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No object is mysterious. The mystery is your eye.

By Elizabeth, a British female writer.
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Study of the Problems of
Persons with Disability (PWD) Using FRMs
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A. Praveen Prakash
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Abstract: In this paper we find the interrelations and the hidden pattern of the problems
faced by the PWDs and their caretakers using Fuzzy Relational Maps (FRMs). Here we
have taken the problems faced by the rural persons with disabilities in Melmalayanur and
Kurinjipadi Blocks, Tamil Nadu, India. This paper is organized with the following four
sections. Section one is introductory in nature giving the overall contents from the survey
made about PWDs in the above said Blocks. Section two gives description of FRM models
and the attributes taken for the study related with the PWDs and the caretakers, the
FRM model formed using these attributes and their analysis. The third section gives the

suggestions and conclusions derived from the survey as well as the FRM model.
Key Words: FRM model, fixed point, hidden pattern, relational matrix, limit cycle.
AMS(2000): 04A72.

§1. Introduction

A study was conducted taking 93 village panchayats from the Kurinjipadi and Melmalayanur
Blocks. The data reveals only 1.64 percent of the population are PWDs. The male population
is comparatively higher. (60% males and 40% females). 51% are orthopedic followed by 16%
with speech and hearing impaired. Also it is observed from the data that 60% are not married
in the reproductive age group; however 73% are found married in the non reproductive age
group. It is still unfortunate to see among the 3508 PWDs in the age group 4 yrs and above
59% of them have not even entered school. Further in the age group 4 to 14, 37% are yet to
be enrolled in the school. Thus the education among the PWDs is questionably poor. Their
living conditions are poor with no proper toilet facilities who are under nourished.

We use FRMs to study the problem taking the attributes of the domain space as the
problems faced by the PWD and the range attributes are taken as the problems felt by the
caretakers of the PWD. We just describe the FRM model and proceed on to justify why FRM
model is used in this study.

1Received December 8, 2008. Accepted January 6, 2009.
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82. Description of FRM Model and its Application to the Problem

Fuzzy Relational Maps (FRMs) are constructed analogous to FCMs. FRMs are divided into
two disjoint units. We denote by R the set of nodes Ry,---, R, of the range space where
R; = {(z1, - ,&m)|z; = 0 or 1} for j = 1,2,--- ,m. Dy, ---,D, denote the nodes of the
domain space where D; = {(y1,--- ,yn)|lys =0 or 1} for i = 1,2,--- ,n. Here, y; = 0 denotes
the off state and y; = 1 the on state of any state vector. Similarly xz; = 1 denotes the on state
and z; = 0 the off state of any state vector.

Thus a FRM is a directed graph or a map from D to R with concepts like policies or events
etc as nodes and causalities as edges. It represents causal relations between the spaces D and
R.

Let D; and R; denote the nodes of an FRM. The directed edge from D; to R; denotes the
causality of D; on R; called relations. Every edge in the FRM is weighted with a number of
the set {0,+1}. Let e;; be the weight of the edge D; R;; e;; € {0,+1}. The weight of the edge
D;R; is positive if increase in D; implies increase in R; or decrease in D; implies decrease in
R; i.e., causality of D; on R; is 1. If e;; = 0 then D; does not have any effect on R;. When
increase in D; implies decrease in R; or decrease in D; implies increase in R; then the causality
of D; on R; is —1.

A FRM is a directed graph or a map from D to R with concepts like policies or events etc,
as nodes and causalities as edges. It represents causal relations between spaces D and R.

For the FRM with Dy, .-, D, as nodes of the domain space D and R;,---, R, as the
nodes of the range space R, E defined as E = (e;;), where e;; is the weight of the directed edge
D;R; (or R;D;); E is called the relational matrix of the FRM. A = (a1, -+ ,an), a; € {0,1}; A
is called the instantaneous state vector of the domain space and it denotes the on-off position
of the nodes at any instant. Similarly for the range space a; = 0 if a; is off and a; = 1 if a; is
on. Let the edges form a directed cycle. A FRM with directed cycle is said to be a FRM with
feed back. A FRM with feed back is said to be the dynamical system and the equilibrium of
the dynamical system is called the hidden pattern; it can be a fixed point or a limit cycle.

For example let us start the dynamical system by switching on R; (or D;). Let us assume
that the FRM settles down with Ry and Ry, or (Dy and D,,) on i.e., (10000---1) or (100---01).
Then this state vector is a fixed point. If the FRM settles down with a state vector repeating
in the form, i.e., Ay — Ay — ---A; - A or By —» By — --- — B; — By, then this equilibrium
is called a limit cycle.

Now we would be using FRM models to study the problem.

2.1 Justification for Using FRM

(1) We see the problems of Persons With Disability (PWD) is distinctly different from the
problems of the caretakers of the PWD. Thus at the outset we are justified in using FRM i.e.,
a set of domain attributes and a set of range attributes.

(2) All the attributes under study cannot be quantified as numbers. So the data is one involving
a large quantity of feelings. Hence fuzzy models is the best suited, as the data is an unsupervised

one.
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(3) Also this model alone can give the effect of problems faced by the caretakers on the PWDs
and vice versa. So this model is best suited for our problem.
(4) Finally this model gives hidden pattern i.e., it gives a pair of resultant state vectors i.e.,
hidden pattern related with the PWDs as well as hidden pattern related with the caretakers.
Thus we use this model to analyze the problem.

Now the attributes related with the PWDs are taken as the domain space of the FRM
and the attributes related with the caretakers of the PWDs are taken as the range space of the
FRM. We shall describe each of the attributes related with the PWDs and that of the caretakers

in a line or two.

2.2 Attributes Related with the PWDs

The following attributes are given by an expert. The problems of PWDs are taken as the nodes
of the domain space and the attributes associated with the close caretakers are taken as the
nodes of the range space. The attributes associated with the PWDs are given below. They are

in certain cases described in line or two.

D; — Depressed. From the survey majority of the PWDs looked and said they were de-
pressed because of their disability and general treatment.

Dy — Suffer from inferiority complex.

D3 — Mental stress/agony - They often were isolated and sometimes kept in a small hut
outside the house which made them feel sad as well as gave time to think about their disability
with no other work. So they were often under stress and mental tension.

Dy — Self Image - Majority did not possess any self image. It was revealed from the
discussions and survey.

D5 — Happy and contended.

Dg — Uninterested in life.

D7 — Dependent on others for every thing.

Dg — Lack of mobility.

Dy — Illtreated by close relatives.

Now the attributes Dy, Ds, - - - , Dg are taken as the nodes of the domain space of the FRM.

We give the attributes associated with the range space.

R; — Poor. So cannot find money to spend on basic requirements. The PWDs go to work
for their livelihood.

Ry — Ashamed - relatives were ashamed of the PWDs.

R3 — Indifferent - They were treated indifferently by their caretakers.

R, — PWDs are a burden to them. So they neglected them totally.

R5 — Fatalism - They said it was fate that they have a PWD as their child / relative.

Rg — Sympathetic.

R; — Caring.

Rg — Show hatred towards the PWDs.

Ry — The caretakers were not interested in marrying them off.

R1g — The PWDs are an economic burden to them.
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R11 — They were isolated from others for reasons best known to the caretakers.

Thus R;, Rs,- -+, R1; are taken as the nodes of the range space of the FRM.
The directed graph related with the FRM is shown in Fig.2.1, in which we have omitted
the direction D; — R; on each edge D;R; for simplicity.

Fig.2.1

Let the relation matrix associated with the directed graph be given by T', where T is a
9 x 11 matrix with entries from the set {0,—1, 1} following.

[ 0 O 1 1 0 0 0 0 1 0 O ]
0o 0 0 1 0 0 -1 0 0 O 1
0 0 1 0 0 -1 -1 1 1 O 1
-1 0 -1 -1 0 1 1 -1 0 -1 1
T'=|{-1 -1 -1 -1 0 1 1 -1 0 0 -1
0 1 1 1 1 -1 0 0 O O O
0o 0 0 0 0 0 O 1 0 1 0
0o 0 O 1 0 0 0 0 1 O 1
0 1 0 o 0 0 0 0 0 1 0 |

Now we study the effect of the state vectors on the dynamical system T

Suppose the expert wishes to study the on state of the node D; and all other nodes are
in the off state. Let the state vector be X = (100000000). The effect of X on the dynamical
system 7" is given by

XT = (00110000100) = Y (say),

YT! = (312 —2 —22020) — (111001010) = X (say),

where — denotes that the resultant state vector Y7T? is updated and thresholded, i.e., all

negative values and 0 are replaced by 0 and all positive values greater than or equal to one are
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replaced by 1. By updating we mean the co ordinate which we started in the on state should
remain in the on state till the end.
Now we find that

X1T — (01111001101) = Y; (say),

YiT! — (111001111) = Xo(say),

XoT — (01111001111) = Ya(say),

YoT! — (111001111) = Xs(say) = X2.

Thus the hidden pattern gives a fixed pair given by {(111001111),(01111001111)}.

Thus when the node depressed alone in the domain space is in the on state we see
this makes the nodes D, D3, Dg, D7, Dg, Dg to come to on state in the domain space and
Ro, R3, R4, Rs, Rg, Rg, R1p and Ry1 in the on state in the range space.

Thus we see except the nodes the PWD has self image and she/he is happy and contended
all other nodes come to on state. Thus this reveals if a PWD is depressed certainly he has no
self image and he is not happy and contended. Further it also reveals from the state vector in
the domain space poverty is not a cause of depression for R; is in the off state. Also Rg and
R~ alone do not come to on state which clearly shows that the caretakers are not sympathetic
and caring which is one of the reasons for the PWDs to be depressed. Thus we see all negative
attributes come to on state in both the spaces when the PWD is depressed.

Next the expert is interested in studying the effect of the on state of the node in the range
space viz. Rg i.e., the caretakers are sympathetic towards the PWDs. Let Y = (00000100000)
be the state vector of the range space. To study the effect of Y on the dynamical system 7°¢.

YT* — (000110000) = X (say),

X, T — (00000110000) = Y; (say),

Y, T — (000110000) = X5 (say).

But X5 = X;. Thus we see the hidden pattern of the state vector is a fixed pair of points
given by {(00000110000), (000110000)}. It is clear when the PWD is treated with sympathy it
makes him feel their caretakers are caring. So R; come to on state. On the other hand, we see
she/he is happy and contended with a self image. Next the expert wishes to find the hidden
pattern of the on state of the domain node Dy i.e., self image of the PWD alone is in the on
state.

Let P = (000100000) be the given state vector. The effect of P on T is given by

PT — (00000110000) = Sy (say),
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S, T — (000110000) = P (say),

P, T — (00000110000) = Ss(say).

But S; = 57 resulting in a fixed pair. Thus the hidden pattern of P is a fixed pair. We see
self image of the PWD makes him happy and contended. He/she also feel that the caretakers
are caring and sympathetic towards them. Now the expert studies the effect of the state vector
in the range space when the PWD is isolated from the other, i.e., when Rj; is in the on state.

Let X = (00000000001) be the given state vector. Its effect on the dynamical system T is
given by

XT" — (011000010) = Y (say),

YT — (00110001101) = X, (say).

The effect of X7 on T is given by

X T" — (111001111) = Y; (say),

V1T — (01111001111) = X, (say),

XoT" — (111001111) = Ya(say).

We see Yo = Y;. Thus the hidden pattern of the state vector is a fixed pair given by
{(01111001111),(111001111)}. Thus when the PWD is isolated from others he/she suffers all
negative attributes and it is not economic condition that matters. Isolation directly means they
are taken care of and the caretakers are not sympathetic towards them. When they are isolated
they are not happy and contended and they do not have self image. All this is evident from the
hidden patterns in which R;, Rg and R7 are 0 and D4 and Ds are 0, i.e., in the off state. We
have worked with the several on states and the conclusions are based on that as well as from

the survey we have taken. This is given in the following sections of this paper.

83. Suggestions and Conclusions

3.1 Conclusions based on the model

1. From the hidden pattern given by the FRM model we see when the PWDs suffer from
depression all negative attributes from both the range space and the domain space come to on
state and their by showing its importance and its impact on the PWDs. It is clear that the
nodes self image and happy and contended is in the off states where as all other nodes in the

domain of attributes are in the on state. Further the nodes economic condition, caring and
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sympathetic are in the off state in the range of attributes. Thus it is suggested the caretakers

must be caring and sympathetic towards the PWDs to save them from depression.

2. When the node the caretakers are sympathetic towards the PWDs alone was in the on state
the FRM model gave the hidden pattern which was a fixed pair in which only the nodes self
image and happy and contended was alone in the on state from the domain vectors. In fact it
was surprising to see all other negative nodes in the domain space was in the off state. Further
in the range space of vectors we saw only the node caring came to on state and all other nodes
were in the off state. Thus we see a small positive quality like sympathetic towards the PWDs

can make a world of changes in their lives.

3. When the node PWDs are isolated from others was in the on state in the state vectors of
the range space it is surprising to see that in the hidden pattern only the nodes happy and
contended and self image are in the off state and all other nodes come to on state in the domain
attributes and in the range attributes only the nodes poor cannot find time to spend with
PWDs, caring and sympathetic remain in the off state and all other nodes in the range off
attributes come to on state. Thus when the PWD is isolated from others he is depressed, not
interested in life under goes mental stress, suffers from inferiority complex has no self image,
is not happy or contended and is illtreated by the relatives. Also when the caretakers isolates
a PWD it clearly implies they are not sympathetic or caring for the PWD and infact they are
ashamed of the PWD and are indifferent to him/her. They also feel he/she is a burden and it
is a fate that he/she is present in their house and show hatred towards him/her and are least
bothered marrying off the PWD and infact feel the PWD is an economic burden on them.

4. It is verified the 'on state’ of any one of the negative attributes gives the hidden pattern of
the model in which all the negative attributes in both the domain and range space come to on
state and the positive attributes remain in the off state.

5. Further the hidden pattern in almost all the cases resulted only in the fixed point which
clearly proves that the changes in the behavioral pattern of the PWDs or the caretakers do not
fluctuate infact remains the same.

3.2 Observations and suggestions based on the survey and the data

1. The survey proved the family in which PWDs were present were looked down by others in
the rural areas. Thus it was difficult to perform the marriages of PWDs as well as their close
relatives. This is one of the reasons the PWDs are not given in marriage at the productive age
however data proved they got married after the non productive age. This is clearly evident
from the data that out of 1191 PWDs in the marriageable age group a majority of 715 PWDs
are not married i.e., 60% of them are not married. Above the reproductive age we find out of
1589 PWDs the majority 1163 constituting 73 percent are found to be married. One has to

make analysis in this direction alone.

2. From the data it is surprising to see that out of a total of 3316 PWDs 56% of them are
not educated. Out of 580 children in the age group 7 — 18 years 105 children dropped out.
Out of 483 children in the age group 4 to 14, 37% are yet to be enrolled in the school. Thus
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we see from the data that they deny education to PWDs. The study of education and related
problems faced by PWDs will have to be taken up separately.

3. 44% of caretakers have not planned about the future of the PWDs. This is also a sensitive

issue for the PWDs may be feeling insecure about their future.

4. Providing money to these PWDs as stipend or to their caretakers will not solve the problems
of PWDs. It is thus suggested these PWDs are taught some trade and paid for their work. When
they are earning naturally the caretakers have to take proper care of the PWD for otherwise
the PWD can opt to stay away from them. Also when they (PWD) earn their bread they will

have self image also can be contended to some extent.

5. Further the survey showed the PWDs were happy and interactive in the group of PWDs so
it would be nice if some opt to work for them so that the PWDs live in communities taken care
of by some one. This will at large solve several of the problems addressed. Also this is possible

if they earn on their own.

6. It is also suggested that a marriage bureau should operate solely for the PWDs so that their

marriage is not unnecessarily delayed.

7. The caretakers must be given counseling to deal the PWDs with care and sympathy. We
have considered PWD who are not employed in this study. We thank Lamp Net for giving

information.
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Abstract: Topological groups, particularly, Lie groups are very important in differential
geometry, analytic mechanics and theoretical physics. Applying Smarandache multi-spaces,
topological spaces, particularly, manifolds and groups were generalized to combinatorial man-
ifolds and multi-groups underlying a combinatorial structure in references. Then whether can
we generalize their combination, i.e., topological group or Lie group to a multiple one? The
answer is YES. In this paper, we show how to generalize topological groups and the homo-
morphism theorem for topological groups to multiple ones. By applying the classification

theorem of topological fields, the topological multi-fields are classified in this paper.
Key Words: Smarandache multi-space, combinatorial system, topological group, topolog-

ical multi-group, topological multi-field.

AMS(2000): 05E15, 08A02, 15A03, 20E07, 51M15.

81. Introduction

In the reference [9], we formally introduced the conceptions of Smarandachely systems and

combinatorial systems as follows:

Definition 1.1 A rule in a mathematical system (X;R) is said to be Smarandachely denied if
it behaves in at least two different ways within the same set X, i.e., validated and invalided, or
only invalided but in multiple distinct ways.

A Smarandache system (3;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2 For an integer m > 2, let (X1;R1), (X2; R2), -+, (Zm; Rm) be m mathematical
systems different two by two. A Smarandache multi-space is a pair (3;R) with

Definition 1.3 A combinatorial system € is a union of mathematical systems (21; R1),(X2; Ra),

oy (B Rm) for an integer m, i.e.,

1Received December 12, 2008. Accepted January 8, 2009.
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e =(J=s UR)
i=1 i=1
with an underlying connected graph structure G, where
V(G) = {Ela Yoy 7Em}7
E(G)={(5,%) | 5iN% #0,1<d,j <m}.

These notions enable us to establish combinatorial theory on geometry, particularly, com-
binatorial differential geometry in [8], also those of combinatorial theory for other sciences [7],
for example, algebra systems, etc..

By definition, a topological group is nothing but the combination of a group associated with

a topological space structure, i.e., an algebraic system (’;0) with conditions following hold
([16]):

(i) (H#;0) is a group;
(ii) S is a topological space;
(

i71) the mapping (a,b) — a o b~ is continuous for Va,b € 7,

Application of topological group, particularly, Lie groups shows its importance to differential
geometry, analytic mechanics, theoretical physics and other sciences. Whence, it is valuable to

generalize topological groups to a multiple one by algebraic multi-systems.

Definition 1.4 A topological multi-group (Fa; O) is an algebraic multi-system (,&Tﬁ) with
—~ m m
o = |J A and 0 = |J{o;} with conditions following hold:
i=1 i=1
(i) (HG;0;) is a group for each integer i, 1 < i < m, namely, (J,0) is a multi-group;
(i) o is a combinatorially topological space L, i.e., a combinatorial topological space
underlying a structure G;

(iii) the mapping (a,b) — aob™! is continuous for Va,b € H, Vo € O;, 1 <i < m.

A combinatorial Euclidean space is a combinatorial system %g of Euclidean spaces R™?,
R"2, ...  R™" with an underlying structure G, denoted by & (n1,- - ,n,) and abbreviated to
éa(r) if ng =+ =n,, =r. It is obvious that a topological multi-group is a topological group

if m =1 in Definition 1.4. Examples following show the existence of topological multi-groups.

Example 1.1 Let R™,1 < ¢ < m be Euclidean spaces with an additive operation +; and

scalar multiplication - determined by

()\1'$17A2'I25"' 7)‘711’ xn1)+l (Cl'ylaCQ'yQa"' acni ynz)
=z +G -y A T2+ Y2, A Ty + Gy Yng)

for VA;, i € R, where 1 < A;,(; < n;. Then each R™ is a continuous group under +;. Whence,
the algebraic multi-system (8g(ni, -+ ,nm); 0) is a topological multi-group with a underlying
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m

structure G by definition, where & = |J {+;}. Particularly, if m = 1, i.e., an n-dimensional
i=1

FEuclidean space R™ with the vector additive + and multiplication - is a topological group.

Example 1.2 Notice that there is function x : My, x, — R™ from real n x n-matrices M, «n
to R determined by

ayiy A1n
a1y -+ G2p

K - aii st Qln, -ttt ,0nl ot Qpxn
Gn1 crr OGpxn

Denoted all n x n-matrices by M(n,R). Then the general linear group of degree n is defined
by

GL(n,R)={ M e M(n,R) | detM #0 },

where detM is the determinant of M. It can be shown that GL(n,R) is a topological group.
In fact, since the function det : My, — R is continuous, det 'R \ {0} is open in R", and
hence an open subset of R".

We show the mappings ¢ : GL(n,R x GL(n,R)) — GL(n,R) and ¢ : GL(n,R) —
GL(n,R) determined by ¢(a,b) = ab and v¥)(a) = a~! are both continuous for a,b € GL(n,R).
Let a = (aij)nxn and b = (b;j)nxn € M(n,R). By definition, we know that

ab = ((ab)s;) = (D ambr;).
k=1

Whence, ¢(a,b) = ab is continuous. Similarly, let ¥(a) = (¢i;)nxn- Then we know that

o
Vij deta
is continuous, where a; is the cofactor of a;; in the determinant deta. Therefore, GL(n,R) is

a

a topological group.

Now for integers ny,ng,- -,y > 1, let &&(GLy,, -+ ,GLy,,,) be a multi-group consisting
of GL(n1,R), GL(n2,R), -+, GL(n;,,R) underlying a combinatorial structure G. Then it is
itself a combinatorial space. Whence, &G(GLy,, -+ ,GLy,, ) is a topological multi-group.

Conversely, a combinatorial space of topological groups is indeed a topological multi-group

by definition. This means that there are innumerable such multi-groups.

82. Topological multi-subgroups

A topological space S is homogenous if for Va, b € S, there exists a continuous mapping f : S —
S such that f(b) = a. We have a simple characteristic following.

Theorem 2.1 If a topological multi-group (Sa; O) is arcwise connected and associative, then

it is homogenous.
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Proof Notice that ¥ is arcwise connected if and only if its underlying graph G is con-

nected. For Va, b € ¥, without loss of generality, assume a € 7 and b € J¢; and
P(aub):%%%u 8207

a path from %) to JZ; in the graph G. Choose ¢; € JGHNIA, co € FANGS,- -+, cs € Ho_1NF5.
Then

aoq €1 01 01_1 02 €2 03C304 051 05_1 05 b1

is well-defined and

aoq ¢l 01 cl_l 09 (2 03C304 04 1C5 0sb osb=a.

Let L =aogci01¢; 0acp03¢304---04 1¢;  0sb o, Then L is continuous by the definition
of topological multi-group. We finally get a continuous mapping L : /¢ — .Y such that
L(b) = Lb = a. Whence, (%g; 0) is homogenous. O

Corollary 6.4.1 A topological group is homogenous if it is arcwise connected.

A multi-subsystem (Zm; O) of (Sg; 0) is called a topological multi-subgroup if it itself is a
topological multi-group. Denoted by £y < .#. A criterion on topological multi-subgroups is

shown in the following.

Theorem 2.2 A multi-subsystem (Lu; O1) is a topological multi-subgroup of (La; O), where
01 C O if and only if it is a multi-subgroup of (Fg; O) in algebra.

Proof The necessity is obvious. For the sufficiency, we only need to prove that for any
operation o € Oy, ao b~ is continuous in Zy. Notice that the condition (iii) in the definition

of topological multi-group can be replaced by:

for any neighborhood N, (a o b~ ') of aob™! in S, there always ewist neighborhoods
Ny (a) and Ny, (b™1) of a and b= such that Ny, (a) o Ny, (b™1) C Ng,(aob™t), where
Ngg(a) o N (b1) = {z o ylVz € Nyy(a),y € Novg (b71)}
by the definition of mapping continuity. Whence, we only need to show that for any neighbor-
hood Ng,, (zoy™1) in Ly, where x,y € £y and o € Oy, there exist neighborhoods N.g,, () and
Ny, (y~1) such that Ng, (r) o Ny, (y™1) C Ny, (zoy™!) in L. In fact, each neighborhood

! can be represented by a form Ny, (z oy~!) N .ZLy. By assumption,

Ny (‘T ° y_l) of z oy~
(Fg; 0) is a topological multi-group, we know that there are neighborhoods N, (7), Nog(y~1)
of z and y~! in /5 such that Ny, (z)o Ny, (y~) C Ny (xoy™t). Notice that N, (x) N L,
Ny, (y~') N Ly are neighborhoods of x and y~! in Zy. Now let Ny, (v) = Ny, () N Ly
and N, (y™1) = Nog(y™') N Ly. Then we get that Ny, (z) 0 Ny, (y1) € Ngy, (xoy™t)

in .y, i.e., the mapping (z,y) — zoy~!

is continuous. Whence, (Zy; O1) is a topological
multi-subgroup. g

Particularly, for the topological groups, we know the following consequence.

Corollary 2.2 A subset of a topological group (T';0) is a topological subgroup if and only if it

is a subgroup of (I';0) in algebra.
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§3. Homomorphism theorem on topological multi-subgroups

For two topological multi-groups (%, ; 01) and (S,; O2), amapping w : (Fa,; O1) — (S5 O2)

is a homomorphism if it satisfies the following conditions:

(1) w is a homomorphism from multi-groups (Z¢,; €1) to (La,; O2), namely, for Va,b €
S, and o € O1, w(a o b) = w(a)w(o)w(b);

(2) w is a continuous mapping from topological spaces .7, to S, , i.e., for Yz € #5, and
a neighborhood U of w(z), w™(U) is a neighborhood of z.

Furthermore, if w : (Hg,;01) — (Fg,; O2) is an isomorphism in algebra and a home-
omorphism in topology, then it is called an isomorphism, particularly, an automorphism if
(a5 01) = (La,; O2) between topological multi-groups (S, ; 1) and (La,; Os).

Let (S¢; 0) be an associatively topological multi-subgroup and (Zy; O) one of its topo-
logical multi-subgroups with .75 = Lnj A, Ly =L, 9 and O = G {0;}. In [8], we have

i=1 =1
know the following results on homomorphisms of multi-systems following.

Lemma 3.1([8]) Let (42, 6) be an associative multi-operation system with a unit 1o for Yo € O
and G C .

(1) If ¢ is closed for operations in O and forVYa e 9, o€ 6, there exists an inverse element
SLin (4;0), then there is a representation pair (R, P) such that the quotient set §|(R,1~3) is

o

a partition of A, i.e., for a,b € I ,Noy, 09 € O, (ao19)N(bos¥)=0 orao1 4 =boy¥.

a

(ii) For Yo € O, define an operation o on §|(R,f’) by

(ao19)o(bog¥)=(aob)o1 ¥.

Then (§|(R)I~D);6)~is an associative mulftvi-opemtion system. Particularly, if there is a repre-
sentation pair (R, P) such that for o' € P, any element in R has an inverse in (A;0'), then

(§|(R,f’)’o/) is a group.

Lemma 3.2([8]) Letw be an onto homomorphism from associative systems (J4; 61) to (Js; 62)
with (Z(03); 03) an algebraic system with unit 1,— for Yo~ € Oy and inverse =1 for Vi €
(Z(O2) in ((Z(O3);07). Then there are representation pairs (Ry,Pi) and (Ra,Py), where

P, C O,P, C Oy such that

(Ketw; O1) ™) (Z(0q); 05) 1)

if each element of Kerw has an inverse in (A5 0) foro € O;.

Whence, by Lemma 3.1, for any integer ¢, 1 < i < m, we get a quotient group J4/%;, i.e.,
m
a multi-subgroup (¢ /Lu; O) = U (94 /%;; 0;) on algebraic multi-groups.
i=1
Notice that for a topological space S with an equivalent relation ~ and a projection 7 :

S — S/ ~={[z]|Vy € [z],y ~ x}, we can introduce a topology on S/ ~ by defining its opened
sets to be subsets V in S/ ~ such that 7= 1(V) is opened in S. Such topological space S/ ~
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is called a quotient space. Now define a relation in (Sg; @) by a ~ b for a,b € ¢ providing
b = hoa for an element h € £y and an operation o € O. It is easily to know that such relation
is an equivalence. Whence, we also get an induced quotient space /L.

Theorem 3.1 Let w : (Fa,; O1) — (S, O2) be an opened onto homomorphism from associa-
tively topological multi-groups (e, ; O1) to (La,; O2), i.e., it maps an opened set to an opened
set. Then there are representation pairs (R1,P1) and (Rz, Pa) such that

(‘SﬂGl; ﬁl) | ~ ~ (sz; ﬁQ) | _
(Kerw; 071) (B1,P) (Z(02);02) (R2,P2)?

where Py C 01, P2 C Oz, Z(O3) = {1o,0 € Os} and
Kerw = { a € g, | w(a) =1, € I(6,) }.

Proof According to Lemma 3.2, we know that there are representation pairs (Ry,P;) and
(R2,P2) such that

(ycl;ﬁl) | ~ (ycz;ﬁQ) | ~
(Ketw; 01) 7 7 (Z(0y); 0y) )

IR

in algebra, where o(a o Kerw) = o(a) o1 Z(05) in the proof of Lemma 3.2. We only need to
prove that o and o~! are continuous.

On the First, for x = o(a)o 1 Z(05) € %k&ﬁz) let U be a neighborhood of o~ (x)
in the space %k&j’l)’ where U is a union of a o Kerw for a in an opened set U and

o € Py. Since w is opened, there is a neighborhood V of z such that w(U) D 17, which enables
us to find that 0’1(‘7) C U. In fact, let § € V. Then there exists y € U such that w(y) = 7.
Whence, 0~ 1(7) = y o Kerw € U. Therefore, 0~ is continuous.
= . -1 . (FL4:02) N

On the other hand, let V be a neighborhood of o(z)o~'Z(&3) in the space mk&)&)
for z o Kerw. By the continuity of w, we know that there is a neighborhood U of x such that
w(U) C V. Denoted by U the union of all sets z o Kerw for z € U. Then o(U) C V because
of w(U) C V. Whence, o is also continuous. Combining the continuity of ¢ and its inverse
o~ 1, we know that ¢ is also a homeomorphism from topological spaces %| (Ry,P1)

Fyil) |
(Z(02);02) (B2, P2)

to

O

Corollary 3.1 Let w: (Fg;0) — (47;0) be a onto homomorphism from a topological multi-
group (S¢; O) to a topological group (f;0). Then there are representation pairs (R, ﬁ), Pco
such that

1

S O
(e ))|(R,15) (e;0).

(I/—(\e/rw; o

Particularly, if 0 = {e}, i.c., (Fq;e) is a topological group, then

Fa/Kerw = (&f;0).
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84. Topological multi-fields

Definition 4.1 A distributive multi-system (;zgjﬁl — O9) with o = U4, 01 = J{:i} and
i=1 i=1

7=

Oy = |J {+i} is called a topological multi-ring if
i=1

i
(i) (J;+i,-) is a ring for each integeri, 1 <i < m, i.e., (J,01 — Os) is a multi-ring;
(ii) o is a combinatorially topological space La;

(iii) the mappings (a,b) — a-; b=, (a,b) — a +; (—;b) are continuous for Va,b €
1<i<m.

Denoted by (Sg; 01 — 02) a topological multi-ring. A topological multi-ring (Sg; 01 —
0>) is called a topological divisible multi-ring or multi-field if the previous condition (i) is
replaced by (J;+;, ;) is a divisible ring or field for each integer 1 < i < m. Particularly,
if m = 1, then a topological multi-ring, divisible multi-ring or multi-field is nothing but a
topological ring, divisible ring or field. Some examples of topological fields are presented in the

following.

Example 4.1 A 1-dimensional Euclidean space R. is a topological field since R is itself a field

under operations additive + and multiplication x.

Example 4.2 A 2-dimensional Euclidean space R? is isomorphic to a topological field since
for ¥(z,y) € R?, it can be endowed with a unique complex number x + iy, where 2 = —1. It

is well-known that all complex numbers form a field.

Example 4.3 A 4-dimensional Euclidean space R* is isomorphic to a topological field since for
each point (z,y, z, w) € R?, it can be endowed with a unique quaternion number x+iy+jz+kw,

where

1j=—ji=k, jk=—-kj=1, ki=—ik=j,
and

i?=72=k>=-1.
We know all such quaternion numbers form a field.

For topological fields, we have known a classification theorem following.

Lemma 4.1([12]) A locally compacted topological field is isomorphic to one of the following:

(i) FEuclidean real line R, the real number field;
(ii) Euclidean plane R?, the complex number field;

(iii) Euclidean space R*, the quaternion number field.

Applying Lemma 4.1 and the definition of combinatorial Euclidean space, we can determine

these topological multi-fields underlying any connected graph G following.
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Theorem 4.1 For any connected graph G, a locally compacted topological multi-field (Sa; O1 —

05) is isomorphic to one of the following:

(i) Buclidean space R, R? or R* endowed respectively with the real, complex or quaternion
number for each point if |G| = 1;

(ii) combinatorially Euclidean space (2, ,2,4,- -+ ,4) with coupling number, i.c., the
dimensional number l;; = 1,2 or 3 of an edge (R, R7) € E(G) only if i = j = 4, otherwise
Ly =1if |G| > 2.

Proof By the definition of topological multi-field (#4; &1 — 0%s), for an integer i, 1 <
it < m, (J;4i,-;) is itself a locally compacted topological field. Whence, (Sg; 01 — Os)
is a topologically combinatorial multi-field consisting of locally compacted topological fields.

According to Lemma 4.1, we know there must be

(%74_1; ’L) = R7 R2a or R4

for each integer i, 1 < i < m. Let the coordinate system of R,R2 R* be z, (y1,y2) and
(21, 22, 23, 24). If |G| = 1, then it is just the classifying in Theorem 6.4.4. Now let |G| > 2. For
V(R R7) € E(G), we know that R"\ R/ # () and R7 \ R? # () by the definition of combinatorial
space. Whence, 7,7 =2 or 4. If i =2 or j = 2, then l;; = 1 because of 1 <;; < 2, which means
li; > 2 only if i = j = 4. This completes the proof. O
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Abstract In this paper we investigate the structure of the shortest co-cycle base(or SCB
in short) of connected graphs, which are related with map geometries, i.e., Smarandache 2-
dimensional manifolds. By using a Hall type theorem for base transformation, we show that
the shortest co-cycle bases have the same structure (there is a 1-1 correspondence between
two shortest co-cycle bases such that the corresponding elements have the same length). As
an application in surface topology, we show that in an embedded graph on a surface any
nonseparating cycle can’t be generated by separating cycles. Based on this result, we show
that in a 2-connected graph embedded in a surface, there is a set of surface nonseparating
cycles which can span the cycle space. In particular, there is a shortest base consisting
surface nonseparating cycle and all such bases have the same structure. This extends a
Tutte’s result [4].
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§1. Introduction

In this paper, graphs are finite, undirected, connected. Used terminology is standard and may
be found in [1] — [2]. Let A and B be nonempty(possibly overlapping) subsets of V(G). The
set [A, B] is a subset of E(G), namely,

[A, B] = {(a,b) € E(G)|la € A,b € B}.

Then the edge set between S and S is a co-cycle(or a cut), denoted by [S, S], where S is a
nonempty subset of V(G) and S = V(G) — S. Particularly, for any vertex u, [u] = {(u,v)|v €
V(G)} is called a vertical co-cycle(or a vertical cut). Let X and Y be a pair of sets of edges of

G. Then the following operations on co-cycles defined as

XaY=XUY -XnY,
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will form a linear vector space C*, called co-cycle space of G. 1t’s well known that the dimension
of co-cycle space of a graph G is n — 1, where n is the number of vertices of G.

The length of a co-cycle ¢, denoted by ¢(c), is the number of edges in ¢. The length of
a base B, denoted by ¢(B), is the sum of the lengths of its co-cycles. A shortest base is that
having the least number of edges.

Let A, B C E(G). Then we may define an inner product denoted by (A, B) as

(AB) = 3 Jel, ld=1

ec ANB

Since any cycle C has even number edges in any co-cycle, i.e., for any cycle C' and a co-cycle
S, 5]
(C,[S,5]) =0

we have that C is orthogonal to [S, S], i.e.,

Theorem 1 Let C and C* be, respectively, the cycle space and co-cycle space of a graph G.
Then C* is just the orthogonal space of C, i.e., C* = C*, which implies that

dimC + dim C* = |E(G)].

There are many results on cycle space theory. But not many results have ever been seen in
co-cycle spaces theory. Here in this paper we investigate the shortest co-cycle bases in a co-cycle
space. We first set up a Hall Type theorem for base transformation and then give a sufficient
and necessary condition for a co-cycle base to be of shortest. This implies that there exists
a 1-1 correspondence between any two shortest co-cycle bases and the corresponding elements
have the same length. As applications, we consider embedded graphs in a surface. By the
definition of geometric dual multigraph, we show that a nonseparating cycle can’t be generated
by a collection of separating cycles. So there is a set of surface nonseparating cycles which can
span the cycle space. In particular, there is a shortest base consisting surface nonseparating

cycle and all such bases have the same structure. This extends a Tutte’s result [4].

82. Main results

Here in this section we will set up our main results. But first we have to do some preliminary
works. Let A = (Ay, Aa,---, A,) be a set of finite sets. A distinct representatives(SDR) is a
set of {a1, a2, -+ ,a,} of n elements such that a; € A; for i =1,2,--- ,n. The following result

is the famous condition of Hall for the existence of SDR.

Hall’s Theorem([3]) A family (A1, -, Ay) of finite sets has a system of distinct represen-
tatives(SDR) if and only if the following condition holds:

U 4

acJ

>|J,  VJC{l,--n}
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Let G be a connected graph with a co-cycle base B and ¢ a co-cycle. We use Int(c, B) to

represent the co-cycles in B which span c.

Another Hall Type Theorem Let G be a connected graph with By and Bs as two co-cycle
bases. Then the system of sets A = {Int(c,B1) | ¢ € B2}, has a SDR.

Proof What we need is to show that the system must satisfy the Hall’s condition:

VJ C By = | | Int(c, By)

ceJ

> |J].

Suppose the contrary. Then 3J C By such that | | Int(c, By)| < }J} Now the set of linear
ceJ

independent elements {c | ¢ € J} is spanned by at most |J| — 1 vectors in By, a contradiction
as desired. 0

Theorem 2 Let B be a co-cycle base of G. Then B is shortest if and only if for any co-cycle
C7

Va € Int(c, B) = £(c) > {(a).

Remark This result shows that in a shortest co-cycle base, a co-cycle can’t be generated by

shorter vectors.

Proof Let B be a co-cycle base of G. Suppose that there is a co-cycle ¢ such that Ja €
Int(c), £(c) < (), then B — ¢+ « is also a co-cycle base of G, which is a shorter co-cycle base,
a contradiction as desired.

Suppose that B = {a1,a2, - ,an—1} is a co-cycle base of G such that for any co-cycle
¢, l(c) > £(a), Vo € Int(c), but B is not a shortest co-cycle base. Let B* = {81, 32, -+ , Bn—1} be
a shortest co-cycle base. By Hall Type Theorem, A = (Int(81, B), Int(Bz, B),- - ,Int(3,_1, B))
has an SDR (of,ab---,al,_1) such that o) € Int(f5;,B),4(6;) > £(c}). Hence ((B*) =

» “n—1

n—1 n—1
ST U(B) = > (o) = €(B), a contradiction with the definition of B. O
i=1 =1

i=
The following results say that some information about short co-cycles is contained in a

shorter co-cycle base.

Theorem 3 If {c1,co, - ,cx} is a set of linearly independent shortest co-cycles of connected

graph G, then there must be a shortest co-cycle base containing {c1,ca, -+ ,cp}.

Proof Let B be the shortest co-cycle base such that the number of co-cycles in B N
{e1,¢2,- -+, ci} is maximum. Suppose that J¢; ¢ B,1 < i < k. Then Int(c;, B)\{c1, - ,ci} is
not empty, otherwise {c1, co, - - - , ¢ } is linear dependent. So there is a co-cycle « € Int(c;, B)\{c1,

-, ¢t such that £(¢;) > €(«). Then ¢(¢;) = £(a), since ¢; is the shortest co-cycle. Hence
B* = B— a+¢; is a shortest co-cycle base containing more co-cycles in {c1, ¢z, -, i} than B.
A contradiction with the definition of 5. O

Corollary 4 If ¢ is a shortest co-cycle, then c is in some shortest co-cycle base.
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Theorem 5 Let B, B* be two different shortest co-cycle bases of connected graph G, then exists
a one-to-one mapping ¢ : B — B* such that {(p(a)) = £(a) for all a € B.

Proof Let B = {a1,q9, -+ ,an_1},B* = {B1,82,- - ,Bn-1}. By Hall Type Theorem,
A = (Int(aq, B*), Int(ag, B*), -+ ,Int(a,—1,B%)) has a SDR (Bs(1), Br(2), - » Bo(n—1)); Where
o is a permutation of {1,2,--- ,n — 1}. Since B* is a SCB, by Theorem 2, we have ¢(«a;) >
U(By(s)), Vi =1,...,n—1. On the other hand, B and B* are both shortest, i.e. £(B) = £(B*). So
Uci) = £(By(i)), Vi =1,...,n — 1. Let ¢(a;) = Bo(i),Vi = 1,...n — 1. Then ¢ is a one-to-one
mapping such that ¢(p(a)) = ¢(a) for all a € B. O

Since a co-cycle can’t be generated by longer ones in a shortest co-cycle base, we have

Corollary 6 Let By and Bs be a pair of shortest co-cycle bases in a graph G. Then their parts

of shortest co-cycles are linearly equivalent.

Example 1 The length of the SCB of complete graph K, is (n — 1)2.
Example 2 The length of the SCB of complete graph K, (a <b) is 2ab — b.
Example 3 The length of the SCB of a tree with n vertex T, is n — 1.

Example 4 The length of the SCB of a Halin graph with n vertex is 3(n — 1).

Proof of Examples By theorem 1, for any vertex v, the vertical co-cycle [v] is the shortest
co-cycle of K,,. Clearly the set of n — 1 vertical co-cycles is a SCB. So there’re n SCBs with
length (n — 1)2.

The proof for examples 2,3 and 4 is similar. 0

83. Application to surface topology

In this section we shall apply the results obtained in Section 1 to surface topology. Now we will
introduce some concepts and terminologies in graph embedding theory, which are related with
map geometries, i.e., Smarandache 2-dimensional manifolds.

Let G be a connected multigraph. An embedding of G is a pair II = (7, \) where 7 =
{my | v € V(G)} is a rotation system and X is a signature mapping which assigns to each edge
e € E(G) asign A(e) € {—1,1}. If e is an edge incident with v € V(G), then the cyclic sequence
e, m(e), 72(e), - - - is called the II-clockwise ordering around v(or the local rotation at v). Given
an embedding II of G we say that G is II-embedded.

We define the II-facial walks as the closed walks in G that are determined by the face
traversal procedure. The edges that are contained(twice) in only one facial walk are called
singular.

A cycle C of a Il-embedded graph G is II-onesided if it has an odd number of edges with
negative sign. Otherwise C' is II-twosided.

Let H be a subgraph of G. An H-bridge in G is a subgraph of G which is either an edge
not in H but with both ends in H, or a connected component of G — V(H) together with all

edges which have one end in this component and other end in H.
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Let C' = vpeyvies---vj—1€v; be a II-twosided cycle of a II-embedded graph . Suppose
that the signature of II is positive on C'. We define the left graph and the right graph of C
as follows. For i =1,--- 1, if e;11 = 7Fi(e;), then all edges my, (e;), 72, (), -+ , 7o~ (e;) are
said to be on the left side of C. Now, the left graph of C, denoted by G;(C,II)(or just G;(C)),
is defined as the union of all C-bridges that contain an edge on the left side of C'. The right
graph G,(C,II)(or just G,(C)) is defined analogously. If the signature is not positive on C,
then there is an embedding IT' equivalent to II whose signature is positive on C(since C is
II-twosided). Now we define G;(C,II) and G,(C,II) as the left and the right graph of C' with
respect to the embedding IT'. Note that a different choice of II' gives rise to the same pair
{G/(C, 1), G (C, 1)} but the left and the right graphs may interchange.

A cycle C of a II-embedded graph G is II-separating if C' is II-twosided and G;(C,II) and
G, (C,II) have no edges in common.

Given an embedding IT = (, \) of a connected multigraph G, we define the geometric dual
multigraph G* and its embedding IT* = (7*, A*), called the dual embedding of I1,as follows. The
vertices of G* correspond to the Il-facial walks. The edges of G* are in bijective correspondence
e — e* with the edges of GG, and the edge e* joins the vertices corresponding to the II-facial
walks containing e.(If e is singular, then e* is a loop.) If W = ey, - - , e, is a II-facial walk and
w its vertex of G*, then w, = (ef, -~ ,e}). For e* = ww' we set A\*(e*) = 1 if the II-facial
walks W and W’ used to define 7}, and 7%, traverse the edge e in opposite direction; otherwise
A*(e*) = —1.

Let H be a subgraph of G. H* is the union of edges e* in G*, where e is an edge of H.

Lemma 7 Let G be a Il-embedded graph and G* its geometric dual multigraph. C is a cycle
of G. Then C 1is a Il-separating cycle if and only if C* is a co-cycle of G*, where C* is the set
of edges corresponding those of C.

Proof First, we prove the necessity of the condition. Since C' is a Il-separating cycle,
C' is TI-twosided and G;(C,II) and G, (C,II) have no edges in common. Assume that C' =
voervies - - - v—1€v;, andA(e;) = 1,i = 1,--- 1. We divide the vertex set of G* into two parts
Vi* and V¥, such that for any vertex w in V;*(V,*), w corresponds to a facial walk W containing
an edge in G;(C)(G,(C)).

Claim 1. V* NV = @, i.e. each II-facial walk of G is either in G;(C)UC or in G,(C) UC.

Otherwise, there is a II-facial walk W of G, such that W has some edges in G;(C) and
some in G,.(C). Let W = P1Q - - PyQg, where P; is a walk in which none of the edges is in
C(i=1,---,k),and Q; is a walk in which all the edges are in C(j = 1,--- ,k).Since each P,
is contained in exactly one C-bridge, there exist ¢t € {1,---,k} such that P, C G;(C), P41 C
G,(C)(Note Py = P1). Let Qr = vpepi1---equg. Then W = - elvpepiq - equget ™o
where e € P;,e!t! € P, . Since e' and e!*! are, respectively, on the left and right side of C,
Ty, (€') = epy1 and m, (e"1) = e, As W is a Il-facial walk, there exist an edge e in @Q; such
that A(e) = —1, a contradiction with the assumption of C.

Next we prove that [V*, V;¥] = C*.

Let e* = wyws be an edge in G*, where wy and ws are, respectively, corresponding to the
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II-facial walks W7 and W5 containing e in common.
If e* € [V/*, V;¥] where w; € V*,wy € V*. Then W; C G;(C)UC and Wy C G, (C)UC. As
Gi(C,1I) and G, (C,1II) have no edges in common, we have e € C'i.e. e* € C*. So [V}*, V"] C C*.

Claim 2. If e* = wyws € C*, ie., e € C, then W1 # W5, and Wy, W5 can’t be contained in
Gi(C)uC(or G-(C)UC) at the same time.

Suppose that Wy = Wy, Let Wi = ugeuiéiugés - - - ug€ruieug - --. Clearly, {€1, -+, €k}
is not a subset of E(C), otherwise C isn’t a cycle. So we may assume that 5 ¢ C,e; ¢
C,(1 <s<t<k)suchthate; € C,i =1,---,s—1land¢; € C,j =t+1,---,k Let
C = ugeui€y---€s_1- + = UglU1CrUk - - €ry1---. Since Wi is a Il-facial walk, assume that
€1 = my,(e) and éx = m,'(e). As the sign of edges on C is 1,we get €5 = m,,(€5_1) and
e =7, (ery1). So & € Gi(C) and ¢&; € G,(C), a contradiction with Claim 1.

Suppose Wy # Wy and Wi, Wo C Gi(C) U C. Let Wi = vgevietviel - vy and Wy =

voeviedvaes - - -vg. Assume that el # e?, otherwise we consider el and e3.

Case 1. ef € C and e? € C. Then e} = €.
Case 2. el ¢ C and e? ¢ C. By claim 1, 7, (¢) = e} and 7, () = €2, then el = 2.

Case 3. e] ¢ C and ef € C. By claim 1, m, () = e1. As e} # €3, we get m; '(e) = ef. Let

€7 ¢ C,and e3,-- e}, € C. Since N(e?) =1, 7," (e?) = eX, (i = 1, ,t —1). Then
Vi1

7rv_21 (€2 1) =eljie. €2 € G.(C). So W2 C G,(C) U C, a contradiction with Claim 1.

Case 4. e} € C and €? ¢ C.Like case 3,it’s impossible.

So claim 2 is valid. And by claim 2, C* C [V}*, V*].

Summing up the above discussion, we get that C* is a co-cycle of G*.

Next, we prove the sufficiency of the condition. Since C* is a co-cycle of G*, let C* =
[V/*, V;¥], where V* N V¥ = ®. Then all the II-facial walks are divided into two parts F; and
F,., where for any II-facial walk W in Fj(F}) corresponding to a vertex w in V;*(V;*). Firstly,
we prove that C is twosided.Let C = vgejvies - - - vj_1ev;. Supposed that C is onesided, with
Ae1) = =1 and A(e;) = 1,4 = 2---,1. Then X\*(ef) = —1 and N\*(eJ) = 1,4 = 2---,l. Let
e} = wiws, where wy € Vl , Wy € V¥. Suppose that w; and wsy are, respectwely, correspondmg
to the Il-facial walks W1 and W2 containing e;.Then W1 S .Fl,WQ € F,.. Since W1 is a II-
facial walk, there must be another edge e; with negative sign appearing once in W1 We
change the signature of é; into 1.(Here we don’t consider the embedding) Suppose W5 is the
other Il-facial walk containing e3. Like I/IA//l, there must be an edge e3 with negative sign
appearing once in Ws.Then change the signature of e3 into 1. So similarly we got a sequence
ﬁ,@,Wg,%,Wg,,---,Wh(%f(% the signature of ép,e3,--- in IT are -1, and W, W3, --- are all
in W;. Since the number of edges with negative sign is finite, V% must in the sequence, a
contradiction with V* N V¥ = &

Secondly, we prove that G;(C) and G, (C') have no edge in common.

Let C = woerviez - -v_1evy, and A(e;) = 1,i = 1,---,1. Let m,, = (e}, ed, -+ ,el) and
Tu, = (€3,€3,---,€}), where e] = ej,e), = ea(1 < p < s) and ef = ez, el = e3(1 < ¢ < t)

Then we have some Il-facial walks W' = ejviel,;--- (i = 1,---,5) and W? = eJvpe? --
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(j = 1,--- ,t).Note that WPE Wi = p \v1€av2€3 -+ -. Suppose that W] € F;. Then
Wle F,byel ¢ C(i=2,---,p—1). Further more Wp1 € F,, as 611) € C. Then le € F,., since
ejl- ¢C(j=p+1,---,s). Similarly, as W =W, _, € F}, we get W? € Fj,i=1,--- ,¢—1 and
Wj2 € F.,j=gq, - ,t. And then consider v3,vy,---. It’s clearly that for any facial walk W, if
W contain an edge on the left(right) side of C, then W € F;(F}).

Let V, =V(F,) - V(C) and V, = V(F,.) — V(C).

Claim 3. VNV, = & Ifv ¢ C, let 71, = (e',e,---,eF), Wi = elvetl... be a II-
facial walk(i = 1,--- ,k), where e**! = el. Suppose W' € F;, then W' € F), since ¢! ¢ C
(i=2,---,k). So we say v € Vj. Similarly, if all the II-facial walks are in F)., we say v € V.

Suppose B is a C-bridge containing an edge in G;(C) and an edge in G,(C). Then V(B)N
Vi # ® and V(B) NV, # ® On the other hand, since B is connected there is an edge vjv,.,
where v; € V; and v, € V.. Clearly vjv, ¢ C, then vv, € Fi(or vjv, € F;.). So VNV, # &, a
contradiction with claim 3. This completes the proof of lemma 7. 0

Lemma 8 Let C be a cycle in a Il-embedded graph G which is generated by a collection of
separating cycles(i.e., C = Cy & Cy & --- @ Cy ). Then the edge set C* which is determined by
edges in C' is generated by {C},C5,--- ,C}} i.e.C* =CT®Cy - --®C}, where Cf corresponds
to C; in G*.

Proof For any edge ¢* in C*,e € C=C1 & Cy & --- & Cg. So there are odd number of C;
containing e, i.e. there are odd number of C; containing e*.So e* € C} @ C5 @ --- @ C};.Thus
cCrCcCieCie---aC.

For any edge e* in Cf @ C5 & --- & C},e* appears odd times in {C},C5,--- ,C}}, e e
appears odd times in {C1,Ca, -+ ,Cx}.Soe € C1 ®Co @ -+ ® Cy, = C.Then e* € C*.Thus
CireCid---0Cp CC™. O

Lemma 9 Let [S,S] and [T, T) be a pair of co-cycle of G. Then [S, S|®[T,T) is also a co-cycle
of G.
Proof Let A=SNT,B=SNT,C=SNT,D=SNT. Then
S, S| & [T, T]
[A,Cle[A D@ [B,Cle (B, D)) & ([A, Bl & [A, D] & [C, B] & [C, D)

(
= [ACle[B, D@4 Ble|C, D]
[AUD,BUC] =[AUD,AU D]

So [S, 8] @ [T,T] is also a co-cycle. O
Theorem 10 Separating cycles can’t span any nonseparating cycle.

Proof Let G be a connected II-embedded multigraph and G* its geometric dual multigraph.
Suppose C' = C1 & --- d Cf is a nonseparating cycle of G, where C1,--- ,Cy are separating
cycles. Then C* = C{ @ --- @ C};,where C* and C} are, respectively, the geometric dual graph
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of C'and Cj, for any i = 1,--- | k. By lemma 1, C* isn’t a co-cycle while C; is a nonseparating

cycle of G. Thus, some co-cycles could span a nonco-cycle, a contradiction with lemma 3. O

A cycle of a graph is induced if it has no chord. A famous result in cycle space theory is
due to W.Tutte which states that in a 3-connected graph, the set of induced cycles (each of
which can’t separated the graph) generates the whole cycle space[4]. If we consider the case of
embedded graphs, we have the following

Theorem 11 Let G be a 2-connected graph embedded in a nonspherical surface such that its

facial walks are all cycles. Then there is a cycle base consists of induced nonseparating cycles.

Remark Tutte’s definition of nonseparating cycle differs from ours. The former defined a
cycle which can’t separate the graph, while the latter define a cycle which can’t separate the
surface in which the graph is embedded. So, Theorem 11 and Tutte’s result are different. From
our proof one may see that this base is determined simply by shortest nonseparating cycles. As
for the structure of such bases, we may modify the condition of Theorem 2 and obtain another

condition for bases consisting of shortest nonseparating cycles.

Proof Notice that any cycle base consists of two parts: the first part is determined by
nonseparating cycles while the second part is composed of separating cycles. So, what we have
to do is to show that any facial cycle may be generated by nonseparating cycles. Our proof

depends on two steps.

Step 1. Let = be a vertex of G. Then there is a nonseparating cycle passing through z.

Let C' be a nonseparating cycle of G which avoids . Then by Menger’s theorem, there
are two inner disjoint paths P and P, connecting z and C’. Let Py ﬂ C'={u},PoNC" = {v}.
Suppose further that uC’ v and vC’ u are two segments of C’, where C is an orientation of C.

Then there are three inner disjoint paths connecting » and v:
— —
Q1 =uCv, Q2 =vCu, Qs =P1UP,.

Since C' = Q1 UQ)> is non separating, at least one of cycles Q2 UQ3 is nonseparating by Theorem
10.

Step 2. Let df be any facial cycle. Then there exist two nonseparating cycles C; and Cs
which span Jf.

In fact, we add a new vertex z into the inner region of 9f (i.e. Int(df)) and join new edges
to each vertex of f. Then the resulting graph also satisfies the condition of Theorem 11. By
Step 1, there is a nonseparating C' passing through z. Let u and v be two vertices of C N Jf.
Then uCv together with two segments of df connecting v and v forms a pair of nonseparating
cycles. 0

Theorem 12 Let G be a 2-connected graph embedded in a nonspherical surface such that all

of its facial walks are cycles. Let B be a base consisting of nonsepareting cycles. Then B is
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shortest iff for every nonseparating cycle C,
Va € Int(C) = |C| > |«|,
where Int(C) is the subset of cycles of B which span C.

Theorem 13 Let G be a 2-connected graph embedded in some monspherical surface with all
its facial walks are cycles. Let By and Bz be a pair of shortest nonseparating cycle bases. Then
there exists a 1-1 correspondence ¢ between elements of B1 and Ba such that for every element

a € By ol = |p(a)l.

Proof: It follows from the proving procedure of Theorems 2 and 5. 0
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81. Preliminaries

Let R3 = {(z1, 2, 73)|71, 22,23 € R} be a 3-dimensional vector space, and let z = (x1, 72, 3)

and y = (y1, Y2, y3) be two vectors in [ R3. The Lorentz scalar product of z and y is defined by

(x, y>L = —x1Y1 + T2Y2 + T3Y3,

E} = (R3, (x,y) L) is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3- dimen-
sional semi-euclidean space. The vector x in I E? is called a spacelike vector, null vector or a
timelike vector if (z,z);, > 0orz =0, (z,z); =0 or (z,z); <0, respectively. For z € E}, the
norm of the vector  defined by ||z|, = /[(x,z),|, and z is called a unit vector if ||z||, = 1.

For any z, y € E}, Lorentzian vectoral product of z and y is defined by

T ALY = (T3y2 — T2Y3, T3Y1 — T1Y3, T1Y2 — T2Y1) -

We denote by {T'(s), N(s), B(s)} the moving Frenet frame along the curve a(s). Then
T(s),N(s) and B(s) are tangent, the principal normal and the binormal vector of the curve

1Received November 24, 2008. Accepted January 12, 2009.
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a(s), respectively. Depending on the causal character of the curve «, we have the following
Frenet-Serret formulae:

If « is a spacelike curve with a spacelike principal normal IV,
T'=kN, N=—-skT+7B, B =7N (1.1)

<T7T>L = <N7N>L = 17<BvB>L = _17<T7N>L = <NvB>L = <TvB>L = 0.

If « is a spacelike curve with a timelike principal normal N,
T'=kN, N=krkT+71B, B =1N (1.2)

<T5T>L: <BaB>L:17<N7N>L:_17<T5N>L: <N5B>L: <TvB>L:O'

If « is a timelike curve and finally,
T'=kN, N=xT+7B, B = -7N (1.3)

<T5T>L:_1a<BvB>L: <N7N>L:17<T5N>L: <N5B>L: <TvB>L:O'

known in [2]. If the curve « is non-unit speed, then

o (t) AL a (t) H

det (a’ (t),a” (t),a” (t))

K(t) = L ort) = S (1.4)

’ 3 ’ "
|’ ], o' ® ne o 0],
If the curve « is unit speed, then
k(s) =l (s)ll,, 7(s) = [| B'(3)ll, - (1.5)

82. The involute of spacelike curve with a spacelike principal normal

Definition 2.1 Let unit speed spacelike curve o : I — E3 with a principal normal and spacelike
curve 3 :I — E3 with a spacelike principal normal be given. For Vs € I, then the curve 3 is
called the involute of the curve «, if the tangent at the point a(s) to the curve a passes through
the tangent at the point 5(s) to the curve 5 and

(I*(s),T(s)), =0. (2.1)

Let the Frenet-Serret frames of the curves o and 3 be {T ,N,B } and {T*, N*, B* }, respec-
tively. In this case, the causal characteristics of the Frenet-Serret frames of the curves o and
B must be of the form.

{T spacelike, N spacelike, B timelike}

and
{T* spacelike, N* spacelike, B* timelike} .



On Involute and Evolute Curves of Spacelike Curve 29

Theorem 2.1 Let the curve 3 be involute of the the curve a and let k be a constant real number.
Then

B(s) = als) + (k — $)T(s). (2.2)

Proof The curve 3(s) may be given as
B(s) = a(s) + u(s)T(s) (2.3)

If we take the derivative Eq. (2.3), then we have

’

B (s)= (1 + u/(s)> T(s) +u(s)k(s)N(s).

Since the curve f is involute of the curve a, (I"*(s),T(s));, =0 . Then, we get

1+ (s) =0oru(s) =k —s. (2.4)

Thus we get
Bls) —als) = (k=) T(s) (2.5)
O

Corollary 2.2 The distance between the curves  and « is |k — s|.

Proof If we take the norm in Eq. (2.5), then we get

18(s) = a(s)ll, = [k = s|. (2.6)

Theorem 2.3 Let the curve B be involute of the the curve «, then

T* 0O 1 0 T
N~ —(‘KQ—T2’) ! kK 0 -7 N
B* -7 0 kK B

Proof If we take the derivative Eq. (2.5), we can write

’

8 (s) = (k= s)x(s)N(s)

and

Furthermore, we get

T (s)

TFGNL k= s)k(s)]

From the last equation, we must have

) _ (k=)
|
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We assume that T*(s) = N(s). Let’s denote the coordinate function on IR by x. Then,
forVs € IR, x(s) = s, we get

B (s) = (k—=s)r(s)N(s),

8 = (k—z)kN.
Thus, we have

B = —kN+(k—2)k N+ (k—2)s(—kT + 7B)
—(k—2)R*T + |(k — 2)k — Ii} N+ (k—z)k7B

@
|

Hence, we have

ﬂ, AL 6” = (k — x)?k* (—7T + kB)

and
'ﬂ AL B = |k — 2> k2|72 — K2|.
L
Furthermore, we get
Bt _ B ALB  (k—x)?k?(—7T+kB) —7T +kB
[ r g~ ey V-l

Since N* = B* Ap, T*, then we obtain

' — kB

N* = .
=]

O

Theorem 2.4 Let the curve B be involute of the the curve . Let the curvature and torsion of

the curve [ be k* and 7%, respectively. Then

(72 — &2) (s)] r(s)7 () = K (s)7(s)

K (s) = |k —s|r(s) (s) = |k — s| k(s)\/|(T2 — K2) (5)|

Proof From Eq. (1.3) and Eq. (1.4), we have

_ k=P R2(s) _ VI =K (5)

K*(s) = |k_s|353(5) o H(8)|k—8|
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and

"

g = {HQT — (k- .%')2I€I€/T — (k- ZC)K2(I€N)}
+ [—/{l — K + (k — 3:)/1”} N
+ |:—Ii + (k- 3:)/1/)] (—kT +7B)

+ [—HT +(k—a)k 7+ (k- x)fw/] B
+[(k — z)k7] (TN)
= {2/@2 —3(k—2) mq,} T

—|—[—(k—x)HB—QH,—F(k—I)Ii”+(I€—I)/§7'2:|N
+(—2m'—|—2(k—:v) Ii/T—f—(k—,T) IiT/> B.

Furthermore, since

det (ﬁ/ (s),ﬁ”(s), 3" (5))
|6 @ ne s’ o)

T*(s) = ,

we have

—K T

A = _(k _:I;)2l€2 ’ ’ ’
262 —3(k—x)kk 267+ 2(k—a)k T+ (k— o) KT
= —(k—x)*? {2/{27 —2(k—2) kK T — (k—2) KT — 267 4+ 3 (k —2) kK T

’ ’

= (k—2)3&3 (m— - K T)
A = det (555)
Hence, we get
Rk = ) (K(s)7' () = K (5)7(5))
|k — |4(,72(S) K2(s))

) = OO
TE) = STkl () - w2

From the last equation, we have the following corollaries:

Corollary 2.5 If the curve « is planar, then its involute curve (8 is also planar.

Corollary 2.6 If the curvature k # 0 and the torsion T # 0 of the curve a are constant, then
the involute curve B is planar, i.e., if the curve « is a ordinary heliz, then its the involute curve

0 is planar.

Corollary 2.7 If the curvature k # 0 and the torsion T # 0 of the curve « are not constant
but = is constant, then the involute curve (3 is planar, i.e. if the curve « is a general heliz, then

their the involute curve 3 is planar.
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Theorem 2.8 Suppose that the planar curve o : I — E} with arc-length parameter are given.
Then, the locus of the center of the curvature of the curve « is the unique involute of the curve

a which lies on the plane of the curve a.

Proof The locus of the center of the curvature of the curve « is

C(s) = a(s) — %N(s), Kk(s) #0

If we take the derivative in the above equation, then we have

< _ <1>IN+ ! (—=wT),

ds K K
()
(= (2) v

<c’(s),T(s)>L = 0.

Therefore, the evolute C of the spacelike curve « is the locus of the center of the curvature.

Is the curve C planar ? If the torsion of the curve C is denoted by 7*, then

“(s) = (H/T—HT/) (s)
T T RO Tk — 8] (72(s) — K2(s))

If we take 7 = 0, then we have
T(s) =0

Thus, the curve C is planar. O

83. The evolute of spacelike curve with a spacelike principal normal

Definition 3.1 Let the unit speed spacelike curve o with a spacelike principal normal and the
spacelike curve 8 with the same interval be given. For Vs € I, the tangent at the point 3(s) to

the curve 3 passes through the point a(s) and
(T*(5), T(s)),, = 0.

Then, (3 is called the evolute of the curve «. Let the Frenet-Serret frames of the curves a and
B be (T,N,B) and (T*, N*, B*), respectively.

Theorem 3.1 Let the curve 8 be the evolute of the unit speed spacelike curve oo , Then
1 1

@N(S) — @ [tanh (¢(s) + ¢)] B(s), (3.1)

where ¢ € IR and ¢(s) + ¢ = [ 7(s)ds . Furthermore, in the normal plane of the point afs)

Bs) = als) +

the measure of directed angle between ((s) — a(s) and N(s) is

o(s) +c.
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Proof The tangent of the curve § at the point §(s) is the line constructed by the vector
T*(s) . Since this line passes through the point a(s), the vector 3(s) — a(s) is perpendicular
to the vector T'(s) . Then

B(s) — a(s) = AN(s) + uB(s). (3.2)

If we take the derivative of Eq. (3.2), then we have

B (s)=a (s) + A'N + A(=kT + 7B) + 4 B(s) + u(rN)

F(s) =1 =) T+ (N +pr) N+ (Ar+4) B. (3.3)
According to the definition of the evolute, since (T*(s),T(s)) = 0, from Eq. (3.3), we get
1
A=— 3.4
L (3.4)
and
g = (X + m) N+ (AT + ,/) B. (3.5)

From the Eq. (3.2) and Eq. (3.5), the vector field ﬁ/is parallel to the vector field 8 — « . Then
we have ) )
A +ur AT+ p
N

After that, we have

T =

If we take the integral the last equation, we get

_ p(s)
©(s) + ¢ = —argtanh (@) .
Hence, we find
p(s) = =A(s) tanh (¢(s) +¢) . (3.6)

If we substitute Eq. (3.4) and Eq. (3.6) into Eq. (3.2), we have

Bls) = a<s>+$zv<s>—$[tanh(sa(s)mw(s)
Bs) = M(s)—ﬁtanhwsmw(s).

Then, we obtain an evolute curve for each ¢ € IR . Since

(M()8(s), M(s) a(s)) =0,

L
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in the Lorentzian triangle which have corners 3(s), M (s) and «(s) , the angle M is right angle
in the Lorentzian mean. In the same triangle, the tangent of the angle a(s) is
—L_tanh [p(s) + ]
w(s) T = tanh [p(s) + ¢]. (3.7)
K(s)

Then, the measure of the angle between the vectors 5(s) — a(s) and N(s) is ¢(s) + c. O

Theorem 3.2 Let the spacelike curve 3: 1 — E$ be evolute of the unit speed spacelike curve
a: I — E3. If the Frenet-Serret vector fields of the curve 3 are T* (spacelike), N* (space),
B* (timelike), then

T* 0 cosh(p+c¢) —sinh(p+c) T
N | =] -1 0 0 N (3.8)
B* 0 —sinh(p+¢) cosh(e+ c) B

Proof Since the Frenet-Serret vector fields of the curve § are T*, N*, B* and

B=a+ pN — ptanh (¢ + ¢) B,

B(s) = o +pN+p(—kT+17B)
- [p/ tanh (¢ + ¢) B + pp sech? (cp—i—c)B—i—ptanh(go—i—c)TN}

= (1—-pr)T+ (pl —than(ga—Fc))N

T [(m _ pspl> — p tanh (¢ + ¢) + pg tanh? (o + 0)} B

[p/ — prtanh (p + c)} N+ [—p/ + prtanh (¢ + c)} Btanh (¢ + ¢)

= [pl — prtanh(p + c)} [N —tanh (¢ + ¢) B]

[cosh (¢ + ¢) N — sinh (¢ + ¢) B]. (3.9)

o p — prtanh(y + )
B(s) = [ cosh (¢ + ¢)

If we take the norm in the Eq. (3.9), then we obtain

p — prtanh(yp + c)‘
cosh (¢ + ¢)

/

K 1 _sinh(p+c)

K2 /{Tcosh(aerc)

sy
—~
»
—
~
|

cosh (¢ + ¢)

# cosh (¢ + ¢) + k7sinh(p + c)‘

k2 cosh (¢ + ¢)

’

Since T* = -—, then we get
1871,

T* = cosh (p 4+ ¢) N — sinh (¢ + ¢) B. (3.10)
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Therefore, we have obtained Eq. (3.9). The curve 3 is not a unit speed curve. If we take the
derivative of Eq. (3.10) with respect to s, we find

(T*)/ = (T - gol) [Bcosh (¢ + ¢) + N sinh (¢ + ¢)] — T cosh (¢ + ¢)
= —kTcosh(p+c)
Since T" = Ho/HLKaN , we have
) =8| wne.
@y =5, »

Thus

‘ Bl k*N* = —rcosh(p+c)T.

L
Since the vectors N* and T have the unit length, we get N*= —T or N*= T. Since B* =
N* AL (=T%), we have

B* = —sinh(¢ + ¢)N + cosh(¢ + ¢)B. (3.11)
Thus, the proof is completed. O
Theorem 3.3 Let 3: 1 — E} be the evolute of the unit speed spacelike curve o : I — E3.

Let the Frenet vector fields, curvature and torsion of the curve B be T*, N* B*, k* and 7",

respectively. Then

o . r3 cosh® (g /—i— c) k>0
|k7 sinh(p + ¢) + &' cos(p + ¢)|
7 K3 cosh? (¢ + ¢) [sinh(¢ + ¢)|
T =

|k7sinh(p + ¢) + k" cosh(p + ¢)|

Proof Since N* and T have unit length, then taking norm from equility Hﬁ/ H K*N* =
L
—rcosh (p + ¢) T .We can write have

. kcosh(p+c)
5| = P O

, (3.12)
180,
K cosh (¢ + ¢) + k7sinh(p + ¢)
= h :
kcosh (¢ + ¢) "2 cosh (9 1 0) ;
K3 cosh® (¢ 4 ¢)

¥ =

k' cosh(p + ¢) + k7 sinh(p + ¢)
If we take the derivative Eq. (3.11) with respect to s, then we have

(B*)/ = (gp/ - 7') [N cosh(¢ + ¢) — Bsinh(y + ¢)] + kT sinh(y + ¢)
= kTsin(p + ¢).
Since (B*) = ‘ B T*N*, we get

HﬁlH T*N™ = kT sin(¢ + ¢).
L
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From the last equation, we must have
T*(s) = N(s) or T*(s) = —=N(s).
We assume that T%(s) = —N(s) then we find that

_ klsinh(p + ¢)]

o / (3.13)
16|l
k' cosh (¢ + ¢) + K7 sinh(p + ¢)
= i h :
K [sinh (o + ¢)| 2 cosh (p + ¢) ,
« r? cosh®(p + ¢) [sinh(ip + )|
| 7= i |
|k cosh(p + ¢) + 7 sinh(p + ¢)|
O

Theorem 3.4 Let 3: 1 — E3 be the evolute of the unit speed spacelike curve o : [ — E3.

Let the curvature and torsion of the curve B be k* and 7, respectively. Then

7_*
e

= [tanh(p + ¢)] . (3.14)

Furthermore, we denote by 3 and 3 ), the evolute curves obtained by using ci and ca
instead of ¢, respectively. The tangents of the curves V) and B 2 at the points 6(1)(5) and

6(2)(5) intersect at the point a(s) . The measure of the angle between the tangents is ¢; — ca.

Proof The Eq. (3.14) is obtained easily by using Eq. (3.12) and Eq. (3.13), i.e.,

*

T #[sinh (¢ +¢)| K cosh (¢ + c)
K" 180, 18
= |tanh(p + ¢)].

_
The measure of the angle between the vectors a(s)3(") (s) and Va(s), and between the vectors
—_—_— _—_s
a(s)B3@) (s) and N(s) are p(s)+c; and ¢(s)+cz, respectively. The vector a(s)3(!) (s) is parallel
—_—5

to the tangent of the curve (1) at the point () (s). The vector a(s)3?)(s) is parallel to the
tangent of the curve 3(?) at the point 3 (s). Furthermore, since a(s)3™® (s) , a(s)3™M (s) and
=

N are perpendicular to the vector T'(s), these three vectors are planar. Then, the measure of
the angle between the tangents of the curves §(!) and 5 at the points (Y (s) and 3?(s) is

@(s) +e1 = [p(s) + 2] = c1 — ca.

So, the proof is completed. O

Theorem 3.5 Suppose that, two different evolutes of the spacelike curve a spacelike principal
normal curve a are given. Let the points on the evolutes of the curve o corresponding to the
point P be Py and P>. Then the angle P1 P Py is constant.

Proof Let the evolutes of the curve a be 8 and . Let the arc-length parameters of the

a, 3 and v be s, s* and 5, respectively. Let the curvatures of the curves o, 8 and ~ be k, k* and
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k respectively. And let the Frenet vectors of the curves a, 8 and v be {T, N, B} ,{T*, N*, B*}
and {f,ﬁ,g} Then
T =N*T=N. (3.15)

Since the curves § and v are evolute, then

(T, T%), = <T, f>L =0 (3.16)

Therefore, if f(s) = <T*, f>L, then we have

M@ = (@ f> (. (7))
—< ), ),
< 7, +7g (),

ds ~ d
- TT> 2% e N*
® s < ’ +Hds< AN
_ K*ds _ds
B ds ds’

(f) (s) = 0.

Therefore, we have f(s) = 6§ =constant. Hence, m (@2) =m (T*, f) = # =constant. [
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Abstract In this study, position vector of a Lorentzian plane curve (space-like or time-
like, i.e.) is investigated. First, a system of differential equation whose solution gives the
components of the position vector on the Frenet axis is constructed. By means of solution of
mentioned system, position vector of all such curves according to Frenet frame is obtained.
Thereafter, it is proven that, position vector and curvature of a Lorentzian plane curve satisfy
a vector differential equation of third order. Moreover, using this result, position vector of
such curves with respect to standard frame is presented. By this way, we present a short

contribution to Smarandache geometries.

Key Words Classical differential geometry, Smarandache geometries, Lorentzian plane,

position vector.

AMS(2000): 53B30, 51B20.

§1. Introduction

In recent years, the theory of degenerate submanifolds is treated by the researchers and some
of classical differential geometry topics are extended to Lorentzian manifolds. For instance in
[1], author deeply studies theory of the curves and surfaces and also presents mathematical
principles about theory of Relativitiy. Also, T. Ikawa [4] presents some characterizations of the
theory of curves in an indefinite-Riemannian manifold.

F. Smarandache in [2], defined a geometry which has at least one Smarandachely denied
axiom, i.e., an axiom behaves in at least two different ways within the same space, i.e., validated
and invalided, or only invalided but in multiple distinct ways and a Smarandache n-manifold is
a n- manifold that support a Smarandache geometry.

Since, following these constructions, nearly all existent geometries, such as those of Euclid
geometry, Lobachevshy- Bolyai geometry, Riemann geometry, Weyl geometry, K a hler geometry
and Finsler geometry, ...,etc., are their sub-geometries (further details, see [3].

In the presented paper, we have determined position vector of a Lorentzian plane curve.
First, using Frenet formula, we have constructed a system of differential equation. Solution
of it yields components of the position vector on Frenet axis. Thereafter, again, using Frenet
equations, we have constructed a vector differential equation with respect to position vector.
Moreover, its solution has given us position vector the curve according to standard Euclidean

frame. Since, we get a short contribution about Smarandache geometries.

1Received November 24, 2008. Accepted January 12, 2009.
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§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves
in the Lorentzian plane are briefly presented (A more complete elementary treatment can be
found in [1], [4], [5])-

Let L2 be the Lorentzian plane with metric

g = da? — da3, (1)

where z1 and x5 are rectangular coordinate system. A vector a of L? is said to be space-like if
g(a,a) > 0 or a = 0, time-like if g(a,a) < 0 and null if g(a,a) = 0 for a # 0. A curve z is a
smooth mapping z : I —L? from an open interval I onto L2. Let s be an arbitrary parameter of

x. By © = (21(s), 22(s)), we denote the orthogonal coordinate representation of z. The vector

dx dry dxo

Y (i i 2

ds ( ds ' ds ) @
is called the tangent vector field of the curve z = x(s). If tangent vector field ¢ of x(s) is a

space-like, time-like or null, then, the curve z(s) is called space-like, time-like or null, respec-

tively.

In the rest of the paper, we shall consider non-null curves. When the tangent vector field

t is non-null, we can have the arc length parameter s and have the Frenet formula

= (3)

where £ = k(s) is the curvature of the unit spped curve z = z(s). The vector field n is called
the normal vector field of the curve z(s). Remark that, we have the same representation of the
Frenet formula regardless of whether the curve is space-like ot time-like. And, if ¢(s) is the

slope angle of the curve, then we have

d¢
5= K(s). (4)

83. Position vector of a Lorentzian plane curve

Let = x(s) be an unit speed curve on the plane L2. Then, we can write position vector of

x(s) with respect to Frenet frame as
x=2x(s) =t + In (5)

where § and A are arbitrary functions of s. Differentiating both sides of (5) and using Frenet

equations, we have a system of ordinary differential equations as follows:

%—l-/\li—l:()
%—I—(S,%:O

(6)
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Using (6); in (6)2, we write

%E (1-%)%5%:0. (7)

This differential equation of second order, according to J, is a characterization for the curve
S

z = x(s). Using an exchange variable ¢ = [ kds in (7), we easily arrive

0
d*s dp
@ = )

where Kk = %. By the method of variation of parameters and hyperbolic functions, solution of

(8) yields
¢ ¢

0 =cosh¢ |A— /psinh ¢dp| +sinh¢ | B + /pcosh odo | . (9)
0 0
Here A, B € R. Rewriting the exchange variable, that is,

S S

s ¢ s ¢
0= COSh/IidS A—/ sinh/mds ds —|—sinh/f£ds B—i—/ cosh/mds ds| . (10)
0 0

0 0 0 0

Denoting differentation of equation (10) as 2 = £(s), we have

A= p(e(s) — 1), (11)

Since, we give the following theorem.

Theorem 3.1 Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in
Lorentzian plane. Position vector of the curve x = x(s) with respect to Frenet frame can be

composed by the equations (10) and (11).

84. Vector differential equation of third order characterizes Lorentzian plane curves

Theorem 4.1 Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in
Lorentzian plane. Position vector and curvature of it satisfy a vector differential equation of
third order.

Proof Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in
Lorentzian plane. Then formula (3) holds. Using (3); in (3)2, we easily have

d (1dt
where % =t = &. Consequently, we write
d (1d°z dr 0 (13)
ds \ k ds? Mis

Formula (13) completes the proof.
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Let us solve equation (12) with respect to t. Here, we know, t = (t1,t2) = (&1, 42). Using
S

the exchange variable ¢ = [ kds in (), we obtain
0

or in parametric for

It follows that
t1 = 516¢’ — 626_¢

) (16)
to = 836¢ — 546"‘7
where ¢; € R for 1 < i < 4. Therefore, we get
t1 = 71 cosh [ kds + v sinh [ kds
0 0 (17)

ty = 3 cosh [ kds + 4 sinh [ kds
0 0
Finally, we give the following theorem.

Theorem 4.2 Let © = x(s) be an arbitrary unit speed curve (space-like ot time-like, i.e.) in

Lorentzian plane. Position vector of it with respect to standard frame can be expressed as

Ik {71 cosh [ kds + vz sinh [ mds} ds,
0 0 0

S/ {73 cosh [ kds + 4 sinh [ Hds} ds
0 0 0

x=x(s) = (18)

for the real numbers v, ..., V4. O
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Abstract For an integer k > 1, a cycle-complete graph Smarandache-Ramsey number
74k (Cm, Ky) is the smallest integer N such that every graph G of order N contains k cycles,
Cm, on m vertices or the complement of G contains k& complete graph, K,, on n vertices.
If £ = 1, then the Smarandache-Ramsey number 7k (Cr, Kr) is nothing but the classical
Ramsey number r(Cy,, K,). Radziszowski and Tse proved that r(Cy, Ky) > 30. Also, By
considering the known graph G = 7Ky, we have that r(Cs, Kg) > 29. In this paper we give
an upper bound of 7(C4, Ky) and r(Cs, Ks).
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§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices will be denoted
by C,, and the complete graph on n vertices by K,. The minimum degree of a graph G is
denoted by §(G). An independent set of vertices of a graph G is a subset of V(G) in which
no two vertices are adjacent. The independence number of a graph G, a(G), is the size of the
largest independent set.

For an integer k > 1, a Smarandache-Ramsey number r (H, F') is the smallest integer N
such that every graph G of order N contains k graph H, or the complement of G contains k
graph F. If k = 1, then the Smarandache-Ramsey number 7. (H, F') is nothing but the classical
Ramsey number r(H, F'). r(C,,, K,,) is called the cycle-complete graph Ramsey number. In one
of the earliest contributions to graphical Ramsey theory, Bondy and Erdds