ϑ(And(k)) containing them.

Lemma 2.4 If k is an odd number, then And(k)(k ≥ 3) can be decomposed into one 1-factor

and
k − 1

2
2-factors.

Proof 3k − 1 is an even number, since k is an odd number. There exists one 1-factor

M in And(k) by the definition of And(k). According to Theorem 1.9 and the condition of

Lemma 2.4 for integers k ≥ 3, And(k) − E(M) is a (k − 1)-regular graph with a hamiltonian

cycle C1, And(k)−E(M)−E(C1) is a (k − 3)-regular graph with a hamiltonian cycle C2, · · · ,

And(k) − E(M) −
k−1
2∑

i=1

E(Ci) is an empty graph.

Assume k = 2r + 1(r ∈ Z+), since k is an odd number. First we shall prove the result for

r = 1, and then by induction on r. If r = 1 (k = 3), it is easy to see that And(k) − E(M) is

a hamiltonian cycle C1 by Theorem 1.9 and the analysis form of Lemma 2.4 , so the result is

clearly true.

Now, we assume that the result is true if r = n(r ≥ 1,k = 2n+1), that is, And(2n+1) can

be decomposed into one 1-factor and n 2-factors. Considering the case of r = n+1(k = 2n+3,

we know And(2n+3)(And[2(n+1)+1]) can be decomposed into one 1-factor and n+1 2-factors

according to the induction.
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Thus, if k is an odd number, then And(k)(k ≥ 3) can be decomposed into one 1-factor and
k − 1

2
2-factors. �

Proof of Theorem 2.1

ϑ(And(k)) is a hamiltonian graph, since And(k) is a hamiltonian graph. So there exists

a hamiltonian cycle C0 in ϑ(And(k)) and a hamiltonian cycle C0
′ in And(k), such that C0 =

ϑ(C0
′), without loss of generality

C0
′ = u0u1 . . . u3k−2u0,

then

C0 = u0,1u0,2 . . . u0,ku1,1u1,2 . . . u1,k . . . u3k−2,1u3k−2,2 . . . u3k−2,ku0,1,

where ui,j ∈ V (ϑ(ui)), ui ∈ V (And(k)), dAnd(k)(ui) = k ≥ 6, i = 0, 1, 2, . . . , 3k − 2, and

u−
i,1, u+

i,k 6∈ V (ϑ(ui)), u+
i,j = ui,j+1 (1 ≤ j ≤ k − 1) and u−

i,l = ui,l−1 (2 ≤ l ≤ k). There

are three cyclic orders ∀ua,b, uc,d, ue,f , ug,h ∈ V [ϑ(And(k))] according to the definition of the

ring arrangement of the second kind, as follows: (ua,b, uc,d, ue,f , ug,h), (ua,b, ue,f , uc,d, ug,h),

(ua,b, uc,d, ug,h, ue,f )(see Fig.1). Let S = {(ua,b, uc,d, ue,f , ug,h), (ua,b, ue,f , uc,d, ug,h), (ua,b, uc,d,

ug,h, ue,f)}.

ua,b ua,b ua,b

uc,d uc,due,fug,h ug,h ue,f

ue,f uc,d ug,h

(ua,b, uc,d, ue,f , ug,h) (ua,b, ue,f , uc,d, ug,h) (ua,b, uc,d, ug,h, ue,f )

Fig.1 Three cyclic orders

Now, we show that 4-ordered hamiltonicity of ϑ(And(k)) (k ≥ 6). In fact, we need to

prove that α ∈ S, there exists a hamiltonian cycle containing α. Without loss of generality,

hamiltonian cycle C0 encounters (ua,b, uc,d, ue,f , ug,h) in this order. So we just prove: ∀β ∈
S \ (ua,b, uc,d, ue,f , ug,h), there exists a hamiltonian cycle containing β.

According to the Pigeonhole principle, we consider following cases.

Case 1 If these four vertices ua,b, uc,d, ue,f , ug,h are contained in distinct four Cliques of

ϑ(And(k)), respectively. And Theorem 2.1 is true by the result in [5].

Case 2 If these four vertices ua,b, uc,d, ue,f , ug,h are contained in a same Clique of ϑ(And(k)),

then a = c = e = g, b < d < f < h. Let S = {(ua,b, ua,d, ua,f , ua,h), (ua,b, ua,f , ua,d, ua,h), (ua,b,

ua,d, ua,h, ua,f)}.

(1) For (ua,b, ua,d, ua,f , ua,h) ∈ S. C0 is the hamiltonian cycle that encounters (ua,b, ua,d, ua,f ,

ua,h) in this order, clearly.
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(2) For (ua,b, ua,f , ua,d, ua,h) ∈ S. We can find a hamiltonian cycle

C = ua,b

⇀

C0(ua,b, u
−
a,d)u

−
a,dua,f

↼

C0(ua,f , ua,d)ua,du
+
a,f

⇀

C0(u
+
a,f , ua,h)ua,h

⇀

C0(ua,h, ua,b)ua,b

that encounters (ua,b, ua,f , ua,d, ua,h) in this order.

(3) For (ua,b, ua,d, ua,h, ua,f) ∈ S. We can find a hamiltonian cycle

C = ua,1

⇀

C0(ua,1, u
−
a,f)u−

a,fua,k

↼

C0(ua,k, ua,f )ua,fϑ(C1)(ua,f , ua,1)ua,1

that encounters (ua,b, ua,d, ua,h, ua,f) in this order by Lemma 2.2 and Corollary 2.3 (see Fig.2).

..............C

...................

.............................................

ua,1

ϑ(C1)

ua,b

ua,d

u−
a,f

ua,f

ua,h ua,k

C0

Fig.2 C = ua,1

⇀

C0(ua,1, u
−
a,f)u−

a,fua,k

↼

C0(ua,k, ua,f )ua,fϑ(C1)(ua,f , ua,1)ua,1

Case 3 If these four vertices ua,b, uc,d, ue,f , ug,h are contained in distinct two Cliques of

ϑ(And(k)), without loss of generality, we assume that ua,b, uc,d ∈ V (ϑ(ua)) and ue,f , ug,h ∈
V (ϑ(ue)) in ϑ(And(k)) or ua,b, uc,d, ue,f ∈ V (ϑ(ua)) and ug,h ∈ V (ϑ(ug)) in ϑ(And(k)) accord-

ing to the notations. Let S = {(ua,b, ua,d, ue,f , ue,h), (ua,b, ue,f , ua,d, ue,h), (ua,b, ua,d, ue,h, ue,f)}.

Subcase 3.1 ua,b, uc,d ∈ V (ϑ(ua)) and ue,f , ug,h ∈ V (ϑ(ue)) in ϑ(And(k)).

(1) For (ua,b, ua,d, ue,f , ue,h) ∈ S. C0 is the hamiltonian cycle that encounters (ua,b, uc,d,

ue,f , ug,h) in this order, clearly.

(2) For (ua,b, ue,f , ua,d, ue,h) ∈ S. Let C1 is a hamiltonian cycle in And(k) or And(k) −
E(M), C2 is a hamiltonian cycle in And(k) − E(C1) or And(k) − E(M) − E(C1)(see Fig.3).

Use A(C1) to denote a cycle that only through two vertices in ϑ(ui)(i = 1, 2, . . . , 3k − 2) and

related with ϑ(C1), and use A(C2) to denote the longest cycle missing the vertex on A(C1)

in ϑ(And(k)) or ϑ(And(k)) − M(see Fig.3). We suppose that P1 = [x, y], P2 = [p, ua,b] on

cycle A(C1) in ϑ(And(k)) or ϑ(And(k)) − M and P3 = [m, n], P4 = [s, t] on cycle A(C2) in

ϑ(And(k))−A(C1) or ϑ(And(k))−M −A(C1) by Theorem 3[7], the analysis of Lemma 2.4 and

the definition of CEG (see appendix). Now, we have a discussion about the position of vertex

x, y, p, s and n in ϑ(And(k)).
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Fig.3

In where, C1 in And(k) or And(k)−E(M), C2 in And(k)−E(C1) or And(k)−E(M)−E(C1),

A(C1) in ϑ(And(k)) or ϑ(And(k))−M , A(C2) in ϑ(And(k))−A(C1) or ϑ(And(k))−A(C1)−M .

x 6= ua,b, ua,d,





y = ue,f ,





p = ue,h, · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (1)

p 6= ue,h,





s, n 6= ue,h, · · · · · · · · · · · · · · · · · · · · · · · · (2)

s = ue,h, . . . . . . . . . . . . . . . . . . . . . . . . . . . (3)

n = ue,h, . . . . . . . . . . . . . . . . . . . . . . . . . . . (4)

y = ue,h,





p = ue,f , · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · (5)

p 6= ue,f ,





s, n 6= ue,f , · · · · · · · · · · · · · · · · · · · · · · · · (6)

s = ue,f , . . . . . . . . . . . . . . . . . . . . . . . . . . . (7)

n = ue,f , . . . . . . . . . . . . . . . . . . . . . . . . . . . (8)

y 6= ue,f , ue,h,





p = ue,f ,





s, n 6= ue,h, · · · · · · · · · · · · · · · · · · · (9)

s = ue,h, . . . . . . . . . . . . . . . . . . . . . (10)

n = ue,h, , . . . . . . . . . . . . . . . . . . . (11)

p = ue,h,





s, n 6= ue,f , · · · · · · · · · · · · · · · · · · (12)

s = ue,f , . . . . . . . . . . . . . . . . . . . . . (13)

n = ue,f ,. . . . . . . . . . . . . . . . . . . . . (14)

p 6= ue,f , ue,h,





s = ue,f , · · · · · · · · · · · · · · · · (15)

n = ue,f , . . . . . . . . . . . . . . . . (16)

s = ue,h, . . . . . . . . . . . . . . . . (17)

n = ue,h, . . . . . . . . . . . . . . . . (18)

s = ue,f , n = ue,h, . . . . . . . (19)

s = ue,h, n = ue,f , . . . . . . . (20)

s 6= ue,f , n 6= ue,h, . . . . . . . (21)



4-Ordered Hamiltonicity of the Complete Expansion Graphs of Cayley Graphs 105

For cases (1) and (2), we can find a hamiltonian cycle

ua,bxP1(x, y)ysP4(s, t)tGϑ(ua)[t, m; ua,b, x]mP3(m, n)nGϑ(ue)[n, p; y, s]pP2(p, ua,b)ua,b

that encounters (ua,b, ue,f , ua,d, ue,h) in this order.

For cases (3)-(21), we can find a hamiltonian cycle that encounters (ua,b, ue,f , ua,d, ue,h) in

this order according to the method of (1) and (2).

(3)For cases (2)-(11) and (15)-(21), we can find a hamiltonian cycle that encounters

(ua,b, ua,d, ue,h, ue,f ) in this order according to the method of Case3.1(2).

For case (1), we can find a hamiltonian cycle

ua,bGϑ(ua)[ua,b, m; t]mP ′
3(m, n)nGϑ(ue)[n, p; y, s]pysP ′

4(s, t)tua,b

that encounters (ua,b, ua,d, ue,h, ue,f) in this order. P ′
i is the path which through the all vertices

in ϑ(ui)(i = a, . . . , e) and related with Pi(i = 3, 4) in ϑ(And(k)) − A(C1) or ϑ(And(k)) − M −
A(C1)(see Fig.4).

Fig.4

In where, P1, P2 in ϑ(And(k)) or ϑ(And(k))−M , P3, P4 in ϑ(And(k))−A(C1) or ϑ(And(k))−
M − A(C1), P ′

3, P ′
4 related with P3, P4 in ϑ(And(k)) − A(C1) or ϑ(And(k)) − M − A(C1).

For 12-14, we can find a hamiltonian cycle that encounters (ua,b, ua,d, ue,h, ue,f ) in this

order according to the method of 1.

Subcase 3.2 ua,b, uc,d, ue,f ∈ V (ϑ(ua)) and ug,h ∈ V (ϑ(ug)) in ϑ(And(k)). For all condition ,

we see the result is proved by the method of Subcase 3.1.

Case 4 If these four vertices ua,b, uc,d, ue,f , ug,h are contained in distinct three Cliques of

ϑ(And(k)). Without loss of generality, we assume that ua,b, uc,d ∈ V (ϑ(ua)), ue,f ∈ V (ϑ(ue))

and ug,h ∈ V (ϑ(ug)) in ϑ(And(k)).

(1) For (ua,b, ua,d, ue,f , ug,h) ∈ S, C0 is the hamiltonian cycle that encounters (ua,b, ua,d,

ue,f , ug,h) in this order, clearly.

(2) For (ua,b, ue,f , ua,d, ug,h) ∈ S. Let C1 is a hamiltonian cycle in And(k) or And(k) −
E(M), C2 is a hamiltonian cycle in And(k) − E(C1) or And(k) − E(M) − E(C1), C3 is a
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hamiltonian cycle in And(k)−E(C1)−E(C2) or And(k)−E(M)−E(C1)−E(C2)(see Fig.5).

Use A(Cj) to denote a cycle that only through two vertices in ϑ(ui)(i = 1, 2, . . . , 3k − 2) and

related with ϑ(Cj)(j = 1, 2), and use A(C3) to denote the longest cycle missing the vertex

on A(C1) and A(C2) in ϑ(And(k)) or ϑ(And(k)) − M(see Figure5). We can suppose that

P1 = [uc,d, x], P2 = [y, ua,b] on cycle A(C1) in ϑ(And(k)) or ϑ(And(k)) − M , P3 = [m, n],

P4 = [p, q] on cycle A(C2) in ϑ(And(k)) − A(C1) or ϑ(And(k)) − M − A(C1) and P5 = [s, t],

P6 = [w, z] on A(C3) in ϑ(And(k))−
2∑

i=1

A(Ci) or ϑ(And(k))−M −
2∑

i=1

A(Ci) by Theorem 3[7],

the analysis of Lemma 3 and the definition of CEG (see appendix). Now, we have a discussion

about the position of vertex m, q, x, y, p and n in ϑ(And(k)).

m, q 6= ua,b, ua,d,





x = ug,h, y 6= ug,h, · · · · · · · · · · · · · · · · · · · · · · · · · · · (1)

x 6= ug,h,





y = ug,h, · · · · · · · · · · · · · · · · · · · · · · · · (2)

y 6= ug,h;





p = ug,h, · · · · · · · · · · · · (3)

n = ug,h, · · · · · · · · · · · · (4)

p, n 6= ug,h. · · · · · · · · · (5)

Fig.5

In where, C1 in And(k) or And(k)−E(M), C2 in And(k)−E(C1) or And(k)−E(M)−E(C1),

C3 in And(k) − E(C1) − E(C2) or And(k) − E(M) − E(C1) − E(C2), A(C1) in ϑ(And(k)) or

ϑ(And(k))−M , A(C2) in ϑ(And(k))−A(C1) or ϑ(And(k))−A(C1)−M , A(C3) in ϑ(And(k))−
A(C1) − A(C2) or ϑ(And(k)) − A(C1) − A(C2) − M .

For case (1), if ue,f ∈ V (Pi) (i = 2, 3, 4), we can find a hamiltonian cycle that encounters

(ua,b, ue,f , ua,d, ug,h) in this order according to the method of Subcase 3.1,(2).

If ue,f ∈ V (P1), we can find a hamiltonian cycle

ua,bqP
′
4(q, p)pnP ′

3(n, m)mGϑ(ua)[m, s; ua,b, q]sP
′
5(s, t)tGϑ(ug)[t, y; p, n, t]yP ′

2(y, ua,b)ua,b or

ua,bmP ′
3(m, n)npP ′

4(q, p)qGϑ(ua)[q, s; ua,b, m]sP ′
5(s, t)tGϑ(ug)[t, y; p, n, t]yP ′

2(y, ua,b)ua,b
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that encounters (ua,b, ue,f , ua,d, ug,h) in this order. There exist some vertices which belong to

a same Clique on P1, Pi and Pj(i = 3, 4; j = 5, 6). And ue,f ∈ V (P ′
i )(i = 3 or 4). P ′

i is

the path which through the all vertices in ϑ(ui)(i = a, . . . , g) and related with Pi(i = 5, 6) in

ϑ(And(k)) −
2∑

i=1

A(Ci) or ϑ(And(k)) − M −
2∑

i=1

A(Ci), and missing the vertex on P ′
3, P ′

4(refers

to Figure4).

For cases (2)-(5), we can find a hamiltonian cycle that encounters (ua,b, ue,f , ua,d, ug,h) in

this order according to the method of (1).

(3) For cases (1)-(5), we can find a hamiltonian cycle that encounters (ua,b, ua,d, ug,h, ue,f )

in this order according to the method of Case 4(2). �
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Appendix

By the theorem 1.9, the analysis of Lemma 2.4, the definition of CEG, And(k) and the parity

of k(s ∈ Z+) , we know that

k = 2s And(k) ϑ(And(k))

s = 1 C5 C10

s = 2 And(4) − E(C1) = C2 ϑ(And(4)) − B(C1) = B(C2)

s = 3 And(6) − E(C1) − E(C2) = C3 ϑ(And(6)) − B(C1) − B(C2) = B(C3)

...
...

...

s = n And(2n) −
n−1∑
i=1

E(Ci) = Cn ϑ(And(2n)) −
n−1∑
i=1

B(Ci) = B(Cn)
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C1 C2

.........................

B(C1) B(C2)

s=2

C1 C2 C3

..............

B(C1) B(C2)
B(C3)

s=3

If k is odd, it should be illustrated that the M ’s selection method, that is, M satisfy

condition ua,b, uc,d, ue,f , ug,h 6∈ V (M) in ϑ(And(k)). It can be done, because k ≥ 7.

k = 2s + 1 And(k) ϑ(And(k))

s = 1 And(3) − E(M) = C1 ϑ(And(3)) − M = B(C21)

s = 2 And(5) − E(M) − E(C1) = C2 ϑ(And(5)) − E(M) − B(C1) = B(C2)

s = 3 And(7) − E(M) − E(C1) − E(C2) = C3 ϑ(And(7)) − M − B(C1) − B(C2) = B(C3)

...
...

...

s = n And(2n + 1) − E(M) −
n−1∑
i=1

E(Ci) = Cn ϑ(And(2n + 1)) − M −
n−1∑
i=1

B(Ci) = B(Cn)

M C1 M B(C1)

s=1

M C1 B(C1)

B(C2)

M

s=2
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§1. Introduction

Let G be a graph with vertex set V (G) and edge set E(G). A k-coloring on G is a function

f : V (G) → [1, k] = {1, 2, · · · , k}, such that if uv ∈ E(G), u, v ∈ V (G) then f(u) 6= f(v). A

value χ(G) = k, the chromatic number of G is the smallest positive integer for which G is

k-colorable. G is said to be equitably k-colorable if for a proper k-coloring of G with vertex

color class V1, V2 · · ·Vk, then |(|Vi| − |Vj |)| ≤ 1 for all i, j ∈ [i, k]. Suppose n is the smallest

integer such that G is equitably k-colorable, then n is the equitable chromatic number, χ=(G),

of G.

The notion of equitable coloring of a graph was introduced in [6] by Meyer. Notable work on

the subject includes [7] where outer planar graphs were considered and [8] where general planar

graphs were investigated. In [1] equitable coloring of the product of trees was considered. Chen

et al. in [2] showed that for m, n ≥ 3, χ=(Cm × Cn = 2) if mn is even and χ=(Cm × Cn = 3)

if mn is odd. Recent work include [4], [5]. Furmanczyk in [3] discussed the equitable coloring

of product graphs in general, following [2], where the authors separated the proofs of mn into

various parts including the following:

1. m, n odd with n = 0 mod 3

2. m, n odd, with

(a) either m or n, say n satisfying n − 1 ≡ 0 mod 3

1Received December 8, 2012. Accepted March 16, 2013.
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(b) either m or n, say n satisfying n − 2 ≡ 0 mod 3.

In this paper we present equitable coloring schemes which

1. improve the proof in (b) above and

2. can be employed in developing the equitable 3-coloring for Cm × Cn with mn odd.

§2. Preliminaries

Let G1 and G2 be two graphs with V (G1) and E(G1) as the vertex and edge sets for G1 respec-

tively and V (G2) and E(G2) as the vertex and edge sets of G2 respectively. The weak product

of G1 and G2 is the graph G1×G2 such that V (G1×G2) = {(u, v) = u ∈ V (G)and u ∈ V (G2)}
and E(G1 × G2) =

{(u1v1)(u2v2) : u1u2 ∈ E(G1)and v1v2 ∈ E(G2)} . A graph Pm = u0u1u2 · · ·um−1 is a path of

length m− 1 if for all ui, vj ∈ V (Pm), i 6= j. A graph Cm = u0u1u2 · · ·um−1 is a cycle of length

m if for all ui, vj ∈ V (Cm), i 6= j and u0um−1 ∈ E(Cm).

The following results due to Chen et al gives the equitable chromatic numbers of product

of cycles.

Theorem 2.1([2]) Let m, n ≥ 3. Then

χ=(Cm × Cn) =





2 if mn is even

3 if mn is odd.

We require the following lemma in the main result.

Lemma 2.2 Let n be any odd integer and let n − 1 ≡ 0 mod 3. Then n − 1 ≡ 0 mod 6.

Proof Since n is odd, then there exists a positive integer m, such that n = 2m + 1. Now

since n is odd then, n − 1 is even. Let 2m ≡ 0 mod 3. Clearly, n ≥ 3. Now 2m = 3k where k

is an even positive integer. Thus 2m = 3(2k′) for some positive integer k′ and thus 2m = 6k′.

Hence n − 1 = 6k′. �

§3. Main Results

In this section, we present the algorithms for the equitable 3-coloring of Cm × Cn with where

m and n are odd with say n − 1 ≡ 0 mod 3 and n − 2 ≡ 0 mod 3.

Algorithm 1 Let Cm × Cn be product graph and let mn be odd, with n − 1 = 0 mod 3.

Step 1 Define the following coloring for uivj ∈ V (Cm × Cn).

f(uivj) =





α2 for {uivj : j ∈ [n − 1]; j ≥ 5; j + 1 = 0 mod 3}
α1 for {uivj : j ∈ [n − 1]; j + 2 = 0 mod 3} ∪ {uiv2 : i ∈ [m − 1]}
α3 for {uivj : j ∈ [n − 1]; j ≥ 6; j = 0 mod 3} ∪ {uiv1, i ∈ [m − 1]} .
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Step 2 For all uiv0; i ∈ [2], define the following coloring:

(a)

f(uiv0) =





α1 for i = 1

α2 for i = 0, 2

(b)

f(uiv3) =





α2 for i = 1, 2

α3 for i = 0

Step 3 Repeat Step 2(a) and Step 2(b) for all uiv0 and uiv3 for each i ∈ [x, x + 2] where

x = 0 mod 3.

Proof of Algorithm 1 Suppose n is odd and n − 1 = 0 mod 3. From Lemma 2.2 above,

n − 1 = 0 mod 6 and consequently, n − 4 = 0 mod 3. Suppose n−4
3 = n′, where n is a

positive integer. Let Pm × Pn−4 be a subgraph of Pm × Pn, where Pn−4 = v4v5 · · · vn−1.. For

all uivj ∈ V (Pm × Pn−4), let

f(uivj) =





α1 for {uivj : j ∈ [n − 1], j + 2 = 0 mod 3}
α2 for {uivj : j ∈ [n − 1], j ≥ 5; j + 1 = 0 mod 3}
α3 for {uivj : j ∈ [n − 1]; j ≥ 6; j = 0 mod 3} .

From f(uivj) defined above, we see that Pm × Pn−4 is equitably 3-colorable with color

set {α1, α2, α3} ≡ [1, 3], where |Vα1 | = |Vα2 | = |Vα3 | = mn′. Next we show that there exists

a 3-coloring of Pm × P4 that merges with Pm × Pn−4 whose 3-coloring is defined by f(uivj)

above. First, let F (P3 × P4) be the 3- coloring such that

F (P3 × P4) =

α2 α3 α1 α2

α1 α3 α1 α2

α2 α3 α1 α3

From F (P3 × P4) we observe for all j ∈ [3], that for F (u0vj) ⊂ F (P3 × P4), |Vα1 | =

1, |Vα2 | = 1, |Vα3 | = 2; for F (u1vj) ⊂ F (P3 × P4), |Vα1 | = 2, |Vα2 | = 1, |Vα3 | = 1; and for

F (u0vj) ⊂ F (P3 × P4), |Vα1 | = 1, |Vα2 | = 2, |Vα3 | = 1.

We observe, over all, that for F (P3 × P4), |Vα1 | = |Vα2 | = |Vα3 | = 4. These confirm that

P3 × P4 is equitably 3-colorable at every stage of i ∈ [2] and that F (P2 × P4) ⊂ F (P3 × P4) is

an equitable 3-coloring of P2 ×P4 for both P2 ×P4 ⊂ P3 ×P4. Now the equitable 3-coloring of

Pm×P4 is now obtainable by repeating F (P3×P4) at each interval [x, x+2], where x = 0 mod 3,

until we reach m. Clearly, F (uiv3)∩F (uiv4) = ∅ since α1 /∈ F (uiv3). Thus Pm×Pn is equitably

3-colorable based on the colorings defined earlier. Likewise, F (uiv0) ∩ F (uiun−1) = ∅ since

α3 /∈ F (uiv0). Thus Pm × Cn is equitably 3-colorable based on the coloring defined above for

Pm × Pn.

Finally, for any m ≥ 3, the equitable 3-coloring of Pm×Pn−4 with respect to F (Pm×Pn−4)

above is equivalent to the equitable 3-coloring of Cm ×Cn−4 since uivjuivj+1 /∈ E(Pm ×Pm−4)

for all j ∈ [n − 5]. Also, for m ≥ 3 the equitable 3-coloring of Pm × P4 with respect to



112 Tayo Charles Adefokun and Deborah Olayide Ajayi

F (Pm × P4) above is equivalent to the equitably 3- coloring of Cm × C4 by mere observation.

Thus, Cm × Cn is equitably 3- colorable or all positive integer m and odd positive integer n

such that n − 1 = 0 mod 3.

Algorithm 2 Let m or n, say n be odd such that n − 2 = 0 mod 3.

Step 1 Define the following coloring:

f(uivj) =





α1 for {uivj : j ∈ [n − 1], j + 1 = 0 mod 3}
α2 for {uivj : j ∈ [n − 1], j = 0 mod 3}
α3 for {uivj : j ∈ [n − 1], j − 1 = 0 mod 3}

Step 2(a) For all i ∈ [2], let f(uiv0) = α1, α2, α1 respectively α1, α2 ∈ [2].

Step 2(b) For all i ∈ [2], let f(uiv1) = α3, α2, α3 respectively, α3 ∈ [2].

Step 3 Repeat step 2(a) and Step 2(b) above for all i ∈ [x, x + 2], where x is a positive

integer and x = 0 mod 3.

Proof of Algorithm 2 Let n be odd and let n−2 = 0 mod 3. By f(uivj) in step 1, Pm×Pn−2,

where Pn−2 = v2v3 · · · vn−1, is equitably 3-colorable with |Vα1 | = |Vα2 | = |Vα3 | = mn′′ where

n′′ = n−2
3 and F (uiv2) ∩ F (uivn−1) = ∅ for all i ∈ [m − 1]. Now, let

F (P3 × P2) =

α1 α3

α2 α2

α1 α3

It is clear that F (P3×P2) above follows from the coloring defined in step 2 of the algorithm

and that F (P3 ×P2) is an equitable 3-coloring of P3 ×P2 where |Vα1 | = |Vα2 | = |Vα3 | = 2. It is

also clear that F (P3×P2) has an equitable coloring at P1×P2 with |Vα1 | = 1, |Vα2 | = 0, |Vα3 | = 1

and at P2 × P2 with |Vα1 | = 1, |Vα2 | = 2, |Vα3 | = 1. Now, let with x = 0 mod 3. For all

x ∈ [m − 1], let f(uxvj) = α1, α3 for both j = 0, 1 respectively; for x + 1 ∈ [m − 1], let

f(ux+1vj) = α2, for j = 0, 1 and for x + 2 ∈ [m − 1], let f(ux+2vj) = α1, α3 for j = 0, 1. With

this last scheme, we have Pm × P2 that has an equitable 3- coloring for any value of m.

Finally, we can see that Pm×P2, for any m, so equitably, 3-colored merges with Pm×Pn−2

that is equitably 3-colored earlier by f(uivj), such that F (uiv1)∩F (uiv2) = ∅ for all i ∈ [m−1]

(by a similar argument as in the proof of Algorithm 1) and F (uiv0) ∩ F (uivn−1) = ∅ for all

i ∈ [m − 1] (by a similar argument as in the proof of Algorithm 1). �

Likewise Cm × Cn is equitable 3-colorable (by a similar argument as in the proof of Al-

gorithm 1). Therefore, Cm × Cn is equitably 3-colorable for any m ≥ 3 and odd n, such that

n − 2 = 0 mod 3.

§4. Examples

In Fig.1, we demonstrate how our algorithms equitably color graphs C5 × C5 and C5 × C7,

which are two cases that illustrate n − 2 = 0 mod 3 and n − 1 = 0 mod 3 respectively. In the
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first case, we see that χ=(C5 × C5) = 3, with |V1| = 8 |V2| = 9 and |V3| = 8 and in the second

case, χ=(C5 × C7) = 3, with |V1| = 12 |V2| = 11 and |V3| = 12. (Note that the first coloring

takes care of the third instance in subcase 2.4 of [2] where it is a special case.)

Fig.1 Equitable coloring of graphs C5 × C5 and C5 × C7
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Corrigendum: On Set-Semigraceful Graphs
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In this short communication we rectify certain errors which are in the paper, On Set-Semigraceful

Graphs, International J. Math. Combin., Vol.2(2012), 59-70. The following are the correct ver-

sions of the respective results.

Remark 3.2 (5) The Double Stars ST (m, n) where |V | is not a power of 2, are set-semigraceful

by Theorem 2.13.

Remark 3.5 (3) The Double Stars ST (m, n) where m is odd and m + n + 2 = 2l, are not

set-semigraceful by Theorem 2.12.

Delete the following sentence below Remark 3.9: ”In fact the result given by Theorem 3.3

holds for any set-semigraceful graph as we see in the following”.

Theorem 4.8([3]) Every graph can be embedded as an induced subgraph of a connected set-

graceful graph.

Since every set-graceful graph is set-semigraceful, from the above theorem it follows that

Theorem 4.8A Every graph can be embedded as an induced subgraph of a connected set-

semigraceful graph.

However, below we prove:

Theorem 4.8B Every graph can be embedded as an induced subgraph of a connected set-

semigraceful graph which is not set-graceful.

Proof Any graph H with o(H) ≤ 5 and s(H) ≤ 2 and the graphs P4, P4∪K1, P3∪K2 and

P5 are induced subgraphs of the set-semigraceful cycle C10 which is not set-graceful. Again any

1Received January 8, 2013. Accepted March 22, 2013.
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graph H ′ with 3 ≤ o(H ′) ≤ 5 and 3 ≤ s(H ′) ≤ 9 can be obtained as an induced subgraph of

H1 ∨K1 for some graph H1 with o(H1) = 5 and 3 ≤ s(H1) ≤ 9. Then 3 < log2(|E(H1 ∨K1)|+
1) < 4, since 8 ≤ s(H1 ∨ K1) < 15 and hence H1 ∨ K1 is not set-graceful. By Theorem 2.4,

4 = ⌈log2(|E(H1 ∨ K1)| + 1)⌉ ≤ γ(H1 ∨ K1)

≤ γ(K6) (by Theorem 2.5)

= 4 (by Theorem 2.19)

So that H1 ∨ K1 is set-semigraceful. Further, note that K5 is set-semigraceful but not set-

graceful.

Now let G = (V, E); V = {v1, . . . , vn} be a graph of order n ≥ 6. Consider a set-

indexer g of G with indexing set X = {x1, . . . , xn} defined by g(vi) = {xi}; 1 ≤ i ≤ n. Let

S = {g(e) : e ∈ E}∪{g(v) : v ∈ V }. Note that |S| = |E|+n. Now take a new vertex u and join

with all the vertices of G. Let m be any integer such that 2n−1 < m < 2n − (|E|+n+1). Since

|E| ≤ n(n − 1)

2
and n ≥ 6, such an integer always exists. Take m new vertices u1, . . . , um and

join all of them with u. A set-indexer f of the resulting graph G′ can be defined as follows:

f(u) = ∅, f(vi) = g(vi); 1 ≤ i ≤ n.

Besides, f assigns the vertices u1, . . . , um with any m distinct elements of 2X \ (S ∪ ∅).
Thus, γ(G′) ≤ n. But we have 2n > |E| + n + m + 1 > m > 2n−1 so that γ(G′) ≥ n, by

Theorem 2.4. Hence,

log2(|E(G′)| + 1) < ⌈log2(|E(G′)| + 1)⌉ = n = γ(G′).

This shows that G′ is set-semigraceful, but not set-graceful. �

Corollary 4.16 The double fan Pk ∨ K2 where k = 2n − m and 2n ≥ 3m; n ≥ 3 is set-

semigraceful.

Proof Let G = Pk ∨ K2; K2 = (u1, u2). By Theorem 2.4, γ(G) ≥ ⌈log2(|E| + 1)⌉ =

⌈log2(3(2n − m) + 1)⌉ = n + 2. But, 3m ≤ 2n ⇒ m < 2n−1 − 1. Therefore,

2n − (2n−1 − 2)) ≤ 2n − m < 2n − 1

⇒ 2n−1 + 1 ≤ 2n − m − 1 < 2n − 2

⇒ 2n−1 + 1 ≤ k − 1 < 2n − 2; k = 2n − m

⇒ 2n−1 + 1 ≤ |E(Pk)| < 2n

⇒ ⌈log2(|E(Pk)| + 1)⌉ = n

⇒ γ(Pk) = n

since Pk is set-semigraceful by Remark 3.2(3). �

Let f be a set-indexer of Pk with indexing set X = {x1, . . . , xn}. Define a set-indexer g of

G with indexing set Y = X ∪ {xn+1, xn+2} as follows:

g(v) = f(v) for every v ∈ V (Pk), g(u1) = {xn+1} and g(u2) = {xn+2}.
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Corollary 4.17 The graph K1,2n−1 ∨ K2 is set-semigraceful.

Proof The proof follows from Theorems 4.15 and 2.33. �

Theorem 4.18 Let Ck where k = 2n − m and 2n + 1 > 3m; n ≥ 2 be set-semigraceful. Then

the graph Ck ∨ K2 is set-semigraceful.

Proof Let G = Ck ∨ K2; K2 = (u1, u2). By theorem 2.4, γ(G) ≥ ⌈log2(|E| + 1)⌉ =

⌈log2(3(2n − m) + 2)⌉ = n + 2. But, 3m ≤ 2n + 1 ⇒ m < 2n−1. Therefore,

2n − (2n−1 − 1)) ≤ 2n − m < 2n

⇒ 2n−1 + 1 ≤ k < 2n; k = 2n − m

⇒ 2n−1 + 1 ≤ |E(Ck)| < 2n

⇒ ⌈log2(|E(Ck)| + 1)⌉ = n

⇒ γ(Ck) = n

since Ck is set-semigraceful. �

Let f be a set-indexer of Ck with indexing set X = {x1, . . . , xn}. Define a set-indexer g of

G with indexing set Y = X ∪ {xn+1, xn+2} as follows:

g(v) = f(v) for every v ∈ V (Ck), g(u1) = {xn+1} and g(u2) = {xn+2}.

Corollary 4.21 Wn where 2m − 1 ≤ n ≤ 2m + 2m−1 − 2; m ≥ 3 is set-semigraceful.

Proof The proof follows from Theorem 3.15 and Corollary 4.20. �

Theorem 4.22 If W2k where
2n−1

3
≤ k < 2n−2; n ≥ 4 is set-semigraceful, then the gear graph

of order 2k + 1 is set-semigraceful.

Proof Let G be the gear graph of order 2k + 1. Then by theorem 2.4,

⌈log2(3k + 1)⌉ ≤ γ(G) ≤ γ(W2k) (by Theorem 2.5)

= ⌈log2(4k + 1)⌉ (since W2k is set − semigraceful)

= ⌈log2(3k + 1)⌉

since

2n−1

3
≤ k < 2n−2 ⇒ 2n−1 ≤ 3k < 4k < 2n

⇒ 2n−1 + 1 ≤ 3k + 1 < 4k + 1 ≤ 2n.

Thus

γ(G) = ⌈log2(|E| + 1)⌉ .

So that G is set-semigraceful. �



Your time is limited, so don’t waste it living someone else’s life.

By Steve Jobs.



First International Conference

On Smarandache Multispace and Multistructure

Organized by Dr.Linfan Mao, Academy of Mathematics and Systems, Chinese Academy of

Sciences, Beijing 100190, P.R.China. In American Mathematical Society’s Calendar website:

http://www.ams.org/meetings/calendar/2013 jun28-30 beijing100190.html

June 28-30, 2013, Send papers by June 1, 2013 to Dr.Linfan Mao by regular mail to the above

postal address, or by email to maolinfan@163.com.

A Smarandache multispace (or S-multispace) with its multistructure is a finite or infinite

(countable or uncountable) union of many spaces that have various structures. The spaces

may overlap, which were introduced by Smarandache in 1969 under his idea of hybrid science:

combining different fields into a unifying field, which is closer to our real life world since we live

in a heterogeneous space. Today, this idea is widely accepted by the world of sciences.

The S-multispace is a qualitative notion, since it is too large and includes both metric

and non-metric spaces. It is believed that the smarandache multispace with its multistructure

is the best candidate for 21st century Theory of Everything in any domain. It unifies many

knowledge fields. A such multispace can be used for example in physics for the Unified Field

Theory that tries to unite the gravitational, electromagnetic, weak and strong interactions.

Or in the parallel quantum computing and in the mu-bit theory, in multi-entangled states

or particles and up to multi-entangles objects. We also mention: the algebraic multispaces

(multi-groups, multi-rings, multi-vector spaces, multi-operation systems and multi-manifolds,

geometric multispaces (combinations of Euclidean and non-Euclidean geometries into one space

as in Smarandache geometries), theoretical physics, including the relativity theory, the M-theory

and the cosmology, then multi-space models for p-branes and cosmology, etc.

The multispace and multistructure were first used in the Smarandache geometries (1969),

which are combinations of different geometric spaces such that at least one geometric axiom

behaves differently in each such space. In paradoxism (1980), which is a vanguard in literature,

arts, and science, based on finding common things to opposite ideas, i.e. combination of con-

tradictory fields. In neutrosophy (1995), which is a generalization of dialectics in philosophy,

and takes into consideration not only an entity < A > and its opposite < AntiA > as dialec-

tics does, but also the neutralities ¡neutA¿ in between. Neutrosophy combines all these three

< A >, < AntiA >, and < neutA > together. Neutrosophy is a metaphilosophy, including

neutrosophic logic, neutrosophic set and neutrosophic probability (1995), which have, behind the

classical values of truth and falsehood, a third component called indeterminacy (or neutrality,

which is neither true nor false, or is both true and false simultaneously - again a combination

of opposites: true and false in indeterminacy). Also used in Smarandache algebraic structures

(1998), where some algebraic structures are included in other algebraic structures.

All reviewed papers submitted to this conference will appear in itsProceedings, published

in USA this year.



March 2013

Contents

Global Stability of Non-Solvable Ordinary Differential Equations

With Applications BY LINFAN MAO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 01

mth-Root Randers Change of a Finsler Metric

BY V.K.CHAUBEY AND T.N.PANDEY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

Quarter-Symmetric Metric Connection On Pseudosymmetric Lorentzian

α-Sasakian Manifolds BY C.PATRA AND A.BHATTACHARYYA . . . . . . . . . . . . . . . 46

The Skew Energy of Cayley Digraphs of Cyclic Groups and Dihedral

Groups BY C.ADIGA, S.N.FATHIMA AND HAIDAR ARIAMANESH . . . . . . . . . . . . . 60

Equivalence of Kropina and Projective Change of Finsler Metric

BY H.S.SHUKLA, O.P.PANDEY AND B.N.PRASAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Geometric Mean Labeling Of Graphs Obtained from Some Graph

Operations BY A.DURAI BASKAR, S.AROCKIARAJ AND B.RAJENDRAN. . . . . 85

4-Ordered Hamiltonicity of the Complete Expansion Graphs of

Cayley Graphs BY LIAN YING, A YONGGA, FANG XIANG AND SARULA . . . . 99

On Equitable Coloring of Weak Product of Odd Cycles

BY TAYO CHARLES ADEFOKUN AND DEBORAH OLAYIDE AJAYI . . . . . . . . . . . . 109

Corrigendum: On Set-Semigraceful Graphs

BY ULLAS THOMAS AND SUNIL C MATHEW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114

An International Journal on Mathematical Combinatorics


