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No object is mysterious. The mystery is your eye.

By Elizabeth, a British female writer.
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Abstract: In this paper we find the interrelations and the hidden pattern of the problems

faced by the PWDs and their caretakers using Fuzzy Relational Maps (FRMs). Here we

have taken the problems faced by the rural persons with disabilities in Melmalayanur and

Kurinjipadi Blocks, Tamil Nadu, India. This paper is organized with the following four

sections. Section one is introductory in nature giving the overall contents from the survey

made about PWDs in the above said Blocks. Section two gives description of FRM models

and the attributes taken for the study related with the PWDs and the caretakers, the

FRM model formed using these attributes and their analysis. The third section gives the

suggestions and conclusions derived from the survey as well as the FRM model.

Key Words: FRM model, fixed point, hidden pattern, relational matrix, limit cycle.

AMS(2000): 04A72.

§1. Introduction

A study was conducted taking 93 village panchayats from the Kurinjipadi and Melmalayanur

Blocks. The data reveals only 1.64 percent of the population are PWDs. The male population

is comparatively higher. (60% males and 40% females). 51% are orthopedic followed by 16%

with speech and hearing impaired. Also it is observed from the data that 60% are not married

in the reproductive age group; however 73% are found married in the non reproductive age

group. It is still unfortunate to see among the 3508 PWDs in the age group 4 yrs and above

59% of them have not even entered school. Further in the age group 4 to 14, 37% are yet to

be enrolled in the school. Thus the education among the PWDs is questionably poor. Their

living conditions are poor with no proper toilet facilities who are under nourished.

We use FRMs to study the problem taking the attributes of the domain space as the

problems faced by the PWD and the range attributes are taken as the problems felt by the

caretakers of the PWD. We just describe the FRM model and proceed on to justify why FRM

model is used in this study.

1Received December 8, 2008. Accepted January 6, 2009.
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§2. Description of FRM Model and its Application to the Problem

Fuzzy Relational Maps (FRMs) are constructed analogous to FCMs. FRMs are divided into

two disjoint units. We denote by R the set of nodes R1, · · · , Rm of the range space where

Rj = {(x1, · · · , xm)|xj = 0 or 1} for j = 1, 2, · · · ,m. D1, · · · , Dn denote the nodes of the

domain space where Di = {(y1, · · · , yn)|yi = 0 or 1} for i = 1, 2, · · · , n. Here, yi = 0 denotes

the off state and yi = 1 the on state of any state vector. Similarly xi = 1 denotes the on state

and xi = 0 the off state of any state vector.

Thus a FRM is a directed graph or a map from D to R with concepts like policies or events

etc as nodes and causalities as edges. It represents causal relations between the spaces D and

R.

Let Di and Rj denote the nodes of an FRM. The directed edge from Di to Rj denotes the

causality of Di on Rj called relations. Every edge in the FRM is weighted with a number of

the set {0,+1}. Let eij be the weight of the edge DiRj ; eij ∈ {0,+1}. The weight of the edge

DiRj is positive if increase in Di implies increase in Rj or decrease in Di implies decrease in

Rj i.e., causality of Di on Rj is 1. If eij = 0 then Di does not have any effect on Rj . When

increase in Di implies decrease in Rj or decrease in Di implies increase in Rj then the causality

of Di on Rj is −1.

A FRM is a directed graph or a map from D to R with concepts like policies or events etc,

as nodes and causalities as edges. It represents causal relations between spaces D and R.

For the FRM with D1, · · · , Dn as nodes of the domain space D and R1, · · · , Rn as the

nodes of the range space R,E defined as E = (eij), where eij is the weight of the directed edge

DiRj (or RjDi); E is called the relational matrix of the FRM. A = (a1, · · · , an), ai ∈ {0, 1}; A

is called the instantaneous state vector of the domain space and it denotes the on-off position

of the nodes at any instant. Similarly for the range space ai = 0 if ai is off and ai = 1 if ai is

on. Let the edges form a directed cycle. A FRM with directed cycle is said to be a FRM with

feed back. A FRM with feed back is said to be the dynamical system and the equilibrium of

the dynamical system is called the hidden pattern; it can be a fixed point or a limit cycle.

For example let us start the dynamical system by switching on R1 (or D1). Let us assume

that the FRM settles down with R1 and Rm or (D1 and Dn) on i.e., (10000 · · ·1) or (100 · · · 01).

Then this state vector is a fixed point. If the FRM settles down with a state vector repeating

in the form, i.e., A1 → A2 → · · ·Ai → A1 or B1 → B2 → · · · → Bi → B1, then this equilibrium

is called a limit cycle.

Now we would be using FRM models to study the problem.

2.1 Justification for Using FRM

(1) We see the problems of Persons With Disability (PWD) is distinctly different from the

problems of the caretakers of the PWD. Thus at the outset we are justified in using FRM i.e.,

a set of domain attributes and a set of range attributes.

(2) All the attributes under study cannot be quantified as numbers. So the data is one involving

a large quantity of feelings. Hence fuzzy models is the best suited, as the data is an unsupervised

one.
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(3) Also this model alone can give the effect of problems faced by the caretakers on the PWDs

and vice versa. So this model is best suited for our problem.

(4) Finally this model gives hidden pattern i.e., it gives a pair of resultant state vectors i.e.,

hidden pattern related with the PWDs as well as hidden pattern related with the caretakers.

Thus we use this model to analyze the problem.

Now the attributes related with the PWDs are taken as the domain space of the FRM

and the attributes related with the caretakers of the PWDs are taken as the range space of the

FRM. We shall describe each of the attributes related with the PWDs and that of the caretakers

in a line or two.

2.2 Attributes Related with the PWDs

The following attributes are given by an expert. The problems of PWDs are taken as the nodes

of the domain space and the attributes associated with the close caretakers are taken as the

nodes of the range space. The attributes associated with the PWDs are given below. They are

in certain cases described in line or two.

D1 – Depressed. From the survey majority of the PWDs looked and said they were de-

pressed because of their disability and general treatment.

D2 – Suffer from inferiority complex.

D3 – Mental stress/agony - They often were isolated and sometimes kept in a small hut

outside the house which made them feel sad as well as gave time to think about their disability

with no other work. So they were often under stress and mental tension.

D4 – Self Image - Majority did not possess any self image. It was revealed from the

discussions and survey.

D5 – Happy and contended.

D6 – Uninterested in life.

D7 – Dependent on others for every thing.

D8 – Lack of mobility.

D9 – Illtreated by close relatives.

Now the attributes D1, D2, · · · , D9 are taken as the nodes of the domain space of the FRM.

We give the attributes associated with the range space.

R1 – Poor. So cannot find money to spend on basic requirements. The PWDs go to work

for their livelihood.

R2 – Ashamed - relatives were ashamed of the PWDs.

R3 – Indifferent - They were treated indifferently by their caretakers.

R4 – PWDs are a burden to them. So they neglected them totally.

R5 – Fatalism - They said it was fate that they have a PWD as their child / relative.

R6 – Sympathetic.

R7 – Caring.

R8 – Show hatred towards the PWDs.

R9 – The caretakers were not interested in marrying them off.

R10 – The PWDs are an economic burden to them.
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R11 – They were isolated from others for reasons best known to the caretakers.

Thus R1, R2, · · · , R11 are taken as the nodes of the range space of the FRM.

The directed graph related with the FRM is shown in Fig.2.1, in which we have omitted

the direction Di → Rj on each edge DiRj for simplicity.

D1 D2 D3 D4 D5 D6 D7 D8 D9

R1 R2 R3 R4 R5 R6 R7 R8 R9 R10 R11

Fig.2.1

Let the relation matrix associated with the directed graph be given by T , where T is a

9 × 11 matrix with entries from the set {0,−1, 1} following.

T =




0 0 1 1 0 0 0 0 1 0 0

0 0 0 1 0 0 −1 0 0 0 1

0 0 1 0 0 −1 −1 1 1 0 1

−1 0 −1 −1 0 1 1 −1 0 −1 1

−1 −1 −1 −1 0 1 1 −1 0 0 −1

0 1 1 1 1 −1 0 0 0 0 0

0 0 0 0 0 0 0 1 0 1 0

0 0 0 1 0 0 0 0 1 0 1

0 1 0 0 0 0 0 0 0 1 0




Now we study the effect of the state vectors on the dynamical system T .

Suppose the expert wishes to study the on state of the node D1 and all other nodes are

in the off state. Let the state vector be X = (100000000). The effect of X on the dynamical

system T is given by

XT = (00110000100) = Y (say),

Y T t = (312 − 2 − 2 2020) → (111001010) = X1(say),

where → denotes that the resultant state vector Y T t is updated and thresholded, i.e., all

negative values and 0 are replaced by 0 and all positive values greater than or equal to one are
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replaced by 1. By updating we mean the co ordinate which we started in the on state should

remain in the on state till the end.

Now we find that

X1T → (01111001101) = Y1(say),

Y1T
t → (111001111) = X2(say),

X2T → (01111001111) = Y2(say),

Y2T
t → (111001111) = X3(say) = X2.

Thus the hidden pattern gives a fixed pair given by {(111001111), (01111001111)}.

Thus when the node depressed alone in the domain space is in the on state we see

this makes the nodes D2, D3, D6, D7, D8, D9 to come to on state in the domain space and

R2, R3, R4, R5, R8, R9, R10 and R11 in the on state in the range space.

Thus we see except the nodes the PWD has self image and she/he is happy and contended

all other nodes come to on state. Thus this reveals if a PWD is depressed certainly he has no

self image and he is not happy and contended. Further it also reveals from the state vector in

the domain space poverty is not a cause of depression for R1 is in the off state. Also R6 and

R7 alone do not come to on state which clearly shows that the caretakers are not sympathetic

and caring which is one of the reasons for the PWDs to be depressed. Thus we see all negative

attributes come to on state in both the spaces when the PWD is depressed.

Next the expert is interested in studying the effect of the on state of the node in the range

space viz. R6 i.e., the caretakers are sympathetic towards the PWDs. Let Y = (00000100000)

be the state vector of the range space. To study the effect of Y on the dynamical system T t.

Y T t → (000110000) = X1(say),

X1T → (00000110000) = Y1(say),

Y1T
t → (000110000) = X2(say).

But X2 = X1. Thus we see the hidden pattern of the state vector is a fixed pair of points

given by {(00000110000), (000110000)}. It is clear when the PWD is treated with sympathy it

makes him feel their caretakers are caring. So R1 come to on state. On the other hand, we see

she/he is happy and contended with a self image. Next the expert wishes to find the hidden

pattern of the on state of the domain node D4 i.e., self image of the PWD alone is in the on

state.

Let P = (000100000) be the given state vector. The effect of P on T is given by

PT → (00000110000) = S1(say),



6 Vasantha Kandasamy, Praveen Prakash and Thirusangu

S1T
t → (000110000) = P1(say),

P1T → (00000110000) = S2(say).

But S2 = S1 resulting in a fixed pair. Thus the hidden pattern of P is a fixed pair. We see

self image of the PWD makes him happy and contended. He/she also feel that the caretakers

are caring and sympathetic towards them. Now the expert studies the effect of the state vector

in the range space when the PWD is isolated from the other, i.e., when R11 is in the on state.

Let X = (00000000001) be the given state vector. Its effect on the dynamical system T is

given by

XT t → (011000010) = Y (say),

Y T → (00110001101) = X1(say).

The effect of X1 on T is given by

X1T
t → (111001111) = Y1(say),

Y1T → (01111001111) = X2(say),

X2T
t → (111001111) = Y2(say).

We see Y2 = Y1. Thus the hidden pattern of the state vector is a fixed pair given by

{(01111001111), (111001111)}. Thus when the PWD is isolated from others he/she suffers all

negative attributes and it is not economic condition that matters. Isolation directly means they

are taken care of and the caretakers are not sympathetic towards them. When they are isolated

they are not happy and contended and they do not have self image. All this is evident from the

hidden patterns in which R1, R6 and R7 are 0 and D4 and D5 are 0, i.e., in the off state. We

have worked with the several on states and the conclusions are based on that as well as from

the survey we have taken. This is given in the following sections of this paper.

§3. Suggestions and Conclusions

3.1 Conclusions based on the model

1. From the hidden pattern given by the FRM model we see when the PWDs suffer from

depression all negative attributes from both the range space and the domain space come to on

state and their by showing its importance and its impact on the PWDs. It is clear that the

nodes self image and happy and contended is in the off states where as all other nodes in the

domain of attributes are in the on state. Further the nodes economic condition, caring and
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sympathetic are in the off state in the range of attributes. Thus it is suggested the caretakers

must be caring and sympathetic towards the PWDs to save them from depression.

2. When the node the caretakers are sympathetic towards the PWDs alone was in the on state

the FRM model gave the hidden pattern which was a fixed pair in which only the nodes self

image and happy and contended was alone in the on state from the domain vectors. In fact it

was surprising to see all other negative nodes in the domain space was in the off state. Further

in the range space of vectors we saw only the node caring came to on state and all other nodes

were in the off state. Thus we see a small positive quality like sympathetic towards the PWDs

can make a world of changes in their lives.

3. When the node PWDs are isolated from others was in the on state in the state vectors of

the range space it is surprising to see that in the hidden pattern only the nodes happy and

contended and self image are in the off state and all other nodes come to on state in the domain

attributes and in the range attributes only the nodes poor cannot find time to spend with

PWDs, caring and sympathetic remain in the off state and all other nodes in the range off

attributes come to on state. Thus when the PWD is isolated from others he is depressed, not

interested in life under goes mental stress, suffers from inferiority complex has no self image,

is not happy or contended and is illtreated by the relatives. Also when the caretakers isolates

a PWD it clearly implies they are not sympathetic or caring for the PWD and infact they are

ashamed of the PWD and are indifferent to him/her. They also feel he/she is a burden and it

is a fate that he/she is present in their house and show hatred towards him/her and are least

bothered marrying off the PWD and infact feel the PWD is an economic burden on them.

4. It is verified the ’on state’ of any one of the negative attributes gives the hidden pattern of

the model in which all the negative attributes in both the domain and range space come to on

state and the positive attributes remain in the off state.

5. Further the hidden pattern in almost all the cases resulted only in the fixed point which

clearly proves that the changes in the behavioral pattern of the PWDs or the caretakers do not

fluctuate infact remains the same.

3.2 Observations and suggestions based on the survey and the data

1. The survey proved the family in which PWDs were present were looked down by others in

the rural areas. Thus it was difficult to perform the marriages of PWDs as well as their close

relatives. This is one of the reasons the PWDs are not given in marriage at the productive age

however data proved they got married after the non productive age. This is clearly evident

from the data that out of 1191 PWDs in the marriageable age group a majority of 715 PWDs

are not married i.e., 60% of them are not married. Above the reproductive age we find out of

1589 PWDs the majority 1163 constituting 73 percent are found to be married. One has to

make analysis in this direction alone.

2. From the data it is surprising to see that out of a total of 3316 PWDs 56% of them are

not educated. Out of 580 children in the age group 7 − 18 years 105 children dropped out.

Out of 483 children in the age group 4 to 14, 37% are yet to be enrolled in the school. Thus
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we see from the data that they deny education to PWDs. The study of education and related

problems faced by PWDs will have to be taken up separately.

3. 44% of caretakers have not planned about the future of the PWDs. This is also a sensitive

issue for the PWDs may be feeling insecure about their future.

4. Providing money to these PWDs as stipend or to their caretakers will not solve the problems

of PWDs. It is thus suggested these PWDs are taught some trade and paid for their work. When

they are earning naturally the caretakers have to take proper care of the PWD for otherwise

the PWD can opt to stay away from them. Also when they (PWD) earn their bread they will

have self image also can be contended to some extent.

5. Further the survey showed the PWDs were happy and interactive in the group of PWDs so

it would be nice if some opt to work for them so that the PWDs live in communities taken care

of by some one. This will at large solve several of the problems addressed. Also this is possible

if they earn on their own.

6. It is also suggested that a marriage bureau should operate solely for the PWDs so that their

marriage is not unnecessarily delayed.

7. The caretakers must be given counseling to deal the PWDs with care and sympathy. We

have considered PWD who are not employed in this study. We thank Lamp Net for giving

information.
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Abstract: Topological groups, particularly, Lie groups are very important in differential

geometry, analytic mechanics and theoretical physics. Applying Smarandache multi-spaces,

topological spaces, particularly, manifolds and groups were generalized to combinatorial man-

ifolds and multi-groups underlying a combinatorial structure in references. Then whether can

we generalize their combination, i.e., topological group or Lie group to a multiple one? The

answer is YES. In this paper, we show how to generalize topological groups and the homo-

morphism theorem for topological groups to multiple ones. By applying the classification

theorem of topological fields, the topological multi-fields are classified in this paper.

Key Words: Smarandache multi-space, combinatorial system, topological group, topolog-

ical multi-group, topological multi-field.
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§1. Introduction

In the reference [9], we formally introduced the conceptions of Smarandachely systems and

combinatorial systems as follows:

Definition 1.1 A rule in a mathematical system (Σ;R) is said to be Smarandachely denied if

it behaves in at least two different ways within the same set Σ, i.e., validated and invalided, or

only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

Definition 1.2 For an integer m ≥ 2, let (Σ1;R1), (Σ2;R2), · · · , (Σm;Rm) be m mathematical

systems different two by two. A Smarandache multi-space is a pair (Σ̃; R̃) with

Σ̃ =

m⋃

i=1

Σi, and R̃ =

m⋃

i=1

Ri.

Definition 1.3 A combinatorial system CG is a union of mathematical systems (Σ1;R1),(Σ2;R2),

· · · , (Σm;Rm) for an integer m, i.e.,

1Received December 12, 2008. Accepted January 8, 2009.
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CG = (

m⋃

i=1

Σi;

m⋃

i=1

Ri)

with an underlying connected graph structure G, where

V (G) = {Σ1,Σ2, · · · ,Σm},

E(G) = { (Σi,Σj) | Σi
⋂

Σj 6= ∅, 1 ≤ i, j ≤ m}.

These notions enable us to establish combinatorial theory on geometry, particularly, com-

binatorial differential geometry in [8], also those of combinatorial theory for other sciences [7],

for example, algebra systems, etc..

By definition, a topological group is nothing but the combination of a group associated with

a topological space structure, i.e., an algebraic system (H ; ◦) with conditions following hold

([16]):

(i) (H ; ◦) is a group;

(ii) H is a topological space;

(iii) the mapping (a, b) → a ◦ b−1 is continuous for ∀a, b ∈ H ,

Application of topological group, particularly, Lie groups shows its importance to differential

geometry, analytic mechanics, theoretical physics and other sciences. Whence, it is valuable to

generalize topological groups to a multiple one by algebraic multi-systems.

Definition 1.4 A topological multi-group (SG; O) is an algebraic multi-system (Ã ; O) with

Ã =
m⋃
i=1

Hi and O =
m⋃
i=1

{◦i} with conditions following hold:

(i) (Hi; ◦i) is a group for each integer i, 1 ≤ i ≤ m, namely, (H ,O) is a multi-group;

(ii) Ã is a combinatorially topological space SG, i.e., a combinatorial topological space

underlying a structure G;

(iii) the mapping (a, b) → a ◦ b−1 is continuous for ∀a, b ∈ Hi, ∀◦ ∈ Oi, 1 ≤ i ≤ m.

A combinatorial Euclidean space is a combinatorial system CG of Euclidean spaces Rn1 ,

Rn2 , · · · , Rnm with an underlying structure G, denoted by EG(n1, · · · , nm) and abbreviated to

EG(r) if n1 = · · · = nm = r. It is obvious that a topological multi-group is a topological group

if m = 1 in Definition 1.4. Examples following show the existence of topological multi-groups.

Example 1.1 Let Rni , 1 ≤ i ≤ m be Euclidean spaces with an additive operation +i and

scalar multiplication · determined by

(λ1 · x1, λ2 · x2, · · · , λni
· xni

) +i (ζ1 · y1, ζ2 · y2, · · · , ζni
· yni

)

= (λ1 · x1 + ζ1 · y1, λ2 · x2 + ζ2 · y2, · · · , λni
· xni

+ ζni
· yni

)

for ∀λl, ζl ∈ R, where 1 ≤ λl, ζl ≤ ni. Then each Rni is a continuous group under +i. Whence,

the algebraic multi-system (EG(n1, · · · , nm); O) is a topological multi-group with a underlying
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structure G by definition, where O =
m⋃
i=1

{+i}. Particularly, if m = 1, i.e., an n-dimensional

Euclidean space Rn with the vector additive + and multiplication · is a topological group.

Example 1.2 Notice that there is function κ : Mn×n → Rn2

from real n× n-matrices Mn×n

to R determined by

κ :




a11 · · · a1n

a21 · · · a2n

· · · · · · · · ·

an1 · · · an×n




→
(
a11 · · · a1n, · · · , an1 · · · an×n

)

Denoted all n × n-matrices by M(n,R). Then the general linear group of degree n is defined

by

GL(n,R) = { M ∈ M(n,R) | detM 6= 0 },

where detM is the determinant of M . It can be shown that GL(n,R) is a topological group.

In fact, since the function det : Mn×n → R is continuous, det−1R \ {0} is open in Rn2

, and

hence an open subset of Rn2

.

We show the mappings φ : GL(n,R × GL(n,R)) → GL(n,R) and ψ : GL(n,R) →

GL(n,R) determined by φ(a, b) = ab and ψ(a) = a−1 are both continuous for a, b ∈ GL(n,R).

Let a = (aij)n×n and b = (bij)n×n ∈ M(n,R). By definition, we know that

ab = ((ab)ij) = (
n∑

k=1

aikbkj).

Whence, φ(a, b) = ab is continuous. Similarly, let ψ(a) = (ψij)n×n. Then we know that

ψij =
a∗ij

deta

is continuous, where a∗ij is the cofactor of aij in the determinant deta. Therefore, GL(n,R) is

a topological group.

Now for integers n1, n2, · · · , nm ≥ 1, let EG(GLn1
, · · · , GLnm

) be a multi-group consisting

of GL(n1,R), GL(n2,R), · · · , GL(nm,R) underlying a combinatorial structure G. Then it is

itself a combinatorial space. Whence, EG(GLn1
, · · · , GLnm

) is a topological multi-group.

Conversely, a combinatorial space of topological groups is indeed a topological multi-group

by definition. This means that there are innumerable such multi-groups.

§2. Topological multi-subgroups

A topological space S is homogenous if for ∀a, b ∈ S, there exists a continuous mapping f : S →

S such that f(b) = a. We have a simple characteristic following.

Theorem 2.1 If a topological multi-group (SG; O) is arcwise connected and associative, then

it is homogenous.
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Proof Notice that SG is arcwise connected if and only if its underlying graph G is con-

nected. For ∀a, b ∈ SG, without loss of generality, assume a ∈ H0 and b ∈ Hs and

P (a, b) = H0H1 · · ·Hs, s ≥ 0,

a path from H0 to Hs in the graph G. Choose c1 ∈ H0∩H1, c2 ∈ H1∩H2,· · · , cs ∈ Hs−1∩Hs.

Then

a ◦0 c1 ◦1 c
−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1

is well-defined and

a ◦0 c1 ◦1 c
−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1 ◦s b = a.

Let L = a ◦0 c1 ◦1 c
−1
1 ◦2 c2 ◦3 c3 ◦4 · · · ◦s−1 c

−1
s ◦s b−1◦s. Then L is continuous by the definition

of topological multi-group. We finally get a continuous mapping L : SG → SG such that

L(b) = Lb = a. Whence, (SG; O) is homogenous. �

Corollary 6.4.1 A topological group is homogenous if it is arcwise connected.

A multi-subsystem (LH ;O) of (SG; O) is called a topological multi-subgroup if it itself is a

topological multi-group. Denoted by LH ≤ SG. A criterion on topological multi-subgroups is

shown in the following.

Theorem 2.2 A multi-subsystem (LH ;O1) is a topological multi-subgroup of (SG; O), where

O1 ⊂ O if and only if it is a multi-subgroup of (SG; O) in algebra.

Proof The necessity is obvious. For the sufficiency, we only need to prove that for any

operation ◦ ∈ O1, a ◦ b−1 is continuous in LH . Notice that the condition (iii) in the definition

of topological multi-group can be replaced by:

for any neighborhood NSG
(a ◦ b−1) of a ◦ b−1 in SG, there always exist neighborhoods

NSG
(a) and NSG

(b−1) of a and b−1 such that NSG
(a) ◦ NSG

(b−1) ⊂ NSG
(a ◦ b−1), where

NSG
(a) ◦NSG

(b−1) = {x ◦ y|∀x ∈ NSG
(a), y ∈ NSG

(b−1)}

by the definition of mapping continuity. Whence, we only need to show that for any neighbor-

hood NLH
(x◦y−1) in LH , where x, y ∈ LH and ◦ ∈ O1, there exist neighborhoodsNLH

(x) and

NLH
(y−1) such that NLH

(x) ◦NLH
(y−1) ⊂ NLH

(x ◦ y−1) in LH . In fact, each neighborhood

NLH
(x ◦ y−1) of x ◦ y−1 can be represented by a form NSG

(x ◦ y−1) ∩ LH . By assumption,

(SG; O) is a topological multi-group, we know that there are neighborhoodsNSG
(x), NSG

(y−1)

of x and y−1 in SG such that NSG
(x)◦NSG

(y−1) ⊂ NSG
(x◦ y−1). Notice that NSG

(x)∩LH ,

NSG
(y−1) ∩ LH are neighborhoods of x and y−1 in LH . Now let NLH

(x) = NSG
(x) ∩ LH

and NLH
(y−1) = NSG

(y−1) ∩ LH . Then we get that NLH
(x) ◦ NLH

(y−1) ⊂ NLH
(x ◦ y−1)

in LH , i.e., the mapping (x, y) → x ◦ y−1 is continuous. Whence, (LH ;O1) is a topological

multi-subgroup. �

Particularly, for the topological groups, we know the following consequence.

Corollary 2.2 A subset of a topological group (Γ; ◦) is a topological subgroup if and only if it

is a subgroup of (Γ; ◦) in algebra.
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§3. Homomorphism theorem on topological multi-subgroups

For two topological multi-groups (SG1
; O1) and (SG2

; O2), a mapping ω : (SG1
; O1) → (SG2

; O2)

is a homomorphism if it satisfies the following conditions:

(1) ω is a homomorphism from multi-groups (SG1
; O1) to (SG2

; O2), namely, for ∀a, b ∈

SG1
and ◦ ∈ O1, ω(a ◦ b) = ω(a)ω(◦)ω(b);

(2) ω is a continuous mapping from topological spaces SG1
to SG1

, i.e., for ∀x ∈ SG1
and

a neighborhood U of ω(x), ω−1(U) is a neighborhood of x.

Furthermore, if ω : (SG1
; O1) → (SG2

; O2) is an isomorphism in algebra and a home-

omorphism in topology, then it is called an isomorphism, particularly, an automorphism if

(SG1
; O1) = (SG2

; O2) between topological multi-groups (SG1
; O1) and (SG2

; O2).

Let (SG; O) be an associatively topological multi-subgroup and (LH ;O) one of its topo-

logical multi-subgroups with SG =
m⋃
i=1

Hi, LH =
⋃m
i=1 Gi and O =

m⋃
i=1

{◦i}. In [8], we have

know the following results on homomorphisms of multi-systems following.

Lemma 3.1([8]) Let (H , Õ) be an associative multi-operation system with a unit 1◦ for ∀◦ ∈ Õ

and G ⊂ H .

(i) If G is closed for operations in Õ and for ∀a ∈ G , ◦ ∈ Õ, there exists an inverse element

a−1
◦ in (G ; ◦), then there is a representation pair (R, P̃ ) such that the quotient set H

G
|(R,P̃ ) is

a partition of H , i.e., for a, b ∈ H , ∀◦1, ◦2 ∈ Õ, (a ◦1 G ) ∩ (b ◦2 G ) = ∅ or a ◦1 G = b ◦2 G .

(ii) For ∀◦ ∈ Õ, define an operation ◦ on H

G
|(R,P̃ ) by

(a ◦1 G ) ◦ (b ◦2 G ) = (a ◦ b) ◦1 G .

Then (H

G
|(R,P̃ ); Õ) is an associative multi-operation system. Particularly, if there is a repre-

sentation pair (R, P̃ ) such that for ◦′ ∈ P̃ , any element in R has an inverse in (H ; ◦′), then

(H

G
|(R,P̃ ), ◦

′) is a group.

Lemma 3.2([8]) Let ω be an onto homomorphism from associative systems (H1; Õ1) to (H2; Õ2)

with (I(Õ2); Õ2) an algebraic system with unit 1◦− for ∀◦− ∈ Õ2 and inverse x−1 for ∀x ∈

(I(Õ2) in ((I(Õ2); ◦
−). Then there are representation pairs (R1, P̃1) and (R2, P̃2), where

P̃1 ⊂ Õ, P̃2 ⊂ Õ2 such that

(H1; Õ1)

(K̃erω; Õ1)
|(R1,P̃1)

∼=
(H2; Õ2)

(I(Õ2); Õ2)
|(R2,P̃2)

if each element of K̃erω has an inverse in (H1; ◦) for ◦ ∈ Õ1.

Whence, by Lemma 3.1, for any integer i, 1 ≤ i ≤ m, we get a quotient group Hi/Gi, i.e.,

a multi-subgroup (SG/LH ;O) =
m⋃
i=1

(Hi/Gi; ◦i) on algebraic multi-groups.

Notice that for a topological space S with an equivalent relation ∼ and a projection π :

S → S/ ∼= {[x]|∀y ∈ [x], y ∼ x}, we can introduce a topology on S/ ∼ by defining its opened

sets to be subsets V in S/ ∼ such that π−1(V ) is opened in S. Such topological space S/ ∼
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is called a quotient space. Now define a relation in (SG; O) by a ∼ b for a, b ∈ SG providing

b = h◦a for an element h ∈ LH and an operation ◦ ∈ O. It is easily to know that such relation

is an equivalence. Whence, we also get an induced quotient space SG/LH .

Theorem 3.1 Let ω : (SG1
; O1) → (SG2

; O2) be an opened onto homomorphism from associa-

tively topological multi-groups (SG1
; O1) to (SG2

; O2), i.e., it maps an opened set to an opened

set. Then there are representation pairs (R1,P1) and (R2,P2) such that

(SG1
; O1)

(K̃erω; O1)
|(R1,P̃1)

∼=
(SG2

; O2)

(I(Õ2); Õ2)
|(R2,P̃2)

,

where P1 ⊂ O1,P2 ⊂ O2, I(O2) = {1◦, ◦ ∈ O2} and

K̃erω = { a ∈ SG1
| ω(a) = 1◦ ∈ I(O2) }.

Proof According to Lemma 3.2, we know that there are representation pairs (R1,P1) and

(R2,P2) such that

(SG1
; O1)

(K̃erω; O1)
|(R1,P̃1)

σ
∼=

(SG2
; O2)

(I(Õ2); Õ2)
|(R2,P̃2)

in algebra, where σ(a ◦ Kerω) = σ(a) ◦−1 I(O2) in the proof of Lemma 3.2. We only need to

prove that σ and σ−1 are continuous.

On the First, for x = σ(a)◦−1I(O2) ∈
(SG2

;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

let Û be a neighborhood of σ−1(x)

in the space
(SG1

;O1)

(K̃erω;O1)
|(R1,P̃1)

, where Û is a union of a ◦ Kerω for a in an opened set U and

◦ ∈ P̃1. Since ω is opened, there is a neighborhood V̂ of x such that ω(U) ⊃ V̂ , which enables

us to find that σ−1(V̂ ) ⊂ Û . In fact, let ŷ ∈ V̂ . Then there exists y ∈ U such that ω(y) = ŷ.

Whence, σ−1(ŷ) = y ◦ Kerω ∈ Û . Therefore, σ−1 is continuous.

On the other hand, let V̂ be a neighborhood of σ(x)◦−1I(O2) in the space
(SG2

;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

for x ◦ Kerω. By the continuity of ω, we know that there is a neighborhood U of x such that

ω(U) ⊂ V̂ . Denoted by Û the union of all sets z ◦ Kerω for z ∈ U . Then σ(Û) ⊂ V̂ because

of ω(U) ⊂ V̂ . Whence, σ is also continuous. Combining the continuity of σ and its inverse

σ−1, we know that σ is also a homeomorphism from topological spaces
(SG1

;O1)

(K̃erω;O1)
|(R1,P̃1) to

(SG2
;O2)

(I(Õ2);Õ2)
|(R2,P̃2)

. �

Corollary 3.1 Let ω : (SG; O) → (A ; ◦) be a onto homomorphism from a topological multi-

group (SG; O) to a topological group (A ; ◦). Then there are representation pairs (R, P̃ ), P̃ ⊂ O

such that

(SG; O)

(K̃erω; O)
|(R,P̃ )

∼= (A ; ◦).

Particularly, if O = {•}, i.e., (SG; •) is a topological group, then

SG/Kerω ∼= (A ; ◦).
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§4. Topological multi-fields

Definition 4.1 A distributive multi-system (Ã ; O1 →֒ O2) with Ã =
m⋃
i=1

Hi, O1 =
m⋃
i=1

{·i} and

O2 =
m⋃
i=1

{+i} is called a topological multi-ring if

(i) (Hi; +i, ·i) is a ring for each integer i, 1 ≤ i ≤ m, i.e., (H ,O1 →֒ O2) is a multi-ring;

(ii) Ã is a combinatorially topological space SG;

(iii) the mappings (a, b) → a ·i b−1, (a, b) → a +i (−ib) are continuous for ∀a, b ∈ Hi,

1 ≤ i ≤ m.

Denoted by (SG; O1 →֒ O2) a topological multi-ring. A topological multi-ring (SG; O1 →֒

O2) is called a topological divisible multi-ring or multi-field if the previous condition (i) is

replaced by (Hi; +i, ·i) is a divisible ring or field for each integer 1 ≤ i ≤ m. Particularly,

if m = 1, then a topological multi-ring, divisible multi-ring or multi-field is nothing but a

topological ring, divisible ring or field. Some examples of topological fields are presented in the

following.

Example 4.1 A 1-dimensional Euclidean space R is a topological field since R is itself a field

under operations additive + and multiplication ×.

Example 4.2 A 2-dimensional Euclidean space R2 is isomorphic to a topological field since

for ∀(x, y) ∈ R2, it can be endowed with a unique complex number x + iy, where i2 = −1. It

is well-known that all complex numbers form a field.

Example 4.3 A 4-dimensional Euclidean space R4 is isomorphic to a topological field since for

each point (x, y, z, w) ∈ R4, it can be endowed with a unique quaternion number x+iy+jz+kw,

where

ij = −ji = k, jk = −kj = i, ki = −ik = j,

and

i2 = j2 = k2 = −1.

We know all such quaternion numbers form a field.

For topological fields, we have known a classification theorem following.

Lemma 4.1([12]) A locally compacted topological field is isomorphic to one of the following:

(i) Euclidean real line R, the real number field;

(ii) Euclidean plane R2, the complex number field;

(iii) Euclidean space R4, the quaternion number field.

Applying Lemma 4.1 and the definition of combinatorial Euclidean space, we can determine

these topological multi-fields underlying any connected graph G following.
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Theorem 4.1 For any connected graph G, a locally compacted topological multi-field (SG; O1 →֒

O2) is isomorphic to one of the following:

(i) Euclidean space R, R2 or R4 endowed respectively with the real, complex or quaternion

number for each point if |G| = 1;

(ii) combinatorially Euclidean space EG(2, · · · , 2, 4, · · · , 4) with coupling number, i.e., the

dimensional number lij = 1, 2 or 3 of an edge (Ri,Rj) ∈ E(G) only if i = j = 4, otherwise

lij = 1 if |G| ≥ 2.

Proof By the definition of topological multi-field (SG; O1 →֒ O2), for an integer i, 1 ≤

i ≤ m, (Hi; +i, ·i) is itself a locally compacted topological field. Whence, (SG; O1 →֒ O2)

is a topologically combinatorial multi-field consisting of locally compacted topological fields.

According to Lemma 4.1, we know there must be

(Hi; +i, ·i) ∼= R, R2, or R4

for each integer i, 1 ≤ i ≤ m. Let the coordinate system of R,R2,R4 be x, (y1, y2) and

(z1, z2, z3, z4). If |G| = 1, then it is just the classifying in Theorem 6.4.4. Now let |G| ≥ 2. For

∀(Ri,Rj) ∈ E(G), we know that Ri\Rj 6= ∅ and Rj \Ri 6= ∅ by the definition of combinatorial

space. Whence, i, j = 2 or 4. If i = 2 or j = 2, then lij = 1 because of 1 ≤ lij < 2, which means

lij ≥ 2 only if i = j = 4. This completes the proof. �
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Abstract In this paper we investigate the structure of the shortest co-cycle base(or SCB

in short) of connected graphs, which are related with map geometries, i.e., Smarandache 2-

dimensional manifolds. By using a Hall type theorem for base transformation, we show that

the shortest co-cycle bases have the same structure (there is a 1-1 correspondence between

two shortest co-cycle bases such that the corresponding elements have the same length). As

an application in surface topology, we show that in an embedded graph on a surface any

nonseparating cycle can’t be generated by separating cycles. Based on this result, we show

that in a 2-connected graph embedded in a surface, there is a set of surface nonseparating

cycles which can span the cycle space. In particular, there is a shortest base consisting

surface nonseparating cycle and all such bases have the same structure. This extends a

Tutte’s result [4].

Key Words: Shortest co-cycle base, nonseparating cycle, map geometries, Smarandache

2-dimensional manifolds.

MR(2000): 05C30.

§1. Introduction

In this paper, graphs are finite, undirected, connected. Used terminology is standard and may

be found in [1] − [2]. Let A and B be nonempty(possibly overlapping) subsets of V (G). The

set [A,B] is a subset of E(G), namely,

[A,B] = {(a, b) ∈ E(G)|a ∈ A, b ∈ B}.

Then the edge set between S and S is a co-cycle(or a cut), denoted by [S, S], where S is a

nonempty subset of V (G) and S = V (G) − S. Particularly, for any vertex u, [u] = {(u, v)|v ∈

V (G)} is called a vertical co-cycle(or a vertical cut). Let X and Y be a pair of sets of edges of

G. Then the following operations on co-cycles defined as

X ⊕ Y = X ∪ Y −X ∩ Y,
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will form a linear vector space C∗, called co-cycle space of G. It’s well known that the dimension

of co-cycle space of a graph G is n− 1, where n is the number of vertices of G.

The length of a co-cycle c, denoted by ℓ(c), is the number of edges in c. The length of

a base B, denoted by ℓ(B), is the sum of the lengths of its co-cycles. A shortest base is that

having the least number of edges.

Let A,B ⊆ E(G). Then we may define an inner product denoted by (A,B) as

(A,B) =
∑

e∈A∩B

| e |, |e| = 1.

Since any cycle C has even number edges in any co-cycle, i.e., for any cycle C and a co-cycle

[S, S]

(C, [S, S]) = 0

we have that C is orthogonal to [S, S], i.e.,

Theorem 1 Let C and C∗ be, respectively, the cycle space and co-cycle space of a graph G.

Then C∗ is just the orthogonal space of C, i.e., C⊥ = C∗, which implies that

dim C + dim C∗ = |E(G)|.

There are many results on cycle space theory. But not many results have ever been seen in

co-cycle spaces theory. Here in this paper we investigate the shortest co-cycle bases in a co-cycle

space. We first set up a Hall Type theorem for base transformation and then give a sufficient

and necessary condition for a co-cycle base to be of shortest. This implies that there exists

a 1-1 correspondence between any two shortest co-cycle bases and the corresponding elements

have the same length. As applications, we consider embedded graphs in a surface. By the

definition of geometric dual multigraph, we show that a nonseparating cycle can’t be generated

by a collection of separating cycles. So there is a set of surface nonseparating cycles which can

span the cycle space. In particular, there is a shortest base consisting surface nonseparating

cycle and all such bases have the same structure. This extends a Tutte’s result [4].

§2. Main results

Here in this section we will set up our main results. But first we have to do some preliminary

works. Let A = (A1, A2, · · · , An) be a set of finite sets. A distinct representatives(SDR) is a

set of {a1, a2, · · · , an} of n elements such that ai ∈ Ai for i = 1, 2, · · · , n. The following result

is the famous condition of Hall for the existence of SDR.

Hall’s Theorem([3]) A family (A1, · · · , An) of finite sets has a system of distinct represen-

tatives(SDR) if and only if the following condition holds:

∣∣∣∣∣
⋃

α∈J

Aα

∣∣∣∣∣ ≥ |J |, ∀J ⊆ {1, · · · , n}.
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Let G be a connected graph with a co-cycle base B and c a co-cycle. We use Int(c,B) to

represent the co-cycles in B which span c.

Another Hall Type Theorem Let G be a connected graph with B1 and B2 as two co-cycle

bases. Then the system of sets A = {Int(c,B1) | c ∈ B2}, has a SDR.

Proof What we need is to show that the system must satisfy the Hall’s condition:

∀J ⊆ B2 ⇒

∣∣∣∣∣
⋃

c∈J

Int(c,B1)

∣∣∣∣∣ ≥
∣∣J

∣∣.

Suppose the contrary. Then ∃J ⊆ B2 such that

∣∣∣∣∣
⋃
c∈J

Int(c,B1)

∣∣∣∣∣ <
∣∣J

∣∣. Now the set of linear

independent elements {c | c ∈ J} is spanned by at most
∣∣J

∣∣ − 1 vectors in B1, a contradiction

as desired. �

Theorem 2 Let B be a co-cycle base of G. Then B is shortest if and only if for any co-cycle

c,

∀α ∈ Int(c,B) ⇒ ℓ(c) ≥ ℓ(α).

Remark This result shows that in a shortest co-cycle base, a co-cycle can’t be generated by

shorter vectors.

Proof Let B be a co-cycle base of G. Suppose that there is a co-cycle c such that ∃α ∈

Int(c), ℓ(c) < ℓ(α), then B − c+ α is also a co-cycle base of G, which is a shorter co-cycle base,

a contradiction as desired.

Suppose that B = {α1, α2, · · · , αn−1} is a co-cycle base of G such that for any co-cycle

c, ℓ(c) ≥ ℓ(α), ∀α ∈ Int(c), but B is not a shortest co-cycle base. Let B∗ = {β1, β2, · · · , βn−1} be

a shortest co-cycle base. By Hall Type Theorem, A = (Int(β1,B), Int(β2,B), · · · , Int(βn−1,B))

has an SDR (α′
1, α

′
2 · · · , α

′
n−1) such that α′

i ∈ Int(βi,B), ℓ(βi) ≥ ℓ(α′
i). Hence ℓ(B∗) =

n−1∑
i=1

ℓ(βi) ≥
n−1∑
i=1

ℓ(α′
i) = ℓ(B), a contradiction with the definition of B. �

The following results say that some information about short co-cycles is contained in a

shorter co-cycle base.

Theorem 3 If {c1, c2, · · · , ck} is a set of linearly independent shortest co-cycles of connected

graph G, then there must be a shortest co-cycle base containing {c1, c2, · · · , ck}.

Proof Let B be the shortest co-cycle base such that the number of co-cycles in B ∩

{c1, c2, · · · , ck} is maximum. Suppose that ∃ci /∈ B, 1 ≤ i ≤ k. Then Int(ci,B)\{c1, · · · , ck} is

not empty, otherwise {c1, c2, · · · , ck} is linear dependent. So there is a co-cycle α ∈ Int(ci,B)\{c1,

· · · , ck} such that ℓ(ci) ≥ ℓ(α). Then ℓ(ci) = ℓ(α), since ci is the shortest co-cycle. Hence

B∗ = B−α+ ci is a shortest co-cycle base containing more co-cycles in {c1, c2, · · · , ck} than B.

A contradiction with the definition of B. �

Corollary 4 If c is a shortest co-cycle, then c is in some shortest co-cycle base.
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Theorem 5 Let B,B∗ be two different shortest co-cycle bases of connected graph G, then exists

a one-to-one mapping ϕ : B → B∗ such that ℓ(ϕ(α)) = ℓ(α) for all α ∈ B.

Proof Let B = {α1, α2, · · · , αn−1},B∗ = {β1, β2, · · · , βn−1}. By Hall Type Theorem,

A = (Int(α1,B∗), Int(α2,B∗), · · · , Int(αn−1,B∗)) has a SDR (βσ(1), βσ(2), · · · , βσ(n−1)), where

σ is a permutation of {1, 2, · · · , n − 1}. Since B∗ is a SCB, by Theorem 2, we have ℓ(αi) ≥

ℓ(βσ(i)), ∀i = 1, . . . , n−1. On the other hand, B and B∗ are both shortest, i.e. ℓ(B) = ℓ(B∗). So

ℓ(αi) = ℓ(βσ(i)), ∀i = 1, . . . , n− 1. Let ϕ(αi) = βσ(i), ∀i = 1, . . . n − 1. Then ϕ is a one-to-one

mapping such that ℓ(ϕ(α)) = ℓ(α) for all α ∈ B. �

Since a co-cycle can’t be generated by longer ones in a shortest co-cycle base, we have

Corollary 6 Let B1 and B2 be a pair of shortest co-cycle bases in a graph G. Then their parts

of shortest co-cycles are linearly equivalent.

Example 1 The length of the SCB of complete graph Kn is (n− 1)2.

Example 2 The length of the SCB of complete graph Ka,b (a ≤ b) is 2ab− b.

Example 3 The length of the SCB of a tree with n vertex Tn is n− 1.

Example 4 The length of the SCB of a Halin graph with n vertex is 3(n− 1).

Proof of Examples By theorem 1, for any vertex v, the vertical co-cycle [v] is the shortest

co-cycle of Kn. Clearly the set of n − 1 vertical co-cycles is a SCB. So there’re n SCBs with

length (n− 1)2.

The proof for examples 2, 3 and 4 is similar. �

§3. Application to surface topology

In this section we shall apply the results obtained in Section 1 to surface topology. Now we will

introduce some concepts and terminologies in graph embedding theory, which are related with

map geometries, i.e., Smarandache 2-dimensional manifolds.

Let G be a connected multigraph. An embedding of G is a pair Π = (π, λ) where π =

{πv | v ∈ V (G)} is a rotation system and λ is a signature mapping which assigns to each edge

e ∈ E(G) a sign λ(e) ∈ {−1, 1}. If e is an edge incident with v ∈ V (G), then the cyclic sequence

e, πv(e), π
2
v(e), · · · is called the Π-clockwise ordering around v(or the local rotation at v). Given

an embedding Π of G we say that G is Π-embedded.

We define the Π-facial walks as the closed walks in G that are determined by the face

traversal procedure. The edges that are contained(twice) in only one facial walk are called

singular.

A cycle C of a Π-embedded graph G is Π-onesided if it has an odd number of edges with

negative sign. Otherwise C is Π-twosided.

Let H be a subgraph of G. An H-bridge in G is a subgraph of G which is either an edge

not in H but with both ends in H , or a connected component of G − V (H) together with all

edges which have one end in this component and other end in H .
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Let C = v0e1v1e2 · · · vl−1elvl be a Π-twosided cycle of a Π-embedded graph G. Suppose

that the signature of Π is positive on C. We define the left graph and the right graph of C

as follows. For i = 1, · · · , l, if ei+1 = πki
vi

(ei), then all edges πvi
(ei), π

2
vi

(ei), · · · , πki−1
vi

(ei) are

said to be on the left side of C. Now, the left graph of C, denoted by Gl(C,Π)(or just Gl(C)),

is defined as the union of all C-bridges that contain an edge on the left side of C. The right

graph Gr(C,Π)(or just Gr(C)) is defined analogously. If the signature is not positive on C,

then there is an embedding Π′ equivalent to Π whose signature is positive on C(since C is

Π-twosided). Now we define Gl(C,Π) and Gr(C,Π) as the left and the right graph of C with

respect to the embedding Π′. Note that a different choice of Π′ gives rise to the same pair

{Gl(C,Π), Gr(C,Π)} but the left and the right graphs may interchange.

A cycle C of a Π-embedded graph G is Π-separating if C is Π-twosided and Gl(C,Π) and

Gr(C,Π) have no edges in common.

Given an embedding Π = (π, λ) of a connected multigraph G, we define the geometric dual

multigraph G∗ and its embedding Π∗ = (π∗, λ∗), called the dual embedding of Π,as follows. The

vertices of G∗ correspond to the Π-facial walks. The edges of G∗ are in bijective correspondence

e 7−→ e∗ with the edges of G, and the edge e∗ joins the vertices corresponding to the Π-facial

walks containing e.(If e is singular, then e∗ is a loop.) If W = e1, · · · , ek is a Π-facial walk and

w its vertex of G∗, then π∗
w = (e∗1, · · · , e

∗
k). For e∗ = ww′ we set λ∗(e∗) = 1 if the Π-facial

walks W and W ′ used to define π∗
w and π∗

w′ traverse the edge e in opposite direction; otherwise

λ∗(e∗) = −1.

Let H be a subgraph of G. H∗ is the union of edges e∗ in G∗, where e is an edge of H .

Lemma 7 Let G be a Π-embedded graph and G∗ its geometric dual multigraph. C is a cycle

of G. Then C is a Π-separating cycle if and only if C∗ is a co-cycle of G∗, where C∗ is the set

of edges corresponding those of C.

Proof First, we prove the necessity of the condition. Since C is a Π-separating cycle,

C is Π-twosided and Gl(C,Π) and Gr(C,Π) have no edges in common. Assume that C =

v0e1v1e2 · · · vl−1elvl, andλ(ei) = 1, i = 1, · · · , l. We divide the vertex set of G∗ into two parts

V ∗
l and V ∗

r , such that for any vertex w in V ∗
l (V ∗

r ), w corresponds to a facial walk W containing

an edge in Gl(C)(Gr(C)).

Claim 1. V ∗
l ∩ V ∗

r = Φ, i.e. each Π-facial walk of G is either in Gl(C) ∪ C or in Gr(C) ∪ C.

Otherwise, there is a Π-facial walk W of G, such that W has some edges in Gl(C) and

some in Gr(C). Let W = P1Q1 · · ·PkQk, where Pi is a walk in which none of the edges is in

C(i = 1, · · · , k),and Qi is a walk in which all the edges are in C(j = 1, · · · , k).Since each Pi

is contained in exactly one C-bridge, there exist t ∈ {1, · · · , k} such that Pt ⊆ Gl(C), Pt+1 ⊆

Gr(C)(Note Pt+1 = P1). Let Qt = vpep+1 · · · eqvq. Then W = · · · etvpep+1 · · · eqvqet+1 · · · ,

where et ∈ Pt, e
t+1 ∈ Pt+1. Since et and et+1 are, respectively, on the left and right side of C,

πvp
(et) = ep+1 and πvq

(et+1) = eq. As W is a Π-facial walk, there exist an edge e in Qt such

that λ(e) = −1, a contradiction with the assumption of C.

Next we prove that [V ∗
l , V

∗
r ] = C∗.

Let e∗ = w1w2 be an edge in G∗, where w1 and w2 are, respectively, corresponding to the
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Π-facial walks W1 and W2 containing e in common.

If e∗ ∈ [V ∗
l , V

∗
r ] where w1 ∈ V ∗

l , w2 ∈ V ∗
r . Then W1 ⊆ Gl(C)∪C and W2 ⊆ Gr(C)∪C. As

Gl(C,Π) and Gr(C,Π) have no edges in common, we have e ∈ C i.e. e∗ ∈ C∗. So [V ∗
l , V

∗
r ] ⊆ C∗.

Claim 2. If e∗ = w1w2 ∈ C∗, i.e., e ∈ C, then W1 6= W2, and W1,W2 can’t be contained in

Gl(C) ∪ C(or Gr(C) ∪ C) at the same time.

Suppose that W1 = W2. Let W1 = u0eu1ẽ1u2ẽ2 · · ·ukẽku1eu0 · · · . Clearly, {ẽ1, · · · , ẽk}

is not a subset of E(C), otherwise C isn’t a cycle. So we may assume that ẽs /∈ C, ẽt /∈

C, (1 ≤ s ≤ t ≤ k) such that ẽi ∈ C, i = 1, · · · , s − 1 and ẽj ∈ C, j = t + 1, · · · , k. Let

C = u0eu1ẽ1 · · · ẽs−1 · · · = u0eu1ẽkuk · · · ẽt+1 · · · . Since W1 is a Π-facial walk, assume that

ẽ1 = πu1
(e) and ẽk = π−1

u1
(e). As the sign of edges on C is 1,we get ẽs = πus

(ẽs−1) and

ẽt = π−1
ut+1

(ẽt+1). So ẽs ∈ Gl(C) and ẽt ∈ Gr(C), a contradiction with Claim 1.

Suppose W1 6= W2 and W1,W2 ⊆ Gl(C) ∪ C. Let W1 = v0ev1e
1
1v

1
2e

1
2 · · · v0 and W2 =

v0ev1e
2
1v

2
2e

2
2 · · · v0. Assume that e11 6= e21, otherwise we consider e12 and e22.

Case 1. e11 ∈ C and e21 ∈ C. Then e11 = e21.

Case 2. e11 /∈ C and e21 /∈ C. By claim 1, πv1(e) = e11 and πv1(e) = e21, then e11 = e21.

Case 3. e11 /∈ C and e21 ∈ C. By claim 1, πv1(e) = e11. As e11 6= e21, we get π−1
v1 (e) = e21. Let

e2t /∈ C, and e21, · · · , e
2
t−1 ∈ C. Since λ(e2i ) = 1, π−1

v2
i+1

(e2i ) = e2i+1 (i = 1, · · · , t − 1). Then

π−1
v2t

(e2t−1) = e2t ,i.e. e
2
t ∈ Gr(C). So W2 ⊆ Gr(C) ∪ C, a contradiction with Claim 1.

Case 4. e11 ∈ C and e21 /∈ C.Like case 3,it’s impossible.

So claim 2 is valid. And by claim 2, C∗ ⊆ [V ∗
l , V

∗
r ].

Summing up the above discussion, we get that C∗ is a co-cycle of G∗.

Next, we prove the sufficiency of the condition. Since C∗ is a co-cycle of G∗, let C∗ =

[V ∗
l , V

∗
r ], where V ∗

l ∩ V ∗
r = Φ. Then all the Π-facial walks are divided into two parts Fl and

Fr, where for any Π-facial walk W in Fl(Fr) corresponding to a vertex w in V ∗
l (V ∗

r ). Firstly,

we prove that C is twosided.Let C = v0e1v1e2 · · · vl−1elvl. Supposed that C is onesided, with

λ(e1) = −1 and λ(ei) = 1, i = 2 · · · , l. Then λ∗(e∗1) = −1 and λ∗(e∗i ) = 1, i = 2 · · · , l. Let

e∗1 = w̃1w̃2, where w̃1 ∈ V ∗
l , w̃2 ∈ V ∗

r . Suppose that w̃1 and w̃2 are, respectively, corresponding

to the Π-facial walks W̃1 and W̃2 containing e1.Then W̃1 ∈ Fl, W̃2 ∈ Fr. Since W̃1 is a Π-

facial walk, there must be another edge ẽ2 with negative sign appearing once in W̃1. We

change the signature of ẽ2 into 1.(Here we don’t consider the embedding) Suppose W2 is the

other Π-facial walk containing ẽ2. Like W̃1, there must be an edge ẽ3 with negative sign

appearing once in W2.Then change the signature of ẽ3 into 1. So similarly we got a sequence

W̃1, ẽ2,W2, ẽ3,W3, · · · ,where the signature of ẽ2, ẽ3, · · · in Π are -1, and W2,W3, · · · are all

in Wl. Since the number of edges with negative sign is finite, W̃2 must in the sequence, a

contradiction with V ∗
l ∩ V ∗

r = Φ.

Secondly, we prove that Gl(C) and Gr(C) have no edge in common.

Let C = v0e1v1e2 · · · vl−1elvl, and λ(ei) = 1, i = 1, · · · , l. Let πv1 = (e11, e
1
2, · · · , e

1
s) and

πv2 = (e21, e
2
2, · · · , e

2
t ), where e11 = e1, e

1
p = e2(1 < p ≤ s) and e21 = e2, e

2
q = e3(1 < q ≤ t).

Then we have some Π-facial walks W 1
i = e1i v1e

1
i+1 · · · (i = 1, · · · , s) and W 2

j = e2jv2e
2
j+1 · · ·



24 Han Ren and Jing Ren

(j = 1, · · · , t).Note that W 1
p−1 = W 2

1 = e1p−1v1e2v2e
2
2 · · · . Suppose that W 1

1 ∈ Fl. Then

W 1
i ∈ Fl, by e1i /∈ C(i = 2, · · · , p− 1). Further more W 1

p ∈ Fr, as e1p ∈ C. Then W 1
j ∈ Fr, since

e1j /∈ C(j = p+ 1, · · · , s). Similarly, as W 2
1 = W 1

p−1 ∈ Fl, we get W 2
i ∈ Fl, i = 1, · · · , q − 1 and

W 2
j ∈ Fr , j = q, · · · , t. And then consider v3, v4, · · · . It’s clearly that for any facial walk W , if

W contain an edge on the left(right) side of C, then W ∈ Fl(Fr).

Let Vl = V (Fl) − V (C) and Vr = V (Fr) − V (C).

Claim 3. Vl ∩ Vr = Φ. If v /∈ C, let πv = (e1, e2, · · · , ek), W i = eivei+1 · · · be a Π-

facial walk(i = 1, · · · , k), where ek+1 = e1. Suppose W 1 ∈ Fl, then W i ∈ Fl, since ei /∈ C

(i = 2, · · · , k). So we say v ∈ Vl. Similarly, if all the Π-facial walks are in Fr, we say v ∈ Vr.

Suppose B is a C-bridge containing an edge in Gl(C) and an edge in Gr(C). Then V (B)∩

Vl 6= Φ and V (B) ∩ Vr 6= Φ On the other hand, since B is connected there is an edge vlvr,

where vl ∈ Vl and vr ∈ Vr. Clearly vlvr /∈ C, then vlvr ∈ Fl(or vlvr ∈ Fr). So Vl ∩ Vr 6= Φ, a

contradiction with claim 3. This completes the proof of lemma 7. �

Lemma 8 Let C be a cycle in a Π-embedded graph G which is generated by a collection of

separating cycles(i.e., C = C1 ⊕ C2 ⊕ · · · ⊕ Ck).Then the edge set C∗ which is determined by

edges in C is generated by {C∗
1 , C

∗
2 , · · · , C

∗
k} i.e.C∗ = C∗

1 ⊕C
∗
2 ⊕· · ·⊕C∗

k , where C∗
i corresponds

to Ci in G∗.

Proof For any edge e∗ in C∗,e ∈ C = C1 ⊕ C2 ⊕ · · · ⊕ Ck. So there are odd number of Ci

containing e, i.e. there are odd number of C∗
i containing e∗.So e∗ ∈ C∗

1 ⊕ C∗
2 ⊕ · · · ⊕ C∗

k .Thus

C∗ ⊆ C∗
1 ⊕ C∗

2 ⊕ · · · ⊕ C∗
k .

For any edge e∗ in C∗
1 ⊕ C∗

2 ⊕ · · · ⊕ C∗
k ,e

∗ appears odd times in {C∗
1 , C

∗
2 , · · · , C

∗
k}, i.e. e

appears odd times in {C1, C2, · · · , Ck}.So e ∈ C1 ⊕ C2 ⊕ · · · ⊕ Ck = C.Then e∗ ∈ C∗.Thus

C∗
1 ⊕ C∗

2 ⊕ · · · ⊕ C∗
k ⊆ C∗. �

Lemma 9 Let [S, S] and [T, T ] be a pair of co-cycle of G. Then [S, S]⊕ [T, T ] is also a co-cycle

of G.

Proof Let A = S ∩ T,B = S ∩ T ,C = S ∩ T,D = S ∩ T . Then

[S, S] ⊕ [T, T ]

= ([A,C] ⊕ [A,D] ⊕ [B,C] ⊕ [B,D]) ⊕ ([A,B] ⊕ [A,D] ⊕ [C,B] ⊕ [C,D])

= [A,C] ⊕ [B,D] ⊕ [A,B] ⊕ [C,D]

= [A ∪D,B ∪ C] = [A ∪D,A ∪D]

So [S, S] ⊕ [T, T ] is also a co-cycle. �

Theorem 10 Separating cycles can’t span any nonseparating cycle.

Proof Let G be a connected Π-embedded multigraph and G∗ its geometric dual multigraph.

Suppose C = C1 ⊕ · · · ⊕ Ck is a nonseparating cycle of G, where C1, · · · , Ck are separating

cycles. Then C∗ = C∗
1 ⊕ · · · ⊕C∗

k ,where C∗ and C∗
i are, respectively, the geometric dual graph
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of C and Ci, for any i = 1, · · · , k. By lemma 1, C∗ isn’t a co-cycle while Ci is a nonseparating

cycle of G. Thus, some co-cycles could span a nonco-cycle, a contradiction with lemma 3. �

A cycle of a graph is induced if it has no chord. A famous result in cycle space theory is

due to W.Tutte which states that in a 3-connected graph, the set of induced cycles (each of

which can’t separated the graph) generates the whole cycle space[4]. If we consider the case of

embedded graphs, we have the following

Theorem 11 Let G be a 2-connected graph embedded in a nonspherical surface such that its

facial walks are all cycles. Then there is a cycle base consists of induced nonseparating cycles.

Remark Tutte’s definition of nonseparating cycle differs from ours. The former defined a

cycle which can’t separate the graph, while the latter define a cycle which can’t separate the

surface in which the graph is embedded. So, Theorem 11 and Tutte’s result are different. From

our proof one may see that this base is determined simply by shortest nonseparating cycles. As

for the structure of such bases, we may modify the condition of Theorem 2 and obtain another

condition for bases consisting of shortest nonseparating cycles.

Proof Notice that any cycle base consists of two parts: the first part is determined by

nonseparating cycles while the second part is composed of separating cycles. So, what we have

to do is to show that any facial cycle may be generated by nonseparating cycles. Our proof

depends on two steps.

Step 1. Let x be a vertex of G. Then there is a nonseparating cycle passing through x.

Let C′ be a nonseparating cycle of G which avoids x. Then by Menger’s theorem, there

are two inner disjoint paths P1 and P2 connecting x and C′. Let P1 ∩C
′ = {u},P2 ∩C

′ = {v}.

Suppose further that u
−→
C′v and v

−→
C′u are two segments of C′, where

−→
C is an orientation of C.

Then there are three inner disjoint paths connecting u and v:

Q1 = u
−→
Cv, Q2 = v

−→
Cu, Q3 = P1 ∪ P2.

Since C′ = Q1∪Q2 is non separating, at least one of cycles Q2∪Q3 is nonseparating by Theorem

10.

Step 2. Let ∂f be any facial cycle. Then there exist two nonseparating cycles C1 and C2

which span ∂f .

In fact, we add a new vertex x into the inner region of ∂f(i.e. Int(∂f)) and join new edges

to each vertex of ∂f . Then the resulting graph also satisfies the condition of Theorem 11. By

Step 1, there is a nonseparating C passing through x. Let u and v be two vertices of C ∩ ∂f .

Then u
−→
Cv together with two segments of ∂f connecting u and v forms a pair of nonseparating

cycles. �

Theorem 12 Let G be a 2-connected graph embedded in a nonspherical surface such that all

of its facial walks are cycles. Let B be a base consisting of nonsepareting cycles. Then B is
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shortest iff for every nonseparating cycle C,

∀α ∈ Int(C) ⇒ |C| ≥ |α|,

where Int(C) is the subset of cycles of B which span C.

Theorem 13 Let G be a 2-connected graph embedded in some nonspherical surface with all

its facial walks are cycles. Let B1 and B2 be a pair of shortest nonseparating cycle bases. Then

there exists a 1-1 correspondence ϕ between elements of B1 and B2 such that for every element

α ∈ B1 : |α| = |ϕ(α)|.

Proof: It follows from the proving procedure of Theorems 2 and 5. �
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§1. Preliminaries

Let R3 = {(x1, x2, x3)|x1, x2, x3 ∈ R} be a 3-dimensional vector space, and let x = (x1, x2, x3)

and y = (y1, y2, y3) be two vectors in IR3. The Lorentz scalar product of x and y is defined by

〈x, y〉L = −x1y1 + x2y2 + x3y3,

E3
1 =

(
R3, 〈x, y〉L

)
is called 3-dimensional Lorentzian space, Minkowski 3-Space or 3- dimen-

sional semi-euclidean space. The vector x in IE3
1 is called a spacelike vector, null vector or a

timelike vector if 〈x, x〉L > 0 or x = 0, 〈x, x〉L = 0 or 〈x, x〉L < 0, respectively. For x ∈ E3
1 , the

norm of the vector x defined by ‖x‖L =
√
|〈x, x〉L|, and x is called a unit vector if ‖x‖L = 1.

For any x, y ∈ E3
1 , Lorentzian vectoral product of x and y is defined by

x ∧L y = (x3y2 − x2y3, x3y1 − x1y3, x1y2 − x2y1) .

We denote by {T (s), N(s), B(s)} the moving Frenet frame along the curve α(s). Then

T (s), N(s) and B(s) are tangent, the principal normal and the binormal vector of the curve

1Received November 24, 2008. Accepted January 12, 2009.
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α(s), respectively. Depending on the causal character of the curve α, we have the following

Frenet-Serret formulae:

If α is a spacelike curve with a spacelike principal normal N ,

T ′ = κN, N = −κT + τB, B′ = τN (1.1)

〈T, T 〉L = 〈N,N〉L = 1, 〈B,B〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

If α is a spacelike curve with a timelike principal normal N ,

T ′ = κN, N = κT + τB, B′ = τN (1.2)

〈T, T 〉L = 〈B,B〉L = 1, 〈N,N〉L = −1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

If α is a timelike curve and finally,

T ′ = κN, N = κT + τB, B′ = −τN (1.3)

〈T, T 〉L = −1, 〈B,B〉L = 〈N,N〉L = 1, 〈T,N〉L = 〈N,B〉L = 〈T,B〉L = 0.

known in [2]. If the curve α is non-unit speed, then

κ(t) =

∥∥∥α′

(t) ∧L α
′′

(t)
∥∥∥
L∥∥∥α

′

(t)
∥∥∥

3

L

, τ(t) =
det

(
α

′

(t), α
′′

(t), α
′′′

(t)
)

∥∥∥α
′

(t) ∧L α
′′

(t)
∥∥∥

2

L

. (1.4)

If the curve α is unit speed, then

κ(s) = ‖α′′(s)‖L , τ(s) = ‖B′(s)‖L . (1.5)

§2. The involute of spacelike curve with a spacelike principal normal

Definition 2.1 Let unit speed spacelike curve α : I −→ E3
1 with a principal normal and spacelike

curve β :I −→ E3
1 with a spacelike principal normal be given. For ∀s ∈ I, then the curve β is

called the involute of the curve α, if the tangent at the point α(s) to the curve α passes through

the tangent at the point β(s) to the curve β and

〈T ∗(s), T (s)〉L = 0. (2.1)

Let the Frenet-Serret frames of the curves α and β be {T ,N,B } and {T ∗, N∗, B∗ }, respec-

tively. In this case, the causal characteristics of the Frenet-Serret frames of the curves α and

β must be of the form.

{T spacelike, N spacelike, B timelike}

and

{T ∗ spacelike, N∗ spacelike, B∗ timelike} .
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Theorem 2.1 Let the curve β be involute of the the curve α and let k be a constant real number.

Then

β(s) = α(s) + (k − s)T (s). (2.2)

Proof The curve β(s) may be given as

β(s) = α(s) + u(s)T (s) (2.3)

If we take the derivative Eq. (2.3), then we have

β
′

(s) =
(
1 + u

′

(s)
)
T (s) + u(s)κ(s)N(s).

Since the curve β is involute of the curve α, 〈T ∗(s), T (s)〉L = 0 . Then, we get

1 + u
′

(s) = 0 or u(s) = k − s. (2.4)

Thus we get

β(s) − α(s) = (k − s)T (s) (2.5)

�

Corollary 2.2 The distance between the curves β and α is |k − s|.

Proof If we take the norm in Eq. (2.5), then we get

‖β(s) − α(s)‖L = |k − s| . (2.6)

�

Theorem 2.3 Let the curve β be involute of the the curve α, then




T ∗

N∗

B∗


 =

(∣∣κ2 − τ2
∣∣)−1




0 1 0

κ 0 −τ

−τ 0 κ


 .




T

N

B




Proof If we take the derivative Eq. (2.5), we can write

β
′

(s) = (k − s)κ(s)N(s)

and ∥∥∥β
′

(s)
∥∥∥
L

= |(k − s)κ(s)| .

Furthermore, we get

T ∗(s) =
β

′

(s)

‖β′(s)‖L
=

(k − s)κ(s)

|(k − s)κ(s)|
N(s).

From the last equation, we must have

T ∗(s) = N(s) or T ∗(s) = −N(s) .
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We assume that T ∗(s) = N(s). Let’s denote the coordinate function on IR by x. Then,

for∀s ∈ IR, x(s) = s, we get

β
′

(s) = (k − s)κ(s)N(s),

β
′

= (k − x)κN.

Thus, we have

β
′′

= −κN + (k − x)κ
′

N + (k − x)κ(−κT + τB)

β
′′

= −(k − x)κ2T +
[
(k − x)κ

′

− κ
]
N + (k − x)κτB

Hence, we have

β
′

∧L β
′′

= (k − x)2κ2 (−τT + κB)

and
∥∥∥∥β

′

∧L β
′′
∥∥∥∥
L

= |k − x|2 κ2
√
|τ2 − κ2|.

Furthermore, we get

B∗ =
β

′

∧L β
′′

∥∥∥β
′

∧L β
′′

∥∥∥
=

(k − x)2κ2 (−τT + κB)

(k − x)2κ2
√
|τ2 − κ2|

=
−τT + κB√
|κ2 − τ2|

.

Since N∗ = B∗ ∧L T ∗, then we obtain

N∗ =
τT − κB√
|τ2 − κ2|

.

�

Theorem 2.4 Let the curve β be involute of the the curve α. Let the curvature and torsion of

the curve β be κ∗ and τ∗, respectively. Then

κ∗(s) =

√
|(τ2 − κ2) (s)|

|k − s|κ(s)
, τ∗(s) =

κ(s)τ
′

(s) − κ
′

(s)τ(s)

|k − s|κ(s)
√
|(τ2 − κ2) (s)|

.

Proof From Eq. (1.3) and Eq. (1.4), we have

κ∗(s) =
|k − s|2 κ2(s)

|k − s|3 κ3(s)
=

√
|(τ2 − κ2) (s)|

κ(s) |k − s|
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and

β
′′′

=
[
κ2T − (k − x)2κκ

′

T − (k − x)κ2(κN)
]

+
[
−κ

′

− κ
′

+ (k − x)κ
′′

]
N

+
[
−κ+ (k − x)κ

′

)
]
(−κT + τB)

+
[
−κτ + (k − x)κ

′

τ + (k − x)κτ
′

]
B

+ [(k − x)κτ ] (τN)

=
[
2κ2 − 3 (k − x)κκ

′

]
T

+
[
− (k − x) κ3 − 2κ

′

+ (k − x) κ
′′

+ (k − x)κτ2
]
N

+
(
−2κτ + 2 (k − x)κ

′

τ + (k − x) κτ
′

)
B.

Furthermore, since

τ∗(s) =
det

(
β

′

(s), β
′′

(s), β
′′′

(s)
)

∥∥∥β
′

(s) ∧L β
′′

(s)
∥∥∥

2

L

,

we have

∆ = −(k − x)2κ2


 −κ τ

2κ2 − 3 (k − x) κκ
′

−2κτ + 2 (k − x) κ
′

τ + (k − x) κτ
′




= −(k − x)2κ2
[
2κ2τ − 2 (k − x) κκ

′

τ − (k − x) κ2τ
′

− 2κ2τ + 3 (k − x) κκ
′

τ
]

= (k − x)3.κ3
(
κτ

′

− κ
′

τ
)

∆ = det
(
β

′

, β
′′

, β
′′′

)
.

Hence, we get

τ∗(s) =
κ3(k − s)3

(
κ(s)τ

′

(s) − κ
′

(s)τ(s)
)

κ4 |k − s|4 (τ2(s) − κ2(s))
,

τ∗(s) =
κ(s)τ

′

(s) − κ
′

(s)τ(s)

κ(s) |k − x| (τ2(s) − κ2(s))
.

�

From the last equation, we have the following corollaries:

Corollary 2.5 If the curve α is planar, then its involute curve β is also planar.

Corollary 2.6 If the curvature κ 6= 0 and the torsion τ 6= 0 of the curve α are constant, then

the involute curve β is planar, i.e., if the curve α is a ordinary helix, then its the involute curve

β is planar.

Corollary 2.7 If the curvature κ 6= 0 and the torsion τ 6= 0 of the curve α are not constant

but τ
κ is constant, then the involute curve β is planar, i.e. if the curve α is a general helix, then

their the involute curve β is planar.
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Theorem 2.8 Suppose that the planar curve α : I −→ E3
1 with arc-length parameter are given.

Then, the locus of the center of the curvature of the curve α is the unique involute of the curve

α which lies on the plane of the curve α.

Proof The locus of the center of the curvature of the curve α is

C(s) = α(s) −
1

κ(s)
N(s), κ(s) 6= 0

If we take the derivative in the above equation, then we have

dC

ds
= T −

(
1

κ

)′

N +
1

κ
(−κT ) ,

C
′

= −

(
1

κ

)′

N,

〈
C

′

, T
〉
L

= −

(
1

κ

)′

〈N,T 〉L ,

〈
C

′

(s), T (s)
〉
L

= 0.

Therefore, the evolute C of the spacelike curve α is the locus of the center of the curvature.

Is the curve C planar ? If the torsion of the curve C is denoted by τ∗, then

τ∗(s) =

(
κ

′

τ − κτ
′

)
(s)

κ(t) |k − s| . (τ2(s) − κ2(s))
.

If we take τ = 0, then we have

τ∗(s) = 0

Thus, the curve C is planar. �

§3. The evolute of spacelike curve with a spacelike principal normal

Definition 3.1 Let the unit speed spacelike curve α with a spacelike principal normal and the

spacelike curve β with the same interval be given. For ∀s ∈ I, the tangent at the point β(s) to

the curve β passes through the point α(s) and

〈T ∗(s), T (s)〉L = 0.

Then, β is called the evolute of the curve α. Let the Frenet-Serret frames of the curves α and

β be (T,N,B) and (T ∗, N∗, B∗), respectively.

Theorem 3.1 Let the curve β be the evolute of the unit speed spacelike curve α , Then

β(s) = α(s) +
1

κ(s)
N(s) −

1

κ(s)
[tanh (ϕ(s) + c)]B(s), (3.1)

where c ∈ IR and ϕ(s) + c =
∫
τ(s)ds . Furthermore, in the normal plane of the point α(s)

the measure of directed angle between β(s) − α(s) and N(s) is

ϕ(s) + c.
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Proof The tangent of the curve β at the point β(s) is the line constructed by the vector

T ∗(s) . Since this line passes through the point α(s), the vector β(s) − α(s) is perpendicular

to the vector T (s) . Then

β(s) − α(s) = λN(s) + µB(s). (3.2)

If we take the derivative of Eq. (3.2), then we have

β
′

(s) = α
′

(s) + λ
′

N + λ(−κT + τB) + µ
′

B(s) + µ(τN)

β
′

(s) = (1 − λκ) T +
(
λ

′

+ µτ
)
N +

(
λτ + µ

′

)
B. (3.3)

According to the definition of the evolute, since 〈T ∗(s), T (s)〉 = 0, from Eq. (3.3), we get

λ =
1

κ
, (3.4)

and

β
′

=
(
λ

′

+ µτ
)
N +

(
λτ + µ

′

)
B. (3.5)

From the Eq. (3.2) and Eq. (3.5), the vector field β
′

is parallel to the vector field β − α . Then

we have
λ

′

+ µτ

λ
=
λτ + µ

′

µ
.

After that, we have

τ =
λ

′

µ− λµ
′

λ2 − µ2

τ = −

(
µ
λ

)′

1 −
(
µ
λ

)2 .

If we take the integral the last equation, we get

ϕ(s) + c = − arg tanh

(
µ(s)

λ(s)

)
.

Hence, we find

µ(s) = −λ(s) tanh (ϕ(s) + c) . (3.6)

If we substitute Eq. (3.4) and Eq. (3.6) into Eq. (3.2), we have

β(s) = α(s) +
1

κ(s)
N(s) −

1

κ(s)
[tanh (ϕ(s) + c)]B(s)

β(s) = M(s) −
1

κ(s)
tanh [ϕ(s) + c]B(s).

Then, we obtain an evolute curve for each c ∈ IR . Since

〈−−−−−−→
M(s)β(s),

−−−−−−−→
M(s) α(s)

〉
L

= 0,
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in the Lorentzian triangle which have corners β(s), M(s) and α(s) , the angle M is right angle

in the Lorentzian mean. In the same triangle, the tangent of the angle α(s) is

1
κ(s) tanh [ϕ(s) + c]

1
κ(s)

= tanh [ϕ(s) + c] . (3.7)

Then, the measure of the angle between the vectors β(s) − α(s) and N(s) is ϕ(s) + c. �

Theorem 3.2 Let the spacelike curve β : I −→ E3
1 be evolute of the unit speed spacelike curve

α : I −→ E3
1 . If the Frenet-Serret vector fields of the curve β are T ∗ (spacelike), N∗(space),

B∗(timelike), then




T ∗

N∗

B∗


 =




0 cosh(ϕ+ c) − sinh(ϕ+ c)

−1 0 0

0 − sinh(ϕ+ c) cosh(ϕ+ c)







T

N

B


 (3.8)

Proof Since the Frenet-Serret vector fields of the curve β are T ∗, N∗, B∗ and

β = α+ ρN − ρ tanh (ϕ+ c)B,

we have

β
′

(s) = α
′

+ ρ
′

N + ρ (−κT + τB)

−
[
ρ

′

tanh (ϕ+ c)B + ρϕ
′

sec h2 (ϕ+ c)B + ρ tanh (ϕ+ c) τN
]

= (1 − ρκ)T +
(
ρ

′

− ρτ tan (ϕ+ c)
)
N

+
[(
ρτ − ρϕ

′

)
− ρ

′

tanh (ϕ+ c) + ρϕ
′

tanh2 (ϕ+ c)
]
B

=
[
ρ

′

− ρτ tanh (ϕ+ c)
]
N +

[
−ρ

′

+ ρτ tanh (ϕ+ c)
]
B tanh (ϕ+ c)

=
[
ρ

′

− ρτ tanh(ϕ+ c)
]
[N − tanh (ϕ+ c)B]

β
′

(s) =

[
ρ

′

− ρτ tanh(ϕ+ c)

cosh (ϕ+ c)

]
[cosh (ϕ+ c)N − sinh (ϕ+ c)B] . (3.9)

If we take the norm in the Eq. (3.9), then we obtain

∥∥∥β
′

(s)
∥∥∥
L

=

∣∣∣ρ′

− ρτ tanh(ϕ+ c)
∣∣∣

cosh (ϕ+ c)

=

∣∣∣− κ
′

κ2 − 1
κτ

sinh(ϕ+c)
cosh(ϕ+c)

∣∣∣
cosh (ϕ+ c)

=

∣∣∣κ′

cosh (ϕ+ c) + κτ sinh(ϕ+ c)
∣∣∣

κ2 cosh (ϕ+ c)
.

Since T ∗ = β
′

‖β′‖
L

, then we get

T ∗ = cosh (ϕ+ c)N − sinh (ϕ+ c)B. (3.10)
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Therefore, we have obtained Eq. (3.9). The curve β is not a unit speed curve. If we take the

derivative of Eq. (3.10) with respect to s, we find

(T ∗)
′

=
(
τ − ϕ

′

)
[B cosh (ϕ+ c) +N sinh (ϕ+ c)] − κT cosh (ϕ+ c)

= −κT cosh (ϕ+ c)

Since T ′ =
∥∥∥α′

∥∥∥
L
κN , we have

(T ∗)
′

=
∥∥∥β

′

∥∥∥
L
κ∗N∗.

Thus ∥∥∥β
′

∥∥∥
L
κ∗N∗ = −κ cosh (ϕ+ c)T.

Since the vectors N∗ and T have the unit length, we get N∗= −T or N∗= T. Since B∗ =

N∗ ∧L (−T ∗), we have

B∗ = − sinh(ϕ+ c)N + cosh(ϕ+ c)B. (3.11)

Thus, the proof is completed. �

Theorem 3.3 Let β : I −→ E3
1 be the evolute of the unit speed spacelike curve α : I −→ E3

1 .

Let the Frenet vector fields, curvature and torsion of the curve β be T ∗, N∗, B∗, κ∗ and τ∗,

respectively. Then

κ∗ =
κ3 cosh3(ϕ+ c)

|κτ sinh(ϕ+ c) + κ′ cos(ϕ+ c)|
, κ > 0

| τ∗| =
κ3 cosh2(ϕ+ c) |sinh(ϕ+ c)|

|κτ sinh(ϕ+ c) + κ′ cosh(ϕ+ c)|
.

Proof Since N∗ and T have unit length, then taking norm from equility
∥∥∥β′

∥∥∥
L
κ∗N∗ =

−κ cosh (ϕ+ c)T .We can write have

|κ∗| =
κ cosh (ϕ+ c)

‖β′‖L
(3.12)

= κ cosh (ϕ+ c) :

∣∣∣κ′

cosh (ϕ+ c) + κτ sinh(ϕ+ c)
∣∣∣

κ2 cosh (ϕ+ c)
,

|κ∗| =
κ3 cosh3(ϕ+ c)

κ′ cosh(ϕ+ c) + κτ sinh(ϕ+ c)

If we take the derivative Eq. (3.11) with respect to s, then we have

(B∗)
′

=
(
ϕ

′

− τ
)

[N cosh(ϕ+ c) −B sinh(ϕ+ c)] + κT sinh(ϕ+ c)

= κT sin(ϕ + c).

Since (B∗)
′

=
∥∥∥β′

∥∥∥
L
τ∗N∗, we get

∥∥∥β
′

∥∥∥
L
τ∗N∗ = κT sin(ϕ+ c).
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From the last equation, we must have

T ∗(s) = N(s) or T ∗(s) = −N(s) .

We assume that T ∗(s) = −N(s) then we find that

|τ∗| =
κ |sinh(ϕ+ c)|

‖β′‖
(3.13)

= κ |sinh(ϕ+ c)| :

∣∣∣κ′

cosh (ϕ+ c) + κτ sinh(ϕ+ c)
∣∣∣

κ2 cosh (ϕ+ c)
,

| τ∗| =
κ3 cosh2(ϕ+ c) |sinh(ϕ+ c)|

|κ′ cosh(ϕ+ c) + κτ sinh(ϕ+ c)|
.

�

Theorem 3.4 Let β : I −→ E3
1 be the evolute of the unit speed spacelike curve α : I −→ E3

1 .

Let the curvature and torsion of the curve β be κ∗ and τ∗, respectively. Then
∣∣∣∣
τ∗

κ∗

∣∣∣∣ = |tanh(ϕ+ c)| . (3.14)

Furthermore, we denote by β(1) and β (2), the evolute curves obtained by using c1 and c2

instead of c, respectively. The tangents of the curves β(1) and β (2) at the points β(1)(s) and

β(2)(s) intersect at the point α(s) . The measure of the angle between the tangents is c1 − c2.

Proof The Eq. (3.14) is obtained easily by using Eq. (3.12) and Eq. (3.13), i.e.,
∣∣∣∣
τ∗

κ∗

∣∣∣∣ =
κ |sinh (ϕ+ c)|

‖β′‖L
:
κ cosh (ϕ+ c)

‖β′‖L
= |tanh(ϕ+ c)| .

The measure of the angle between the vectors
−−−−−−−−→
α(s)β(1)(s) and V2(s), and between the vectors

−−−−−−−−→
α(s)β(2)(s) andN(s) are ϕ(s)+c1 and ϕ(s)+c2, respectively. The vector

−−−−−−−−−→
α(s)β(1)(s) is parallel

to the tangent of the curve β(1) at the point β(1)(s). The vector
−−−−−−−−→
α(s)β(2)(s) is parallel to the

tangent of the curve β(2) at the point β(2)(s). Furthermore, since
−−−−−−−−→
α(s)β(1)(s) ,

−−−−−−−−→
α(s)β(1)(s) and

−→
N are perpendicular to the vector T (s), these three vectors are planar. Then, the measure of

the angle between the tangents of the curves β(1) and β(2) at the points β(1)(s) and β(2)(s) is

ϕ(s) + c1 − [ϕ(s) + c2] = c1 − c2.

So, the proof is completed. �

Theorem 3.5 Suppose that, two different evolutes of the spacelike curve a spacelike principal

normal curve α are given. Let the points on the evolutes of the curve α corresponding to the

point P be P1 and P2. Then the angle P̂1P P2 is constant.

Proof Let the evolutes of the curve α be β and γ. Let the arc-length parameters of the

α, β and γ be s, s∗ and ŝ , respectively. Let the curvatures of the curves α, β and γ be k, k∗ and
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k̂ respectively. And let the Frenet vectors of the curves α, β and γ be {T,N,B} , {T ∗, N∗, B∗}

and
{
T̂ , N̂ , B̂

}
. Then

T = N∗, T = N̂ . (3.15)

Since the curves β and γ are evolute, then

〈T, T ∗〉L =
〈
T, T̂

〉
L

= 0 (3.16)

Therefore, if f(s) =
〈
T ∗, T̂

〉
L
, then we have

(f)
′

(s) =
〈
(T ∗)

′

, T̂
〉
L

+

〈
T ∗,

(
T̂

)′
〉

L

=

〈
κ∗N∗ ds

∗

ds
, T̂

〉

L

+

〈
T ∗, κ̂N̂

dŝ

ds

〉

L

= κ∗
ds∗

ds

〈
N∗, T̂

〉
L

+ κ̂
dŝ

ds

〈
T ∗, N̂

〉
L

= κ∗
ds∗

ds

〈
T, T̂

〉
L

+ κ̂
dŝ

ds
〈T ∗, N∗〉L

= κ∗
ds∗

ds
.0 + κ̂

dŝ

ds
.0

(f)
′

(s) = 0.

Therefore, we have f(s) = θ =constant. Hence, m
(
P̂1PP2

)
= m

(
T ∗, T̂

)
= θ =constant. �
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Abstract In this study, position vector of a Lorentzian plane curve (space-like or time-

like, i.e.) is investigated. First, a system of differential equation whose solution gives the

components of the position vector on the Frenet axis is constructed. By means of solution of

mentioned system, position vector of all such curves according to Frenet frame is obtained.

Thereafter, it is proven that, position vector and curvature of a Lorentzian plane curve satisfy

a vector differential equation of third order. Moreover, using this result, position vector of

such curves with respect to standard frame is presented. By this way, we present a short

contribution to Smarandache geometries.

Key Words Classical differential geometry, Smarandache geometries, Lorentzian plane,

position vector.

AMS(2000): 53B30, 51B20.

§1. Introduction

In recent years, the theory of degenerate submanifolds is treated by the researchers and some

of classical differential geometry topics are extended to Lorentzian manifolds. For instance in

[1], author deeply studies theory of the curves and surfaces and also presents mathematical

principles about theory of Relativitiy. Also, T. Ikawa [4] presents some characterizations of the

theory of curves in an indefinite-Riemannian manifold.

F. Smarandache in [2], defined a geometry which has at least one Smarandachely denied

axiom, i.e., an axiom behaves in at least two different ways within the same space, i.e., validated

and invalided, or only invalided but in multiple distinct ways and a Smarandache n-manifold is

a n- manifold that support a Smarandache geometry.

Since, following these constructions, nearly all existent geometries, such as those of Euclid

geometry, Lobachevshy- Bolyai geometry, Riemann geometry, Weyl geometry, K a hler geometry

and Finsler geometry, ...,etc., are their sub-geometries (further details, see [3].

In the presented paper, we have determined position vector of a Lorentzian plane curve.

First, using Frenet formula, we have constructed a system of differential equation. Solution

of it yields components of the position vector on Frenet axis. Thereafter, again, using Frenet

equations, we have constructed a vector differential equation with respect to position vector.

Moreover, its solution has given us position vector the curve according to standard Euclidean

frame. Since, we get a short contribution about Smarandache geometries.

1Received November 24, 2008. Accepted January 12, 2009.
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§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the Lorentzian plane are briefly presented (A more complete elementary treatment can be

found in [1], [4], [5]).

Let L2 be the Lorentzian plane with metric

g = dx2
1 − dx2

2, (1)

where x1 and x2 are rectangular coordinate system. A vector a of L2 is said to be space-like if

g(a, a) > 0 or a = 0, time-like if g(a, a) < 0 and null if g(a, a) = 0 for a 6= 0. A curve x is a

smooth mapping x : I →L2 from an open interval I onto L2. Let s be an arbitrary parameter of

x. By x = (x1(s), x2(s)), we denote the orthogonal coordinate representation of x. The vector

dx

ds
=

(
dx1

ds
,
dx2

ds

)
= t (2)

is called the tangent vector field of the curve x = x(s). If tangent vector field t of x(s) is a

space-like, time-like or null, then, the curve x(s) is called space-like, time-like or null, respec-

tively.

In the rest of the paper, we shall consider non-null curves. When the tangent vector field

t is non-null, we can have the arc length parameter s and have the Frenet formula

 ṫ

ṅ


 =


 0 κ

κ 0





 t

n


 (3)

where κ = κ(s) is the curvature of the unit spped curve x = x(s). The vector field n is called

the normal vector field of the curve x(s). Remark that, we have the same representation of the

Frenet formula regardless of whether the curve is space-like ot time-like. And, if φ(s) is the

slope angle of the curve, then we have

dφ

ds
= κ(s). (4)

§3. Position vector of a Lorentzian plane curve

Let x = x(s) be an unit speed curve on the plane L2. Then, we can write position vector of

x(s) with respect to Frenet frame as

x = x(s) = δt+ λn (5)

where δ and λ are arbitrary functions of s. Differentiating both sides of (5) and using Frenet

equations, we have a system of ordinary differential equations as follows:

dδ
ds + λκ− 1 = 0

dλ
ds + δκ = 0

. (6)
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Using (6)1 in (6)2, we write
d

ds

[
1

κ

(
1 −

dδ

ds

)]
+ δκ = 0. (7)

This differential equation of second order, according to δ, is a characterization for the curve

x = x(s). Using an exchange variable φ =
s∫
0

κds in (7), we easily arrive

d2δ

dφ2
− δ =

dρ

dφ
, (8)

where κ = 1
ρ . By the method of variation of parameters and hyperbolic functions, solution of

(8) yields

δ = coshφ


A−

φ∫

0

ρ sinhφdφ


 + sinhφ


B +

φ∫

0

ρ coshφdφ


 . (9)

Here A,B ∈ R. Rewriting the exchange variable, that is,

δ = cosh

s∫

0

κds


A−

φ∫

0


sinh

s∫

0

κds


 ds


 + sinh

s∫

0

κds


B +

φ∫

0


cosh

s∫

0

κds


 ds


 . (10)

Denoting differentation of equation (10) as dδ
ds = ξ(s), we have

λ = ρ(ξ(s) − 1). (11)

Since, we give the following theorem.

Theorem 3.1 Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in

Lorentzian plane. Position vector of the curve x = x(s) with respect to Frenet frame can be

composed by the equations (10) and (11).

§4. Vector differential equation of third order characterizes Lorentzian plane curves

Theorem 4.1 Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in

Lorentzian plane. Position vector and curvature of it satisfy a vector differential equation of

third order.

Proof Let x = x(s) be an arbitrary unit speed curve (space-like or time-like, i.e.) in

Lorentzian plane. Then formula (3) holds. Using (3)1 in (3)2, we easily have

d

ds

(
1

κ

dt

ds

)
− κt = 0, (12)

where dx
ds = t = ẋ. Consequently, we write

d

ds

(
1

κ

d2x

ds2

)
− κ

dx

ds
= 0. (13)

Formula (13) completes the proof.
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Let us solve equation (12) with respect to t. Here, we know, t = (t1, t2) = (ẋ1, ẋ2). Using

the exchange variable φ =
s∫
0

κds in (), we obtain

d2t

dφ2
− t = 0 (14)

or in parametric for
d2t1
dφ2 − t1 = 0

d2t2
dφ2 − t2 = 0

. (15)

It follows that

t1 = ε1e
φ − ε2e

−φ

t2 = ε3e
φ − ε4e

−φ
, (16)

where εi ∈ R for 1 ≤ i ≤ 4. Therefore, we get

t1 = γ1 cosh
s∫
0

κds+ γ2 sinh
s∫
0

κds

t2 = γ3 cosh
s∫
0

κds+ γ4 sinh
s∫
0

κds
. (17)

Finally, we give the following theorem.

Theorem 4.2 Let x = x(s) be an arbitrary unit speed curve (space-like ot time-like, i.e.) in

Lorentzian plane. Position vector of it with respect to standard frame can be expressed as

x = x(s) =




s∫
0

{
γ1 cosh

s∫
0

κds+ γ2 sinh
s∫
0

κds

}
ds,

s∫
0

{
γ3 cosh

s∫
0

κds+ γ4 sinh
s∫
0

κds

}
ds


 (18)

for the real numbers γ1, ..., γ4. �
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Abstract For an integer k ≥ 1, a cycle-complete graph Smarandache-Ramsey number

rsk(Cm,Kn) is the smallest integer N such that every graph G of order N contains k cycles,

Cm, on m vertices or the complement of G contains k complete graph, Kn, on n vertices.

If k = 1, then the Smarandache-Ramsey number rsk(Cm,Kn) is nothing but the classical

Ramsey number r(Cm,Kn). Radziszowski and Tse proved that r(C4,K9) ≥ 30. Also, By

considering the known graph G = 7K4, we have that r(C5,K8) ≥ 29. In this paper we give

an upper bound of r(C4,K9) and r(C5,K8).

Key Words: (Smarandache-)Ramsey number; independent set; cycle; complete graph.
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§1. Introduction

Through out this paper we adopt the standard notations, a cycle on m vertices will be denoted

by Cm and the complete graph on n vertices by Kn. The minimum degree of a graph G is

denoted by δ(G). An independent set of vertices of a graph G is a subset of V (G) in which

no two vertices are adjacent. The independence number of a graph G,α(G), is the size of the

largest independent set.

For an integer k ≥ 1, a Smarandache-Ramsey number rsk(H,F ) is the smallest integer N

such that every graph G of order N contains k graph H , or the complement of G contains k

graph F . If k = 1, then the Smarandache-Ramsey number rsk (H,F ) is nothing but the classical

Ramsey number r(H,F ). r(Cm,Kn) is called the cycle-complete graph Ramsey number. In one

of the earliest contributions to graphical Ramsey theory, Bondy and Erdős [3] proved that for

all m ≥ n2−2, r(Cm,Kn) = (m−1)(n−1)+1. The restriction in the above result was improved

by Nikiforov [10] when he proved the equality for m ≥ 4n+ 2. Erdős et al. [5] conjectured that

r(Cm,Kn) = (m− 1)(n− 1)+1, for all m ≥ n ≥ 3 except r(C3,K3) = 6. The conjectured were

1Received December 12, 2008. Accepted January 16, 2009.
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confirmed for some n = 3, 4, 5 and 6 (see [2], [6], [12], and [14]). Moreover, in [7] and [8] the

conjecture was proved for m = n = 8, and m = 8 with n = 7. Also, the case n = m = 7 was

proved independently by Baniabedalruhman and Jaradat [1] and Cheng et al. [4].

In a related work, Radziszowski and Tse [11] showed that r(C4,K7) = 22, r(C4,K8) = 26

and r(C4,K9) ≥ 30. Also, In [8] Jayawardene and Rousseau proved that r(C5,K6) = 21.

Recently, Schiermeyer [13] and Cheng et al. [4] proved that r(C5,K7) = 25 and r(C6,K7) = 25,

respectively. In this article we prove the following Theorems:

Theorem A The complete-cycle Ramsey number r(C4,K9) ≤ 33.

Theorem B The complete-cycle Ramsey number r(C5,K8) ≤ 33.

In the rest of this work, N(u) stands for the neighbor of the vertex u which is the set

of all vertices of G that are adjacent to u and N [u] = N(u) ∪ {u}. For a subgraph R of the

graph G and U ⊆ V (G), NR(U) is defined as (∪u∈UN(u)) ∩ V (R). Finally, 〈V1〉G stands for

the subgraph of G whose vertex set is V1 ⊆ V (G) and whose edge set is the set of those edges

of G that have both ends in V1 and is called the subgraph of G induced by V1.

§2. Proof of Theorem A

We prove our result using the contradiction. Suppose that G is a graph of order 33 which

contains neither C4 nor a 9-element independent set. Then we have the following:

1. δ(G) ≥ 7. Assume that u is a vertex with d(u) ≤ 6. Then |V (G) −N [u]| ≥ 33 − 7 = 26.

But r(C4,K8) = 26. Hence, G −N [u] contains an 8-element independent set. This set with u

form a 9-element independent set. That is a contradiction.

2. G contains no K3. Suppose that G contains K3. Let {u1, u2, u3} be the vertex set of K3.

Also, let R = G − {u1, u2, u3} and Ui = N(ui) ∩ V (R). Then Ui ∩ Uj = ∅ because otherwise

G contains C4. Also, for each x ∈ Ui and y ∈ Ui, we have that xy /∈ E(G) because otherwise

G contains C4. Now, since δ(G) ≥ 7, |Ui| ≥ 5. Since r(P3,K3) = 5, as a result either 〈Ui〉G
contains P3 for some i = 1, 2, 3 and so G contains C4 or 〈Ui〉G does not contains P3 for each

i = 1, 2, 3 and so each of which contains a 3-element independent set, Thus, three independent

set of each consists a 9-element independent set. This is a contradiction.

Now, let u be a vertex of G. Let N(u) = {u1, u2, . . . , ur} where r ≥ 7. Since G contains

no K3, as a result 〈N(u) ∪ {u}〉G forms a star. And so,{u1, u2, . . . , ur} is independent. Now,

let N(u1) = {v1, v2, . . . , vk, u} where k ≥ 6. For the same reasons, 〈N(u1) ∪ {u1}〉G forms

a star and so {v1, v2, . . . , vk} is independent. Since G contains no K3 and no C4. Then

{u2, . . . , ur, v1, v2, . . . , vk} is an independent set. That is a contradiction. The proof is complete.

�

§3. Proof of Theorem B

We prove our result by using the contradiction. Assume that G is a graph of order 33 which
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contains neither C5 nor an 8-element independent set. By an argument similar to the one in

Theorem A and by noting that r(C5,K8) = 25, we can show that δ(G) ≥ 8. Now, we have the

following:

1. G contains K3. Suppose that G does not contain K3. Let u ∈ V (G) and r = |N(u)|. Then

the induced subgraph < N(u) >G does not contain P2. Hence < N(u) >G is a null graph

with r vertices. Since α(G) ≤ 7, as a result r ≤ 7. Therefore, 8 ≤ δ(G) ≤ r ≤ 7. That is a

contradiction.

2. G contains K4 − e. Let U = {u1, u2, u3} be the vertex set of K3. Let R = G − U and

Ui = N(ui) ∩ V (R) for each 1 ≤ i ≤ 3. Since δ(G) ≥ 8, |Ui| ≥ 6 for all 1 ≤ i ≤ 3. Now we have

the following two cases:

Case 1: Ui∩Uj 6= ∅ for some 1 ≤ i < j ≤ 3, say w ∈ Ui∩Uj . Then it is clear that G contains

K4 − e. In fact, the induced subgraph 〈U ∪ {w}〉G contains K4 − e.

Case 2 : Ui ∩ Uj = ∅ for each 1 ≤ i < j ≤ 3. Then α(〈Ui〉G) ≤ 2, for some 1 ≤ i ≤ 3. To see

that suppose that α(〈Ui〉G) ≥ 3 for each 1 ≤ i ≤ 3. Since between any two vertices of U there

is a path of order 3, as a result for any x ∈ Ui and y ∈ Uj , we have xy /∈ E(G), 1 ≤ i < j ≤ 3

because otherwise G contains C5. Therefore, α(〈U1 ∪ U2 ∪ U3〉G) ≥ 3 + 3 + 3 = 9. and so

α(G) ≥ 9, which is a contradiction.

Now, since |Ui| ≥ 6 and α(〈Ui〉G) ≤ 2, for some 1 ≤ i ≤ 3 and since r(K3,K3) = 6 as a result

the induced subgraph 〈Ui〉G contains K3. And so 〈Ui ∪ {ui}〉G contains K4. Hence, G contains

K4 − e.

3. G contains K4. Let U = {u1, u2, u3, u4} be the vertex set of K4 − e, where the induced

subgraph of {u1, u2, u3} is isomorphic to K3. Without loss of generality we may assume that

u1u4, u2u4 ∈ E(G). We consider the case where u3u4 /∈ E(G) because otherwise the result is

obtained. Let R = G−U and Ui = N(ui)∩ V (R) for each 1 ≤ i ≤ 4. Then as in 2, |Ui| ≥ 5 for

i = 1, 2 and |Ui| ≥ 6 for i = 3, 4. To this end, we have that Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 4

except possibly for i = 1 and j = 2 (To see that suppose that w ∈ Ui∩Uj for some 1 ≤ i < j ≤ 4

with i 6= 1 or j 6= 2. Then we consider the following cases:

(1) i = 3 and j = 4. Then u3wu4u1u2u3 is a cycle of order 5, a contradiction.

(2) i = 3 and j = 2. Then u3wu2u4u1u3 is a cycle of order 5, a contradiction.

(3) i, j are not as in the above cases. Then by similar argument as in (2) G contains a C5.

This is a contradiction.

Now, By arguing as in Case 2 of 2, α(〈U2〉G) ≤ 1 or α(〈Ui〉G) ≤ 2, for i = 3 or 4. And so, the

induced subgraph 〈Ui〉G contains K3 for some 2 ≤ i ≤ 4. Thus, G contains K4.

To this end, let U = {u1, u2, u3, u4} be the vertex set of K4. Let R = G − U and Ui =

N(ui) ∩ V (R) for each 1 ≤ i ≤ 4. Since δ(G) ≥ 8, |Ui| ≥ 5 for all 1 ≤ i ≤ 4. Since there is a

path of order 4 joining any two vertices of U , as a result Ui ∩ Uj = ∅ for all 1 ≤ i < j ≤ 4

(since otherwise, if w ∈ Ui ∩ Uj for some 1 ≤ i < j ≤ 4, then the concatenation of the ui-uj

path of order 4 with uiwuj is a cycle of order 5, a contradiction). Similarly, since there is a

path of order 3 joining any two vertices of U , as a result for all 1 ≤ i < j ≤ 4 and for all x ∈ Ui

and y ∈ Uj , xy /∈ E(G) (otherwise, if there are 1 ≤ i < j ≤ 4 such that x ∈ Ui and y ∈ Uj ,

and xy ∈ E(G), then the concatenation of the ui-uj path of order 3 with uixyuj is a cycle of
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order 5, a contradiction). Also, since there is a path of order 2 joining any two vertices of U ,

as a result NR(Ui) ∩ NR(Uj) = ∅, 1 ≤ i < j ≤ 4 (otherwise, if there are 1 ≤ i < j ≤ 4 such

that w ∈ NR(Ui) ∩NR(Uj), then the concatenation of the ui-uj path of order 2 with uixwyuj

where x ∈ Ui and y ∈ Uj , and xw, yw ∈ E(G) is a cycle of order 5, a contradiction). Therefore,

|Ui ∪NR(Ui) ∪ {ui}| ≥ δ(G) + 1. Thus, |V (G)| ≥ 4(δ(G) + 1) ≥ 4(8 + 1) = 4.9 = 36. That

contradicts the fact that the order of G is 33. �
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[3] J.A. Bondy and P. Erdős, Ramsey numbers for cycles in graphs, Journal of Combinatorial

Theory, Series B, 14 (1973), 46-54.

[4] T.C. E. Cheng, Y. Chen, Y. Zhang and C.T. Ng, The Ramsey numbers for a cycle of length

six or seven versus a clique of order seven, Discrete Mathematics, 307 (2007), 1047-1053.
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Abstract A regular curve with more than 2 breadths in Minkowski 3-space is called

a Smarandache Breadth Curve [8]. In this short paper, we adapt notion of Smarandache

breadth curves to Pseudo null curves in Minkowski space-time and study a special case

of Smarandache breadth curves. Some characterizations of Pseudo null curves of constant

breadth in Minkowski space-time are presented.
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§1. Introduction

Curves of constant breadth were introduced by L. Euler [4]. In [6], some geometric properties

of plane curves of constant breadth are given. And, in another work [7], these properties are

studied in the Euclidean 3-Space E3. Moreover, M. Fujivara [5] had obtained a problem to

determine whether there exist space curve of constant breadth or not, and he defined “breadth”

for space curves and obtained these curves on a surface of constant breadth. In [1], this kind

curves are studied in four dimensional Euclidean space E4.

A regular curve with more than 2 breadths in Minkowski 3-space is called a Smarandache

Breadth Curve. In this paper, we adapt Smarandache breadth curves to pseudo null curves in

Minkowski space-time. We investigate position vector of simple closed pseudo null curves and

give some characterizations in the case of constant breadth. We used the method of [7], [8].

§2. Preliminaries

To meet the requirements in the next sections, here, the basic elements of the theory of curves

in the space E4
1 are briefly presented (A more complete elementary treatment can be found in

[2]).

Minkowski space-time E4
1 is an Euclidean space E4 provided with the standard flat metric

given by

1Received January 5, 2009. Accepted February 6, 2009.
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g = −dx2
1 + dx2

2 + dx2
3 + dx2

4,

where (x1, x2, x3, x4) is a rectangular coordinate system in E4
1 .

Since g is an indefinite metric, recall that a vector v ∈ E4
1 can have one of the three causal

characters; it can be space-like if g(v, v) > 0 or v = 0, time-like if g(v, v) < 0 and null (light-like)

if g(v, v)=0 and v 6= 0. Similarly, an arbitrary curve α = α(s) in E4
1 can be locally be space-like,

time-like or null (light-like), if all of its velocity vectors α′(s) are respectively space-like, time-

like or null. Also, recall the norm of a vector v is given by ‖v‖ =
√
|g(v, v)|. Therefore, v is a

unit vector if g(v, v) = ±1. Next, vectors v, w in E4
1 are said to be orthogonal if g(v, w) = 0.

The velocity of the curve α(s) is given by ‖α′(s)‖. And α(s) is said to be parametrized by

arclength function s, if g(α′(s), α′(s)) = ±1.

Denote by {T (s), N(s), B1(s), B2(s)} the moving Frenet frame along the curve α(s) in

the space E4
1 . Then T,N,B1, B2 are, respectively, the tangent, the principal normal, the first

binormal and the second binormal vector fields. Recall that space-like curve with space-like

first binormal and null principal normal with null second binormal is called a pseudo null curve

in Minkowski space-time. Let α = α(s) be a pseudo unit speed null curve in E4
1 . Then the

following Frenet equations are given in [3]:

α = α(s) is a pseudo null curve. Then we can write that




T ′

N ′

B′
1

B′
2




=




0 κ 0 0

0 0 τ 0

0 σ 0 −τ

−κ 0 −σ 0







T

N

B1

B2




(1)

where T,N,B1 and B2 are mutually orthogonal vectors satisfying equations

g(T, T ) = 1, g(B1, B1) = 1, g(N,N) = g(B2, B2) = 0, g(N,B2) = 1,

g(T,N) = g(T,B1) = g(T,B2) = g(N,B1) = g(B1, B2) = 0.

And here, κ, τ and σ are first, second and third curvature of the curve α, respectively. And, a

pseudo null curve’s first curvature κ can take only two values: 0 when α is a straight line or 1

in all other cases. In the rest of the paper, we shall assume κ = 1 at every point.

In the same space, authors, in [3], gave a characterization with the following theorem.

Theorem 2.1 Let α = α(s) be a pseudo null unit speed curve with curvatures κ = 1, τ 6= 0

and σ 6= 0 for each s ∈ I ⊂ R. Then, α lies on the hyperbolic sphere (H3
0 ), if and only if

σ

τ
= constant < 0.

§3. Smarandache breadth pseudo null curves in E4
1

In this section, first, we adapt the notion of Smarandache breadth curves to the space E4
1 with

the following definition.

Definition 3.1 A regular curve with more than 2 breadths in Minkowski space-time is called a

Smarandache breadth curve.
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Let ϕ = ϕ(s) be a Smarandache Breadth pseudo null curve. Moreover, let us suppose

ϕ = ϕ(s) simple closed pseudo null curve in the space E4
1 . These curves will be denoted by

(C). The normal plane at every point P on the curve meets the curve at a single point Q other

than P . We call the point Q the opposite point of P . We consider a curve in the class Γ as in

[5] having parallel tangents T and T ∗ in opposite directions at the opposite points ϕ and ϕ∗ of

the curve. A simple closed pseudo null curve having parallel tangents in opposite directions at

opposite points can be represented with respect to Frenet frame by the equation

ϕ∗ = ϕ+m1T +m2N +m3B1 +m4B2, (2)

wheremi(s), 1 ≤ i ≤ 4 are arbitrary functions and ϕ and ϕ∗ are opposite points. Differentiating

both sides of (2) and considering Frenet equations, we have

dϕ∗

ds
= T ∗ ds

∗

ds
= (

dm1

ds
−m4 + 1)T + (

dm2

ds
+m1 +m3σ)N+

(
dm3

ds
+m2τ −m4σ)B1 + (

dm4

ds
−m3τ)B2.

(3)

We know that T ∗ = −T and if we call φ as the angle between the tangent of the curve (C) at

point ϕ(s) with a given fixed direction and consider
dφ

ds
= κ = 1 =

dφ

ds∗
= κ∗, since ds = ds∗.

Then, we get the following system of ordinary differential equations:

m′
1 = m4 − 2

m′
2 = −m1 −m3σ

m′
3 = m4σ −m2τ

m′
4 = m3τ

(4)

Using system (4), we have the following differential equation with respect to m1 as

d

ds

[
1

τ

d

ds
(
1

τ

d2m1

ds2
)

]
−
σ

τ

d2m1

ds2
−

d

ds

[
σ

τ
(
dm1

ds
+ 2)

]
−m1 = 0. (5)

Corollary 3.2 The differential equation of fourth order with variable coefficients (5) is a

characterization for ϕ∗. Via its solution, position vector of a simple closed pseudo null curve

can be determined.

However, a general solution of (5) has not yet been found. If the distance between opposite

points of (C) and (C∗) is constant, then, due to null frame vectors, we may express

‖ϕ∗ − ϕ‖ = m2
1 + 2m2m4 +m2

3 = l2 = constant. (6)

Hence, we write

m1
dm1

ds
+m2

dm4

ds
+m4

dm2

ds
+m3

dm3

ds
= 0. (7)

Considering system (4), we obtain

m1 = 0. (8)
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Since, we have, respectively

m2 = s+ c

m3 = 0

m4 = 2

(9)

Using obtained equations and considering (4)2, we have
σ

τ
=

s+ c

2
. Thus, we immediately

arrive at the following results.

Corollary 3.3 Let ϕ = ϕ(s) be a pseudo null curve of constant breadth. Then;

i) There is a relation among curvature functions as

σ

τ
=
s+ c

2
. (10)

ii) There are no spherical pseudo null curve of constant breadth in Minkowski space-time.

iii) Position vector of a pseudo null curve of constant breadth can be expressed

ϕ∗ = ϕ+ (s+ c)N + 2B2. (11)
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Abstract A Smarandachely k − constrained labeling of a graph G(V,E) is a bijective

mapping f : V ∪E → {1, 2, .., |V |+ |E|} with the additional conditions that |f(u)−f(v)| ≥ k

whenever uv ∈ E, |f(u)−f(uv)| ≥ k and |f(uv)−f(vw)| ≥ k whenever u 6= w, for an integer

k ≥ 2. A graph G which admits a such labeling is called a Smarandachely k− constrained

total graph, abbreviated as k − CTG. The minimum number of isolated vertices required

for a given graph G to make the resultant graph a k − CTG is called the k − constrained

number of the graph G and is denoted by tk(G) . Here we obtain tk(K1,n) = n(k−2), for all

k ≥ 3 and n ≥ 4 and also prove that wheels, cycles, paths, complete graphs and Cartesian

product of any two non trivial graphs etc., are CTG’s for some k .In addition we pose some

open problems.

Key Words: Smarandachely k-constrained labeling, Smarandachely k-constrained total

graph.

AMS(2000): 05C78

§1. Introduction

All the graphs considered in this paper are simple, finite and undirected. For standard termi-

nology and notations we refer [2], [3]. There are several types of graph labelings studied by

various authors. We refer [1] for the entire survey on graph labeling. Here we introduce a new

labeling and call it as Smarandachely k-constrained labeling. Let G = (V,E) be a graph. A

bijective mapping f : V ∪E → {1, 2, ..., |V | + |E|} is called a Smarandachely k − constrained

labeling of G if it satisfies the following conditions for every u, v, w ∈ V :

(i) |f(u) − f(v)| ≥ k whenever uv ∈ E;

(ii) |f(u) − f(uv)| ≥ k;

(iii) |f(uv) − f(vw)| ≥ k whenever u 6= w.

A graph G which admits such a labeling is called a Smarandachely k-constrained total

graph, abbreviated as k − CTG. We note here that every graph G need not be a k − CTG

(e.g. the path P2). However, with the addition of some isolated vertices, we can always make

1Received January 10, 2009. Accepted February 12, 2009.
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the resultant graph a k −CTG. The minimum n such that the graph G ∪Kn is a k −CTG is

called k-constrained number of the graph G and denoted by tk(G), the corresponding labeling is

called a minimum k-constrained total labeling of G. Further it follows from the definitions that

if G is a k − CTG, then its total graph T (G) is k − chromatic (i.e. minimum span of L(k, 1)

labeling of T (G) is |V (T (G))|) and vice-versa.

If G and H are any two graphs, then G ∪H , G +H , and G ×H respectively denote the

Union, Sum and Cartesian product of G and H . For any real number n, ⌈n⌉ and ⌊n⌋ are

respectively denote the smallest integer greater than or equal to n and the greatest integer less

than or equal to n.

In this paper we obtain tk(K1,n) = n(k − 2), for all k ≥ 3 and is n(k − 2) + 1 if n = 3 or

k = 2, and also prove that wheels, cycles, paths, complete graphs and Cartesian product of any

two non trivial graphs etc., are CTG’s for some k. In addition we pose some open problems.

§2. Results and Open problems on 2-CTG

Observation 2.1 Every totally disconnected graph is trivially a k − CTG, for all k ≥ 1 and

every graph is trivially a 1 − CTG.

Observation 2.2 No nontrivial connected 2−CTG of order less than 4, and P4 is the smallest

such connected graph.

Observation 2.3 If G1 and G2 are k − CTG’s, then their union is again a k − CTG.

Theorem 2.4 For a path Pn on n vertices, t2(Pn)=





2 if n = 2,

1 if n = 3,

0 else.

Proof Let V (Pn) = {v1, v2, ..., vn} and E(Pn) = {vivi+1|1 ≤ i ≤ n− 1}. Consider a total

labeling f : V ∪E −→ {1, 2, 3, ..., 2n−1} defined as f(v1) = 2n−3; f(v2) = 2n−1; f(v1v2) = 2;

f(v2v3) = 4; and f(vk) = 2k − 5, f(vkvk+1) = 2k, for all k ≥ 3. This function f serves as a

Smarandachely 2-constrained labeling for Pn, for n ≥ 4. Further, the cases n = 2 and n = 3

are easy to prove. �

11 1 7 13 3 9 15 56 12 2 8 14 4 10

Figure 1: A 2-constrained labeling of a path P7.

Corollary 2.5 For every n ≥ 4, the cycle Cn is a 2-CTG and when n = 3, t2(Cn) = 2.

Proof If n ≥ 4, then the result follows immediately by joining end vertices of Pn by an

edge v1vn , and, extending the total labeling f of the path as in the proof of the Theorem 2.4

above to include f(v1v2) = 2n.

Consider the case n = 3. If the integers a and a + 1 are used as labels, then one of them

is assigned for a vertex and other is to the edge not incident with that vertex. But then, a+ 2
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can not be used to label the vertex or an edge in C3. Therefore, for each three consecutive

integers we should leave at least one integer to label C3. Hence the span of any Smarandachely

2-constrained labeling of C3 should be at least 8. So t2(C3) ≥ 2 . Now from the Figure 3 it is

clear that t2(C3) ≤ 2 . Thus t2(C3) = 2.

Figure 2: A 2-constrained labeling of a path C7

Figure 3: A 2-constrained labeling of a path C3 ∪K2

Lemma 2.6 For any integer n ≥ 3, t2(K1,n) = 1.

Proof Since each edge is incident with the central vertex and every other vertex is adjacent

to the central vertex, no two consecutive integers can be used to label the central vertex and an

edge (or a vertex) of the star. Hence t2(K1,n) ≥ 1 . Now to prove the opposite inequality, let

Ǵ = K1,n ∪K1, v0 be the central vertex and v1, v2, ..., vn be the end vertices of the star K1,n.

Let vn+1 be the isolated vertex of Ǵ.

We now define f : Ǵ→ {1, 2, ..., 2n+ 2} as follows:

f(v0) = 2n + 2; f(v1) = 2n − 1; f(vn+1) = 2n + 1; f(vk) = 2k − 3 for all k, 2 ≤ k ≤ n;

f(v0vi) = 2i, for all i, 1 ≤ i ≤ n.

The function f defined above is clearly a Smarandachely 2-constrained labeling of Ǵ. So

t2(K1,n) ≤ 1. Hence the result. �

Lemma 2.7 The graph K2,n is a 2-CTG if and only if n ≥ 2.

Proof When n = 1 or n = 2 the result follows respectively from Theorem 2.4 and Corollary

2.5. For n ≥ 3, let H1 = {v1, v2, ..., vn} and H2 = {u1, u2} be the bipartitions of the graph

K2,n . Define a total labeling f as follows:

f(u1) = 2n+ 1; f(u2) = 2n+ 2; f(v1) = 2n− 1 ; f(vi+1) = 2i− 1 , for all i, 1 ≤ i ≤ n− 1;

and for all odd j, f(u1vj) = 2(n + 1) + j ,f(u2vj) = 2j ; and for all even j, f(u1vj) = 2j,

f(u2vj) = 2(n+ 1) + j, 1 ≤ j ≤ n. Since f assigns no two consecutive integers for the adjacent
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or incident pairs, it is a Smarandachely 2-constrained labeling with span 3n+ 2. Hence K2,n is

a 2-CTG. �

Figure 4: A 2-constrained total labeling of K2,2

Figure 5: A 2-constrained total labeling of K2,5

A function f : E → {1, 2, ..., |E|} is called a k-constrained edge labeling of a graph G(V,E)

if |f(e1)− f(e2)| ≥ k whenever the edges e1 and e2 are adjacent in G. A graph G which admits

a k-constrained edge labeling is called a k − constrained edge labeled graph (k − CEG).

Lemma 2.8 For any two positive integers m,n ≥ 3, the complete bipartite graph Km,n is a

2-CEG.

Proof Without loss of generality, we assume that m ≥ n. Let U = {u0, u1, u3, ..., um−1}

and V = {v0, v1, v2, ..., vn−1} be the bipartitions of Km,n.

Case(i): m 6≡ 2(modn)

Define a function f : E(Km.n) → {1, 2, 3, ...,mn}, by

f(uivi+k(mod n)) = km+ i+ 1, for all i and k, where 0 ≤ i ≤ m− 1 and 0 ≤ k ≤ n− 1.

The function f defined above is clearly a bijection. Further, the two distinct edges uivj

and ulvk are adjacent only if i = l or j = k, but not both. So for 0 ≤ j, k ≤ n − 1, we have

|f(uivj)− f(uivk)| = |[(j− i)m+ i+ 1]− [(k− i)m+ i+ 1]| = |(j− k)m| = |(j− k)|m ≥ m ≥ 2,

whenever j 6= k . And if j = k, then l 6= i and hence |f(uivj) − f(ulvj)| = |1 + i+m(i− j) −

1− l−m(j− l)| = |(i− l)+m(j− i− j+ l)| = |(i− l)(1−m)| = |m−1||l− i| ≥ 2 (since m ≥ 3).

Therefore the function f is a valid 2-constrained edge labeling.

Case(ii): m ≡ 2(mod n)

Relabel the vertices v0, v1, v2, ..., vn−1 in V respectively as v0, vn−1, v1, vn−2, v2, ..., v⌊n
2
⌋.
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Then the function f defined in the above case (i) serves again as a valid 2-constrained edge

labeling. �

Theorem 2.9 For the given positive integers m and n, with m ≥ n

t2(Km,n)=





2 if n = 1 and m = 1,

1 if n = 1 and m ≥ 2,

0 else.

Proof For n = 1 and m = 1 or 2, the result follows from Theorem 2.4. And the case

n = 1 and m ≥ 3 follows from Lemma 2.6. We now take the case n > 1. When n = 2,

m ≥ 2, the result follows by Lemma 2.7. If m,n ≥ 3, then by Lemma 2.8, there exists

a 2-constrained edge labeling f : E(Km,n) → {1, 2, ...,mn} . Let U = {u0, u1, ..., um−1}

and V = {v0, v1, v2, ..., vn−1} be the bipartitions of Km,n. We now consider a function g :

V (Km,n) ∪ E(Km,n) → {1, 2, 3, ....,m+ n+mn}, defined as follows:

g(ui) = i+ 1,

g(vj) = mn+m+ j + 1, and

g(uivj) = f(uivj) +m,

for all i, j such that 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

The function g so defined is a Smarandachely 2-constrained labeling of Km,n for m,n ≥ 3.

Hence the result. �

Theorem 2.10 If G1 and G2 are any two nontrivial connected graphs which are 2-CTG’s, then

G1 +G2 is a 2-CTG.

Proof Let G1(V1, E1) be a graph of order m and size q1 and G2(V2, E2) be a graph of order

n and size q2 . Let u0, u1, ..., um−1 be the vertices of G1 and v0, v1, v2, ..., vn−1 be the vertices

of G2 . Since G1 and G2 are 2-CTG’s, there exist Smarandachely 2-constrained labelings,

f1 : V (G1) ∪ E(G1) → {1, 2, 3, ....,m+ q1}, and f2 : V (G2) ∪ E(G2) → {1, 2, 3, ...., n+ q2} for

G1 and G2 respectively.

Let G = G1 +G2 and G∗ be the graph obtained from G by deleting all the edges of G1 as

well as G2. Then G∗ is a complete bipartite graph Km,n and G = G1 ∪ G2 ∪ G∗. Since both

the graphs G1 and G2 are 2-CTG’s, we have both m and n are at least 4, and hence by Lemma

2.8, there exists a 2-constrained edge labeling g : E(G∗) → {1, 2, ...,mn} for G∗. Since G1 is

Smarandachely 2-constrained total graph, the maximum label assigned to a vertex or edge is

m + q1. Let ui be the vertex of G1 such that m + q1 is assigned for the vertex ui or to an

edge incident with the vertex ui in G1 by the function f1. If g is not assigned 1 for the edge

incident with ui of G∗ , then just super impose the vertex ui of G1 with the vertex ui of G∗ for

all i, 0 ≤ i ≤ m− 1. Else if g is assigned 1 for an edge incident with ui then re-label the vertex

ui of G∗ as ui+1(mod m) for every i, 0 ≤ i ≤ m − 1, before the superimposition. Repeat the

process of superimposition of the vertex vi of G∗ with the corresponding vertex vi of G2 in the

similar manner depending on whether the largest assignment of g to an edge of G∗ adjacent to
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the smallest assignment 1 of G2 assigned by the function f2 or not. Now extend these functions

to the function f : V G ∪ E(G) → {1, 2, 3, ....,m+ n+ q1 + q2 +mn}, by defining it as follows:

f(x)=





f1(x), if x ∈ V (G1) ∪ E(G1),

f2(x) +m(n+ q1), if x ∈ V (G2) ∪ E(G2),

g(x) +m+ q1 if x = uivj for all i, j, 0 ≤ i ≤ m− 1, 0 ≤ j ≤ n− 1.

The function f defined above serves as a Smarandachely 2-constrained labeling. �

Corollary 2.11 For every integer n ≥ 4, the complete graph Kn is a 2-CTG.

Proof Follows from the following four Figures 6 to 9 and by Theorem 2.10 (since every

other complete graph is a successive sum of two or more of these graphs). �

Figure 6: A 2-constrained labeling of K4 Figure 7: A 2-constrained labeling of K5

Figure 8: A 2-constrained labeling of K6 Figure 9: A 2-constrained labeling of K7

Theorem 2.12 For any integer n ≥ 3, the wheel W1,n is a 2-CTG.

Proof Let v0 be the central vertex and v1, ..., vn be the rim vertices of W1,n. Define a total

labeling f on W1,n as; (i)f(v0) = 3n+ 1; (ii) For all i, 1 ≤ i ≤ n, f(vi) = 2i− 3(mod 2n); (iii)

f(v0vi) = 2i; and (iv) For all l, 0 ≤ l ≤ n, f(v1+lk(mod n)v2+lk(mod n)) = 2n + l + 1, where k

is any integer such that 2 ≤ k < n − 1 and gcd(n, k) = 1. The existence of such k for a given

integer n is obvious for all n except n = 3, 4 and 6. For n = 3, the result follows by Corollary

??. The required labeling for the special cases n = 4 and n = 6 are shown in Figures 10 and

11 below. �



56 ShreedharK, B. Sooryanarayana and RaghunathP

Figure 10: A 2-constrained labeling of W1,4

Figure 11:A 2-constrained labeling of W1,6

Figure 12:A 2-constrained labeling of W1,8Figure 13: A 2-constrained labeling of W1,9

We end up this section with the following open problem.

Problem 2.13 Determine the graph of order at least 4 which is not a 2-CTG?

§3. Results on k-CTG

We now prove the results of previous sections for general cases and give some open problems.

Observation 3.1 G is a k-CTG ⇒ G is a (k − 1)-CTG.

Lemma 3.2 If the path Pn on n vertices is a k-CTG for some k ≥ 2, then k ≤ 2n−3
2 .

Proof The result is obvious for the case n ≤ 4. In fact, if n ≤ 4, 2n − 3 ≤ 5 ⇒ k = 1 or

2, so the result follows by Theorem 2.4. Now assume that n ≥ 5. Let f be any Smarandachely

k-constrained labeling of the path Pn. Then the span of f is 2n − 1. Further f assigns the

integer 1 to a vertex or an edge.

Case (i) f(vi) = 1, for some i, 1 ≤ i ≤ n.
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Subcase (i) i 6= 1 (or i 6= n)

Figure 14: A minimum possible assignment for three consecutive vertices of a path.

The minimum assignment for the neighboring vertices of vi is shown in the Figure 14.

Since span of f is 2n− 1, we get 2k + 2 ≤ 2n− 1. Hence the result is true in this case.

Subcase (ii) i = 1 (or i = n)

In this case for the internal (other than the end vertex) vertex vj , f(vj) ≥ 2, and hence for

the minimum assignment for the neighboring vertices as well as the incident edges we get(again

referring the same Figure 14 with label 1 as f(vj)) 2k+f(vj)+1 ≤ 2n−1 ⇒ 2k ≤ 2n−2−f(vj) <

2n− 3.

Case (ii) f(vivi+1) = 1, for i, 1 ≤ i ≤ n− 1.

Result follows immediately by the Figure 14 treating rectangular boxes as vertices and

circles as edges. �

The following theorem extends Theorem 2.9 up to certain k.

Theorem 3.3 The path Pn on n vertices is a k-CTG whenever 2 ≤ k ≤ n− ⌈ (n+1)
3 ⌉.

Proof In view of observation 3.1, it suffices to define a total labeling f for k = n −

⌈ (n+1)
3 ⌉. Let us first denote the vertices and edges of the path simultaneously by the integers

1, 2, 3, ..., 2n− 1 as v1 = 1, v1v2 = 2, v2 = 3, v2v3 = 4, v3 = 5, ..., vi = 2i− 1, vivi+1 = 2i, vi+1 =

2i + 1, ..., vn−1vn = 2(n − 1), vn = 2n − 1. Define an automorphism on Z2n/{0} as f(1) =

n+1+ ⌊ (n−2)
3 ⌋,f(2) = n+1−⌈ (n+1)

3 ⌉, f(3) = 1 and for all i, 4 ≤ i ≤ 2n−1, f(i) = f(i−3)+1.

The function f defined above is a Smarandachely (n− ⌈ (n+1)
3 ⌉)-constrained labeling for Pn. �

Figure 15: A 5-constrained total labeling of the path P8.

Problem 3.4 For any integers n, k ≥ 3, determine the value of tk(Pn).

Corollary 3.5 The cycle Cn on n vertices are k-CTG’s for every 2 ≤ k ≤ n− ⌈ (n+1)
3 ⌉.

Proof Let v0, v1, · · · , vn−1 be the vertices of Cn such that vivi⊕n+1 ∈ V (Cn). Now for each

i, 0 ≤ i ≤ n − 1, denote the vertices and edges of Cn consecutively as v0 = 0, v0v1 = 1, v1 =
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2, v1v2 = 3, v2 = 4, · · · , vi−1 = 2(i− 1), vi−1vi = 2i− 1, vi = 2i, · · · , vn−2vn−1 = 2n− 3, vn−1 =

2n− 2, vn−1v0 = 2n− 1. We now define a function f as follows:

Case (i) 3 ∤ (n− 2).

Define: f(0) = 1, f(1) = n + 1 − ⌊n3 ⌋, f(2) = n + 1 + ⌈n3 ⌉, f(i) = f(i − 3) + 1, for all

i, 3 ≤ i ≤ 2n− 1. The function f is a Smarandachely (n− ⌈ (n+1)
3 ⌉)-constrained labeling of Cn.

Case (ii) 3 | (n− 2).

Define: f(0) = 1, f(1) = n + 1 + ⌈n3 ⌉, f(2) = n + 1 − ⌊n3 ⌋, f(i) = f(i − 3) + 1, for all

i, 3 ≤ i ≤ 2n− 1. The function f is again a Smarandachely (n− ⌈ (n+1)
3 ⌉)-constrained labeling

of Cn. �

Problem 3.6 For any integers n, k ≥ 3, determine the value of tk(Cn).

Observation 3.7 We are not sure about the range of k, that is, k may exceed (n−⌈ (n+1)
3 ⌉) for

some path or cycle on n vertices. However achieving the maximum value of k may be tedious

for a general graph (even for a path itself).

Problem 3.8 For a given integer k ≥ 2, determine the bounds for a graph G to be a k-CTG.

Problem 3.9 For given positive integers m,n and k, does there exist a connected graph G with

n vertices such that tk(G) = m?

Following theorem is a partial answer to the above Problem 3.9, which is also an extension

of Lemma 2.6.

Theorem 3.10 If k ≥ 3 is any integer and n ≥ 3, then,

tk(K1,n)=





3k − 5, if n = 3,

n(k − 2), otherwise.

Proof For any Smarandachely k-constrained labeling f of a star K1,n, the span of f , after

labeling an edge by the least positive integer a is at least a+nk. Further, the span is minimum

only if a = 1. Thus, as there are only n + 1 vertices and n edges, for any minimum total

labeling we require at least 1 + nk − (2n+ 1) = n(k − 2) isolated vertices if n ≥ 4 and at least

1 +nk− 2n = n(k− 2)+ 1 if n = 3. In fact, for the case n = 3, as the central vertex is incident

with each edge and edges are mutually adjacent, by a minimum k-constrained total labeling,

the edges as well the central vertex can be labeled only by the set {1, 1 + k, 1 + 2k, 1 + 3k}.

Suppose the label 1 is assigned for the central vertex, then to label the end vertex adjacent to

edge labeled 1 + 2k is at least (1 + 3k) + 1 (since it is adjacent to 1, it can not be less than

1 + k). Thus at most two vertices can only be labeled by the integers between 1 and 1 + 3k.

Similar argument holds for the other cases also.

Therefore, t(K1,n) ≥ n(k − 2) for n ≥ 4 and t(K1,n) ≥ n(k − 2) + 1 for n = 3.

To prove the reverse inequality, we define a k-constrained total labeling for all k ≥ 3, as

follows:
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(1) When n = 3, the labeling is shown in the Figure 16 below

Figure 16: A k-constrained total labeling of K1,3 ∪K3k−5.

(2) When n ≥ 4, define a total labeling f as f(v0vj) = 1 + (j − 1)k for all j, 1 ≤ j ≤ n.

f(v0) = 1 + nk, f(v1) = 2 + (n− 2)k, f(v2) = 3 + (n− 2)k,and for 3 ≤ i ≤ (n− 1),

f(vi+1)=





f(vi) + 2, if f(vi) ≡ 0(mod k),

f(vi) + 1, otherwise.

and the rest all unassigned integers between 1 and 1 + nk to the n(k − 2) isolated vertices,

where v0 is the central vertex and v1, v2, v3, ..., vn are the end vertices.

The function so defined is a Smarandachely k-constrained labeling of K1,n ∪ K̄n(k−2), for

all n ≥ 4. �

Figure 17: A 5-constrained total labeling of K1,9 ∪K27.

Theorem 3.11 Let G1 and G2 be any two connected non-trivial graphs of order m and n

respectively. Then their Cartesian product graph G1×G2 is a k-CTG for every k ≤ min{m,n}.

Proof Let u1, u2, ..., um be the vertices of G1 and v1, v2, ..., vn be the vertices of G2 . Let

G = G1 ×G2. Define a total labeling f on G as follows:

If uiuj ∈ E(G1), then label the corresponding edge {(ui, v1), (uj , v1)} in G by the integer

1, the edge {(ui, v2), (uj , v2)} by the integer 2, . . . so on, the edge {(ui, vl), (uj , vl)} by the

integer l, for all l, 1 ≤ l ≤ n. Label the vertex (ui, vl) by n+ l and the vertex (uj , vl) by 2n+ l

for all l, 1 ≤ l ≤ n. Next choose the new edge (if it exists) incident with either ui or uj , label the

corresponding edges to this edge in G1 ×G2 by next n integers respectively as above and then
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continue the labeling for the corresponding unlabeled end vertices of these edges (if they exist).

Repeat the process until all the edges as well as the vertices of each copy of G1 in G1 ×G2 is

labeled.

Since G2 is connected, for each s, 1 ≤ s ≤ m, there exists an edge {(us, v1), (us, vi)} , for

some i, 1 ≤ i ≤ n. Label the edge {(u1, v1), (u1, vi)} by n(m + q1) + 1 and then the parallel

edges {(us, v1), (us, vi)} by n(m+ q1)+ s, for each s, 2 ≤ s ≤ m. Repeat the process of labeling

by the next integers for each possible i, then repeat for next s. Continue this process for the

possible edges {(us, v2), (us, vi)} , 2 ≤ i ≤ n, then to {(us, v3), (us, vi)} , 3 ≤ i ≤ n, . . . so

on {(us, vn−1), (us, vn)} (if no such edge exists at any stage then skip that step). Since the

difference between two adjacent edges (as well as adjacent vertices and incident pairs) is at

least min{m,n}, f is a Smarandachely Min{m,n}-constrained labeling of G. �

The illustration of the proof of the theorem is shown in the following figure.

Figure 18: A 3-constrained total labeling of Cartesian product of graphs.

Problem 3.12 Determine tk(Km,n), for any integer k ≥ 3.

Problem 3.13 For any integer n ≥ 4, determine tk(Kn).

Problem 3.14 Determine tk(W1,n), for any integer k ≥ 3.
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Abstract A decomposition of a graph G is a collection ψ of edge-disjoint subgraphs

H1,H2, . . . ,Hn of G such that every edge of G belongs to exactly one Hi. If each Hi is

a path in G, then ψ is called a path partition or path cover or path decomposition of G.

Various types of path covers such as Smarandache path k-cover, simple path covers have

been studied by several authors by imposing conditions on the paths in the path covers

. Here we impose parity condition on lengths of the paths and define an equiparity path

cover as follows. An equiparity path decomposition of a graph G is a path cover ψ of G such

that the lengths of all the paths in ψ have the same parity. The minimum cardinality of

a equiparity path decomposition of G is called the equiparity path decomposition number of

G and is denoted by πP (G). In this paper we initiate a study of the parameter πP and

determine the value of πP for some standard graphs. Further, we obtain some bounds for

πP and characterize graphs attaining the bounds.

Key words: Odd parity path decomposition, even parity path decomposition, equiparity

path decomposition, equiparity path decomposition number, Smarandache path k-cover.

AMS(2000): 05C35, 05C38.

§1. Introduction

By a graph, we mean a finite, undirected, non-trivial, connected graph without loops and

multiple edges. The order and size of a graph are denoted by p and q respectively. For terms

not defined here we refer to Harary [6].

Let P = (v1, v2, . . . , vn) be a path in a graph G = (V,E). The vertices v2, v3, . . . , vn−1

are called internal vertices of P and v1 and vn are called external vertices of P . The length

of a path is denoted by l(P ). If the length of the path is odd(even) then we say that it is an

odd(even) path.

A subdivision graph S(G) of a graph G is obtained by subdividing each edge of G only

1Received January 8, 2008. Accepted February 14, 2009.
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once. Two graphs are said to be homeomorphic if both can be obtained from the same graph

by a sequence of subdivision of edges. A cycle with exactly one chord is called a θ-graph. The

length of a largest cycle of a graph is called circumference of a graph and it is denoted by c. For

vertices x and y in a connected graph G, the detour distance D(x, y) is the length of a longest

x−y path in G. The detour diameter D of G is defined to be D = max{D(x, y) : x, y ∈ V (G)}.

An (n, t)-kite consists of a cycle of length n with a t-edge path(called tail) attached to one

vertex of the cycle. An (n, 1)-kite is called a kite with tail length 1.

A decomposition of a graph G is a collection of edge-disjoint subgraphs H1, H2,

. . . , Hr of G such that every edge of G belongs to exactly one Hi. If each Hi
∼= H, then the

decomposition is called isomorphic decomposition and we also say that G is H decomposable.

If each Hi is a path, then ψ is called a path partition or path cover or path decomposition of

G. The minimum cardinality of a path partition of G is called the path partition number of

G and is denoted by π(G) and any path partition ψ of G for which |ψ| = π(G) is called a

minimum path partition or π-cover of G. The parameter π was studied by Harary and Schwenk

[7], Peroche [9], Stanton et.al., [10] and Arumugam and Suresh Suseela [4].

A more general definition on graph covering using paths is given as follows.

Definition 1.1([2]) For any integer k ≥ 1, a Smarandache path k-cover of a graph G is a

collection ψ of paths in G such that each edge of G is in at least one path of ψ and two paths

of ψ have at most k vertices in common.

Thus if k = 1 and every edge of G is in exactly one path in ψ, then a Smarandache path

k-cover of G is a simple path cover of G.

Consider the following path decomposition theorems.

Theorem 1.2([5]) For any connected graph (p, q)−graph G, if q is even, then G has a P3-

decomposition.

Theorem 1.3([10]) If G is a 3-regular (p, q)−graph, then G is P4 decomposable and

π(G) =
q

3
=
p

2
.

Theorem 1.4([10]) A complete graph K2n is hamilton path decomposable of length 2n−1. The

path partition number π of a complete graphs are given by a) π(K2n) = n and (b) π(K2n+1) =

n+ 1.

The Theorems 1.2, 1.3 and 1.4(a) give the path decomposition in which all the paths are of

even (odd) length. The above results give the isomorphic path decomposition in which all the

paths are of same parity. This observation motivates the following definition for non-isomorphic

path decomposition also.

Definition 1, 5 An equiparity path decomposition(EQPPD) of a graph G is a path cover ψ of

G such that the lengths of all the paths in ψ have the same parity.
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Since for any graphG, the edge set E(G) is an equiparity path decomposition, the collection

PP of all equiparity path decompositions of G is non-empty. Let πP (G) = min |ψ|. Then πP (G)

is called the equiparity path decomposition number of G and any equiparity path decomposition

ψ of G for which |ψ| = πP (G) is called a minimum equiparity path decomposition of G or

πP -cover of G.

If the lengths of all the paths in ψ are even(odd) then we say that ψ is an even (odd) parity

path decomposition, shortly EPPD (OPPD).

Remark 1.6 Let ψ = {P1, P2, . . . , Pn} be an EQPPD of a (p, q)−graph G such that l(P1) ≤

l(P2) ≤ , . . . , l(Pn). Since every edge of G is in exactly one path Pi , we have
n∑
i=1

l(Pi) = q and

hence every EQPPD of G gives rise to a partition of an integer q into same parity,

Remark 1.7 If G is a graph of odd size, then any equiparity path decomposition ψ of a graph

G is an odd parity path decomposition and consequently πP (G) is odd.

Remark 1.8 If an equiparity path decomposition ψ of a graph G is an even equiparity path

decomposition, then q is even.

Various types of path decompositions and corresponding parameters have been studied by

several authors by imposing conditions on the paths in the decomposition. Some such path

decomposition parameters are graphoidal covering number [1], simple path covering number

[2], simple graphoidal covering number [3], simple acyclic graphoidal covering number [3] and

2-graphoidal path covering number [8].

In this paper we initiate a study of the parameter πP and determine the value of πP for

some standard graphs. Further, we obtain bounds for πP and characterize graphs attaining the

bounds.

§2. Main results

We first present a general result which is useful in determining the value of πp.

Theorem 2.1 For any EQPPD ψ of a graph G, let tψ =
∑
P∈ψ

t(P ), where t(P ) denotes the

number of internal vertices of P and let t = max tψ, where the maximum is taken over all

equiparity path decompositions ψ of G. Then πp(G) = q − t.

Proof Let ψ be any EQPPD of G. Then

q =
∑

P∈ψ

|E(P )| =
∑

P∈ψ

(t(P ) + 1)

=
∑

P∈ψ

t(P ) + |ψ| = tψ + |ψ| .

Hence |ψ| = q − tψ so that πp = q − t. �

Next we will find some bounds for πP . First, we find a simple bound for πP in terms of

the size of G.
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Theorem 2.2 For any graph G of even size,πP (G) ≤ q
2 .

Proof It follows from Theorem ?? that G has a P3-decomposition, which is an EPPD and

hence πP (G) ≤ q
2 . �

Remark 2.3 The bound given in Theorem 2.2 is sharp. For the cycle C4 and the star K1,n,

where n is even, πP = q
2 .

The following problem naturally arises.

Problem 2.4 Characterize graphs of an even size for which πP = q
2 .

Now, we characterize graphs attaining the extreme bounds.

Theorem 2.5 For a graph G, 1 ≤ πP (G) ≤ q. Then πP (G) = 1 if and only if G is a path and

πP (G) = q if and only if G is either K3 or K1,q where q is odd.

Proof The inequalities are trivial. Further , it is obvious that πP (G) = 1 if and only if G

is a path.

Now, suppose πP (G) = q > 1. Then it follows from Theorem 2.2 that q is odd. Let P be a

path of length greater than one in G. If the length of P is odd, then ψ = {P}
⋃
{E(G) \E(P )}

is an OPPD of G so that πP (G) < q, which is a contradiction. Thus every path of length

greater than one is even and consequently every path in G is of length 1 or 2. Hence any two

edges in G are adjacent, so that G is either a triangle or a star. Converse is obvious. �

The following theorem gives the lower and upper bounds for πP in terms of π.

Theorem 2.6 For any graph G, π(G) ≤ πP (G) ≤ 2π(G) − 1.

Proof Since every equiparity path decomposition is a path cover, we have π(G) ≤ πP (G).

Let ψ be a π−cover of G and let m and n be the number of even and odd paths in ψ

respectively, Then 1 ≤ m,n ≤ π− 1 and m+n = π. Then the path decomposition ψ1 obtained

from ψ by splitting each even path in ψ into two odd paths is an OPPD and hence

πP (G) ≤ |ψ1| = 2m+ n = m+ (m+ n) ≤ π − 1 + π = 2π − 1.

�

Corollary 2.7 For a graph G of odd size, if π(G) is even, then π(G) + 1 ≤ πP (G).

Proof Since π(G) is even and q is odd, we have, π(G) 6= πP (G) and from Theorem ?? , we

have π(G) + 1 ≤ πP (G). �

The above bounds will be very useful to find the value of πP for some standard graphs.

Remark 2.8 It is obvious that πP (G) = π(G) if and only if there exists a π-cover of G in

which lengths of all the paths have the same parity. Further, if πP (G) = 2π(G)− 1, then every

π-cover of G contains only one path of odd length.

From the above bounds the following problems will naturally arise.
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Problem 2.9 Characterize the class of graphs for which πP (G) = π(G).

Problem 2.10 Characterize the class of graphs for which πP (G) = 2π(G) − 1.

Problem 2.11 Characterize the class of graphs for which πP (G) = π(G) + 1.

Corollary 2.12 For a graph G, if q is even, then πP (G) ≤ q − 1.

Proof From Theorem 1.2, it follows that π(G) ≤ q
2 . Then from Theorem 2.6, it follows

that πP (G) ≤ q − 1. �

Now, we characterize graphs attaining the above bound.

Theorem 2.13 For any graph G, πP (G) = q − 1 if and only if G ∼= P3.

Proof Suppose πP (G) = q − 1. If G has a path P of length 3, then the path P together

with the remaining edges form an OPPD ψ of G so that πP (G) ≤ |ψ| = q − 2 < q − 1, which

is a contradiction. Thus every path in G is of length at most 2. Hence any two edges in G are

adjacent , so that G is either a triangle or a star. From Theorem 2.5, it follows that G is neither

a triangle nor a star of odd size. Thus G is a star of even size. Then clearly, πP (G) = q
2 . Thus

q = 2 and hence G ∼= P3. The converse is obvious. �

Next we solve the following realization problem.

Theorem 2.14 If a is a positive integer and for every odd b with a ≤ b ≤ 2a − 1, then there

exists a connected graph G such that π(G) = a and πP (G) = b.

Proof Now, suppose a is a positive integer and for every odd b with a ≤ b ≤ 2a− 1.

Case (i) a is odd.

We now construct a graph Gr, r = 0, 1, 2, . . . , r−1
2 as follows. Let G0 be a star graph

with v1, v2, . . . , v2a−2, v2a−1 as pendant vertices and v2a as central vertex. Let Gr be a graph

obtained from G0 by subdividing 2r edges v1v2a, v2v2a, . . . , v2rv2a of G0 once by the vertices

v′1, v
′
2, . . . , v

′
2r, where r = 1, 2, . . . , a−1

2 (Fig.1). Note that p = 2a+ 2r and q = 2a− 1 + 2r.

v1

v′1
v2

v′2

v3v′3

v2r−1

v′2r−1
v2r

v′2r

v2r+1

v2r+2

v2a−2 v2a−1

v2a

Fig.1
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First we prove that π(Gr) = a, (r = 0, 1, 2, . . . , r−1
2 ). Since every odd degree vertex of Gr

is an end vertex of a path in any path cover of Gr, we have π(Gr) ≥ 2a
2 = a. Now the paths

(vi, v
′
i, v2a, v2r+i), 1 ≤ i ≤ 2r, (v4r+1, v2a, v4r+2), (v4r+3, v2a, v4r+4), · · · , (v2a−3, v2a, v2a−2),

(v2a−1v2a) form a path cover for Gr so that π(Gr) ≤ 2r + (2a−1)−(4r+1)
2 + 1 = a. Hence

π(Gr) = a.

Next we prove that πP (Gr) = b, where a ≤ b ≤ 2a−1. Now the paths Pi = (vi, v
′
i, v2a, v2r+i), 1 ≤

i ≤ 2r and the remaining edges form an OPPD ψ of Gr such that πP (Gr) ≤ |ψ| = 2r+(2a−1+

2r−6r) = 2a−(2r+1). Now let ψ be any minimum EQPPD ofGr. Since q is odd, ψ is an OPPD.

Now it is clear that any OPPD ψ of Gr contains either all the edges of Gr or paths of length 3 to-

gether with the remaining edges. Hence it follows that |ψ| ≥ 2r+(2a−1+2r−6r) = 2a−(2r+1)

so that πP (Gr) ≥ 2a− (2r + 1). Thus πP (Gr) = 2a− (2r + 1) where r = 0, 1, 2, . . . , a−1
2 . Let

b = 2a − (2r + 1), r = 0, 1, 2, . . . , a−1
2 . Then a ≤ b ≤ 2a − 1. Thus πP (Gr) = b, where

a ≤ b ≤ 2a− 1.

Case (ii) a is even.

Since b is odd, we have a+1 ≤ b ≤ 2a−1. Let G0 be a star graph with v1, v2, . . . , v2a−1, v2a

as pendant vertices and v2a+1 as central vertex with a subdivision of the edge v1v2a+1 by a vertex

v′1 . Let Gr be a graph obtained fromG0 by subdividing 2r edges v2v2a+1, v3v2a+1, . . . , v2rv2a+1,

v2r+1v2a+1 of G0 once by the vertices v′2, v
′
3, . . . , v

′
2r, v

′
2r+1, where r = 1, 2, . . . , a−2

2 (Fig. 2).

Note that p = 2a+ 2r + 2 and q = 2a+ 2r + 1.

v1

v′1
v2

v′2

v3v′3

v2r

v′2rv2r+1

v′2r+1

v2r+2

v2a−1
v2a

v2a+1

Fig.2

First we prove that π(Gr) = a, (r = 0, 1, 2, . . . , r−1
2 ). Since every odd degree vertex of

Gr is an end vertex of a path in any path cover of Gr, we have π(Gr) ≥ 2a
2 = a. Now the

paths (vi, v
′
i, v2a+1, v2r+1+i), 1 ≤ i ≤ 2r + 1, (v4r+3, v2a+1, v4r+4), (v4r+5, v2a+1, v4r+5), · · · ,

(v2a−1, v2a+1, v2a) form a path cover for Gr so that π(Gr) ≤ 2r + 1 + (2a−1)−(4r+3)
2 + 1 = a.

Hence π(Gr) = a.

Next we prove that πP (Gr) = b, where a + 1 ≤ b ≤ 2a − 1. Now the paths Pi =

(vi, v
′
i, v2a+1, v2r+1+i), 1 ≤ i ≤ 2r + 1 and the remaining edges form an OPPD ψ of Gr such

that πP (Gr) ≤ |ψ| = 2r+1+(2a+2r+1−6r−3) = 2a− (2r+1). Now let ψ be any minimum

EQPPD of Gr. Since q is odd, ψ is an OPPD. Now it is clear that any OPPD ψ of Gr contains
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either all the edges of Gr or paths of length 3 together with the remaining edges. Hence it

follows that |ψ| ≥ 2r+1+(2a+2r+1−6r−3) = 2a− (2r+1) so that πP (Gr) ≥ 2a− (2r+1).

Thus πP (Gr) = 2a−(2r+1) where r = 0, 1, 2, . . . , a−2
2 . Let b = 2a−(2r+1), r = 0, 1, 2, . . . , a−2

2 .

Then a+ 1 ≤ b ≤ 2a− 1. Thus πP (Gr) = b, where a+ 1 ≤ b ≤ 2a− 1. �

For the even number b, we make a problem as follows.

Problem 2.15 If a is a positive integer and for every even b with a ≤ b ≤ 2a− 1, then there

exists a connected graph G such that π(G) = a and πP (G) = b.

The following theorem gives the lower bound for πP in terms of detour diameter D.

Theorem 2.16 For any graph G, πP (G) ≥ ⌈ qD ⌉ where D is the detour diameter of G.

Proof Let ψ be a minimum πP -cover of G. Since every edge of G is in exactly one path

in ψ we have q =
∑
P∈ψ

|E(P )|. Also |E(P )| ≤ D for each P in ψ. Hence q ≤ πpD so that

πP (G) ≥ ⌈ qD ⌉. �

The following theorem shows that the path covering number π of a graph G is same as the

equiparity path decomposition numberπP of a subdivision graph of G.

Theorem 2.17 For any graph G, π(G) = πP (S(G)), where S(G) is the subdivision graph of

G.

Proof As G and S(G) are homeomorphic, π(G) = π(S(G)) and hence by Theorem 2.6,

π(G) ≤ πP (S(G)). Now let ψ = {P1, P2, · · · , Pπ} be a π-cover of G. Let P
′

i , 1 ≤ i ≤ π, be the

path obtained from Pi by subdividing each edge Pi exactly once. Then ψ′ = {P ′
1, P

′
2 · · · , P

′
π}

is an EPPD of S(G) and hence πP (S(G)) ≤ π(G). Thus π(G) = πP (S(G)). �

In the following theorems we determine the value of the equiparity path decomposition

number of several classes of graphs such as cycle, wheel, cubic graphs and complete graphs.

Theorem 2.18 For a cycle Cp,

πP (Cp) =





2 if n is even,

3 if n is odd.

Proof Let C = (v1, v2, . . . , vp, v1).

If p even, then ψ = {(v1, v2, . . . , v p

2
), (v p

2
, v p

2
+1, . . . , vp, v1)} is an EPPD, so that πP (Cp) ≤

|ψ| = 2 and further πP (Cp) ≥ 2 and hence πP (Cp) = 2.

If p odd, then ψ = {(v1, v2, . . . , vp−1), (vp−1, vp), (vp, v1)} is an OPPD, so that πP (Cp) ≤

|ψ| = 3. Since q is odd, it follows that πP (Cp) is odd. Then we have πP (Cp) ≥ 3. Hence

πP (Cp) = 3. �

Theorem 2.19 For the wheel Wp on p vertices, we have πP (Wp) = ⌊p2⌋.

Proof Let V (Wp) = {v1, v2, . . . , vp−1, vp} and let E(Wp) = {vivi+1 : 1 ≤ i ≤ p −

2}
⋃
{v1vp−1}

⋃
{vpvi : 1 ≤ i ≤ p− 1}. Let
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ψ =





{(vi+1, vi, vp, v p−1

2
+i, v p+1

2
+i) : 1 ≤ i ≤ p−3

2 }
⋃
{(v p+1

2

, v p−1

2

, vp, vp−1, v1)}, if p is odd,

{(vi+1, vi, vp, v p−2

2
+i, v p

2
+i) : 1 ≤ i ≤ p−2

2 }
⋃
{(vp, vp−1, v1)}, if p iseven,

then ψ is a EPPD with |ψ| = ⌊p2⌋ and hence πP (Wp) ≤ ⌊p2⌋. Since every odd degree vertex

of Wp is an end vertex of a path in any path cover of Wp, we have πP (Wp) ≥ ⌊p2⌋. Then

πP (Wp) = ⌊p2⌋. �

Theorem 2.20 For a 3-regular graph G, πP (G) = p
2 .

Proof It follows from Theorem 1.3 that every 3-regular graph is P4 decomposable and

hence πP (G) ≤ q
3 = p

2 . Further, since every vertex of G is of odd degree, they are the end

vertices of paths in any path cover of G. So, we have πP (G) ≥ p
2 . Thus πP (G) = p

2 . �

Theorem 2.21 For any n ≥ 1, πP (K2n) = n.

Proof From Theorems 1.4 and 2.6, it follows that πP (K2n) ≤ n. Further, since every

vertex of K2n is of odd degree, they are the end vertices of paths in any path cover of K2n. So,

we have πP (K2n) ≥ n and hence πP (K2n) = n. �

Theorem 2.22 For any n ≥ 1,

πP (K2n+1) =





n+ 1 if n is even,

n+ 2 if n is odd.

Proof Let V (K2n+1) = {v1, v2, · · · , v2n+1}.

Case (i) n is even.

Consider paths following:

P1 = (v2n+1, v3, v2n, v4, v2n−1, . . . , vn, vn+3, vn+1, vn+2, v1, v2),

P2 = (v2, v4, v2n+1, v5, v2n, · · · , vn+1, vn+4, vn+2, vn+3, v1, v3),

P3 = (v3, v5, v2, v6, v2n+1, · · · , vn+2, vn+5, vn+3, vn+4, v1, v4),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Pn = (vn, vn+2, vn−1, vn+3, vn−2, · · · , v2n−1, v2, v2n, v2n+1, v1, vn+1),

Pn+1 = (v2n+1, v2, v3, v4, v5, cldots, vn−1, vn, vn+1).

The paths Pi (1 ≤ i ≤ n) can be obtained from n hamiltonian cycles of K2n+1 by removing

an edge from each cycle and the path Pn+1 is obtained by joining the removed edges. It

follows that the lengths of Pi, 1 ≤ i ≤ n are 2n and the length of Pn+1 is n, so that ψ =

{P1, P2, . . . , Pn, Pn+1} is an EPPD and hence π
P
(K2n+1) ≤ |ψ| = n + 1. From Theorems 1.4

and 2.6, it follows that πp(K2n+1) ≥ n+ 1 and hence πP (K2n+1) = n+ 1.

Case (ii) n is odd.

Consider the hamilton cycles of K2n+1



Equiparity Path Decomposition Number of a Graph 69

C1 = (v1, v2, v2n+1, v3, v2n, v4, v2n−1, . . . , vn, vn+3, vn+1, vn+2, v1),

C2 = (v1, v3, v2, v4, v2n+1, v5, v2n, . . . , vn+1, vn+4, vn+2, vn+3, v1),

C3 = (v1, v4, v3, v5, v2, v6, v2n+1, . . . , vn+2, vn+5, vn+3, vn+4, v1),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Cn−1

2

= (v1, vn+1

2

, vn−1

2

, vn+3

2

, vn−3

2

, . . . , v 3n−3

2

, v 3n+3

2

, v 3n−1

2

, v 3n+1

2

, v1),

Cn+1

2

= (v1, vn+3

2

, vn+1

2

, vn+5

2

, vn−1

2

, . . . , v 3n−1

2

, v 3n+5

2

, v 3n+1

2

, v 3n+3

2

, v1).

Cn+3

2

= (v1, vn+5

2

, vn+3

2

, vn+7

2

, vn+1

2

, . . . , v 3n+1

2

, v 3n+7

2

, v 3n+3

2

, v 3n+5

2

, v1),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Cn−1 = (v1, vn, vn−1, vn+1, vn−2, vn+2, vn−3, · · · , v2n−2, v2n+1, v2n−1, v2n, v1),

Cn = (v1, vn+1, vn, vn+2, vn−1, vn+3, vn−2, . . . , v2n−1, v2, v2n, v2n+1, v1).

We will construct the following paths from the above hamilton cycles. Let

P1 = C1 − (v1, v2, v2n+1),

P2 = C2 − (v2n+1, v5, v2n),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Pn−1

2

= Cn−1

2

− (v 3n+7

2

, v 3n−5

2

, v 3n+5

2

),

Pn+1

2

= Cn+1

2

− (v 3n+5

2

, v 3n+1

2

, v 3n+3

2

),

Pn+3

2

= Cn+3

2

− (v 3n−1

2

, v 3n+7

2

, v 3n+1

2

),

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

Pn−1 = Cn−1 − (vn+2, vn−3, vn+3),

Pn = Cn − (vn+1, vn, vn+2),

Pn+1 = (v1, v2, v2n+1, v5, v2n, . . . , v 3n+7

2

, v 3n−5

2

, v 3n+5

2

, v 3n+1

2

),

Pn+2 = (v 3n+3

2

, v 3n+1

2

, v 3n+7

2

, v 3n−1

2

, . . . , vn+3, vn−3, vn+2, vn, vn+1).

The paths Pi (1 ≤ i ≤ n) can be obtained from n hamiltonian cycles of K2n+1 by removing

two adjacent edges from each cycle and the paths Pn+1 and Pn+2 are obtained by joining the

removed edges. It follows that the lengths of Pi, 1 ≤ i ≤ n are 2n− 1 and the lengths of Pn+1

and Pn+2 are n, so that ψ = {P1, P2, · · · , Pn, Pn+1} is an OPPD and hence πP (K2n+1) ≤ |ψ| =

n + 2. From Theorems 1.4 and T2.6 , it follows that πP (K2n+1) ≥ n + 1. Now , since n is

odd, q = n(2n + 1) is odd. Thus πP (K2n+1) is odd, so that πP (K2n+1) ≥ n + 2 and hence

πP (K2n+1) = n+ 2. �

We now proceed to obtain upper bounds for πp involving circumference of a graph and

characterize graphs attaining the bounds.

Theorem 2.23 For a graph G, πP (G) ≤ q− c+3, where c is the circumference of G. Further,

equality holds if and only if G is an odd cycle.

Proof Let C be a longest cycle of length c. Let c be even. Then the path of length c− 1,

together with the remaining edges form an OPPD and hence πP (G) ≤ q−(c−1)+1 = q−c+2.

Let c be odd. Then path of length p − 2, together with the remaining edges form an OPPD

and hence πP (G) ≤ q − (c − 2) + 1 = q − c + 3. Thus from both the cases, it follows that

πP (G) ≤ q − c+ 3.

Suppose G is a graph with πP (G) = q − c + 3. Let C = (v1, v2, . . . , vc, v1) be a longest

cycle in G. If c is even, then as in the first paragraph of the proof, πP (G) ≤ q − c+ 2 and so c

is odd.
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Now, we claim that C has no chords. Suppose it is not. Let e = v1vi be a chord in C. Let

P1 = (v1, v2, . . . , vc−1) and P2 = (vc−1, vc, v1, vi). Since c is odd, ψ = {P1, P2}
⋃
S where S is

the set of edges of G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c+ 3, which

is a contradiction. Thus C has no chords.

Next, we claim that V (G) = V (C). Suppose there exists a vertex v not on C adjacent

to a vertex of C, say v1. Let P1 = (v1, v2, . . . , vc−1) and P2 = (vc−1, vc, v1, v). Since c is odd,

ψ = {P1, P2}
⋃
S where S is the set of edges of G not covered by P1, P2 is an OPPD of G such

that |ψ| < q − c + 3, which is a contradiction. Then it follows that V (G) = V (C). Thus G is

an odd cycle.

The converse is obvious. �

Theorem 2.24 For a graph G, πP (G) = q− c+ 2 if and only if G is either an even cycle or a

θ−graph of odd size or a kite with tail length 1 of odd size.

Proof Clearly, the result is true for p = 3, 4 and 5. So we assume that p ≥ 6.

Suppose πP (G) = q − c+ 2. Let C = (v1, v2, . . . , vc, v1) be a longest cycle in G.

Claim 1 c is even.

Suppose c is odd. Since the value of πP for an odd cycle is q− c+3, it follows that G 6= C.

Hence C has a chord, say e = v1vi (Fig.3).

e
v1

v2

vi

Fig. 3

vi+1

vi+2

Let P1 = (v1, vi, vi+1, vi+2) and P2 = (vi+2, vi+3, · · · , vc, v1, v2, . . . , vi). Then ψ = {P1, P2}⋃
S where S is the set of edges of G not covered by P1, P2 is an OPPD of G such that

|ψ| < q − c+ 2, which is a contradiction.

v1

v2

vivc

vi−1

vi+1

v

Fig. 4
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Hence there is a vertex v not on C adjacent to a vertex of C, say v1 (Fig.4). Let P1 =

(v, v1, v2, v3) and P2 = (v3, v4, . . . , vc−1, vc, v1). Since c is odd, ψ = {P1, P2}
⋃
S where S is the

set of edges of G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c+ 2, which is a

contradiction. Thus c is even.

Case (i) V (G) = V (C)

We now prove that C has at most one chord.

Claim 2 No two chords of C are adjacent.

vi
v1

vj
vj+1

e1

e2

Fig.5

Suppose there exists two adjacent chords e1 = v1vi and e2 = v1vj (1 < i < j) in C (Fig 5).

Let P1 be the (vj , vj+1)-section of C containing v1 and let P2 = (vj+1, vj , v1, vi). From Claim

1, it follows that ψ = {P1, P2}
⋃
S where S is the set of edges of G not covered by P1, P2 is an

OPPD of G such that |ψ| < q − c + 2, which is a contradiction. Thus no two chords of C are

adjacent.

Next we define some sections of cycle.

A section C′ of length greater than 1 of a cycle C is said to be of type 1 if the end vertices

of C′ are adjacent and no internal vertex of C′ is an end vertex of a chord of C.

A section C′ of a cycle C is said to be of type 2 if the end vertices of C′ are the end vertices

of two different chords of C and no internal vertex of C′ is an end vertex of a chord of C.

Claim 3 The type 2 sections of C formed by any two nonadjacent chords are of even length.

Let e1 and e2 be two nonadjacent chords of C. Then the choices of e1 and e2 are as in the

following figure (Fig.6).

e1

e2

e1

e2

C1C2 C1C2

(a) (b)
Fig. 6

Let C1 and C2 be the sections of C. We now claim that the section C1 is of even length.

Suppose not. Now, let P1 = e1 ◦ C1 ◦ e2 and P2 = C − C1. Then it follows from Claim 1 that
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ψ = {P1, P2}
⋃
S where S is the set of edges of G not covered by P1, P2 is an OPPD of G such

that |ψ| < q− c+2, which is a contradiction. Hence the section C1 is of even length. Similarly,

we can prove that the section C2 is of even length.

Claim 4 Type 1 sections of C formed by three mutually disjoint chords are of even length.

Let e1,e2 and e3 be three mutually disjoint chords of C. Let C1 be a type 1 section of C

formed by e1. We now claim that C1 is of even length. Suppose not. Then by claim 1, C −C1

is of odd length. Now, since there are exactly six sections of either type 1 or type 2 formed by

e1, e2 and e3 in C and since C − C1 is of odd length, it follows from claim 3 that there is a

type 1 section C2 of odd length formed either by e2 or e3, say e2. then the chord e3 is as in the

following Fig. 7.

e1

e3

e2

C1

C2

Fig.7

Q

S

P

R

Let P,Q,R and S denote the remaining type 2 sections of C as in Fig. 7. Then it follows

from claim 3 that the sections P,Q,R and S are of even length. Now, let P1 = e2◦S ◦e3◦P ◦e1,

P2 = C1 ◦ Q, P3 = C2 ◦ R. Then ψ = {P1, P2, P3}
⋃
S where S is the set of edges of G not

covered by P1, P2 and P3 is an OPPD of G such that |ψ| < q − c+ 2, which is a contradiction.

Thus the type 1 sections of C formed by three mutually disjoint chords are of even length.

Claim 5 C has at most one chord.

Suppose C has exactly two chords, say e1 and e2. Then by Claim 2 the choices of e1 and

e2 are as in Fig. 6. Also, there are exactly 4 sections of type 1 or type 2 in C, say C1, C2, C3

and C4. Suppose e1 and e2 are as in Fig. 6(b). Then the sections C1, C2, C3 and C4 are of type

2 and hence it follows from Claim 3 that each is of even length.

Now, let P1 = e1 ◦ C2 ◦ e2 and P2 = C3 ◦ C1 ◦ C4. Then ψ = {P1, P2} is an EPPD of G

and hence πP (G) = 2 < q − c+ 2, which is a contradiction.

Suppose e1 and e2 are as in Fig. 6(a). Then the sections C1 and C3 are of type 1 and

the sections C2 and C4 are of type 2 and hence it follows from Claims 3 4 that each is of even

length.

Now, let P1 = e1 ◦ C2 ◦ e2 and P2 = C3 ◦ C1 ◦ C4. Then ψ = {P1, P2} is an EPPD of G

and hence πP (G) = 2 < q − c+ 2, which is a contradiction.

Thus C does not have exactly two chords.

Suppose C has 3 chords, say e1, e2 and e3. Then by Claim 2 the choices of e1, e2 and e3

are as in Fig. 8.

Also, there are exactly 6 sections of types 1 or 2 in C, say C1, C2, C3, C4, C5 and C6. By

Claim 3 and 4, any section of C formed by the chords is of even length and so C1, C2, C3, C4, C5
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and C6 are of even length.

If e1, e2 and e3 are as in Fig 8(a), let P1 = C1◦C6◦e2, P2 = C5◦e1 and P3 = e3◦C2◦C3◦C4.

If e1, e2 and e3 are as in Fig. 8(b), let P1 = C1 ◦C6 ◦ e2, P2 = C4 ◦C3 ◦C2 ◦ e3 and P3 = C5 ◦ e1.

e1

e2
e3

e1

e2

e3

e1

e2
e3

e1

e2

e3

e1

e2

e3

C1

C2

C3

C4

C5

C6

C1

C2

C3

C4

C5

C6

C1

C2

C3C4

C5

C6

C2

C3
C4

C5

C6

C1 C1

C2

C3

C4

C5

C6

(a) (b)
(c)

(d) (e)
Fig.8

If e1, e2 and e3 are as in Fig. 8(c), let P1 = C1◦e3◦C4, P2 = C3◦C2◦e2 and P3 = C6◦C5◦e1.

If e1, e2 and e3 are as in Fig.8(d), let P1 = C6 ◦C1 ◦ e1, P2 = C2 ◦C3 ◦ e3 and P3 = C4 ◦C5 ◦ e2.

If e1, e2 and e3 are as in Fig.8(e), let P1 = e1 ◦C1 ◦C2, P2 = C4 ◦C3 ◦ e2 and P3 = C6 ◦C5 ◦ e3.

Then ψ = {P1, P2, P3}
⋃
S where S is the set of edges of G not covered by P1, P2 and P3 is an

OPPD of G such that |ψ| < q − c+ 2, which is a contradiction. Thus by Claims 1 and 5, G is

either an even cycle or a θ−graph of odd size.

Case (ii) V (G) 6= V (C)

Let C = (v1, v2, . . . , vc, v1) be a longest cycle of length c in G.

Claim 6 Every vertex not on C is a pendant vertex.

vc
v1

v2

v

w

vc
v1

v2

v

w

Fig.9

Suppose there exists a vertex v with degv ≥ 2, not on C adjacent to a vertex of C, say v1.

Let w be a vertex which is adjacent to v. Note that w may be either on C or not on C (Fig

9) . Let P1 = (v1, v2, . . . , vc) and P2 = (vc, v1, v, w). Then ψ = {P1, P2}
⋃
S, where S is the
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set of edges of G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c + 2 which is a

contradiction. Thus every vertex not on C is a pendant vertex.

Claim 7 The cycle C has no chord.

v1

v2

vi

vlvl+1

v

vc

Fig.10

Suppose C has a chord, say v1vi (Fig 10). Let v be a pendant vertex not on C, which is

adjacent to some vertex, say vl on C. Suppose vl is different from v1 and vi. If (v1, vl)- section

is odd, then let P1 = (v, vl, vl+1, · · · , vc, v1, vi) and P2 = (v1, v2, · · · , vi, vi+1, · · · , vl) and if that

section is even, then let P1 = (vl, vl+1, . . . , vc, v1, vi) and P2 = (v1, v2, . . . , vi, vi+1, . . . , vl, v).

v1

v2

vivc

vi−1

vi+1v

Fig.11

Suppose vl is either v1 or vi. Without loss of generality, let vl = v1(Fig 11). Let P1 =

(v, v1, vi, vi+1) and P2 = (vi+1, vi+2, . . . , vc, v1, v2, . . . , vi−1, vi). Then ψ = {P1, P2}
⋃
S, where

S is the set of edges of G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c + 2

which is a contradiction. Hence the cycle C has no chord. Thus G is a unicyclic graph.

Claim 8 Every vertex on C has degree less than or equal to 3.

v1

v2

vc

v3

v

w

Fig.12
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Suppose there is a vertex, say v1 on C with degree of v ≥ 4 (Fig 12). From Claims 6 and 7,

it follows that there are two pendant vertices, say v and w not on C which are adjacent to v1.

Let P1 = (w, v1, v2, v3) and P2 = (v3, v4, . . . , vc, v1, v). Since c is even, ψ = {P1, P2}
⋃
S, where

S is the set of edges of G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c + 2

which is a contradiction. Thus every vertex on C has degree less than or equal to 3.

Claim 9 Exactly one vertex on C has degree 3.

v1

v2

vivc

vi−1

vi+1

v

w

Fig.13

Suppose there are two vertices on C have degree 3, say v1 and vi (Fig. 13). By claim 6,

there are two pendant vertices v and w not on C, adjacent to v1 and vi respectively. If the

length of (v1, vi)- section not containing vc is odd, then let P1 = (v, v1, v2, . . . , vi−1, vi, w) and

P2 = (vi, vi+1, . . . , vc, v1) and if that section is even, then let P1 = (v, v1, v2, . . . , vi−1, vi) and

P2 = (w, vi, vi+1, . . . , vc, v1). Since c is even, ψ = {P1, P2}
⋃
S, where S is the set of edges of

G not covered by P1, P2 is an OPPD of G such that |ψ| < q − c + 2 which is a contradiction.

Thus exactly one vertex on C has degree 3. Thus G is a kite with tail length 1 of odd size.

The converse is obvious. �

Remark 2.25 In the Theorem 2.24, for the case V (G) = V (C), we have c = p and the condition

becomes πP (G) = q − p+ 2.

We conclude this paper by posing the following problems for further investigation.

(i) For a tree T of even size, prove that π(T ) = πP (T ).

(ii) If G is a unicyclic graph, find πP (G).

(iii) For a graph G of even size, prove that π(G) ≤ πP (G) ≤ π(G) + 1.
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Abstract: For two vertices u and v in a graph G = (V,E), the detour distance D(u, v) is

the length of a longest u–v path in G. A u–v path of length D(u, v) is called a u–v detour.

For any integer k ≥ 1, a set S ⊆ V is called a Smarandache k-edge detour set if every edge

in G lies on at least k detours joining some pairs of vertices of S. The Smarandache k-edge

detour number dnk(G) of G is the minimum order of its Smarandache k-edge detour sets

and any Smarandache k-edge detour set of order dnk(G) is a Smarandache k-edge detour

basis of G. A connected graph G is called a Smarandache k-edge detour graph if it has a

Smarandache k-edge detour set for an integer k. Smarandache 1-edge detour graphs are

refered to as edge detour graphs and in this paper, such graphs G with detour diameter

D ≤ 4 and dn1(G) = 2 are characterized.

Key Words : Detour, Smarandache k-edge detour set, Smarandache k-edge detour num-

ber, edge detour set, edge detour graph, edge detour number.

AMS(2000): 05C12

§1. Introduction

By a graph G = (V,E), we mean a finite undirected graph without loops or multiple edges. The

order and size of G are denoted by p and q respectively. For basic definitions and terminologies,

we refer to [1], [6].

For vertices u and v in a connected graph G, the detour distance D(u, v) is the length of

a longest u–v path in G. A u–v path of length D(u, v) is called a u–v detour. It is known that

the detour distance is a metric on the vertex set V . Detour distance and detour center of a

graph were studied by Chartrand et al. in [2], [5].

A vertex x is said to lie on a u–v detour P if x is a vertex of P including the vertices u

and v. A set S ⊆ V is called a Smarandache k-detour set if every vertex v in G lies on at

least k detours joining some pairs of vertices of S. The Smarandache k-detour number dnk(G)

of G is the minimum order of a Smarandache k-detour set and any Smarandache k-detour set

of order dnk(G) is called a Smarandache k-detour basis of G. Smarandache 1-detour sets and

Smarandache 1-detour number are nothing but the detour sets and the detour number dn(G) of

a graph as introduced and studied by Chartrand et al. in [3]. These concepts have interesting

applications in Channel Assignment Problem in radio technologies [4], [7].

1Received January 12, 2009. Accepted February 16, 2009.
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An edge e of G is said to lie on a u–v detour P if e is an edge of P . In general, there are

graphs G for which there exist edges which do not lie on a detour joining any pair of vertices

of V . For the graph G given in Figure 1.1, the edge v1v2 does not lie on a detour joining any

pair of vertices of V . This motivated us to introduce the concepts of weak edge detour set of a

graph [8] and edge detour graphs [9].

b b

b

b

b

b

b

b

v1 v2

Figure 1.1: G

A set S ⊆ V is called a weak edge detour set of G if every edge in G has both its ends in

S or it lies on a detour joining a pair of vertices of S. The weak edge detour number dnw(G)

of G is the minimum order of its weak edge detour sets and any weak edge detour set of order

dnw(G) is called a weak edge detour basis of G. Weak edge detour sets and weak edge detour

number of a graph were introduced and studied by Santhakumaran and Athisayanathan in [8].

A set S ⊆ V is called an edge detour set of G if every edge in G lies on a detour joining

a pair of vertices of S. The edge detour number dn1(G) of G is the minimum order of its edge

detour sets and any edge detour set of order dn1(G) is an edge detour basis of G. A graph G is

called an edge detour graph if it has an edge detour set. Edge detour graphs were introduced

and studied in detail by Santhakumaran and Athisayanathan in [9], [10].

For the graph G given in Figure 1.2(a), the sets S1 = {u, x}, S2= {u, w, x} and S3= {u,

v, x, y} are detour basis, weak edge detour basis and edge detour basis of G respectively and

hence dn(G) = 2, dnw(G) = 3 and dn1(G) = 4. For the graph G given in Figure 1.2(b), the

set S ={u1, u2} is a detour basis, weak edge detour basis and an edge detour basis so that

dn(G) = dnw(G) = dn1(G) = 2. The graphs G given in Figure 1.2 are edge detour graphs. For

the graph G given in Figure 1.1, the set S ={v1, v2} is a detour basis and also a weak edge

detour basis. However, it does not contain an edge detour set and so the graph G in Figure

1.1 is not an edge detour graph. Also, for the graph G given in Figure 1.3, it is clear that no

b

b

b

b

b

bv

u

w

y

x

b b

b

b bb

b

b

u1 u2

(a) (b)

Figure 1.2: G

two element subset of V is an edge detour set of G. It is easily seen that S1 = {v1, v2, v4} is an

edge detour set of G so that S1 is an edge detour basis of G and hence dn1(G) = 3. Thus G is
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an edge detour graph. Also S2 = {v1, v2, v5} is another edge detour basis of G and thus there

can be more than one edge detour basis for a graph G.

b

b b

bb

b

b

b

v4

v2 v3

v5

v1

Figure 1.3: G

The following theorems are used in the sequel.

Theorem 1.1([9]) Every end-vertex of an edge detour graph G belongs to every edge detour set

of G. Also if the set S of all end-vertices of G is an edge detour set, then S is the unique edge

detour basis for G.

Theorem 1.2([9]) If T is a tree with k end-vertices, then dn1(T ) = k.

Theorem 1.3([9]) If G is the complete graph K2 or Kp − e (p > 3) or an even cycle Cn or a

non-trivial path Pn or a complete bipartite graph Km,n (m,n > 2), then G is an edge detour

graph and dn1(G) = 2.

Theorem 1.4([9]) If G is the complete graph Kp (p > 3) or an odd cycle Cn, then G is an edge

detour graph and dn1(G) = 3.

Theorem 1.1([9]) Let G = (Kn1
∪Kn2

∪ · · · ∪Knr
∪ kK1) + v be a block graph of order p > 5

such that r > 2, each ni > 2 and n1 + n2 + · · · + nr + k = p − 1. Then G is an edge detour

graph and dn1(G) = 2r + k.

Throughout this paper G denotes a connected graph with at least two vertices.

§2. Edge detour graphs G with diamDG ≤ 4 and dn1(G) = 2

An edge detour set of an edge detour graph G needs at least two vertices so that dn1(G) ≥ 2 and

the set of all vertices of G is an edge detour set of G so that dn1(G) ≤ p. Thus 2 ≤ dn1(G) ≤ p.

The bounds in this inequality are sharp. For the complete graph Kp(p = 2, 3), dn1(Kp) = p.

The set of two end vertices of a path Pn(n ≥ 2) is its unique edge detour set so that dn1(Pn) = 2.

Thus the complete graphs Kp(p = 2, 3) have the largest possible edge detour number p and

the non-trivial paths have the smallest edge detour number 2. In the following, we characterize

graphs G with detour diameter D ≤ 4 for which dn1(G) = 2. For this purpose we introduce
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the collection H of graphs given in Figure 2.1.
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Figure 2.1: Graphs in family H

Theorem 2.1 Let G be an edge detour graph of order p ≥ 2 with detour diameter D ≤ 4. Then

dn1(G) = 2 if and only if G ∈ H given in Figure 2.1.

Proof It is straightforward to verify that the set {v1, v2} as marked in the graphs Gi (1 ≤

i ≤ 16) given in H of Figure , is an edge detour set for each Gi. Hence dn1(Gi) = 2 for all the

graphs Gi ∈ H (1 6 i 6 16) given in Figure 2.1.

For the converse, let G be an edge detour graph of order p > 2, D 6 4 and dn1(G) = 2.

If D = 1, then it is clear that G1 ∈ H given in Figure 2.1 is the only graph for which

dn1(G) = 2.

Suppose D = 2. If G is a tree, then it follows from Theorem 1.2 that G2 ∈ H given in

Figure 2.1 is the only graph with dn1(G) = 2. If G is not a tree, let c(G) denote the length of a

longest cycle in G. Since G is connected and D = 2, it is clear that c(G) = 3 and G has exactly

three vertices so that G = K3 and by Theorem 1.4, dn1(G) = 3. Thus, when D = 2, G2 ∈ H

given in Figure 2.1 is the only graph that satisfies the requirements of the theorem.

Suppose D = 3. If G is a tree, then it follows from Theorem 1.2 that the path G3 ∈ H

given in Figure 2.1 is the only graph with dn1(G) = 2. Assume that G is not a tree. Let c(G)

denote the length of a longest cycle in G. Since G is connected and D = 3, it follows that p ≥ 4

and c(G) ≤ 4. We consider two cases.

Case 1 Let c(G) = 4. Then, since G is connected and D = 3, it is clear that G has exactly

four vertices. Hence G4, G5 ∈ H given in Figure 2.1 and K4 are the only graphs with these

properties. But by Theorem 1.3, dn1(G4) = dn1(G5) = 2 and by Theorem 1.4, dn1(K4) =

3. Thus in this case G4, G5 ∈ H given in Figure 2.1 are the only graphs that satisfy the

requirements of the theorem.

Case 2: Let c(G) = 3. If G contains two or more triangles, then c(G) = 4 or D > 4, which is

a contradiction. Hence G contains a unique triangle C3: v1, v2, v3, v1. Now, if there are two or

more vertices of C3 having degree 3 or more, then D > 4, which is contradiction. Thus exactly

one vertex in C3 has degree 3 or more. Since D = 3, it follows that G = K1,p−1 + e and so by

Theorem 1.5 dn1(K1,p−1 + e) = p − 1 ≥ 3, which is a contradiction. Thus, in this case, there

are no graphs that satisfying the requirements of the theorem.

Suppose D = 4. If G is a tree, then it follows from Theorem 1.2 that G6 ∈ H given in

Figure 2.1 is the only graph with dn1(G) = 2. Assume that G is not a tree. Let c(G) denote

the length of a longest cycle in G. Since D = 4, it follows that p ≥ 5 and c(G) ≤ 5. We consider
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three cases.

Case 1 Let c(G) = 5. Then, since D = 4, it is clear that G has exactly five vertices. Now, it is

easily verified that the graphs G7, G8, and G9 ∈ H given in Figure 2.1 are the only graphs with

dn1(Gi) = 2 (i = 7, 8, 9) among all graphs on five vertices having a largest cycle of length 5.

Case 2 Let c(G) = 4. Suppose that G contains K4 as an induced subgraph. Since p > 5,

D = 4 and c(G) = 4, every vertex not on K4 is pendant and adjacent to exactly one vertex of

K4. Thus the graph reduces to the graph G given in Figure 2.1.
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b

b

b

Figure 2.2: G

For this graph G, it follows from Theorem 1.5 that dn1(G) = p−1 ≥ 4, which is a contradiction.

Now, suppose that G does not contain K4 as an induced subgraph. We claim that G

contains exactly one 4-cycle C4. Suppose that G contains two or more 4-cycles. If two 4-cycles

in G have no edges in common, then it is clear that D > 5, which is a contradiction. If two

4-cycles in G have exactly one edge in common, then G must contain the graphs given in

Figure 2.3 as subgraphs or induced subgraphs. In any case, D > 5 or c(G) > 5, which is a

contradiction.
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bb

b

G2
Figure 2.3: G

If two 4-cycles in G have exactly two edges in common, then G must contain only the graphs

given in Figure 2.4 as subgraphs. It is easily verified that all other subgraphs having two edges

in common will have cycles of length > 5 so that D ≥ 5, which is a contradiction.

Now, if G = H1, then dn1(G) = 2 and it is nothing but the graph G10 ∈ H given in Figure

2.1. Assume first that G contains H1 as a proper subgraph. Then there is a vertex x such that

x /∈ V (H1) and x is adjacent to at least one vertex of H1. If x is adjacent to v1, we get a path

x, v1, v2, v3, v4, v5 of length 5 so that D > 5, which is a contradiction. Hence x cannot be

adjacent to v1. Similarly x cannot be adjacent to v3 and v5. Thus x is adjacent to v2 or v4

or both. If x is adjacent only to v2, then x must be a pendant vertex of G, for otherwise, we

get a path of length 5 so that D > 5, which is a contradiction. Thus in this case, the graph G
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reduces to the one given in Figure 2.5.
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Figure 2.5: G

However, for this graph G, it follows from Theorem 1.1 that the set {v4, v6, v7, . . . , vp} is an

edge detour basis so that dn1(G) = p − 4. Hence p = 6 is the only possibility and the graph

reduces to G11 ∈ H given in Figure 2.1 and satisfies the requirements of the theorem. If x is

adjacent only to v4, then we get a graph G isomorphic to the one given in Figure 2.5 and hence

we get a graph G isomorphic to G11 ∈ H given in Figure 2.1 and satisfies the requirements

of the theorem. If x is adjacent to both v2 and v4, then the graph reduces to the one given in

Figure 2.6. This graph G is isomorphic to G12 ∈ H given in Figure and {v1, v2} is an edge

b
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b b

b

b

b

b b

b

b

b

bb b b

b b b
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v2

v3

v4
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x

Figure 2.6: G

detour basis for G12 so that dn1(G) = 2.

Next, if a vertex x not on H1 is adjacent only to v2 and a vertex y not on H1 is adjacent

only to v4, then x and y must be pendant vertices of G, for otherwise, we get either a path or

a cycle of length > 5 so that D > 5, which is a contradiction. Thus in this case, the graph

reduces to the one given in Figure 2.7.
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For this graph G, the set of all end-vertices is an edge detour basis so that by Theorem 1.1,

dn1(G) = p−5. Hence p = 7 is the only possibility and the graph reduces to G13 ∈ H given in

Figure 2.1 and satisfies the requirements of the theorem. Thus, in this case, we have G10, G11,

G12, G13 ∈ H given in Figure 2.1 are the only graphs with H1 as proper subgraph for which

dn1(G) = 2.

Next, if G = H2 given in Figure 2.4, then the edge v2v4 does not lie on any detour joining

a pair of vertices of G so that G is not an edge detour graph. If G contains H2 as a proper

subgraph, then as in the case of H1, it is easily seen that the graph reduces to any one of the

graphs given in Figure 2.8.
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Figure 2.8: G

Since the edge v2v4 of Gi (1 6 i 6 3) in Figure 2.8 does not lie on a detour joining any

pair of vertices of Gi, these graphs are not edge detour graphs. Thus in this case there are no

edge detour graphs G with H2 as a proper subgraph satisfying the requirements of the theorem.

Thus, if G does not contain K4 as an induced subgraph, we have proved that G has a unique

4-cycle. Now we consider two subcases.

Subcase 1: The unique cycle C4: v1, v2, v3, v4, v1 contains exactly one chord v2v4. Since

p > 5, D = 4 and G is connected, any vertex x not on C4 is pendant and is adjacent to at least

one vertex of C4. The vertex x cannot be adjacent to both v1 and v3, for in this case, we get

c(G) = 5, which is a contradiction. Suppose that x is adjacent to v1 or v3, say v1. Also, if y is

a vertex such that y 6= x, v1, v2, v3, v4, then y cannot be adjacent to v2 or v3 or v4, for in each

case D > 5, which is a contradiction. Hence y is a pendant vertex and cannot be adjacent to x

or v2 or v3 or v4 so that in this case the graph G reduces to the one given in Figure 2.9.
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Since the set of all end vertices together with the vertex v3 forms an edge detour basis for

this graph G, it follows from Theorem 1.1 that dn1(G) = p − 3 ≥ 2. Hence p = 5 is the only

possibility and the graph reduces to G14 ∈ H given in Figure 2.1 and satisfies the requirements

of the theorem. Similarly, if x is adjacent to v3, then also we get the graph G14 ∈ H given in

Figure 2.1 and satisfies the requirements of the theorem.

Now, if x is adjacent to both v2 and v4, we get the graph H given in Figure 2.10 as a

subgraph which is isomorphic to the graph H2 given in Figure 2.4. Then, as in the first part

of case 2, we see that there are no edge detour graphs which satisfy the requirements of the

theorem.
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Figure 2.10: H

Thus x is adjacent to exactly one of v2 or v4, say v2. Also, if y is a vertex such that y 6= x,

v1, v2, v3, v4, then y cannot be adjacent to x or v1 or v3, for in each case D > 5, which is a

contradiction. If y is adjacent to v2 and v4, then we get the graph H given in Figure 2.11 as

a subgraph. Then exactly as in the first part of case 2 it can be seen that there are no graphs

satisfying the requirements of the theorem.
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Figure 2.11: H

Thus y must be adjacent to v2 or v4 only. Hence we conclude that in either case the graph G
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must reduce to the graph G1 or G2 as given in Figure 2.12. Similarly, if x is adjacent to v4,

then the graph G reduces to the graph G1 or G2 as given in Figure 2.12 and it is clear that

dn1(G) = p− 2 ≥ 3, which is a contradiction.
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Figure 2.12: G

Thus, in this subcase 1, G14 ∈ H given in Figure 2.1 is the only graph satisfying the require-

ments of the theorem.

Subcase 2: The unique cycle C4: v1, v2, v3, v4, v1 has no chord. In this case we claim that

G contains no triangle. Suppose that G contains a triangle C3. If C3 has no vertex in common

with C4 or exactly one vertex in common with C4, we get a path of length at least 5 so that

D > 5. If C3 has exactly two vertices in common with C4, we get a cycle of length 5. Thus, in

all cases, we have a contradiction and hence it follows that G contains a unique chordless cycle

C4 with no triangles. Since p > 5 , D = 4, c(G) = 4 and G is connected, any vertex x not on

C4 is pendant and is adjacent to exactly one vertex of C4, say v1. Also if y is a vertex such

that y 6= x, v1, v2, v3, v4, then y cannot be adjacent to v2 or v4, for in this case, D > 5, which

is a contradiction. Thus y must be adjacent to v3 only. Hence we conclude that in either case

G must reduce to the graphs H1 or H2 as given in Figure 2.13.
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Figure 2.13: G

For these graphs H1 and H2 in Figure 2.13, it follows from Theorem 1.1 that dn1(H1) = p− 3

and dn1(H2) = p − 4. The only possible vaues are p = 5 for H1 and p = 6 for H2 so that

H1 reduces to G15 ∈ H and H2 reduces to G16 ∈ H as given in Figure 2.1. Thus, in this

subcase 2, G15, G16 ∈ H as given in Figure 2.1 are the only graphs satisfying the requirements

of the theorem. Thus, when D = 4 and c(G) = 4, the graphs satisfying the requirements of the

theorem are G14, G15, G16 ∈ H as in Figure 2.1.
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Case 3 Let c(G) = 3.

Case 3a G contains exactly one triangle C3: v1, v2, v3, v1. Since p > 5, there are vertices

not on C3. If all the vertices of C3 have degree three or more, then p ≥ 6 and since D = 4,

the graph G must reduce to the one given in Figure 2.14. It follows from Theorem 1.1 that

dn1(G) = p − 3. Since p ≥ 6, this is a contradiction. Hence we conclude that at most two

vertices of C3 have degree > 3.
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Figure 2.14: G

Subcase 1 Exactly two vertices of C3 have degree 3 or more. Let deg v3 = 2. Now, since

p > 5, D = 4, c(G) = 3 and G is connected, we see that the graph reduces to the graph G

given in Figure 2.15. For this graph G, it follows from Theorem 1.1 that dn1(G) = p− 2. Since

p ≥ 5, this is a contradiction.
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Subcase 2: Exactly one vertex v1 of C3 has degree 3 or more. Since G is connected, p > 5,

D = 4 and c(G) = 3, the graph reduces to the one given in Figure 2.16. We claim that exactly

one neighbor of v1 other than v2 and v3 has degree ≥ 2. Otherwise, more than one neighbor of
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v1 other than v2 and v3 has degree > 2 so that p ≥ 7 and set of all end-vertices together with

v2 and v3 forms an edge detour set of G and so dn1(G) > 4, which is a contradiction. Thus the

graph reduces to the one given in Figure 2.17 and it is clear that dn1(G) = p− 2. Since p ≥ 5,

this is a contradiction.
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Figure 2.17: G

Case 3b: G contains more than one triangle. Since D = 4 and c(G) = 3, it is clear that

all the triangles must have a vertex v in common. Now, if two triangles have two vertices in

common then it is clear that c(G) > 4. Hence all triangles must have exactly one vertex in

common. Since p > 5, D = 4, c(G) = 3 and G is connected, all the vertices of all the triangles

are of degree 2 except v. Thus the graph reduces to the graphs given in Figure 2.18.
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Figure 2.18: G

If G = H1, then by Theorem 1.5, dn1(G) = p − 1. Since p ≥ 5, this is a contradiction. If

G = H2 and more than one neighbor of v not on the triangles has degree > 2, then p ≥ 9 and

the set of all end-vertices together with the all the vertices of all triangles except v forms an

edge detour set of G. Hence dn1(G) > 6, which is a contradiction.

b

b

b

b

b

b

b b

b

b

b

b

b b

b

b

b

b

b

b

b

b

b

b

b

b
b

b

b

b

b

Figure 2.19: G



Edge Detour Graphs with Edge Detour Number 2 89

If G = H2 and exactly one neighbor of v not on the triangles has degree > 2, then the

graph reduces to the graph G given in Figure 2.19, and it is easy to verify that dn1(G) = p− 2.

Since p ≥ 5, this is a contradiction. Thus we see that when D = 4 and c(G) = 3, there are no

graphs satisfying the requirements of the theorem. This completes the proof of the theorem.�

In view of Theorem 2.1, we leave the following problem as an open question.

Problem 2.2 Characterize edge detour graphs G with detour diameter D ≥ 5 for which

dn1(G) = 2.

The following theorem is a characterization for trees.

Theorem 2.3 For any tree T of order p ≥ 2, dn1(G) = 2 if and only if T is a path.

Proof This follows from Theorem 2.1. �
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Abstract: A Smarandache geometry is a geometry which has at least one Smarandachely

denied axiom (1969), i.e., validated and invalided, or only invalided but in multiple distinct

ways. Iseri constructed Smarandache 2-manifolds in Euclidean plane R
2 in [1], and later Mao

generalized his result to surfaces by map geometry in [4]. Then can we construct Smarandache

n-manifolds for n ≥ 3? The answer is YES. Not like the technique used in [6], we show how

to construct Smarandache geometries in R
n by an algebraic methods, which was applied in

[3] for R
2 first, and then give a systematic way for constructing Smarandache n-manifolds.

Key Words: Smarandache geometries, Euclidean pseudo-geometry, combinatorial system.

AMS(2000): 05E15, 08A02, 15A03, 20E07, 51M15.

§1. Introduction

As it is usually cited in references, a Smarandache geometry is defined as follows.

Definition 1.1 An axiom is said to be Smarandachely denied if the axiom behaves in at least

two different ways within the same space, i.e., validated and invalided, or only invalided but in

multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

axiom(1969).

This anti-mathematical or multiple approach on sciences can be used to abstract systems.

In the reference [8], we formally generalized it to the conceptions of Smarandachely systems as

follows.

Definition 1.2 A rule in a mathematical system (Σ;R) is said to be Smarandachely denied if

it behaves in at least two different ways within the same set Σ, i.e., validated and invalided, or

only invalided but in multiple distinct ways.

A Smarandache system (Σ;R) is a mathematical system which has at least one Smaran-

dachely denied rule in R.

As its a simple or concrete example, a question raised in [4] is to construct a Smarandache

geometry on Rn for n ≥ 2. Certainly, the case of n = 2 has be solved by Iseri [1] and Mao [3]-

1Received December 25, 2008. Accepted February 16, 2009.
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[4]. The main purpose of this paper is to give an algebraic approach for constructing Euclidean

pseudo-geometry on Rn for any integer n ≥ 2, which also refines the definition of pseudo

manifold geometry introduced in [6].

§2. Euclidean pseudo-geometry

Let Rn be an n-dimensional Euclidean space with a normal basis ǫ1 = (1, 0, · · · , 0), ǫ2 =

(0, 1, · · · , 0), · · · , ǫn = (0, 0, · · · , 1). An orientation
−→
X is a vector

−−→
OX with ‖

−−→
OX‖ = 1 in Rn,

where O = (0, 0, · · · , 0). Usually, an orientation
−→
X is denoted by its projections of

−−→
OX on each

ǫi for 1 ≤ i ≤ n, i.e.,

−→
X = (cos(

−−→
OX, ǫ1), cos(

−−→
OX, ǫ2), · · · , cos(

−−→
OX, ǫn)),

where (
−−→
OX, ǫi) denotes the angle between vectors

−−→
OX and ǫi, 1 ≤ i ≤ n. All possible orienta-

tions
−→
X in Rn consist of a set O.

A pseudo-Euclidean space is a pair (Rn, ω|−→
O

), where ω|−→
O

: Rn → O is a continuous

function, i.e., a straight line with an orientation
−→
O will has an orientation

−→
O + ω|−→

O
(u) after it

passing through a point u ∈ E. It is obvious that (E, ω|−→
O

) = E, namely the Euclidean space

itself if and only if ω|−→
O

(u) = 0 for ∀u ∈ E.

We have known that a straight line L passing through a point (x0
1, x

0
2, · · · , x

0
n) with an

orientation
−→
O = (X1, X2, · · · , Xn) is defined to be a point set (x1, x2, · · · , xn) determined by

an equation system





x1 = x0
1 + tX1

x2 = x0
2 + tX2

· · · · · · · · · · · ·

xn = x0
n + tXn

for ∀t ∈ R in analytic geometry on Rn, or equivalently, by the equation system

x1 − x0
1

X1
=
x2 − x0

2

X2
= · · · =

xn − x0
n

Xn
.

Therefore, we can also determine its equation system for a straight line L in a pseudo-

Euclidean space (Rn, ω). By definition, a straight line L passing through a Euclidean point

x0 = (x0
1, x

0
2, · · · , x

0
n) ∈ Rn with an orientation

−→
O = (X1, X2, · · · , Xn) in (Rn, ω) is a point set

(x1, x2, · · · , xn) determined by an equation system





x1 = x0
1 + t(X1 + ω1(x

0))

x2 = x0
2 + t(X2 + ω2(x

0))

· · · · · · · · · · · ·

xn = x0
n + t(Xn + ωn(x

0))

for ∀t ∈ R, or equivalently,
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x1 − x0
1

X1 + ω1(x
0)

=
x2 − x0

2

X2 + ω2(x
0)

= · · · =
xn − x0

n

Xn + ωn(x
0)
,

where ω|−→
O

(x0) = (ω1(x
0), ω2(x

0), · · · , ωn(x
0)). Notice that this equation system dependent on

ω|−→
O

, it maybe not a linear equation system.

Similarly, let
−→
O be an orientation. A point u ∈ Rn is said to be Euclidean on orientation

−→
O if ω|−→

O
(u) = 0. Otherwise, let ω|−→

O
(u) = (ω1(u), ω2(u), · · · , ωn(u)). The point u is elliptic or

hyperbolic determined by the following inductive programming.

STEP 1. If ω1(u) < 0, then u is elliptic; otherwise, hyperbolic if ω1(u) > 0;

STEP 2. If ω1(u) = ω2(u) = · · · = ωi(u = 0, but ωi+1(u < 0 then u is elliptic; otherwise,

hyperbolic if ωi+1(u) > 0 for an integer i, 0 ≤ i ≤ n− 1.

Denote these elliptic, Euclidean and hyperbolic point sets by

−→
V eu = { u ∈ Rn | u an Euclidean point },

−→
V el = { v ∈ Rn | v an elliptic point }.

−→
V hy = { v ∈ Rn | w a hyperbolic point }.

Then we get a partition

Rn =
−→
V eu

⋃−→
V el

⋃−→
V hy

on points in Rn with
−→
V eu ∩

−→
V el = ∅,

−→
V eu ∩

−→
V hy = ∅ and

−→
V el ∩

−→
V hy = ∅. Points in

−→
V el ∩

−→
V hy

are called non-Euclidean points.

Now we introduce a linear order ≺ on O by the dictionary arrangement in the following.

For (x1, x2, · · · , xn) and (x′1, x
′
2, · · · , x

′
n) ∈ O, if x1 = x′1, x2 = x′2, · · · , xl = x′l and xl+1 <

x′l+1 for any integer l, 0 ≤ l ≤ n− 1, then define (x1, x2, · · · , xn) ≺ (x′1, x
′
2, · · · , x

′
n).

By this definition, we know that

ω|−→
O

(u) ≺ ω|−→
O

(v) ≺ ω|−→
O

(w)

for ∀u ∈
−→
V el, v ∈

−→
V eu, w ∈

−→
V hy and a given orientation

−→
O . This fact enables us to find an

interesting result following.

Theorem 2.1 For any orientation
−→
O ∈ O in a pseudo-Euclidean space (Rn, ω|−→

O
), if

−→
V el 6= ∅

and
−→
V hy 6= ∅, then

−→
V eu 6= ∅.

Proof By assumption,
−→
V el 6= ∅ and

−→
V hy 6= ∅, we can choose points u ∈

−→
V el and w ∈

−→
V hy.

Notice that ω|−→
O

: Rn → O is a continuous and (O,≺) a linear ordered set. Applying the

generalized intermediate value theorem on continuous mappings in topology, i.e.,

Let f : X → Y be a continuous mapping with X a connected space and Y a linear ordered

set in the order topology. If a, b ∈ X and y ∈ Y lies between f(a) and f(b), then there exists

x ∈ X such that f(x) = y.
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we know that there is a point v ∈ Rn such that

ω|−→
O

(v) = 0,

i.e., v is a Euclidean point by definition. �

Corollary 2.1 For any orientation
−→
O ∈ O in a pseudo-Euclidean space (Rn, ω|−→

O
), if

−→
V eu = ∅,

then either points in (Rn, ω|−→
O

) is elliptic or hyperbolic.

Certainly, a pseudo-Euclidean space (Rn, ω|−→
O

) is a Smarandache geometry sometimes ex-

plained in the following.

Theorem 2.2 A pseudo-Euclidean space (Rn, ω|−→
O

) is a Smarandache geometry if
−→
V eu,

−→
V el 6=

∅, or
−→
V eu,

−→
V hy 6= ∅, or

−→
V el,

−→
V hy 6= ∅ for an orientation

−→
O in (Rn, ω|−→

O
).

Proof Notice that ω|−→
O

(u) = 0 is an axiom in Rn, but a Smarandache denied axiom if
−→
V eu,

−→
V el 6= ∅, or

−→
V eu,

−→
V hy 6= ∅, or

−→
V el,

−→
V hy 6= ∅ for an orientation

−→
O in (Rn, ω|−→

O
) for

ω|−→
O

(u) = 0 or 6= 0 in the former two cases and ω|−→
O

(u) ≺ 0 or ≻ 0 both hold in the last one.

Whence, we know that (Rn, ω|−→
O

) is a Smarandache geometry by definition. �

Notice that there infinite points on a segment of a straight line in Rn. Whence, a necessary

for the existence of a straight line is there exist infinite Euclidean points in (Rn, ω|−→
O

). We find

a necessary and sufficient result for the existence of a curve C in (Rn, ω|−→
O

) following.

Theorem 2.3 A curve C = (f1(t), f2(t), · · · , fn(t)) exists in a pseudo-Euclidean space (Rn, ω|−→
O

)

for an orientation
−→
O if and only if

df1(t)

dt
|u =

√
(

1

ω1(u)
)2 − 1,

df2(t)

dt
|u =

√
(

1

ω2(u)
)2 − 1,

· · · · · · · · · · · · ,

dfn(t)

dt
|u =

√
(

1

ωn(u)
)2 − 1.

for ∀u ∈ C, where ω|−→
O

= (ω1, ω2, · · · , ωn).

Proof Let the angle between ω|−→
O

and ǫi be θi, 1 ≤ θi ≤ n.
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Then we know that

cos θi = ωi, 1 ≤ i ≤ n.

According to the geometrical implication of differential at a point u ∈ Rn, seeing also

Fig.2.1, we know that

dfi(t)

dt
|u = tgθi =

√
(

1

ωi(u)
)2 − 1

for 1 ≤ i ≤ n. Therefore, if a curve C = (f1(t), f2(t), · · · , fn(t)) exists in a pseudo-Euclidean

space (Rn, ω|−→
O

) for an orientation
−→
O , then

dfi(t)

dt
|u =

√
(

1

ω2(u)
)2 − 1, 1 ≤ i ≤ n

for ∀u ∈ C. On the other hand, if

dfi(t)

dt
|v =

√
(

1

ω2(v)
)2 − 1, 1 ≤ i ≤ n

hold for points v for ∀t ∈ R, then all points v, t ∈ R consist of a curveC = (f1(t), f2(t), · · · , fn(t))

in (Rn, ω|−→
O

) for the orientation
−→
O . �

Corollary 2.2 A straight line L exists in (Rn, ω|−→
O

) if and only if ω|−→
O

(u) = 0 for ∀u ∈ L and

∀
−→
O ∈ O.

§3. Application to Smarandache n-manifolds

Application of the definition of pseudo-Euclidean space Rn enables us to formally define a

dimensional n pseudo-manifold in [6] following, which makes its structure clear.

Definition 3.1 An n-dimensional pseudo-manifold (Mn,Aω) is a Hausdorff space such that

each points p has an open neighborhood Up homomorphic to a pseudo-Euclidean space (Rn, ω|−→
O

),
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where A = {(Up, ϕωp )|p ∈ Mn} is its atlas with a homomorphism ϕωp : Up → (Rn, ω|−→
O

) and a

chart (Up, ϕ
ω
p ).

Applications of this definition will rebuilt pseudo-manifold geometries constructed in [6],

which will appear in a forthcoming book Combinatorial Geometry with Applications to Field

Theory of the author in 2009.
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§1. Introduction

The folding of a manifold into another manifold or into itself are presented by EL-Ghoul [4,

7-9], EL-Kholy [12], El-Ahmady [1,2] and in [14], the deformation retract and the topological

folding of a manifold are introduced in [1,4,6,7], the retraction of the manifolds are introduced

in [5,8,10]. In this paper we have presented the effect of retraction on some geometric properties

of some geometric figures, which makes some geometric figures which is not manifolds to be

manifolds, also the limit of these retractions is discussed, the types of retractions, which fail

to make the non-manifold to be a manifold will be presented, the end of limits of retractions

of any geometric figure of dimension n is presented, we introduce a type of retraction ,which

makes the non-simple closed curve in R3 to be a knot, the effect of retraction on some geometric

properties of some geometric figures as dimension is discussed, the theorems governing these

types of retractions are presented.

§2. Definitions and background

1. Let M and N be two smooth manifolds of dimensions m and n respectively. A map f : M → N

is said to be an isometric folding of M into N if and only if for every piecewise geodesic path

γ : I → M the induced path f ◦ γ : I → N is piecewise geodesic and of the same length as γ.

If f does not preserve the length, it is called topological folding [14].

2. A subset A of a topological space X is called a retract of X , if there exists a continuous map

1Received January 10, 2009. Accepted February 18, 2009.
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r : X → A (called retraction) such that r(a) = a∀a ∈ A [5,13] .

3. An n-dimensional manifold is a Hausdorff topological space, such that each point has an

open neighborhood homeomorphic to an open n-dimension disc [13, 15] .

4. A knot is a subset of 3-space that is homeomorphic to the unit circle in R3 [16].

§3. The main results

Aiming to our study, we will introduce the following:

our goal is to study the effect of some retractions on the geometric properties of some

geometric figures, which are not manifolds as some non simple closed curves and we introduce

some types of retractions which makes the geometric figure, which is not manifold to be a

manifold and the types of retractions which fail to change the geometric figure to be a manifold.

Fig.1

Proposition 3.1 There is a type of retraction which makes the non-simple closed curve , which

is not manifold to be a manifold.

Proof Let r : X − {xi} → X1, be a retraction map of X–{xi} into X1, where X is a

non-simple closed curve self-intersection at n-points , since X be a non-simple closed curve self-

intersection at n-points, and the neighborhoods of the intersection points different from the

neighborhoods of the other points of the curve X, then X is not manifold, let xi, i = 1, 2,· · ·

,m are any points on the loops of the intersection points of X respectively, when the number of

the points m is less than the number of the intersection points i.e. m <n, then the limit of the

retractions of X is not a manifold, when the number of the points m is equal to the number of

the intersection points , i.e. m = n, then the limit of retractions of X is a simple closed curve,
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which is a manifold and when m¿n, then the limit of the retractions of X is a 0-manifold, see

Fig.1. �

Proposition 3.2 There is a type of retraction which makes the non-simple closed curve to be

a disjoint union of points which is a manifold.

Proof Let r : X \ {xi} → X2, be a retraction map of X \ {xi} into X2, where X is a non-

simple closed curve self-intersection at n-points, when the number of points xi, i = 1, 2, · · · ,m

is less than the number of intersection points n i.e., m < n, then the limit of retractions of X is

not a manifold, when the number of the points m is equal the number of the intersection points

n then the limit of retractions of X is a disjoint union of points, which is a manifold and when

X lies in R3, we have the same results, see Fig.2. �

Fig.2

Proposition 3.3 Let r : X \ {pi} → X3, i = 1, 2, ...,m be a retraction map, where X is a non-

simple closed curve, pi are the points on X,which lie between any two consecutive inter-section

points of X respectively, then the limit of retractions of X is a manifold.

Proof Let r : X \ {pi} → X3, i = 1, 2, ...,m be a retraction map of X \ {pi} into X3, where

X is a non-simple closed curve self-intersection at n-points and p1, p2, p3,· · · , pm are the points

on X , which lie between any two consecutive intersection points of X respectively, when the

number of points m is less than the number of intersection points m i.e., m < n, then the limit
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of retractions of X is not a manifold, when the number of the points m is equal to the number

of points n i.e. m = n, then the limit of retractions of X is a disjoint union of loops which is a

manifold see Fig.3. �

Fig.3

Proposition 3.4 If r : X \ {pi, ki} → X∗ be a retraction map of X where X is a non-simple

closed curve, pi, ki are defined as any two points of each loop of the loops of X, then the limit

of retraction of X is not a manifold.

Proof Let r : X \ {pi, ki} → X∗, be a retraction map of X \ {pi, ki} into X∗, where X is a

non-simple closed curve self-intersection at n-points of the curveX , let pi and ki, i = 1, 2, · · · ,m

are the points of each loop of the loops of the curveX i.e., the retraction by removing two points

pi and ki from each loop respectively ,when the number of points {pi, ki} is less than n i.e.,

m < n, then the limit of retractions of X is not a manifold, when the number of points {pi, ki}

is equal to the number of points n i.e., m = n, then the limit of retractions of X is not a

manifold and when X lies in R3, we have the same results, see Fig.4. �
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Fig.4

Proposition 3.5 There is a type of retraction which make the non-simple curve with boundaries

which is not a manifold to be a manifold with boundaries.

Proof Let r : X \ {xi} → Xr be a retraction map of X \ {xi} into Xr, where X is

a non-simple curve with boundaries b1 and b2, which is self-intersection at n-points, let xi,

i = 1, 2, · · · ,m are the points on the loops of the intersection points of X respectively, when

the number of the points m are less than n i.e., m < n, then the limit of retractions of X is not

a manifold, when the number of the points m is equal to the number of the intersection points

n, then the limit of retractions of X is a simple curve with boundaries b1 and b2, which is a

manifold with boundaries and when m > n, then the limit of retractions of X is a manifold see

Fig.5, when X lies in R3, we have the same results. �
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Fig.5

Proposition 3.6 If r : X \ {x} → X/be a retraction map of X, where X is a non-simple curve

with boundaries, and x is a point between one point of the boundary and the nearest intersection

point, then the limit of retractions of X is not a manifold.

Proof Let r : X \ {x} → X/, be a retraction map of X \ {x} into X/, where X is a

non-simple curve with boundaries b1 and b2 self-intersection at n-points, where x is the point

between the boundary b2 and the nearest intersection point of X , then the limit of retractions of

X is not a manifold, when we define the retraction map r : X \ {x} → X/, where x is the point

between the boundary b1and the nearest intersection point of X then the limit of retractions

of X is not a manifold, see Fig.6. �
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Fig.6

Proposition 3, 7 If r : X \ {bi} → Xb, i = 1, 2 be a retraction map of X, where X is a non

simple curve with boundaries b1 and b2, then the limit of retractions of X is not a manifold.

Proof Let r : X \ {bi} → Xb be a retraction map of X \ {bi} into Xb, where X is a

non-simple curve self-intersection at n-points, bi, i = 1, 2 are the boundaries of X, i = 1, 2, then

the retraction of X is not a manifold and the limit of retractions of X is not a manifold, see

Fig.7. �

Fig.7
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Proposition 3, 8 There is a type of retraction which makes the non-simple closed curve in

R3to be a knot.

Proof Let r : X \ {xi} → X∗, be a retraction map of X \ {xi} into X∗, where X is a non-

simple closed curve in R3 self-intersection at n-points, X is not a manifold, let xi, i = 1, 2, · · · ,m

are the points on the loops of the intersection points of X respectively, when the number of the

points m are less than the number of the intersection points n i.e., m < n, then the limit of the

retractions of X is not a knot, when the number of the points m is equal to the number of points

n of X , i.e., m = n, then the limit of retractions of X is a simple closed curve homeomorphic

to a circle in R3 which is a knot, which is also a manifold and when the number of points m¿n,

then the limit of the retractions of X is not a knot, but it is a manifold, see Fig.8. �

Fig.8

Proposition 3.9 Let A be a subset of a topological space X and r : X → A is a retraction

map of X into A, A = r(X), then dim(X) = dim(r(X)), dim(X) ≥ dim(lim r(X)), dim(X) 6=

dim(lim r(X)) and dim(r(X)) ≥ dim(limr(X)).

Proposition 3.10 The limit of retractions of any geometric figure in Rn, which is not a

manifold is not necessary be a manifold, but the end of the limits of retractions of any n-

geometric figure is a manifold.
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Proof Let r : Mn →Mn
1 be a retraction map of Mn into Mn

1 , Mn is a geometric figure of

dimension n, Mn is not a manifold, then the limit of retractions of the geometric figure Mn is

Mn−1 and it may be a manifold or not, there is at least one point , which their neighborhood is

not homeomorphic to the other points of Mn−1, the limit of retractions of Mn−1 is Mn−2 and

it may be manifold or not, by using a sequence of retractions of Mn as shown in the following,

then we find that the end of limits of retractions of Mn is a 0-manifold.

Mn r11→Mn
1

r12→ Mn
2

r12→ ...Mn
n−1

lim
n→∞

r1n
→ Mn−1,

Mn−1 r21→Mn−1
1

r22→ Mn−1
2

r23→ ...Mn−1
n−1

lim
n→∞

r2n
→ Mn−2,

Mn−2 r31→Mn−2
1

r32→ Mn−2
2

r33→ ...Mn−2
n−1

lim
n→∞

r3n
→ Mn−3,

· · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · · ,

M1 rn
1→M1

1

rn
2→M1

2

rn
3→ ...M1

n−1

lim
n→∞

rn
n

→ M0.

Then the end of limits of retractions of any n-geometric figure is a 0-manifold. �
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Nature’s mighty law is change.

By Robert Burns, a British poet.
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