ISSN 1937 - 1055<br>VOLUME 1, 2007

INTERNATIONAL JOURNAL OF

## MATHEMATICAL COMBINATORICS



EDITED BY

THE MADIS OF CHINESE ACADEMY OF SCIENCES

OCTOBER, 2007

## International Journal of <br> Mathematical Combinatorics

Edited By<br>The Madis of Chinese Academy of Sciences

October, 2007

Aims and Scope: The International J.Mathematical Combinatorics (ISSN 1937-1055) is a fully refereed international journal, sponsored by the MADIS of Chinese Academy of Sciences and published in USA quarterly comprising 460 pages approx. per volume, which publishes original research papers and survey articles in all aspects of Smarandache multi-spaces, Smarandache geometries, mathematical combinatorics, non-euclidean geometry and topology and their applications to other sciences. Topics in detail to be covered are:

Smarandache multi-spaces with applications to other sciences, such as those of algebraic multi-systems, multi-metric spaces, $\cdot$, etc.. Smarandache geometries;

Differential Geometry; Geometry on manifolds;
Topological graphs; Algebraic graphs; Random graphs; Combinatorial maps; Graph and map enumeration; Combinatorial designs; Combinatorial enumeration;

Low Dimensional Topology; Differential Topology; Topology of Manifolds;
Geometrical aspects of Mathematical Physics and Relations with Manifold Topology;
Applications of Smarandache multi-spaces to theoretical physics; Applications of Combinatorics to mathematics and theoretical physics;

Mathematical theory on gravitational fields; Mathematical theory on parallel universes;
Other applications of Smarandache multi-space and combinatorics.
Generally, papers on mathematics with its applications not including in above topics are also welcome.

It is also available in microfilm format and can be ordered online from:

## Books on Demand

ProQuest Information \& Learning
300 North Zeeb Road
P.O.Box 1346, Ann Arbor

MI 48106-1346, USA
Tel:1-800-521-0600(Customer Service)
URL: http://madisl.iss.ac.cn/IJMC.htm/
Indexing and Reviews: Mathematical Reviews(USA), Zentralblatt fur Mathematik(Germany), Referativnyi Zhurnal (Russia), Mathematika (Russia), Computing Review (USA), Institute for Scientific Information (PA, USA), Library of Congress Subject Headings (USA).

Subscription A subscription can be ordered by a mail or an email directly to the Editor-inChief.

## Linfan Mao

The Editor-in-Chief of International Journal of Mathematical Combinatorics
Chinese Academy of Mathematics and System Science
Beijing, 100080, P.R.China
Email: maolinfan@163.com

## Printed in the United States of America

Price: US\$48.00

## Editorial Board

Editor-in-Chief
Linfan MAO
Chinese Academy of Mathematics and System
Science, P.R.China
Email: maolinfan@163.com

## Editors

## S.Bhattacharya

Alaska Pacific University, USA
Email: sbhattacharya@alaskapacific.edu

## An Chang

Fuzhou University, P.R.China
Email: anchang@fzh.edu.cn
Junliang Cai
Beijing Normal University, P.R.China
Email: caijunliang@bnu.edu.cn

## Yanxun Chang

Beijing Jiaotong University, P.R.China
Email: yxchang@center.njtu.edu.cn

## Shaofei Du

Capital Normal University, P.R.China
Email: dushf@mail.cnu.edu.cn

## Florentin Popescu

University of Craiova
Craiova, Romania

## Xiaodong Hu

Chinese Academy of Mathematics and System
Science, P.R.China
Email: xdhu@amss.ac.cn

## Yuanqiu Huang

Hunan Normal University, P.R.China
Email: hyqq@public.cs.hn.cn
H.Iseri

Mansfield University, USA
Email: hiseri@mnsfld.edu

## M.Khoshnevisan

School of Accounting and Finance, Griffith University, Australia

## Xueliang Li

Nankai University, P.R.China
Email: lxl@nankai.edu.cn

## Han Ren

East China Normal University, P.R.China
Email: hren@math.ecnu.edu.cn

## W.B.Vasantha Kandasamy

Indian Institute of Technology, India
Email: vasantha@iitm.ac.in
Mingyao Xu
Peking University, P.R.China
Email: xumy@math.pku.edu.cn

## Guiying Yan

Chinese Academy of Mathematics and System
Science, P.R.China
Email: yanguiying@yahoo.com

## Y. Zhang

Department of Computer Science
Georgia State University, Atlanta, USA

Neither believe nor reject anything, because any other person has rejected of believed it. Heaven has given you a mind for judging truth and error, Use it.

By Thomas Jefferson, an American president.

# Combinatorial Speculation and 

 Combinatorial Conjecture for MathematicsLinfan Mao<br>(Chinese Academy of Mathematics and System Sciences, Beijing 100080, P.R.China)<br>Email: maolinfan@163.com


#### Abstract

Extended: This survey was widely spread after reported at a combinatorial conference of China in 2006. As a powerful tool for dealing with relations among objectives, combinatorics mushroomed in the past century, particularly in catering to the need of computer science and children games. However, an even more important work for mathematician is to apply it to other mathematics and other sciences besides just to find combinatorial behavior for objectives. How can it contributes more to the entirely mathematical science, not just in various games, but in metric mathematics? What is a right mathematical theory for the original face of our world? I presented a well-known proverb, i.e., the six blind men and an elephant in the 3th Northwest Conference on Number Theory and Smarandache's Notion of China and answered the second question to be Smarandache multi-spaces in logic. Prior to that explaining, I have brought a heartening conjecture for advancing mathematics in 2005, i.e., mathematical science can be reconstructed from or made by combinatorialization after a long time speculation, also a bringing about Smarandache multi-space for mathematics. This conjecture is not just like an open problem, but more like a deeply thought for advancing the modern mathematics. The main trend of modern sciences is overlap and hybrid. Whence the mathematics of 21st century should be consistency with the science development in the 21st century, i.e., the mathematical combinatorics resulting in the combinatorial conjecture for mathematics. For introducing more readers known this heartening mathematical notion for sciences, there would be no simple stopping point if I began to incorporate the more recent development, for example, the combinatorially differential geometry, so it being published here in its original form to survey these thinking and ideas for mathematics and cosmological physics, such as those of multi-spaces, map geometries and combinatorial structures of cosmoses. Some open problems are also included for the advance of 21st mathematics by a combinatorial speculation. More recent progresses can be found in papers and books nearly published, for example, in [20]-[23] for details.


Key words: combinatorial speculation, combinatorial conjecture for mathematics, Smarandache multi-space, M-theory, combinatorial cosmos.

AMS(2000): 03C05,05C15,51D20,51H20,51P05,83C05,83E50.

[^0]
## $\S 1$. The role of classical combinatorics in mathematics

Modern science has so advanced that to find a universal genus in the society of sciences is nearly impossible. Thereby a scientist can only give his or her contribution in one or several fields. The same thing also happens for researchers in combinatorics. Generally, combinatorics deals with twofold:

Question 1.1. to determine or find structures or properties of configurations, such as those structure results appeared in graph theory, combinatorial maps and design theory,..., etc..

Question 1.2. to enumerate configurations, such as those appeared in the enumeration of graphs, labeled graphs, rooted maps, unrooted maps and combinatorial designs,...,etc..

Consider the contribution of a question to science. We can separate mathematical questions into three ranks:

Rank 1 they contribute to all sciences.
Rank 2 they contribute to all or several branches of mathematics.
Rank 3 they contribute only to one branch of mathematics, for instance, just to the graph theory or combinatorial theory.

Classical combinatorics is just a rank 3 mathematics by this view. This conclusion is despair for researchers in combinatorics, also for me 5 years ago. Whether can combinatorics be applied to other mathematics or other sciences? Whether can it contributes to human's lives, not just in games?

Although become a universal genus in science is nearly impossible, our world is a combinatorial world. A combinatorician should stand on all mathematics and all sciences, not just on classical combinatorics and with a real combinatorial notion, i.e., combining different fields into a unifying field ([29]-[32]), such as combine different or even anti-branches in mathematics or science into a unifying science for its freedom of research ([28]). This notion requires us answering three questions for solving a combinatorial problem before. What is this problem working for? What is its objective? What is its contribution to science or human's society? After these works be well done, modern combinatorics can applied to all sciences and all sciences are combinatorialization.

## §2. The metrical combinatorics and mathematics combinatorialization

There is a prerequisite for the application of combinatorics to other mathematics and other sciences, i.e, to introduce various metrics into combinatorics, ignored by the classical combinatorics since they are the fundamental of scientific realization for our world. This speculation was firstly appeared in the beginning of Chapter 5 of my book [16]:
... our world is full of measures. For applying combinatorics to other branch of mathematics, a good idea is pullback measures on combinatorial objects again, ignored by the classical combinatorics and reconstructed or make combinatorial generalization for the classical
mathematics, such as those of algebra, differential geometry, Riemann geometry, Smarandache geometries, $\cdots$ and the mechanics, theoretical physics, $\cdots$.

The combinatorial conjecture for mathematics, abbreviated to $C C M$ is stated in the following.

Conjecture 2.1(CCM Conjecture) Mathematical science can be reconstructed from or made by combinatorialization.

Remark 2.1 We need some further clarifications for this conjecture.
(1) This conjecture assumes that one can select finite combinatorial rulers and axioms to reconstruct or make generalization for classical mathematics.
(2) Classical mathematics is a particular case in the combinatorialization of mathematics, i.e., the later is a combinatorial generalization of the former.
(3) We can make one combinatorialization of different branches in mathematics and find new theorems after then.

Therefore, a branch in mathematics can not be ended if it has not been combinatorialization and all mathematics can not be ended if its combinatorialization has not completed. There is an assumption in one's realization of our world, i.e., science can be made by mathematicalization, which enables us get a similar combinatorial conjecture for the science.

Conjecture 2.2(CCS Conjecture) Science can be reconstructed from or made by combinatorialization.

A typical example for the combinatorialization of classical mathematics is the combinatorial map theory, i.e., a combinatorial theory for surfaces([14]-[15]). Combinatorially, a surface is topological equivalent to a polygon with even number of edges by identifying each pairs of edges along a given direction on it. If label each pair of edges by a letter $e, e \in \mathcal{E}$, a surface $S$ is also identifying to a cyclic permutation such that each edge $e, e \in \mathcal{E}$ just appears two times in $S$, one is $e$ and another is $e^{-1}$. Let $a, b, c, \cdots$ denote the letters in $\mathcal{E}$ and $A, B, C, \cdots$ the sections of successive letters in a linear order on a surface $S$ (or a string of letters on $S$ ). Then, a surface can be represented as follows:

$$
S=\left(\cdots, A, a, B, a^{-1}, C, \cdots\right),
$$

where, $a \in \mathcal{E}, A, B, C$ denote a string of letters. Define three elementary transformations as follows:
$\left(O_{1}\right) \quad\left(A, a, a^{-1}, B\right) \Leftrightarrow(A, B) ;$
$\left(O_{2}\right) \quad(i) \quad\left(A, a, b, B, b^{-1}, a^{-1}\right) \Leftrightarrow\left(A, c, B, c^{-1}\right) ;$
(ii) $(A, a, b, B, a, b) \Leftrightarrow(A, c, B, c)$;
$\left(O_{3}\right) \quad(i) \quad\left(A, a, B, C, a^{-1}, D\right) \Leftrightarrow\left(B, a, A, D, a^{-1}, C\right)$;
(ii) $\quad(A, a, B, C, a, D) \Leftrightarrow\left(B, a, A, C^{-1}, a, D^{-1}\right)$.

If a surface $S$ can be obtained from $S_{0}$ by these elementary transformations $O_{1}-O_{3}$, we say that $S$ is elementary equivalent with $S_{0}$, denoted by $S \sim_{E l} S_{0}$. Then we can get the classification theorem of compact surface as follows([29]):

Any compact surface is homeomorphic to one of the following standard surfaces:
( $P_{0}$ ) the sphere: $a a^{-1}$;
$\left(P_{n}\right)$ the connected sum of $n, n \geq 1$ tori:

$$
a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{n} b_{n} a_{n}^{-1} b_{n}^{-1}
$$

$\left(Q_{n}\right)$ the connected sum of $n, n \geq 1$ projective planes:

$$
a_{1} a_{1} a_{2} a_{2} \cdots a_{n} a_{n}
$$

A map $M$ is a connected topological graph cellularly embedded in a surface $S$. In 1973, Tutte suggested an algebraic representation for an embedding graph on a locally orientable surface ([16]):

A combinatorial $\operatorname{map} M=\left(\mathcal{X}_{\alpha, \beta}, \mathcal{P}\right)$ is defined to be a basic permutation $\mathcal{P}$, i.e, for any $x \in \mathcal{X}_{\alpha, \beta}$, no integer $k$ exists such that $\mathcal{P}^{k} x=\alpha x$, acting on $\mathcal{X}_{\alpha, \beta}$, the disjoint union of quadricells $K x$ of $x \in X$ (the base set), where $K=\{1, \alpha, \beta, \alpha \beta\}$ is the Klein group satisfying the following two conditions:
(i) $\alpha \mathcal{P}=\mathcal{P}^{-1} \alpha$;
(ii) the group $\Psi_{J}=<\alpha, \beta, \mathcal{P}>$ is transitive on $\mathcal{X}_{\alpha, \beta}$.

For a given map $M=\left(\mathcal{X}_{\alpha, \beta}, \mathcal{P}\right)$, it can be shown that $M^{*}=\left(\mathcal{X}_{\beta, \alpha}, \mathcal{P} \alpha \beta\right)$ is also a map, call it the dual of the map $M$. The vertices of $M$ are defined as the pairs of conjugate orbits of $\mathcal{P}$ action on $\mathcal{X}_{\alpha, \beta}$ by the condition (i) and edges the orbits of $K$ on $\mathcal{X}_{\alpha, \beta}$, for example, for $\forall x \in \mathcal{X}_{\alpha, \beta},\{x, \alpha x, \beta x, \alpha \beta x\}$ is an edge of the map $M$. Define the faces of $M$ to be the vertices in the dual map $M^{*}$. Then the Euler characteristic $\chi(M)$ of the map $M$ is

$$
\chi(M)=\nu(M)-\varepsilon(M)+\phi(M)
$$

where, $\nu(M), \varepsilon(M), \phi(M)$ are the number of vertices, edges and faces of the map $M$, respectively. For each vertex of a map $M$, its valency is defined to be the length of the orbits of $\mathcal{P}$ action on a quadricell incident with $u$.

For example, the graph $K_{4}$ on the tours with one face length 4 and another 8 shown in Fig.2.1


Fig. 2.1
can be algebraically represented by $\left(\mathcal{X}_{\alpha, \beta}, \mathcal{P}\right)$ with $\mathcal{X}_{\alpha, \beta}=\{x, y, z, u, v, w, \alpha x, \alpha y, \alpha z, \alpha u, \alpha v, \alpha w$, $\beta x, \beta y, \beta z, \beta u, \beta v, \beta w, \alpha \beta x, \alpha \beta y, \alpha \beta z, \alpha \beta u, \alpha \beta v, \alpha \beta w\}$ and

$$
\begin{aligned}
\mathcal{P} & =(x, y, z)(\alpha \beta x, u, w)(\alpha \beta z, \alpha \beta u, v)(\alpha \beta y, \alpha \beta v, \alpha \beta w) \\
& \times(\alpha x, \alpha z, \alpha y)(\beta x, \alpha w, \alpha u)(\beta z, \alpha v, \beta u)(\beta y, \beta w, \beta v)
\end{aligned}
$$

with 4 vertices, 6 edges and 2 faces on an orientable surface of genus 1 .
By the view of combinatorial maps, these standard surfaces $P_{0}, P_{n}, Q_{n}$ for $n \geq 1$ is nothing but the bouquet $B_{n}$ on a locally orientable surface with just one face. Therefore, combinatorial maps are the combinatorialization of surfaces.

Many open problems are motivated by the CCM Conjecture. For example, a Gauss mapping among surfaces is defined as follows.

Let $\mathcal{S} \subset R^{3}$ be a surface with an orientation $\mathbf{N}$. The mapping $\mathbf{N}: \mathcal{S} \rightarrow R^{3}$ takes its value in the unit sphere

$$
S^{2}=\left\{(x, y, z) \in R^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}
$$

along the orientation $\mathbf{N}$. The map $\mathbf{N}: \mathcal{S} \rightarrow S^{2}$, thus defined, is called the Gauss mapping.
We know that for a point $P \in \mathcal{S}$ such that the Gaussian curvature $K(P) \neq 0$ and $V$ a connected neighborhood of $P$ with $K$ does not change sign,

$$
K(P)=\lim _{A \rightarrow 0} \frac{N(A)}{A}
$$

where $A$ is the area of a region $B \subset V$ and $N(A)$ is the area of the image of $B$ by the Gauss mapping $N: \mathcal{S} \rightarrow S^{2}([2],[4])$. Now the questions are
(i) what is its combinatorial meaning of the Gauss mapping? How to realizes it by combinatorial maps?
(ii) how can we define various curvatures for maps and rebuilt these results in the classical differential geometry?

Let $\mathcal{S}$ be a compact orientable surface. Then the Gauss-Bonnet theorem asserts that

$$
\iint_{\mathcal{S}} K d \sigma=2 \pi \chi(\mathcal{S})
$$

where $K$ is the Gaussian curvature of $\mathcal{S}$.
By the CCM Conjecture, the following questions should be considered.
(i) How can we define various metrics for combinatorial maps, such as those of length, distance, angle, area, curvature, .. ?
(ii) Can we rebuilt the Gauss-Bonnet theorem by maps for dimensional 2 or higher dimensional compact manifolds without boundary?

One can see references [15] and [16] for more open problems for the classical mathematics motivated by this CCM Conjecture, also raise new open problems for his or her research works.

## $\S 3$. The contribution of combinatorial speculation to mathematics

### 3.1. The combinatorialization of algebra

By the view of combinatorics, algebra can be seen as a combinatorial mathematics itself. The combinatorial speculation can generalize it by the means of combinatorialization. For this objective, a Smarandache multi-algebraic system is combinatorially defined in the following definition.

Definition $3.1([17],[18])$ For any integers $n, n \geq 1$ and $i, 1 \leq i \leq n$, let $A_{i}$ be a set with an operation set $O\left(A_{i}\right)$ such that $\left(A_{i}, O\left(A_{i}\right)\right)$ is a complete algebraic system. Then the union

$$
\bigcup_{i=1}^{n}\left(A_{i}, O\left(A_{i}\right)\right)
$$

is called an $n$ multi-algebra system.
An example of multi-algebra systems is constructed by a finite additive group. Now let $n$ be an integer, $Z_{1}=(\{0,1,2, \cdots, n-1\},+)$ an additive group $(\bmod \mathrm{n})$ and $P=(0,1,2, \cdots, n-1)$ a permutation. For any integer $i, 0 \leq i \leq n-1$, define

$$
Z_{i+1}=P^{i}\left(Z_{1}\right)
$$

satisfying that if $k+l=m$ in $Z_{1}$, then $P^{i}(k)+{ }_{i} P^{i}(l)=P^{i}(m)$ in $Z_{i+1}$, where $+{ }_{i}$ denotes the binary operation $+_{i}:\left(P^{i}(k), P^{i}(l)\right) \rightarrow P^{i}(m)$. Then we know that

$$
\bigcup_{i=1}^{n} Z_{i}
$$

is an $n$ multi-algebra system .
The conception of multi-algebra systems can be extensively used for generalizing conceptions and results for these existent algebraic structures, such as those of groups, rings, bodies, fields and vector spaces, $\cdots$, etc.. Some of them are explained in the following.

Definition 3.2 Let $\widetilde{G}=\bigcup_{i=1}^{n} G_{i}$ be a closed multi-algebra system with a binary operation set $O(\widetilde{G})=\left\{\times_{i}, 1 \leq i \leq n\right\}$. If for any integer $i, 1 \leq i \leq n,\left(G_{i} ; \times_{i}\right)$ is a group and for $\forall x, y, z \in \widetilde{G}$ and any two binary operations $\times$ and $\circ, \times \neq 0$, there is one operation, for example the operation $\times$ satisfying the distribution law to the operation $\circ$ provided their operation results exist , i.e.,

$$
\begin{aligned}
& x \times(y \circ z)=(x \times y) \circ(x \times z), \\
& (y \circ z) \times x=(y \times x) \circ(z \times x),
\end{aligned}
$$

then $\widetilde{G}$ is called a multi-group.
For a multi-group $(\widetilde{G}, O(G)), \widetilde{G_{1}} \subset \widetilde{G}$ and $O\left(\widetilde{G_{1}}\right) \subset O(\widetilde{G})$, call $\left(\widetilde{G_{1}}, O\left(\widetilde{G_{1}}\right)\right)$ a sub-multigroup of $(\widetilde{G}, O(G))$ if $\widetilde{G_{1}}$ is also a multi-group under the operations in $O\left(\widetilde{G_{1}}\right)$, denoted by $\widetilde{G_{1}} \preceq \widetilde{G}$. For two sets $A$ and $B$, if $A \bigcap B=\emptyset$, we denote the union $A \cup B$ by $A \bigoplus B$. Then we get a generalization of the Lagrange theorem of finite group.

Theorem 3.1([18]) For any sub-multi-group $\widetilde{H}$ of a finite multi-group $\widetilde{G}$, there is a representation set $T, T \subset \widetilde{G}$, such that

$$
\widetilde{G}=\bigoplus_{x \in T} x \widetilde{H}
$$

For a sub-multi-group $\widetilde{H}$ of $\widetilde{G}, \times \in O(\widetilde{H})$ and $\forall g \in \widetilde{G}(\times)$, if for $\forall h \in \widetilde{H}$,

$$
g \times h \times g^{-1} \in \widetilde{H}
$$

then call $\widetilde{H}$ a normal sub-multi-group of $\widetilde{G}$. An order of operations in $O(\widetilde{G})$ is said an oriented operation sequence, denoted by $\vec{O}(\widetilde{G})$. We get a generalization of the Jordan-Hölder theorem for finite multi-groups.

Theorem 3.2([18]) For a finite multi-group $\widetilde{G}=\bigcup_{i=1}^{n} G_{i}$ and an oriented operation sequence $\vec{O}(\widetilde{G})$, the length of maximal series of normal sub-multi-groups is a constant, only dependent on $\widetilde{G}$ itself.

In Definition 2.2, choose $n=2, G_{1}=G_{2}=\widetilde{G}$. Then $\widetilde{G}$ is a body. If $\left(G_{1} ; \times_{1}\right)$ and $\left(G_{2} ; \times_{2}\right)$ both are commutative groups, then $\widetilde{G}$ is a field. For multi-algebra systems with two or more operations on one set, we introduce the conception of multi-rings and multi-vector spaces in the following.

Definition 3.3 Let $\widetilde{R}=\bigcup_{i=1}^{m} R_{i}$ be a closed multi-algebra system with double binary operation set $O(\widetilde{R})=\left\{\left(+_{i}, \times_{i}\right), 1 \leq i \leq m\right\}$. If for any integers $i, j, i \neq j, 1 \leq i, j \leq m,\left(R_{i} ;+_{i}, \times_{i}\right)$ is a ring and for $\forall x, y, z \in \widetilde{R}$,

$$
\left(x+_{i} y\right)+_{j} z=x+_{i}\left(y+_{j} z\right), \quad\left(x \times_{i} y\right) \times_{j} z=x \times_{i}\left(y \times_{j} z\right)
$$

and

$$
x \times_{i}\left(y+{ }_{j} z\right)=x \times_{i} y+{ }_{j} x \times_{i} z, \quad\left(y+{ }_{j} z\right) \times_{i} x=y \times_{i} x+{ }_{j} z \times_{i} x
$$

provided all their operation results exist, then $\widetilde{R}$ is called a multi-ring. If for any integer $1 \leq i \leq m,\left(R ;+_{i}, \times_{i}\right)$ is a filed, then $\widetilde{R}$ is called a multi-filed.

Definition 3.4 Let $\widetilde{V}=\bigcup_{i=1}^{k} V_{i}$ be a closed multi-algebra system with binary operation set $O(\widetilde{V})=\left\{\left(\dot{+}_{i}, \cdot_{i}\right) \mid 1 \leq i \leq m\right\}$ and $\widetilde{F}=\bigcup_{i=1}^{k} F_{i}$ a multi-filed with double binary operation set $O(\widetilde{F})=\left\{\left(+_{i}, \times_{i}\right) \mid 1 \leq i \leq k\right\}$. If for any integers $i, j, 1 \leq i, j \leq k$ and $\forall \mathbf{a}, \mathbf{b}, \mathbf{c} \in \widetilde{V}, k_{1}, k_{2} \in \widetilde{F}$,
(i) $\left(V_{i} ; \dot{+}_{i},{ }_{i}\right)$ is a vector space on $F_{i}$ with vector additive $\dot{+}_{i}$ and scalar multiplication $\dot{i}_{i}$;
(ii) $\left(\mathbf{a} \dot{+}_{i} \mathbf{b}\right) \dot{+}{ }_{j} \mathbf{c}=\mathbf{a} \dot{+}_{i}\left(\mathbf{b} \dot{+}_{j} \mathbf{c}\right)$;
(iii) $\left(k_{1}+{ }_{i} k_{2}\right) \cdot j \mathbf{a}=k_{1}+{ }_{i}\left(k_{2} \cdot{ }_{j} \mathbf{a}\right)$;
provided all those operation results exist, then $\widetilde{V}$ is called a multi-vector space on the multi-filed $\widetilde{F}$ with a binary operation set $O(\widetilde{V})$, denoted by $(\widetilde{V} ; \widetilde{F})$.

Similar to multi-groups, we can also obtain results for multi-rings and multi-vector spaces to generalize classical results in rings or linear spaces. Certainly, results can be also found in the references [17] and [18].

### 3.2. The combinatorialization of geometries

First, we generalize classical metric spaces by the combinatorial speculation.
Definition 3.5 A multi-metric space is a union $\widetilde{M}=\bigcup_{i=1}^{m} M_{i}$ such that each $M_{i}$ is a space with metric $\rho_{i}$ for $\forall i, 1 \leq i \leq m$.

We generalized two well-known results in metric spaces.
Theorem 3.3([19]) Let $\widetilde{M}=\bigcup_{i=1}^{m} M_{i}$ be a completed multi-metric space. For an $\epsilon$-disk sequence $\left\{B\left(\epsilon_{n}, x_{n}\right)\right\}$, where $\epsilon_{n}>0$ for $n=1,2,3, \cdots$, the following conditions hold:
(i) $B\left(\epsilon_{1}, x_{1}\right) \supset B\left(\epsilon_{2}, x_{2}\right) \supset B\left(\epsilon_{3}, x_{3}\right) \supset \cdots \supset B\left(\epsilon_{n}, x_{n}\right) \supset \cdots$;
(ii) $\lim _{n \rightarrow+\infty} \epsilon_{n}=0$.

Then $\bigcap_{n=1}^{+\infty} B\left(\epsilon_{n}, x_{n}\right)$ only has one point.
Theorem 3.4([19]) Let $\widetilde{M}=\bigcup_{i=1}^{m} M_{i}$ be a completed multi-metric space and $T$ a contraction on $\widetilde{M}$. Then

$$
1 \leq \# \Phi(T) \leq m
$$

Particularly, let $m=1$. We get the Banach fixed-point theorem again.

Corollary 3.1(Banach) Let $M$ be a metric space and $T$ a contraction on $M$. Then $T$ has just one fixed point.

Smarandache geometries were proposed by Smarandache in [29] which are generalization of classical geometries, i.e., these Euclid, Lobachevshy-Bolyai-Gauss and Riemann geometries may be united altogether in a same space, by some Smarandache geometries under the combinatorial speculation. These geometries can be either partially Euclidean and partially Non-Euclidean, or Non-Euclidean. In general, Smarandache geometries are defined in the next.

Definition 3.6 An axiom is said to be Smarandachely denied if the axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969).

For example, let us consider an euclidean plane $\mathbf{R}^{2}$ and three non-collinear points $A, B$ and $C$. Define s-points as all usual euclidean points on $\mathbf{R}^{2}$ and $s$-lines as any euclidean line that passes through one and only one of points $A, B$ and $C$. Then this geometry is a Smarandache geometry because two axioms are Smarandachely denied comparing with an Euclid geometry:
(i) The axiom (A5) that through a point exterior to a given line there is only one parallel passing through it is now replaced by two statements: one parallel and no parallel. Let $L$ be an $s$-line passing through $C$ and is parallel in the euclidean sense to $A B$. Notice that through any $s$-point not lying on $A B$ there is one $s$-line parallel to $L$ and through any other $s$-point lying on $A B$ there is no $s$-lines parallel to $L$ such as those shown in Fig.3.1(a).

(a)

(b)

Fig. 3.1
(ii) The axiom that through any two distinct points there exists one line passing through them is now replaced by; one s-line and no s-line. Notice that through any two distinct s-points $D, E$ collinear with one of $A, B$ and $C$, there is one $s$-line passing through them and through any two distinct $s$-points $F, G$ lying on $A B$ or non-collinear with one of $A, B$ and $C$, there is no $s$-line passing through them such as those shown in Fig.3.1(b).

A Smarandache $n$-manifold is an $n$-dimensional manifold that supports a Smarandache geometry. Now there are many approaches to construct Smarandache manifolds for $n=2$. A
general way is by the so called map geometries without or with boundary underlying orientable or non-orientable maps proposed in references [14] and [15] firstly.

Definition 3.7 For a combinatorial map $M$ with each vertex valency $\geq$ 3, endow with a real number $\mu(u), 0<\mu(u)<\frac{4 \pi}{\rho_{M}(u)}$, to each vertex $u, u \in V(M)$. Call $(M, \mu)$ a map geometry without boundary, $\mu(u)$ an angle factor of the vertex $u$ and orientablle or non-orientable if $M$ is orientable or not.

Definition 3.8 For a map geometry $(M, \mu)$ without boundary and faces $f_{1}, f_{2}, \cdots, f_{l} \in F(M), 1 \leq$ $l \leq \phi(M)-1$, if $S(M) \backslash\left\{f_{1}, f_{2}, \cdots, f_{l}\right\}$ is connected, then call $(M, \mu)^{-l}=\left(S(M) \backslash\left\{f_{1}, f_{2}, \cdots, f_{l}\right\}, \mu\right)$ a map geometry with boundary $f_{1}, f_{2}, \cdots, f_{l}$, where $S(M)$ denotes the locally orientable surface underlying map $M$.

The realization for vertices $u, v, w \in V(M)$ in a space $\mathbf{R}^{3}$ is shown in Fig.3.2, where $\rho_{M}(u) \mu(u)<2 \pi$ for the vertex $u, \rho_{M}(v) \mu(v)=2 \pi$ for the vertex $v$ and $\rho_{M}(w) \mu(w)>2 \pi$ for the vertex $w$, are called to be elliptic, euclidean or hyperbolic, respectively.


$\rho_{M}(u) \mu(u)=2 \pi$

$\rho_{M}(u) \mu(u)>2 \pi$

## Fig. 3.2

On an Euclid plane $\mathbf{R}^{2}$, a straight line passing through an elliptic or a hyperbolic point is shown in Fig.3.3.


Fig.3.3

Theorem 3.5([17]) There are Smarandache geometries, including paradoxist geometries, nongeometries and anti-geometries in map geometries without or with boundary.

Generally, we can ever generalize the ideas in Definitions 3.7 and 3.8 to a metric space and find new geometries.

Definition 3.9 Let $U$ and $W$ be two metric spaces with metric $\rho$, $W \subseteq U$. For $\forall u \in U$, if there is a continuous mapping $\omega: u \rightarrow \omega(u)$, where $\omega(u) \in \mathbf{R}^{n}$ for an integer $n, n \geq 1$ such that for any number $\epsilon>0$, there exists a number $\delta>0$ and a point $v \in W, \rho(u-v)<\delta$ such that $\rho(\omega(u)-\omega(v))<\epsilon$, then $U$ is called a metric pseudo-space if $U=W$ or a bounded metric pseudo-space if there is a number $N>0$ such that $\forall w \in W, \rho(w) \leq N$, denoted by $(U, \omega)$ or $\left(U^{-}, \omega\right)$, respectively.

For the case $n=1$, we can also explain $\omega(u)$ being an angle function with $0<\omega(u) \leq 4 \pi$ as in the case of map geometries without or with boundary, i.e.,

$$
\omega(u)= \begin{cases}\omega(u)(\bmod 4 \pi), & \text { if } \mathrm{u} \in \mathrm{~W}  \tag{*}\\ 2 \pi, & \text { if } \mathrm{u} \in \mathrm{U} \backslash \mathrm{~W}\end{cases}
$$

and get some interesting metric pseudo-space geometries. For example, let $U=W=$ Euclid plane $=$ $\sum$, then we obtained some interesting results for pseudo-plane geometries $\left(\sum, \omega\right)$ as shown in the following ([17]).

Theorem 3.6 In a pseudo-plane $\left(\sum, \omega\right)$, if there are no euclidean points, then all points of ( $\sum, \omega$ ) is either elliptic or hyperbolic.

Theorem 3.7 There are no saddle points and stable knots in a pseudo-plane plane $\left(\sum, \omega\right)$.

Theorem 3.8 For two constants $\rho_{0}, \theta_{0}, \rho_{0}>0$ and $\theta_{0} \neq 0$, there is a pseudo-plane $\left(\sum, \omega\right)$ with

$$
\omega(\rho, \theta)=2\left(\pi-\frac{\rho_{0}}{\theta_{0} \rho}\right) \text { or } \omega(\rho, \theta)=2\left(\pi+\frac{\rho_{0}}{\theta_{0} \rho}\right)
$$

such that

$$
\rho=\rho_{0}
$$

is a limiting ring in $\left(\sum, \omega\right)$.
Now for an m-manifold $M^{m}$ and $\forall u \in M^{m}$, choose $U=W=M^{m}$ in Definition 3.9 for $n=1$ and $\omega(u)$ a smooth function. We get a pseudo-manifold geometry ( $M^{m}, \omega$ ) on $M^{m}$. By definitions in the reference [2], a Minkowski norm on $M^{m}$ is a function $F: M^{m} \rightarrow[0,+\infty)$ such that
(i) $\quad F$ is smooth on $M^{m} \backslash\{0\}$;
(ii) $F$ is 1-homogeneous, i.e., $F(\lambda \bar{u})=\lambda F(\bar{u})$ for $\bar{u} \in M^{m}$ and $\lambda>0$;
(iii) for $\forall y \in M^{m} \backslash\{0\}$, the symmetric bilinear form $g_{y}: M^{m} \times M^{m} \rightarrow R$ with

$$
g_{y}(\bar{u}, \bar{v})=\left.\frac{1}{2} \frac{\partial^{2} F^{2}(y+s \bar{u}+t \bar{v})}{\partial s \partial t}\right|_{t=s=0}
$$

is positive definite and a Finsler manifold is a manifold $M^{m}$ endowed with a function $F$ : $T M^{m} \rightarrow[0,+\infty)$ such that
(i) $F$ is smooth on $T M^{m} \backslash\{0\}=\bigcup\left\{T_{\bar{x}} M^{m} \backslash\{0\}: \bar{x} \in M^{m}\right\}$;
(ii) $\left.F\right|_{T_{\bar{x}} M^{m}} \rightarrow[0,+\infty)$ is a Minkowski norm for $\forall \bar{x} \in M^{m}$.

As a special case, we choose $\omega(\bar{x})=F(\bar{x})$ for $\bar{x} \in M^{m}$, then $\left(M^{m}, \omega\right)$ is a Finsler manifold. Particularly, if $\omega(\bar{x})=g_{\bar{x}}(y, y)=F^{2}(x, y)$, then $\left(M^{m}, \omega\right)$ is a Riemann manifold. Therefore, we get a relation for Smarandache geometries with Finsler or Riemann geometry.

Theorem 3.9 There is an inclusion for Smarandache, pseudo-manifold, Finsler and Riemann geometries as shown in the following:

$$
\begin{aligned}
\{\text { Smarandache geometries }\} & \supset\{\text { pseudo - manifold geometries }\} \\
& \supset\{\text { Finsler geometry }\} \\
& \supset\{\text { Riemann geometry }\} .
\end{aligned}
$$

Other purely mathematical results on the combinatorially differential geometry, particularly the combinatorially Riemannian geometry can be found in recently finished papers [20] - [23] of mine.

## §4. The contribution of combinatorial speculation to theoretical physics

The progress of theoretical physics in last twenty years of the 20th century enables human beings to probe the mystic cosmos: where are we came from? where are we going to? Today, these problems still confuse eyes of human beings. Accompanying with research in cosmos, new puzzling problems also arose: Whether are there finite or infinite cosmoses? Are there just one? What is the dimension of the Universe? We do not even know what the right degree of freedom in the Universe is, as Witten said([3]).

We are used to the idea that our living space has three dimensions: length, breadth and height, with time providing the fourth dimension of spacetime by Einstein. Applying his principle of general relativity, i.e. all the laws of physics take the same form in any reference system and equivalence principle, i.e., there are no difference for physical effects of the inertial force and the gravitation in a field small enough., Einstein got the equation of gravitational field

$$
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}+\lambda g_{\mu \nu}=-8 \pi G T_{\mu \nu} .
$$

where $R_{\mu \nu}=R_{\nu \mu}=R_{\mu i \nu}^{\alpha}$,

$$
\begin{gathered}
R_{\mu i \nu}^{\alpha}=\frac{\partial \Gamma_{\mu i}^{i}}{\partial x^{\nu}}-\frac{\partial \Gamma_{\mu \nu}^{i}}{\partial x^{i}}+\Gamma_{\mu i}^{\alpha} \Gamma_{\alpha \nu}^{i}-\Gamma_{\mu \nu}^{\alpha} \Gamma_{\alpha i}^{i}, \\
\Gamma_{m n}^{g}=\frac{1}{2} g^{p q}\left(\frac{\partial g_{m p}}{\partial u^{n}}+\frac{\partial g_{n p}}{\partial u^{m}}-\frac{\partial g_{m n}}{\partial u^{p}}\right)
\end{gathered}
$$

and $R=g^{\nu \mu} R_{\nu \mu}$.
Combining the Einstein's equation of gravitational field with the cosmological principle, i.e., there are no difference at different points and different orientations at a point of a cosmos
on the metric $10^{4} l . y .$, Friedmann got a standard model of cosmos. The metrics of the standard cosmos are

$$
d s^{2}=-c^{2} d t^{2}+a^{2}(t)\left[\frac{d r^{2}}{1-K r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \varphi^{2}\right)\right]
$$

and

$$
g_{t t}=1, g_{r r}=-\frac{R^{2}(t)}{1-K r^{2}}, g_{\phi \phi}=-r^{2} R^{2}(t) \sin ^{2} \theta
$$

The standard model of cosmos enables the birth of big bang model of the Universe in thirties of the 20th century. The following diagram describes the developing process of the Universe in different periods after the Big Bang.


Fig.4.1

### 4.1. The M-theory

The M-theory was established by Witten in 1995 for the unity of those five already known string theories and superstring theories, which postulates that all matter and energy can be reduced to branes of energy vibrating in an 11 dimensional space, then in a higher dimensional space solve the Einstein's equation of gravitational field under some physical conditions ([1],[3], [26]-[27]). Here, a brane is an object or subspace which can have various spatial dimensions. For any integer $p \geq 0$, a $p$-brane has length in $p$ dimensions. For example, a 0 -brane is just a point or particle; a 1-brane is a string and a 2 -brane is a surface or membrane, $\cdots$.

We mainly discuss line elements in differential forms in Riemann geometry. By a geometrical view, these $p$-branes in M-theory can be seen as volume elements in spaces. Whence, we
can construct a graph model for $p$-branes in a space and combinatorially research graphs in spaces.

Definition 4.1 For each m-brane $\mathbf{B}$ of a space $\mathbf{R}^{m}$, let $\left(n_{1}(\mathbf{B}), n_{2}(\mathbf{B}), \cdots, n_{p}(\mathbf{B})\right)$ be its unit vibrating normal vector along these $p$ directions and $q: \mathbf{R}^{m} \rightarrow \mathbf{R}^{4}$ a continuous mapping. Now construct a graph phase $(\mathcal{G}, \omega, \Lambda)$ by

$$
\begin{gathered}
V(\mathcal{G})=\{p-\text { branes } q(\mathbf{B})\}, \\
E(\mathcal{G})=\left\{\left(q\left(\mathbf{B}_{1}\right), q\left(\mathbf{B}_{2}\right)\right) \mid \text { there is an action between } \mathbf{B}_{1} \text { and } \mathbf{B}_{2}\right\}, \\
\omega(q(\mathbf{B}))=\left(n_{1}(\mathbf{B}), n_{2}(\mathbf{B}), \cdots, n_{p}(\mathbf{B})\right),
\end{gathered}
$$

and

$$
\Lambda\left(q\left(\mathbf{B}_{1}\right), q\left(\mathbf{B}_{2}\right)\right)=\text { forces between } \mathbf{B}_{1} \text { and } \mathbf{B}_{2} .
$$

Then we get a graph phase $(\mathcal{G}, \omega, \Lambda)$ in $\mathbf{R}^{4}$. Similarly, if $m=11$, it is a graph phase for the M-theory.

As an example for applying M-theory to find an accelerating expansion cosmos of 4dimensional cosmoses from supergravity compactification on hyperbolic spaces is the TownsendWohlfarth type metric in which the line element is

$$
d s^{2}=e^{-m \phi(t)}\left(-S^{6} d t^{2}+S^{2} d x_{3}^{2}\right)+r_{C}^{2} e^{2 \phi(t)} d s_{H_{m}}^{2},
$$

where

$$
\begin{gathered}
\phi(t)=\frac{1}{m-1}\left(\ln K(t)-3 \lambda_{0} t\right), \\
S^{2}=K^{\frac{m}{m-1}} e^{-\frac{m+2}{m-1} \lambda_{0} t}
\end{gathered}
$$

and

$$
K(t)=\frac{\lambda_{0} \zeta r_{c}}{(m-1) \sin \left[\lambda_{0} \zeta\left|t+t_{1}\right|\right]}
$$

with $\zeta=\sqrt{3+6 / m}$. This solution is obtainable from space-like brane solution and if the proper time $\varsigma$ is defined by $d \varsigma=S^{3}(t) d t$, then the conditions for expansion and acceleration are $\frac{d S}{d \varsigma}>0$ and $\frac{d^{2} S}{d \varsigma^{2}}>0$. For example, the expansion factor is 3.04 if $m=7$, i.e., a really expanding cosmos.

According to M-theory, the evolution picture of our cosmos started as a perfect 11 dimensional space. However, this 11 dimensional space was unstable. The original 11 dimensional space finally cracked into two pieces, a 4 and a 7 dimensional subspaces. The cosmos made the 7 of the 11 dimensions curled into a tiny ball, allowing the remaining 4 dimensions to inflate at enormous rates, the Universe at the final.

### 4.2. The combinatorial cosmos

The combinatorial speculation made the following combinatorial cosmos in the reference [17].

Definition 4.2 A combinatorial cosmos is constructed by a triple $(\Omega, \Delta, T)$, where

$$
\Omega=\bigcup_{i \geq 0} \Omega_{i}, \quad \Delta=\bigcup_{i \geq 0} O_{i}
$$

and $T=\left\{t_{i} ; i \geq 0\right\}$ are respectively called the cosmos, the operation or the time set with the following conditions hold.
(1) $(\Omega, \Delta)$ is a Smarandache multi-space dependent on $T$, i.e., the $\operatorname{cosmos}\left(\Omega_{i}, O_{i}\right)$ is dependent on time parameter $t_{i}$ for any integer $i, i \geq 0$.
(2) For any integer $i, i \geq 0$, there is a sub-cosmos sequence

$$
(S): \Omega_{i} \supset \cdots \supset \Omega_{i 1} \supset \Omega_{i 0}
$$

in the cosmos $\left(\Omega_{i}, O_{i}\right)$ and for two sub-cosmoses $\left(\Omega_{i j}, O_{i}\right)$ and $\left(\Omega_{i l}, O_{i}\right)$, if $\Omega_{i j} \supset \Omega_{i l}$, then there is a homomorphism $\rho_{\Omega_{i j}, \Omega_{i l}}:\left(\Omega_{i j}, O_{i}\right) \rightarrow\left(\Omega_{i l}, O_{i}\right)$ such that
(i) for $\forall\left(\Omega_{i 1}, O_{i}\right),\left(\Omega_{i 2}, O_{i}\right),\left(\Omega_{i 3}, O_{i}\right) \in(S)$, if $\Omega_{i 1} \supset \Omega_{i 2} \supset \Omega_{i 3}$, then

$$
\rho_{\Omega_{i 1}, \Omega_{i 3}}=\rho_{\Omega_{i 1}, \Omega_{i 2}} \circ \rho_{\Omega_{i 2}, \Omega_{i 3}},
$$

where $\circ$ denotes the composition operation on homomorphisms.
(ii) for $\forall g, h \in \Omega_{i}$, if for any integer $i$, $\rho_{\Omega, \Omega_{i}}(g)=\rho_{\Omega, \Omega_{i}}(h)$, then $g=h$.
(iii) for $\forall i$, if there is an $f_{i} \in \Omega_{i}$ with

$$
\rho_{\Omega_{i}, \Omega_{i}} \cap \Omega_{j}\left(f_{i}\right)=\rho_{\Omega_{j}, \Omega_{i} \cap \Omega_{j}}\left(f_{j}\right)
$$

for integers $i, j, \Omega_{i} \bigcap \Omega_{j} \neq \emptyset$, then there exists an $f \in \Omega$ such that $\rho_{\Omega, \Omega_{i}}(f)=f_{i}$ for any integer $i$.

By this definition, there is just one cosmos $\Omega$ and the sub-cosmos sequence is

$$
\mathbf{R}^{4} \supset \mathbf{R}^{3} \supset \mathbf{R}^{2} \supset \mathbf{R}^{1} \supset \mathbf{R}^{0}=\{P\} \supset \mathbf{R}_{7}^{-} \supset \cdots \supset \mathbf{R}_{1}^{-} \supset \mathbf{R}_{0}^{-}=\{Q\}
$$

in the string/M-theory. In Fig.4.2, we have shown the idea of the combinatorial cosmos.


Fig. 4.2
For 5 or 6 dimensional spaces, it has been established a dynamical theory by this combinatorial speculation([24]-[25]). In this dynamics, we look for a solution in the Einstein's equation of gravitational field in 6-dimensional spacetime with a metric of the form

$$
d s^{2}=-n^{2}(t, y, z) d t^{2}+a^{2}(t, y, z) d \sum_{k}^{2}+b^{2}(t, y, z) d y^{2}+d^{2}(t, y, z) d z^{2}
$$

where $d \sum_{k}^{2}$ represents the 3 -dimensional spatial sections metric with $k=-1,0,1$ respective corresponding to the hyperbolic, flat and elliptic spaces. For 5-dimensional spacetime, deletes the indefinite $z$ in this metric form. Now consider a 4 -brane moving in a 6 -dimensional Schwarzschild-ADS spacetime, the metric can be written as

$$
d s^{2}=-h(z) d t^{2}+\frac{z^{2}}{l^{2}} d \sum_{k}^{2}+h^{-1}(z) d z^{2}
$$

where

$$
d \sum_{k}^{2}=\frac{d r^{2}}{1-k r^{2}}+r^{2} d \Omega_{(2)}^{2}+\left(1-k r^{2}\right) d y^{2}
$$

and

$$
h(z)=k+\frac{z^{2}}{l^{2}}-\frac{M}{z^{3}} .
$$

Then the equation of a 4 -dimensional cosmos moving in a 6 -spacetime is

$$
2 \frac{\ddot{R}}{R}+3\left(\frac{\dot{R}}{R}\right)^{2}=-3 \frac{\kappa_{(6)}^{4}}{64} \rho^{2}-\frac{\kappa_{(6)}^{4}}{8} \rho p-3 \frac{\kappa}{R^{2}}-\frac{5}{l^{2}}
$$

by applying the Darmois-Israel conditions for a moving brane. Similarly, for the case of $a(z) \neq$ $b(z)$, the equations of motion of the brane are

$$
\begin{gathered}
\frac{d^{2} \dot{d} \dot{R}-d \ddot{R}}{\sqrt{1+d^{2} \dot{R}^{2}}-\frac{\sqrt{1+d^{2} \dot{R}^{2}}}{n}\left(d \dot{n} \dot{R}+\frac{\partial_{z} n}{d}-\left(d \partial_{z} n-n \partial_{z} d\right) \dot{R}^{2}\right)=-\frac{\kappa_{(6)}^{4}}{8}(3(p+\rho)+\hat{p})} \begin{array}{c}
\frac{\partial_{z} a}{a d} \sqrt{1+d^{2} \dot{R}^{2}}=-\frac{\kappa_{(6)}^{4}}{8}(\rho+p-\hat{p}) \\
\frac{\partial_{z} b}{b d} \sqrt{1+d^{2} \dot{R}^{2}}=-\frac{\kappa_{(6)}^{4}}{8}(\rho-3(p-\hat{p}))
\end{array}, \$ \text {, }
\end{gathered}
$$

where the energy-momentum tensor on the brane is

$$
\hat{T}_{\mu \nu}=h_{\nu \alpha} T_{\mu}^{\alpha}-\frac{1}{4} T h_{\mu \nu}
$$

with $T_{\mu}^{\alpha}=\operatorname{diag}(-\rho, p, p, p, \hat{p})$ and the Darmois-Israel conditions

$$
\left[K_{\mu \nu}\right]=-\kappa_{(6)}^{2} \hat{T}_{\mu \nu}
$$

where $K_{\mu \nu}$ is the extrinsic curvature tensor.
The combinatorial cosmos also presents new questions to combinatorics, such as:
(i) to embed a graph into spaces with dimensional $\geq 4$;
(ii) to research the phase space of a graph embedded in a space;
(iii) to establish graph dynamics in a space with dimensional $\geq 4, \cdots$, etc..

For example, we have gotten the following result for graphs in spaces in [17].
Theorem 4.1 A graph $G$ has a nontrivial including multi-embedding on spheres $P_{1} \supset P_{2} \supset$ $\cdots \supset P_{s}$ if and only if there is a block decomposition $G=\biguplus_{i=1}^{s} G_{i}$ of $G$ such that for any integer $i, 1<i<s$,
(i) $G_{i}$ is planar;
(ii) for $\forall v \in V\left(G_{i}\right), N_{G}(x) \subseteq\left(\bigcup_{j=i-1}^{i+1} V\left(G_{j}\right)\right)$.

Further research of the combinatorial cosmos will richen the knowledge of combinatorics and cosmology, also get the combinatorialization for cosmology.

## References

[1] I.Antoniadis, Physics with large extra dimensions: String theory under experimental test, Current Science, Vol.81, No.12, 25(2001),1609-1613
[2] S.S.Chern and W.H.Chern, Lectures in Differential Geometry(in Chinese), Peking University Press, 2001.
[3] M.J.Duff, A layman's guide to M-theory, arXiv: hep-th/9805177, v3, 2 July(1998).
[4] B.J.Fei, Relativity Theory and Non-Euclid Geometries, Science Publisher Press, Beijing, 2005.
[5] U.Günther and A.Zhuk, Phenomenology of brane-world cosmological models, arXiv: grqc/0410130.
[6] S.Hawking, A Brief History of Times, A Bantam Books/November, 1996.
[7] S.Hawking, The Universe in Nutshell, A Bantam Books/November, 2001.
[8] D.Ida, Brane-world cosmology, arXiv: gr-qc/9912002.
[9] H.Iseri, Smarandache Manifolds, American Research Press, Rehoboth, NM,2002.
[10] H.Iseri, Partially Paradoxist Smarandache Geometries, http://www.gallup.unm. edu/s̃mar andache/Howard-Iseri-paper.htm.
[11] M.Kaku, Hyperspace: A Scientific Odyssey through Parallel Universe, Time Warps and 10th Dimension, Oxford Univ. Press.
[12] P.Kanti, R.Madden and K.A.Olive, A 6-D brane world model, arXiv: hep-th/010417\%.
[13] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics Magazine, Aurora, Canada, Vol.12(2003)
[14] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73.
[15] L.F.Mao, A new view of combinatorial maps by Smarandache's notion, in Selected Papers on Mathematical Combinatorics(I), World Academic Union, 2006, also in arXiv: math. GM/0506232.
[16] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[17] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ2006.
[18] L.F.Mao, On algebraic multi-groups, Sientia Magna, Vol.2(2006), No.1, 64-70.
[19] L.F.Mao, On multi-metric spaces, Sientia Magna, Vol.2(2006), No.1, 87-94.
[20] L.F.Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology, Vol.7, No.1(2007),65-114.
[21] L.F.Mao, An introduction to Smarandache multi-spaces and mathematical combinatorics, Scientia Magna, Vol.3, No.1(2007), 54-80.
[22] L.F.Mao, A combinatorially generalized Stokes' theorem on integrations, International J.Mathematical Combinatorics, Vol.1, No.1(2007),67-86.
[23] L.F.Mao, Curvature equations on combinatorial manifolds with applications to theoretical physics, International J.Mathematical Combinatorics (accepted).
[24] E.Papantonopoulos, Braneworld cosmological models, arXiv: gr-qc/0410032.
[25] E.Papantonopoulos, Cosmology in six dimensions, arXiv: gr-qc/0601011.
[26] J.A.Peacock, Cosmological Physics, Cambridge University Press, 2003.
[27] J.Polchinski, String Theory, Vol.1-Vol.2, Cambridge University Press, 2003.
[28] D.Rabounski, Declaration of academic freedom: Scientific Human Rights, Progress in Physics, January (2006), Vol.1, 57-60.
[29] F.Smarandache, Mixed non-euclidean geometries, eprint arXiv: math/0010119, 10/2000.
[30] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
[31] F.Smarandache, Neutrosophy, a new Branch of Philosophy, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 297-384.
[32] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 385-438.
[33] J.Stillwell, Classical topology and combinatorial group theory, Springer-Verlag New York Inc., (1980).

# Structures of Cycle Bases with Some Extremal Properties 

Han Ren and Yun Bai<br>(Department of Mathematics, East China Normal University, Shanghai 200062, P. R. China)<br>Email: hren@math.ecnu.edu.cn


#### Abstract

In this paper, we investigate the structures of cycle bases with extremal properties which are related with map geometries, i.e., Smarandache 2-dimensional manifolds. We first study the long cycle base structures in a cycle space of a graph. Our results show that much information about long cycles is contained in a longest cycle base. (1)Any two longest cycle bases have the same structure, i.e., there is a 1-1 correspondence between any two longest cycle bases such that the corresponding cycles have the same length; (2)Any group of linearly independent longest cycles must be contained in a longest cycle base which implies that any two sets of linearly independent longest cycles with maximum cardinal number is equivalent; (3)If consider the range of embedded graphs, a longest cycle base must contain some long cycles with special properties. As applications, we find explicit formulae for computing longest cycles bases of several class of embedded graphs. As for an embedded graph on non-orientable surfaces, we obtain several interpolation results for one-sided cycles in distinct cycle bases. Similar results for shortest cycle bases may be deduced. For instance, we show that in a strongly embedded graph, there is a cycle base consisting of surface induced non-separating cycles and all of such bases have the same structure provided that their length is of shortest(subject to induced non-separating cycles). These extend Tutte's result [7](which states that in a 3-connected graph the set of induced(graph) non-separating cycles generate the cycle space).


Keywords: Cycle space, longest cycle base, SDR, long cycle.
AMS(2000): 05C30.

## §1. Introduction

Here in this paper we consider connected graphs without loops. Concepts and terminologies used without definition may be found in [1]. A spanning subgraph $H$ of $G$ is called an $E$ subgraph iff each vertex has even degree in $H$. It is well known that the set of E-subgraphs of $G$ forms a linear space $\mathscr{C}(G)$ called the cycle space of $G$. Here, the operation between vectors(i.e., E-subgraphs) is the symmetric difference between edge-sets of E-subgraphs. It is clear that the rank, defined by $\beta(G)$ (the Betti number of $G$ ), of $\mathscr{C}(G)$ is $|E(G)|-|V(G)|+1$ and any set of $\beta(G)$ linearly independence vectors form a base of $\mathscr{C}(G)$. The length $l(\mathcal{B})$ of a cycle base $\mathcal{B}$

[^1]is the sum of length of vectors in it. In particular, the length of an E-subgraph is the sum of length of edge-disjoint cycles in it. Throughout this paper, we only consider the vectors with only one cycle. So, the bases considered are all formed by cycles. By a longest base $\mathcal{B}$ we mean $l(\mathcal{B})$ is the length of a maximum cycle base.

Cycle space theory rooted in early research works of Kirchoff's circuits theory. In theory, Matroid theory is one of motivations of it [10-12], also related with map geometries, i.e., Smarandache 2-dimensional manifolds ([5]-[6]). In particular, cycle bases with minimum length have many applications in structural analysis [2], chemical storage theory [3], as well as fields such bioscience [4]. In history, classical works concentrated on minimum cycle bases(i.e., MCB). On the other direction, results for cycle spaces theory on long cycles are seldom to be seen. What can we say about longest cycle bases? In intuition, a longest cycle base should contain information about long cycles(especially the longest cycles). Here, in this paper we investigate the structure of longest cycle bases. Based on a Hall type theorem for base transformation, we present a condition for a cycle base to be longest.

Theorem A Let $\mathcal{B}$ be a cycle base(i.e., vectors of $\mathcal{B}$ are all cycles) of $G$. Then $\mathcal{B}$ is longest if and only if for every cycle $C$ of $G$ :

$$
\begin{equation*}
\forall \alpha \in \operatorname{Int}(C) \Longrightarrow|\alpha| \geq|C| \tag{1}
\end{equation*}
$$

where $\operatorname{Int}(C)$ is the set of cycles in $\mathcal{B}$ which span $C$.
Note: (1) This condition says that for a longest base $\mathcal{B}$, any cycle can't be generated by shorter cycles of $\mathcal{B}$;
(2) One may see that such Hall type theorem is very useful in studies of cycle bases with particular extremal properties.

The following result shows that any group of linearly independent longest cycles are contained in a longest cycle base. In particular, any longest cycle is contained in a longest cycle base.

Theorem B Let $C_{1}, C_{2}, \ldots, C_{s}$ be a set of linearly independent longest cycles of graph $G$. Then there is a longest cycle base $\mathcal{B}$ containing $C_{i}, 1 \leq i \leq s$.

If consider the cycles passing through an edge, then after using Theorem A we may see that for every edge $e$ of a graph $G$, every longest cycle base must contain a cycle which is longest among cycles passing through $e$.

Corollary 1 Any longest cycle of a graph must be contained in a longest cycle base.
Based on Theorem A, we obtain the following unique structure of longest cycle bases.
Theorem C Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be a pair of two longest cycle bases of a graph $G$. Then there is a 1-1 correspondence $\varphi$ between $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ such that for each cycle $\alpha \in \mathcal{B}_{1},|\varphi(\alpha)|=|\alpha|$.

Corollary 2 A graph $G$ 's any two longest cycle bases must contain the same number of $k$-cycles, for $k=3,4, \ldots, n$.

Since the condition (1) of Theorem A implies that a cycle can't be generated by shorter
cycles in a longest cycle base, we have the following
Corollary 3 Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be a pair of two longest cycle bases of a graph $G$. Then the two subgroups of $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ which contain longest cycles are linearly equivalent.

Corollary 4 Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be a pair of two longest cycle bases of a graph $G$ and $A_{k}, A_{k}^{\prime}$ be the sets of $k$-cycles of $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$, resp. Then $\bigcup_{k=p}^{n} A_{k}$ is equivalent to $\bigcup_{k=p}^{n} A_{k}^{\prime}$, for each $p=3,4$, .... $n$.

As applications of Theorems A-C, we will compute the length of longest cycle bases in several types of graphs. But what surprises us most is that those results are also very useful in computing cycle bases with particular extremal properties. In particular, we have the following

Theorem D Let $G$ be an embedded graph with $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ to be a pair of its longest(shortest) cycles bases. If $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ contain, resp., s and $t$ distinct one-sided cycles, then there is a longest(shortest) cycle base $\mathcal{B}$ with exactly $k$ distinct one-sided cycles for every integer $k$ between $s$ and $t$.

Since our results may be applied to any pair of bases, we have
Theorem $\mathbf{D}^{\prime}$ Let $G$ be an embedded graph, and $\mathcal{B}_{1}, \mathcal{B}_{2}$ be a pair of cycle bases containing, resp., $m$ and $n$ one-sided cycles. Then $G$ has a cycle base containing exactly $k$ distinct one-sided cycles for any natural number $k$ between $m$ and $n$.

A cycle $C$ of an embedded graph $G$ in a surface $\sum$ is called (surface)non-separating if $\sum-C$ is connected; otherwise, it is (surface)separating. If one component of $\sum-C$ is an open disc, then $C$ is contractible or trivial; if not so, $C$ is called non-contractible. It is clear that a non-separating cycle is also non-contractible. Since a non-separating cycle can't be spanned by separating cycles ( as we will show later ), we have the following result.

Theorem E A longest cycle base of an embedded graph must contain a longest non-separating cycle; any longest non-separating cycle is also contained in a longest cycle base; furthermore, if a pair of longest cycle bases contains, respectively, $m$ and $n$ longest non-separating cycles, then for every integer $k: m \leq k \leq n$, there is a longest cycle base containing exactly $k$ longest non-separating cycles.

On the other direction, if we consider the shortest cycle bases, then interesting properties on short cycles will appear. We call a graph $G$ in a surface to be $L E W$-embedded if the length of shortest non-contractible cycle is longer than any facial walk. It is well known that an LEWembedded graph shares many properties with planar graphs [8]. Here, we will present some more unknown results for cycle bases of LEW-embedded graphs.

Theorem $\mathbf{F}$ Let $G$ be an LEW-embedded graph and $\mathcal{B}_{1}, \mathcal{B}_{2}$ be a pair of shortest cycle bases. Then, we have the following results:
(1) For any separating cycle $C \in \mathcal{B}_{i}$ and non-separating cycle $C^{\prime} \in \mathcal{B}_{i},\left|C^{\prime}\right|>|C|$;
(2) Both $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ contain exactly $\nu\left(\sum\right)$ non-separating cycles, where $\nu\left(\sum\right)$ is the Euler-genus of the surface $\sum$ in which $G$ is embedded; further more, the subsets of separating cycles of $\mathcal{B}_{1}$
and $\mathcal{B}_{2}$ are linearly equivalent;
(3) Both $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ have the same number of shortest non-separating cycles.

If we restrict some condition on an embedded graph, then some unknown results are obtained. For instance, we have the following

Theorem G Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be a pair of longest cycle bases of an embedded graph $G$. If the length of longest non-separating cycle is longer than that of any separating cycle, then both $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ have the same number of longest non-separating cycles.

A cycle of a graph is induced if it has no chord. A famous result in cycle space theory is due to W . Tutte which states that in a simple $3-$ connected graph, the set of induced cycles each of which can't separate the graph generates the whole cycle space [9]. If we consider the case of embedded graphs, then this cycle set may be smaller. In fact, we have the following

Theorem Let G be a 2-connected graph embedded in a non-spherical surface such that its facial walks are all cycles. Then there is a cycle base consists of induced non-separating cycles.

Remark(1) Tutte's definition of a non-separating cycle differs from ours. The former defined a cycle which can't separate the graph, while the latter define a cycle which can't separate the surface in which the graph is embedded. So, Theorem H and Tutte's result are different. From our proof one may see that this base is determined simply by (surface)non-separating cycles. As for the structure of such bases, we may modify the condition of Theorem A and obtain another condition for bases consisting of shortest non-separating cycles.

Remark(2) Theorem H implies the existence of a cycle base $\mathcal{B}$ satisfying
i) All cycles in this cycle base $\mathcal{B}$ are non-separating;
ii) The length of this base $\mathcal{B}$ is shortest subject to i).

We call a base defined above as shortest non-separating cycle base.
Theorem I Let G be a 2-connected graph embedded in a non-spherical surface such that all of its facial walks are cycles. Let $\mathcal{B}$ be a base consisting of non-separating cycles. Then $\mathcal{B}$ is shortest iff for every non-separating cycle $C$,

$$
\forall \alpha \in \operatorname{Int}(C) \Rightarrow|C| \geq|\alpha|,
$$

where $\operatorname{Int}(C)$ is the subset of cycles of $\mathcal{B}$ which span $C$.
Combining Theorems H and I we obtain the following unique structure result for shortest non-separating cycle bases.

Theorem J Let $G$ be a 2-connected graph embedded in some non-spherical surface with all its facial walks as cycles. Let $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ be a pair of shortest non-separating cycle bases. Then there exists a 1-1 correspondence $\varphi$ between elements of $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ such that for every element $\alpha \in \mathcal{B}_{1},|\alpha|=|\varphi(\alpha)|$.

Remark From our proof of Theorem J, one may see that if the surface in which the graph is embedded is non-orientable, then we may find a cycle base consisting of one-sided cycles and
so, there is a cycle base satisfying
i ) All cycles in the base are one-sided cycles;
ii) The length of the base is shortest subject to i );
iii) Any pair of cycle bases satisfying i) and ii) have the same structure, i.e., there is a $1-1$ correspondence between them such that the corresponding cycles have the same length.

## §2. Proofs of general results

In this section we shall prove Theorems A - C. Firstly, we should set up some preliminaries works. Let $\mathcal{M}=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ be a set of $m$ sets. If each $S_{i}$ contains an element $a_{i}$ such that $a_{i} \neq a_{j}$ for $i \neq j$, then $\left(a_{1}, a_{2}, \ldots, a_{m}\right)$ is called a SDR of $\mathcal{M}$. The following is a famous condition for a system of sets to have a SDR.

Lemma $\mathbf{1}$ (Hall's theorem [7]) Let $\mathcal{M}=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ be a system of sets. Then $\mathcal{M}$ has a $S D R$ iff for any $k$ subsets of $\mathcal{M}$, their union has at least $k$ elements, $1 \leq k \leq m$.

The following is an application of Lemma 1.
Lemma 2 Let $\mathcal{B}_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}, \mathcal{B}_{2}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a pair of bases of a linearly vector space $\mathcal{V}_{m}$ over a field $\mathscr{F}$. Then $\mathcal{M}=\left(S_{1}, S_{2}, \ldots, S_{m}\right)$ has a $S D R$, where $S_{i}=\operatorname{Int}\left(\alpha_{i}\right)$ is the set of vectors of $\mathcal{B}_{2}$ which spans $\alpha_{i}, 1 \leq i \leq m$.

Proof Suppose on the contrary. Then there is an integer number $k$ and $k$ subsets, say $S_{1}, S_{2}, \ldots, S_{k}$ such that

$$
\begin{equation*}
\left|\bigcup_{i=1}^{k} S_{i}\right|<k \tag{2}
\end{equation*}
$$

This shows that $\alpha_{1}, \alpha_{2}, \ldots, \alpha_{k}$ may be generated by less than $k$ elements of $\mathcal{B}_{2}$, a contradiction as desired.

Proof of Theorem A Let $\mathcal{B}$ be a longest cycle base of $G$ and $C$ be a cycle of $G$. Then there is a set $\operatorname{Int}(C)$ of cycles of $\mathcal{B}$ which span $C$, i.e., $C=\sum_{C_{i} \in \mathrm{C}} \oplus C_{i}$. If there is a cycle $C_{i} \in \operatorname{Int}(C)$ with $\left|C_{i}\right|<|C|$, then $\mathcal{B}_{1}=\mathcal{B}-C_{i}+C$ is another cycle base with length longer than that of $\mathcal{B}_{1}$, contrary to the definition of $\mathcal{B}$. Thus, (1) holds for every cycle of $G$. On the other hand, suppose that $\mathcal{B}$ is a cycle base of $G$ satisfying (1) and $\mathcal{B}_{1}$ is a longest cycle base of $G$. Let $\mathcal{B}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}, \mathcal{B}_{1}=\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{m}\right\}, m=\beta(G)$. Then for each $\gamma_{i} \in \mathcal{B}_{1}$, there is a set $\operatorname{Int}\left(\gamma_{i}\right)$ of cycles of $\mathcal{B}$ which span $\gamma_{i}$. By Lemma 2 , $\left(\operatorname{Int}\left(\gamma_{1}\right), \operatorname{Int}\left(\gamma_{2}\right), \ldots, \operatorname{Int}\left(\gamma_{m}\right)\right)$ has a $\operatorname{SDR}=\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{m}^{\prime}\right)$ such that $\alpha_{i}^{\prime} \in \operatorname{Int}\left(\gamma_{i}\right), 1 \leq i \leq m$. Then by (1), we have that

$$
\left|\alpha_{i}^{\prime}\right| \geq\left|\gamma_{i}\right|, \quad 1 \leq i \leq m
$$

which implies that $l(\mathcal{B}) \geq l\left(\mathcal{B}_{1}\right)$ and so, $\mathcal{B}$ is also a longest cycle base of $G$.
Proof of Theorem B Let $\mathcal{B}$ be a longest cycle base of $G$ such that $\left|\mathcal{B} \cap\left\{C_{1}, C_{2}, \ldots, C_{s}\right\}\right|$ is as large as possible. If $\left|\mathcal{B} \cap\left\{C_{1}, C_{2}, \ldots, C_{s}\right\}\right|=s$, then $C_{i} \in \mathcal{B}$ for $1 \leq i \leq s$. $\mathcal{B}$ is the right cycle base. Otherwise, there is an integer $k(1 \leq k \leq s)$ such that $C_{k} \notin \mathcal{B}$. Then $\mathcal{B}$ has a subset $\operatorname{Int}\left(C_{k}\right)$ spanning $C_{k}$. It is clear that $\operatorname{Int}\left(C_{k}\right) \nsubseteq\left\{C_{1}, C_{2}, \ldots, C_{s}\right\}$. Hence, there is a
cycle $C_{j} \in \operatorname{Int}\left(C_{k}\right) \backslash\left\{C_{1}, C_{2}, \ldots, C_{s}\right\}$. Since Theorem A shows that a cycle can't be generated by shorter cycles in a longest cycle base, we have that $\left|C_{j}\right|=\left|C_{k}\right|$. Thus, $\mathcal{B}_{1}=\mathcal{B}-C_{j}+C_{k}$ is a longest cycle base containing more cycles in $\left\{C_{1}, C_{2}, \ldots, C_{s}\right\}$ than that of $\mathcal{B}$, a contradiction as desired.

Proof of Theorem C Let $\mathcal{B}_{1}=\left\{C_{1}, C_{2}, \ldots, C_{m}\right\}, \mathcal{B}_{2}=\left\{C_{1}^{\prime}, C_{2}^{\prime}, \ldots, C_{m}^{\prime}\right\}$ be a pair of longest cycle bases of $G, m=\beta(G)$. Then for each $C_{i}^{\prime} \in \mathcal{B}_{2}$, there is a subset $\operatorname{Int}\left(C_{i}^{\prime}\right) \subseteq \mathcal{B}_{1}$ such that $C_{i}^{\prime}$ is spanned by vectors of $\operatorname{Int}\left(C_{i}^{\prime}\right)$. By Lemma 2, $\left(\operatorname{Int}\left(C_{1}^{\prime}\right), \operatorname{Int}\left(C_{2}^{\prime}\right), \ldots, \operatorname{Int}\left(C_{m}^{\prime}\right)\right)$ has a SDR, say $\left(C_{1}, C_{2}, \ldots, C_{m}\right)$ with $C_{i} \in \operatorname{Int}\left(C_{i}^{\prime}\right), 1 \leq i \leq m$. By Theorem $\mathrm{A},\left|C_{i}^{\prime}\right| \leq$ $\left|C_{i}\right|, 1 \leq i \leq m$. Let $\varphi: C_{i} \longmapsto C_{i}^{\prime}$. Then $\varphi$ is a 1-1 correspondence between $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$. Since both of them are longest, we have that $\left|\varphi\left(C_{i}\right)\right|=\left|C_{i}^{\prime}\right|=\left|C_{i}\right|, 1 \leq i \leq m$. This ends the proof of Theorem C.

## §3. Applications to embedded Graphs

In this section, we shall apply the results of $\S 2$ to obtain some important results in graph theory. We first introduce some definition for graph embedding. Let $G$ be a graph which is topologically embedded in a surface $S$ such that each component of $S-G$ is an open disc. Such graph embedding are called 2-cell embedding. We may also define such embedding in another way as the monograph [8] did. An embedding of a graph is a rotations system $\pi=\left\{\pi_{v} \mid v \in V(G)\right\}$ (each $\pi_{v}$ is a cyclic permutation of semi-edges around $v$ ) with a signature $\pi: E(G) \longmapsto\{-1,1\}$. If a cycle $C$ has even-number of negative signatures, it is called a two-sided cycle; otherwise, it is called a one-sided cycle. If an embedding permits no one-sided cycles, then it is called an orientable embedding; otherwise, it is non-orientable embedding. It is clear that a one-sided cycle is contained in a Möbius band which bounds a crosscap.

Proof of Theorem D Let $\mathcal{B}_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}\right\}$ and $\mathcal{B}_{2}=\left\{\beta_{1}, \beta_{2}, \ldots, \beta_{m}\right\}$ be a pair of longest(shortest) cycle bases of a graph $G, m=\beta(G)$, such that $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$ have $s$ and $t$ onesided cycles, resp. Suppose that $s<t$ and $k$ is an integer : $s \leq k \leq t$. We will show that there exists a longest cycle base $\mathcal{B}$ with exactly $k$ one-sided cycles. We apply induction on the value of $|s-t|$. It is clear that the result holds for smaller value. Now suppose that it holds for values smaller than $|s-t|$. By Lemma 2 , $\left(\operatorname{Int}\left(\beta_{1}\right), \operatorname{Int}\left(\beta_{2}\right), \ldots, \operatorname{Int}\left(\beta_{m}\right)\right)$ has a $\operatorname{SDR}$, say $\left(\alpha_{i_{1}}, \alpha_{i_{2}}, \ldots, \alpha_{i_{m}}\right)$ with $\alpha_{i_{j}} \in \operatorname{Int}\left(\beta_{j}\right)$, where each $\operatorname{Int}\left(\beta_{j}\right)$ is the set of cycles of $\mathcal{B}_{1}$ which span $\beta_{j}, 1 \leq j \leq m$. Further, $\left|\alpha_{i_{j}}\right|=\left|\beta_{j}\right|$ by the definition of $\mathcal{B}_{1}$ and $\mathcal{B}_{2}, 1 \leq j \leq m$. Since $\mathcal{B}_{2}$ has more one-sided cycles than that of $\mathcal{B}_{1}$, there is a one-sided cycle $\beta_{j}$ such that $\operatorname{Int}\left(\beta_{j}\right)$ contains a two-sided cycle, say $\alpha_{j}^{\prime}$, of $\mathcal{B}_{1}$. In fact, we may choose $\alpha_{i_{j}}=\alpha_{j}^{\prime}$ by the $1-1$ correspondence. Now let $\mathcal{B}=\mathcal{B}_{1}-\alpha_{i_{j}}+\beta_{j}$. Then $\mathcal{B}$ is another longest cycle base with exactly $s+1$ one-sided cycles. By induction hypothesis, the result holds.

Proof of Theorem $\mathbf{D}^{\prime}$ It follows from the proof of Theorem D.
Before our proving of Theorem E, we have to do some preliminary works. First, we have the following result for surface topology.

Lemma 3 Let $G$ be an embedded graph and $C$ a non-separating cycle of $G$. Then $C$ can't be
generated by a group of separating cycles .
Proof Since every separating cycle is two-sided and a one-sided cycle can't be spanned by two-sided cycles, we may suppose that $C$ is a two-sided non-separating cycle. Recall that $C$ is non-separating iff $G_{l}(C)=G_{r}(C)$, where $G_{l}(C)$ and $G_{r}(C)$ are, respectively, the leftsubgraph and right-subgraph of $C$ ( as defined in [8]). Suppose that $C$ may be spanned by a set of separating cycles. Then $C$ may also by spanned by a set of facial walks : $\partial f_{1}, \partial f_{2}, \ldots, \partial f_{s}$, i.e.,

$$
C=\partial f_{1} \oplus \partial f_{2} \oplus \ldots \oplus \partial f_{s}, \quad \operatorname{Int}(C)=\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{s}\right\}
$$

This implies that for every edge $e$ of $C, e$ is covered(contained) in exactly one facial walk of $\operatorname{Int}(C)=\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{s}\right\}$ and every edge in $\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{s}\right\} \backslash E(C)$ is contained in exactly two walks in $\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{s}\right\}$.

Let $x \in V(C)$ and $e$ be an edge of $C$ containing $x$. Then the local rotation of edges incident to $x$ is $\Pi_{x}=\left(e, e_{1}, e_{2}, \ldots, e_{p}, e_{p+1}, \ldots, e_{q}\right)$, where $e_{p+1}$ is another edge of $C$ having a common vertex with $e$. Each pair of consecutive edges forms a corner $\angle e_{i} x e_{i+1}$ containing $x$. It is clear that each corner is contained in a region bounded by some facial walk in $\operatorname{Int}(C)$. If the corner $\angle e x e_{1}$ is contained in a region bounded by a facial walk, then each corner $\angle e_{i} x e_{i+1}(1 \leq i \leq p)$ is also contained in some facial walk. In particular, $e_{p+1}$ is also contained in a facial walk. Thus, if a facial walk of $\operatorname{Int}(C)$ is on the right-hand side of $C$ and shares an edge with $C$, then all corner together with its edges on the right-side of $C$ are contained in facial walks of $\operatorname{Int}(C)$. Since each edge of $C$ is contained in exactly one facial walk of $\operatorname{Int}(C)$, we see that no facial walk of $\operatorname{Int}(C)$ may contain an edge of $C$ which is in $G_{l}(C)$. Notice that $C$ is non-separating and thus there is an path $P$ starting from an edge of $G_{r}(C)$ containing a vertex of $C$ and ending at another edge in $G_{l}(C)$ which contains a vertex of $C$. This implies that $G^{*}$, the dual graph of $G$, contains a path $P^{*}$ connecting a pair of facial walks which are on the distinct side of $C$. We may choose $P^{*}$ such that it has no edge corresponding to an edge of $C$. It is easy to see that the vertices of $P^{*}$ correspond to a set of facial walks of $\operatorname{Int}(C)$ which form a facial walk chain. Hence, the two end-facial walks corresponding to the two end-vertices of $P$ must be in Int $(C)$. This is impossible since $\operatorname{Int}(C)$ has no such pair of facial walks ( containing edges in $C$ ) on distinct side of $C$. This ends the proof of Lemma 3 .

Proof of Theorem E Let $\mathcal{B}$ be a longest cycle base and $C$ a longest non-separating cycle. If $C \notin \mathcal{B}$, then $C$ is spanned by a set $\operatorname{Int}(C)$ of cycles of $\mathcal{B}$. By Lemma $3, \operatorname{Int}(C)$ contains a nonseparating cycle $C^{\prime}$ which is no shorter than that of $C$ (by (1) of Theorem A ), so $|C|=\left|C^{\prime}\right|$ and $C^{\prime}$ is also a longest non-separating cycle. This proves the first part of Theorem E. Now let

$$
\begin{aligned}
\mathcal{B}_{1} & =\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \alpha_{m+1}, \ldots, \alpha_{\beta(G)}\right\} \\
\mathcal{B}_{2} & =\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{n}, \gamma_{n+1}, \ldots, \gamma_{\beta(G)}\right\}
\end{aligned}
$$

be a pair of longest cycle bases with exactly $m$ and $n$ non-separating cycles. Let $\alpha_{i}(1 \leq i \leq m)$ and $\gamma_{j}(1 \leq j \leq n)$ be non-separating cycles of $\mathcal{B}_{1}$ and $\mathcal{B}_{1}$, respectively. Then for each $\gamma_{i} \in \mathcal{B}_{2}$, there is a set $\operatorname{Int}\left(\gamma_{i}\right)$ of cycles of $\mathcal{B}_{1}$ spanning $\gamma_{i}$. By the proving procedure of Theorem A, the
system of sets

$$
\left(\operatorname{Int}\left(\gamma_{1}\right), \operatorname{Int}\left(\gamma_{2}\right), \ldots, \operatorname{Int}\left(\gamma_{n}\right), \ldots, \operatorname{Int}\left(\gamma_{\beta(G)}\right)\right)
$$

has a $\operatorname{SDR}\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{n}^{\prime}, \ldots, \alpha_{\beta(G)}^{\prime}\right)$ and further $\alpha_{i}^{\prime} \in \operatorname{Int}\left(\gamma_{i}\right)$ such that $\left|\alpha_{i}^{\prime}\right|=\left|\gamma_{i}\right|, 1 \leq i \leq$ $\beta(G)$. It is clear that there is an integer, say $k(1 \leq k \leq n)$, such that $\alpha_{k}^{\prime}$ is separating since $m<n$ implies that $\mathcal{B}_{2}$ has more longest non-separating cycle than that of $\mathcal{B}_{1}$. Now consider the set $\mathcal{B}_{3}=\mathcal{B}_{2}-\gamma_{k}+\alpha_{k}^{\prime}$ is a longest cycle base containing exactly $n-1$ longest non-separating cycles. Repeating this procedure, we may find a longest cycle base with exactly $l$ longest nonseparating cycles for each $l: m \leq l \leq n$. This ends the proof of Theorem E.

Proof of Theorem F Let $\mathcal{B}_{1}=\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{m}, \alpha_{m+1}, \ldots, \alpha_{\beta(G)}\right\}$ be a MCB (minimum cycle base) of an LEW-embedded graph $G$, where $\alpha_{i}(1 \leq i \leq m)$ and $\alpha_{j}(m<j \leq \beta(G))$ are, respectively, non-separating cycle and separating cycle. Suppose that there are $\varphi$ facial walks: $\partial f_{1}, \partial f_{2}, \ldots, \partial f_{\varphi}$. It is clear that $\alpha_{m+1}, \alpha_{m+2}, \ldots, \alpha_{\beta(G)}$ may be linearly expressed by $\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{\varphi-1}\right\}$. Let $\partial f_{i}(1 \leq i \leq \varphi-1)$ be a facial walk. Then $\partial f_{i}$ is spanned by a subset $\operatorname{Int}\left(\partial f_{i}\right)$ of $\mathcal{B}_{1}$. Since $\mathcal{B}_{1}$ is shortest, every cycle of $\operatorname{Int}\left(\partial f_{i}\right)$ must be contractible by Theorem A. Thus, $\left\{\partial f_{1}, \partial f_{2}, \ldots, \partial f_{\varphi-1}\right\}$ is linearly equivalent to $\left\{\alpha_{m+1}, \alpha_{m+2}, \ldots, \alpha_{\beta(G)}\right\}$, i.e., $\beta(G)-m=\varphi-1$ (which says that $\mathcal{B}_{1}$ has exactly $\nu\left(\sum\right)$ non-separating cycles, where $\nu\left(\sum\right)$ is the Euler-genus of the host surface $\sum$ on which $G$ is embedded). This ends the proof of (2).

Let $\alpha_{i}$ and $\alpha_{j}$ be, respectively, non-separating cycle and separating cycle of $\mathcal{B}_{1}$ such that $\left|\alpha_{i}\right| \leq\left|\alpha_{j}\right|$. Then $\alpha_{j}$ is spanned by a set $\operatorname{Int}\left(\alpha_{j}\right)$ of facial walks. It is clear that there is a facial walk, say $\alpha_{k}$, of $\operatorname{Int}\left(\alpha_{j}\right)$ which can't be generated by vectors in $\mathcal{B}_{1} \backslash\left\{\alpha_{j}\right\}$. It is easy to see that $\left|\partial f_{k}\right|<\left|\alpha_{j}\right|$ (since otherwise, $\left|\alpha_{i}\right| \leq\left|\partial f_{k}\right|$ will contrary to the definition of LEW-embedded graph). Hence, $\mathcal{B}_{1}-\alpha_{j}+\partial f_{k}$ will be a shorter cycle base, contrary to the definition of $\mathcal{B}_{1}$. So, we have $\left|\alpha_{i}\right|>\left|\alpha_{j}\right|$ which ends the proof of (1).

Let

$$
\begin{aligned}
\mathcal{B}_{1} & =\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}, \alpha_{s+1}, \ldots, \alpha_{\beta(G)}\right\} \\
\mathcal{B}_{2} & =\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}, \gamma_{t+1}, \ldots, \gamma_{\beta(G)}\right\}
\end{aligned}
$$

be a pair of MCBs such that $\left\{\alpha_{1}, \alpha_{2}, \ldots, \alpha_{s}\right\}$ and $\left\{\gamma_{1}, \gamma_{2}, \ldots, \gamma_{t}\right\}$ are, respectively, the set of longest non-separating cycles of $\mathcal{B}_{1}$ and $\mathcal{B}_{2}$. Suppose that $s \leq t$. Then for each $\gamma_{i}(1 \leq i \leq \beta(G))$, there is a subset $\operatorname{Int}\left(\gamma_{i}\right)$ of $\mathcal{B}_{1}$ which span $\gamma_{i}$. By the proving procedure of Theorem A, the system of sets: $\left(\operatorname{Int}\left(\gamma_{1}\right), \operatorname{Int}\left(\gamma_{2}\right), \ldots, \operatorname{Int}\left(\gamma_{\beta(G)}\right)\right)$ has a SDR, say $\left(\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{\beta(G)}^{\prime}\right)$ such that $\alpha_{i}^{\prime} \in \operatorname{Int}\left(\gamma_{i}\right)$ and $\left|\alpha_{i}^{\prime}\right|=\left|\gamma_{i}\right|, 1 \leq i \leq \beta(G)$. By (1) we see that each $\alpha_{i}^{\prime}(1 \leq i \leq t)$ is nonseparating which implies that $\alpha_{1}^{\prime}, \alpha_{2}^{\prime}, \ldots, \alpha_{t}^{\prime}$ is a collection of longest non-separating cycles of $G$ in $\mathcal{B}_{1}$. Thus, $t \leq s$. This ends the proof of (3).

Proof of Theorem G It follows from the proving procedure of Theorem E.
Proof of Theorem H Notice that any cycle base consists of two parts: the first part is determined by non-separating cycles while the second part is composed of separating cycles. So, what we have to do is to show that any facial cycle may be generated by non-separating cycles. Our proof depends on two steps.

Step 1 Let $x$ be a vertex of $G$. Then there is a non-separating cycle passing through $x$.
Let $C^{\prime}$ be a non-separating cycle of $G$ which avoids $x$. Then by Menger's theorem, there are two inner disjoint paths $P_{1}$ and $P_{2}$ connecting $x$ and $C^{\prime}$. Let $P_{1} \cap C^{\prime}=\{u\}, P_{2} \cap C^{\prime}=\{v\}$. Suppose further that $u \overrightarrow{C^{\prime}} v$ and $v \overrightarrow{C^{\prime}} u$ are two segments of $C^{\prime}$, where $\vec{C}$ is an orientation of $C$. Then there are three inner disjoint paths connecting $u$ and $v$ :

$$
Q_{1}=u \vec{C} v, \quad Q_{2}=v \vec{C} u, \quad Q_{3}=P_{1} \cup P_{2}
$$

Since $C^{\prime}=Q_{1} \cup Q_{2}$ is non-separating, at least one of cycles $Q_{2} \cup Q_{3}$ and $Q_{1} \cup Q_{3}$ is nonseparating by Lemma 3 .

Step 2 Let $\partial f$ be any facial cycle. Then there exist two non-separating cycles $C_{1}$ and $C_{2}$ which span $\partial f$.

In fact, we add a new vertex $x$ into the inner region of $\partial f(i . e ., \operatorname{int}(\partial f))$ and join new edges to each vertex of $\partial f$. Then the resulting graph also satisfies the condition of Theorem H. By Step 1 , there is a non-separating $C$ passing through $x$. Let $u$ and $v$ be two vertices of $C \cap \partial f$. Then $u \vec{C} v$ together with two segments of $\partial f$ connecting $u$ and $v$ forms a pair of non-separating cycles.

Proof of Theorem I and J It follows from the proving procedure of Theorem A and C.

## §4. Examples

Next, we will compute the lengths of longest cycle bases in some types of graphs.
Example 1 Let $G$ be a " Möbius ladder graph " embedded in the projective plane as shown in Fig.1.


Fig. 1
It is clear that $G$ is non-planar and 3-regular. There are $n$ quadrangles defined as

$$
C_{4}^{(i)}= \begin{cases}\left(x_{i}, x_{i+1}, y_{i+1}, y_{i}\right), & 1 \leq i \leq n-1 \\ \left(x_{n}, y_{1}, x_{1}, y_{n}\right), & i=n\end{cases}
$$

and $n$ Hamiltonian cycles as

$$
H_{i}= \begin{cases}H-\left\{\left(x_{i}, x_{i+1}\right),\left(y_{i}, y_{i+1}\right)\right\}+\left\{\left(x_{i}, y_{i}\right),\left(x_{i+1}, y_{i+1}\right)\right\}, & 1 \leq i \leq n-1 \\ \left(x_{1}, x_{2}, \ldots, x_{n}, y_{n}, y_{n-1}, \ldots, y_{2}, y_{1}\right), & i=n\end{cases}
$$

where $H$ is the Hamiltonian cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{1}, y_{2}, \ldots, y_{n}\right)$. It is easy to see that $C_{4}^{(i)} \oplus H_{i}$ is the Hamiltonian cycle $H$.

Case $1 \quad n \equiv 0(\bmod 2)$.
Claim $1\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$ is a linearly independent set.
If not so, one may see that

$$
H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n}=0
$$

This implies that

$$
\left(H_{1} \oplus C_{4}^{1}\right) \oplus\left(H_{2} \oplus C_{4}^{2}\right) \oplus \cdots \oplus\left(H_{n} \oplus C_{4}^{n}\right)=C_{4}^{1} \oplus C_{4}^{2} \oplus \cdots \oplus C_{4}^{n}
$$

i.e.,

$$
n H=H=0
$$

a contradiction.
Let $C$ be a $(2 \mathrm{n}-1)$-cycle which is non-contractible. Since $n \equiv 0(\bmod 2)$, we have
Claim $2 C$ can't be generated by $\left\{H_{1}, H_{2}, \ldots, H_{n}\right\}$.
This follows from the fact that $C$ is a one-sided cycle which can't be spanned by two-sided cycles. Then $\mathcal{B}=\left\{C, H_{1}, H_{2}, \ldots, H_{n}\right\}$ is a longest cycle base. Otherwise, $G$ would have a longest cycle base which consists of $n+1$ Hamiltonian cycles, and so $G$ is bipartite. This is a contradiction with the fact that $G$ has an odd cycle $\left(x_{1}, x_{2}, \ldots, x_{n}, y_{n}\right)$.

Case $2 n \equiv 1(\bmod 2)$
Claim $3\left\{H_{1}, H_{2}, \ldots, H_{n-1}\right\}$ is a set of linearly independent cycles.
This time, we consider the contractible Hamiltonian cycle $H$. Then $\left\{H_{1}, H_{2}, \ldots, H_{n-1}, H\right\}$ is also a set of linearly independent cycles. If not so, $H$ would be the sum of $H_{1}, H_{2}, \ldots, H_{n-1}$, i.e.,

$$
H=H_{1} \oplus H_{2} \oplus \cdots \oplus H_{n-1}
$$

that is,

$$
\begin{aligned}
H \oplus C_{4}^{1} \oplus C_{4}^{2} \oplus \cdots \oplus C_{4}^{n-1} & =\left(H_{1} \oplus C_{4}^{1}\right) \oplus\left(H_{2} \oplus C_{4}^{2}\right) \oplus\left(H_{n-1} \oplus C_{4}^{n-1}\right) \\
& =(n-1) H=0
\end{aligned}
$$

Now, we have that

$$
H=C_{4}^{1} \oplus C_{4}^{2} \oplus \cdots \oplus C_{4}^{n-1}
$$

This is impossible(since $C_{4}^{1} \oplus C_{4}^{2} \oplus \cdots \oplus C_{4}^{n-1} \oplus C_{4}^{n}=H$ ).
Let $H^{\prime}$ be a non-contractible Hamiltonian cycle. Then by Claim 2, $\mathcal{B}=\left\{H_{1}, H_{2}, \ldots\right.$, $\left.H_{n-1}, H, H^{\prime}\right\}$ is a Hamiltonian base of $G$.

Example 2 Let us consider the longest cycle base of $\mathcal{K}_{n}$, the complete graph with $n$ vertices. It is easy to see that $\beta\left(\mathcal{K}_{n}\right)=\frac{1}{2}(n-1)(n-2)=C_{n-1}^{2}$, which suggests us to give a combinatorial explanation of $\beta\left(\mathcal{K}_{n}\right)$. Suppose $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$. Then $\mathcal{K}_{n}-x_{n}=\mathcal{K}_{n-1}$, i.e., the complete graph with $n-1$ vertices $x_{1}, x_{2}, \ldots, x_{n-1}$. Let us consider a ( $\mathrm{n}-1$ )-cycle $\vec{C}_{n-1}=$ $\left(x_{1}, x_{2}, \ldots, x_{n-1}\right)$ and $x_{i}, x_{j} \in V\left(C_{n-1}\right)(i<j)$. Then $H_{i, j}=x_{i-1} \overleftarrow{C} C_{n-1} x_{j} x_{i} \vec{C}_{n-1} x_{j-1}$ is a Hamiltonian path of $\mathcal{K}_{n-1}$. Now we find $\beta\left(\mathcal{K}_{n}\right)$ Hamiltonian cycles defined as $C_{n}(i, j)=$ $\left(x_{n} x_{i-1} \overleftarrow{C} C_{n-1} x_{j} x_{i} \vec{C}_{n-1} x_{j-1}\right)$ in formal.

Claim 4 If $|i-j| \geq 2$, then the set $\left\{C_{n}(i, j) \mid 1 \leq i<j \leq n-1\right\}$ is linearly independent set.
This follows frow the fact that $\left(x_{i}, x_{j}\right) \in E\left(C_{n}(i, j)\right)$ is an edge which can't be deleted by the definition of symmetric difference.

Case $1 \quad n \equiv 1(\bmod 2)$
Now the $n$-cycles $C_{n}(i, i+1)=\left(x_{n}, x_{i+1}, x_{i+2}, \ldots, x_{n-1}, x_{1}, x_{2}, \ldots, x_{i}\right),(1 \leq i \leq n-1)$ is linearly independent cycles. Otherwise, we have that

$$
C_{n}(1,2) \oplus C_{n}(2,3) \oplus \ldots \oplus C_{n}(n-1,1)=0
$$

which implies $\cap C_{n-1}=0$, a contradiction! Based on this and Claim 4, $\left\{C_{n}(i, j) \mid 1 \leq i<j \leq\right.$ $n-1\}$ is a set of linearly independent Hamiltonian cycles.

Case $2 n \equiv 0(\bmod 2)$
Although $\left\{C_{n}(1,2), C_{n}(2,3), \ldots, C_{n}(n, 1)\right\}$ is linearly dependent set of Hamilton cycles, $\left\{C_{n}(1,2), C_{n}(2,3), \ldots, C_{n}(n-1, n)\right\}$ is a set of linearly independent cycles. Since $\mathcal{K}_{n}$ can't have a Hamiltonian base, it's longest cycle base is $\left\{C_{n}(i, j) \mid 1 \leq i<j \leq n\right\} \backslash\left\{C_{n}(n, 1)\right\}$ together with a ( $\mathrm{n}-1$ )-cycle ( $1,2, \ldots, \mathrm{n}-1$ ).

Example 3 Let $G$ be an outer planar triangular graph embedded in the sphere with its triangular faces $f_{1}, f_{2}, \ldots, f_{\varphi-1}$. Then it has exactly one Hamiltonian cycle $\partial f_{\varphi}$, here we use $\partial f$ to denote the boundary of a face $f$. By Euler's formula, $\varphi-1=\beta(G)$, where $\varphi$ is the number of faces. Let us define a set of cycles as following

$$
\begin{aligned}
& C_{n}=\partial f_{\varphi}, \\
& C_{n-1}=\partial f_{1} \oplus \partial f_{2} \oplus \cdots \oplus \partial f_{\varphi-2}, \quad C_{n-1}^{\prime}=\partial f_{\varphi-1} \oplus \partial f_{\varphi-2} \oplus \cdots \oplus \partial f_{2} \\
& C_{n-2}=\partial f_{1} \oplus \partial f_{2} \oplus \cdots \oplus \partial f_{\varphi-3}, \quad C_{n-2}^{\prime}=\partial f_{\varphi-1} \oplus \partial f_{\varphi-2} \oplus \cdots \oplus \partial f_{3} \\
& C_{n-k}=\partial f_{1} \oplus \partial f_{2} \oplus \cdots \oplus \partial f_{\varphi-k-1} \\
& C_{n-k}^{\prime}=\partial f_{\varphi-1} \oplus \partial f_{\varphi-2} \oplus \cdots \oplus \partial f_{k+1}, \quad 1 \leq k \leq \varphi-2 .
\end{aligned}
$$



Fig. 2

$$
\mathcal{B}= \begin{cases}\left\{C_{n}, C_{n-1}, C_{n-2}, \ldots, C_{\frac{n+3}{2}}\right\} \cup\left\{C_{n-1}^{\prime}, C_{n-2}^{\prime}, \ldots, C_{\frac{n+3}{2}}^{\prime}\right\}, & \varphi \equiv 0(\bmod 2) \\ \left\{C_{n}, C_{n-1}, C_{n-2}, \ldots, C_{\frac{n+4}{2}}\right\} \cup\left\{C_{n-1}^{\prime}, C_{n-2}^{\prime}, \ldots, C_{\frac{n+2}{2}}^{\prime}\right\}, & \varphi \equiv 1(\bmod 2)\end{cases}
$$

Thus $\mathcal{B}$ satisfies the condition of Theorem A. Hence, $\mathcal{B}$ is a longest cycle base, and the length of longest cycle base is

$$
l(B)= \begin{cases}n+2(n-1)+2(n-2)+\cdots+2\left(\frac{n+3}{2}\right), & \varphi \equiv 0(\bmod 2) \\ n+2(n-1)+2(n-2)+\cdots+2\left(\frac{n+4}{2}\right)+\frac{n+2}{2}, & \varphi \equiv 1(\bmod 2)\end{cases}
$$

Example 4 Again we consider the " Möbius ladder graph" in Fig.1. It is clear that the edge-width(i.e., ew(G)) is $n+1$ and there are $n+1$ shortest non-separating cycles:

$$
C_{i}= \begin{cases}\left(y_{1}, y_{2}, \ldots, y_{i}, x_{i}, x_{i+1}, \ldots, x_{n}\right), & 1 \leq i \leq n \\ \left(y_{1}, y_{2}, \ldots, y_{n}, x_{1}\right), & i=n+1\end{cases}
$$

Notice that $\beta(G)=n+1$ and $\left\{C_{1}, C_{2}, \ldots, C_{n+1}\right\}$ may generate every facial cycle and every non-contractible cycle of $G$. Thus, $\mathcal{B}=\left\{C_{1}, C_{2}, \ldots, C_{n}\right\}$ is a shortest non-separating cycle base with length $l(\mathcal{B})=(n+1)^{2}$. Although there are many such bases in $G$, they have the same structure as we have shown in Theorem J. Since our definition of non-separating cycles on locally orientable surface refuses the existence of facial cycles in such shortest non-separating cycle base, there may exist an edge contained in exactly one cycle in such a base. For instance, the edge $\left(x_{1}, y_{n}\right)$ in Fig. 1 is contained in exactly one non-separating cycle of such shortest cycle base.

## References

[1] J.A. Bondy, U.S.R. Murty, Graph Theory with Applications, Macmillan, London, 1978.
[2] A.C. Casell et al., Cycle bases of minimum measure for the structural analysis of skeletal structures by the flexibility method, Proc. R. Soc. London Ser. A 35 (1976) 61-70.
[3] G.D. Downs et al., Review of ring perception algorithms for chemical graphs, J. Chem. Inf. Comput. Sci. 29 (1989) 172-187.
[3] S.M. Freier et al., Improved free-energy parameters for predictions of RNA duplex stability, Proc. Natl. Acad. Sci. (USA) 83 (1986) 9373-9377.
[4] P. Hall, On representatives of subsets, London Math. Soc. 10 (1935) 26-30.
[5] L.F.Mao, A new view of combinatorial maps by Smarandache's notion, in Selected Papers on Mathematical Combinatorics(I), World Academic Union, 2006, also in arXiv: math.GM/0506232.
[6] L.F.Mao, An introduction to Smarandache multi-spaces and mathematical combinatorics, Scientia Magna, Vol.3, No.1(2007), 54-80.
[7] J.B. Mohar and C. Thomassen, Graphs on Surfaces, The Johns Hopkins University Press, Baltimore and London, 2001.
[8] W. Tutte, How to draw a graph, Proc. London Math. Soc. 13 (1963) 743-768.
[9] W. Tutte, A homotopy theorem for matroids I, II, Trans. AMS 88 (1958) 144-160, 161-174.
[10] C.J.A. Welsh, Matroid Theory, Academic Press, 1976.
[11] A.L. White, Theory of Matroids, Cambridge University Press, 1986.
[12] H. Whitney, On abstract properties of linear dependence, Amer. J. Math. 57 (1953) 509-533.

# The Crossing Number of $K_{1,5, n}$ 

Hanfei Mei<br>(Department of Mathematics, Hunan University of Arts and Science, Changde 415000, P.R.China)<br>E-mail: mhfm@21cn.com<br>Yuanqiu Huang<br>(Department of Mathematics, Hunan Normal University, Changsha 410081, P.R.China)<br>E-mail: hyqq@public.cs.hn.cn


#### Abstract

In this paper, we determine the crossing number of the complete tripartite graph $K_{1,5, n}$ for any integer $n \geq 1$, related with Smarandache 2-manifolds on spheres.


Key Words: Good drawings, complete tripartite graphs, crossing number.
AMS(2000) : O5C10

## §1. Introduction

The crossing number $\operatorname{cr}(G)$ of a graph $G$ is the smallest crossing number among all drawings of $G$ in the plane. It is well known that the crossing number of graph is attained only in good drawings of the graph related with map geometries, i.e., Smarandache 2-manifolds (see [8] for details), which are those drawings where no edges cross itself, no adjacent edges cross each other, no two edges intersect more than once, and no three edges intersect in a common point. Let $\phi$ be a good drawing of the graph $G$, we denote the number of crossings in this drawing of $G$ by $c r_{\phi}(\mathrm{G})$.

The investigation on the crossing number of a graph is a classical and however very difficult problem ( for example, see [3]). Garey and Johnson [4] have proved that the problem to determine the crossing number of a graph is NP-complete. Because of its difficulty, presently we only know the crossing number of some classes of special graphs, for example: the complete graphs with small number of vertices ([15]), the complete bipartite graph of less number of vertices in one bipartite partition ([7],[15]), certain generalized Peterson graphs ([12]), and some Cartesian product graphs of two circuits([2],[11]-[14]), of path and stars ([9]).

The crossing numbers of complete bipartite graphs $K_{m, n}$ were computed by D.J.Kleitman [7], for the case $m \leq 6$. He proved that

$$
\operatorname{cr}\left(K_{m, n}\right)=Z(m, n), \text { if } m \leq 6, \quad \text { where } Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

On the crossing number of the complete tripartite graphs, as far as the authors know, there

[^2]only are the following two results: Kouhei Asano [1] proved that
$$
c r\left(K_{1,3, n}\right)=Z(4, n)+\left\lfloor\frac{n}{2}\right\rfloor, \text { and } \operatorname{cr}\left(K_{2,3, n}\right)=Z(5, n)+n
$$
and Huang [5] recently proves that $\operatorname{cr}\left(K_{1,4, n}\right)=n(n-1)$.
In this paper, using Kleitman's theorem, we determine the crossing number of complete tripartite graph $K_{1,5, n}$ for any integer $n \geq 1$. The main result of this paper is the following theorem.

Theorem 1 (the main result) For any integer $n \geq 1$,

$$
\operatorname{cr}\left(K_{1,5, n}\right)=Z(6, n)+4\left\lfloor\frac{n}{2}\right\rfloor
$$

We now explain some notations. Let $G$ be a graph with vertex set $V$ and edge set $E$. If $A \subseteq E$ (or $A \subseteq V$ ), we use $G\langle A\rangle$ to denote the subgraph of $G$ induced by $A$; if $G$ is known from the context, we simply write $\langle A\rangle$ instead of $G\langle A\rangle$. For two mutually disjoint subsets $X$ and $Y$ of $V$, we use $E_{X Y}$ to denote all the edges of $G$ incident with a vertex in $X$ and a vertex in $Y$. For a vertex $v, E_{v}$ denotes all the edges of $G$ incident with $v$.

Let $A$ and $B$ be two sets of edges of a graph $G$. If $\phi$ is a good drawing of $G$, we denote $c r_{\phi}(A, B)$ by the number of all crossings whose two crossed edges are respectively in $A$ and in $B$. Especially, $\operatorname{cr}_{\phi}(A, A)$ will be denoted by $c r_{\phi}(A)$. If $G$ has the edge set $E$, the two signs $c r_{\phi}(G)$ and $c r_{\phi}(E)$ are essential the same.

The following formulas, which can be shown easily, are usually used in the proofs of our lemmas and theorem.

$$
\begin{align*}
& c r_{\phi}(A \cup B)=c r_{\phi}(A)+c r_{\phi}(B)+c r_{\phi}(A, B)  \tag{1}\\
& c r_{\phi}(A, B \cup C)=c r_{\phi}(A, B)+c r_{\phi}(A, C)
\end{align*}
$$

where $A, B$ and $C$ are mutually disjoint subsets of $E$.
In the next section we shall give some lemmas, and then prove our theorem in the last one.

## §2. Some Lemmas

Lemma 2.1 Let $G$ be a complete bipartite graph $K_{m, n}$ with the edge set $E$ and the vertex bipartition $(Y, Z)$, where $Y=\left\{y_{1}, \cdots, y_{m}\right\}$, and $Z=\left\{z_{1}, \cdots, z_{n}\right\}$. If $\phi$ is any good drawing of $G$, then

$$
(n-2) c r_{\phi}(E)=\sum_{i=1}^{n} c r_{\phi}\left(E \backslash E_{z_{i}}\right)
$$

Proof The conclusion follows from the fact that in the drawing of $K_{m, n}$, there are $n$ drawings of $K_{m, n-1}$, and each crossing occurs in $(n-2)$ of them.

Lemma 2.2 Let $G$ be a complete tripartite graph $K_{s, m, n}$ with the edge set $E$ and the vertex tripartition $(X, Y, Z)$, where $X=\left\{x_{1}, \cdots, x_{s}\right\}, Y=\left\{y_{1}, \cdots, y_{m}\right\}$, and $Z=\left\{z_{1}, \cdots, z_{n}\right\}$. If $\phi$ is any good drawing of $G$, then we have
(i) $\sum_{i=1}^{n} c r_{\phi}\left(E \backslash E_{z_{i}}\right)=(n-2) c r_{\phi}(E)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)+2 c r_{\phi}\left(E_{X Y}\right)$;
(ii) $\sum_{i=1}^{m} c r_{\phi}\left(E \backslash E_{y_{i}}\right)=(m-2) c r_{\phi}(E)+\sum_{i=1}^{m} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)+2 c r_{\phi}\left(E_{X Z}\right)$

Proof We only prove (i), because (ii) is analogous by the symmetry of the vertex tripartition of $G$. Using the formula (1), we have

$$
\begin{align*}
c r_{\phi}(E) & =c r_{\phi}\left(E_{X Y} \cup E_{X Z} \cup E_{Y Z}\right) \\
& =c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right)+c r_{\phi}\left(E_{X Y}, E_{X Z} \cup E_{Y Z}\right) \\
& =c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right) \tag{2}
\end{align*}
$$

Since $\left\langle E_{X Z} \cup E_{Y Z}\right\rangle$ is isomorphic to the complete bipartite graph $K_{s+m, n}$ with the vertex bipartition $(X \cup Y, Z)$, it follows from by Lemma 2.1 that

$$
\begin{equation*}
(n-2) c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right)=\sum_{i=1}^{n} c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right) \tag{3}
\end{equation*}
$$

On the other hand, using the formula (1) again we have

$$
\begin{aligned}
c r_{\phi}\left(E \backslash E_{z_{i}}\right)= & c r_{\phi}\left(\left(E_{X Y} \cup E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right) \\
= & c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E\left(z_{i}\right)\right) \\
& +c r_{\phi}\left(E_{X Y},\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right) \\
= & c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right) \\
& +\sum_{j=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{j}}\right)-c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right),
\end{aligned}
$$

namely, we have
$c r_{\phi}\left(E \backslash E_{z_{i}}\right)=c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right)+\sum_{j=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{j}}\right)-c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)$

Taking sum for $i$ on the two sides of (4) above, we obtain that

$$
\begin{aligned}
\sum_{i=1}^{n} c r_{\phi}\left(E \backslash E_{z_{i}}\right)= & n c r_{\phi}\left(E_{X Y}\right)+\sum_{i=1}^{n} c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right) \\
& +\sum_{i=1}^{n}\left(\sum_{j=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{j}}\right)-c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)\right) \\
= & n c r_{\phi}\left(E_{X Y}\right)+\sum_{i=1}^{n} c r_{\phi}\left(\left(E_{X Z} \cup E_{Y Z}\right) \backslash E_{z_{i}}\right)+(n-1) \sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right) \\
= & n c r_{\phi}\left(E_{X Y}\right)+(n-2) c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right) \\
& +(n-1) \sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right) \quad(\text { by }(3) \text { above }) \\
= & 2 c r_{\phi}\left(E_{X Y}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right) \\
& +(n-2)\left(c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)\right) \\
= & 2 c r_{\phi}\left(E_{X Y}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)+(n-2) c r_{\phi}(E) \quad \text { (by (2) above) }
\end{aligned}
$$

This proves the lemma.
Note that in Lemma 2 above, if $X$ is a set containing a single vertex $x$, then $E_{X Y}$ is the set of edges incident to $x$, and thus $c r_{\phi}\left(E_{X Y}\right)=0$ by any good drawing $\phi$.

Lemma 2.3 Let $G$ be a complete tripartite graph $K_{1,5, n}$ with the edge set $E$ and the vertex tripartition $(X, Y, Z)$, where $X=\{x\}, Y=\left\{y_{1}, \cdots, y_{5}\right\}$, and $Z=\left\{z_{1}, \cdots, z_{n}\right\}$. If $\phi$ is a good drawing of $G$ satisfying that $c r_{\phi}(E)=Z(6, n)+4\left[\frac{n}{2}\right]-a$ for some $a$. Then we have
(1) if $n=2 k$, then $\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) \geq 2 k^{2}-2 k+3 a ;$
(2) if $n=2 k+1$, then $\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) \geq 2 k^{2}-4+3 a$.

Proof Let $e_{i}$ denote the edge $x y_{i}$ for $1 \leq i \leq 5$, and $f_{j}$ denote the edge $x z_{j}$ for $1 \leq j \leq n$. Without loss of generality, assume that under the drawing $\phi$, the reverse clock order of these five edges $e_{i}(1 \leq i \leq 5)$ around $x$ is: $e_{1} \rightarrow e_{2} \rightarrow e_{3} \rightarrow e_{4} \rightarrow e_{5}$. These five edges form five angles: $\alpha_{i}=\angle e_{i} x e_{i+1}$, where $1 \leq i \leq 5$ and the indices are read module 5 . We see that in the plane $R^{2}$, there exists a circle neighbor $N(x, \varepsilon)=\left\{s \in R^{2}:\|s-x\|<\varepsilon\right\}$, where $\varepsilon$ is a sufficiently small positive number, such that for any other edge $e$ of $K_{1,5, n}$ not incident with $x$, $e$ can not be located in $N(x, \varepsilon)$. Since the graph $K_{1,5, n}$ has still $n$ edges $f_{j}$ that are incident to $x(1 \leq j \leq n)$, let $A_{i}$ denote the set of all those edges $f_{j}$, each of which lies in the angle $\alpha_{i}$ (see the Fig. 1 in the next page). Clearly, we have that $\left|A_{1}\right|+\left|A_{2}\right|+\left|A_{3}\right|+\left|A_{4}\right|=n$.

In the following, associated with the drawing $\phi$ of $G$, we shall produce five new graphs $G_{i}$, together with their respective good drawing $\phi_{i}(1 \leq i \leq 5)$, where each $G_{i}$ is isomorphic to the complete bipartite graph $K_{5, n+1}$. We shall heavily illustrate how to obtain the graph $G_{1}$ and its drawing $\phi_{1}$, for the rest cases the method is analogous.


Fig. 1
First, we delete all edges in $E_{y_{1}}$ and the vertex $y_{1}$ from $G$, and then remove the part of $e_{i}$ lying in $N(x, \varepsilon)$ for $2 \leq i \leq 5$ (not remove the vertex $x$ ); add a new vertex $z_{n+1}$ in some location of $e_{4} \cap N(x, \varepsilon)$. Now we connected $z_{n+1}$ to $x$ and $y_{i}(i=2,3,4,5)$ by the following way: connect $z_{n+1}$ to $x$ and $y_{4}$ respectively along the original two sections of $e_{4}$; connect $z_{n+1}$ to $y_{3}$ by first traversing through $\alpha_{3}$ (near to $x$ ) and then along the original section of $e_{3}$ lying out $N(x, \varepsilon)$; connect $z_{n+1}$ to $y_{2}$ by successively traversing through $\alpha_{3}$ and $\alpha_{2}$ (near to $x$ ) and then along the original section of $e_{2}$ lying out $N(x, \varepsilon)$; connect $z_{n+1}$ to $y_{5}$ by first traversing through $\alpha_{4}$ (near to $x$ ) and then along the original section of $e_{5}$ lying out $N(x, \varepsilon)$. Then we obtain the graph $G_{1}$ with its a good drawing $\phi_{1}$. Obviously, $G_{1}$ is isomorphic to $K_{5, n+1}$. The following figure 2 helps us to understand the obtained graph $G_{1}$ and its drawing $\phi_{1}$, where the dotted line denote the way how $z_{n+1}$ is connected to $x$ and $y_{i}(2 \leq i \leq 5)$.


Fig. 2
Then it is not difficult to see that

$$
\begin{equation*}
c r_{\phi_{1}}\left(G_{1}\right)=c r_{\phi}\left(E \backslash E_{y_{1}}\right)+\left|A_{2}\right|+2\left|A_{3}\right|+\left|A_{4}\right| \tag{4}
\end{equation*}
$$

By the symmetry of $y_{i}$, we can analogously easily obtain the graphs $G_{i}$ and its goods drawings $\phi_{i}$ for $2 \leq i \leq 5$. For example, the graph $G_{2}$, together with its good drawing $\phi_{2}$, is displayed in
the following figure 3 .


Fig. 3
Similarly, for $\phi_{2}, \phi_{3}, \phi_{4}$ and $\phi_{5}$, we have respectively the following equalities :

$$
\begin{align*}
& c r_{\phi_{2}}\left(G_{2}\right)=c r_{\phi}\left(E \backslash E_{y_{2}}\right)+\left|A_{3}\right|+2\left|A_{4}\right|+\left|A_{5}\right|  \tag{5}\\
& c r_{\phi_{3}}\left(G_{3}\right)=c r_{\phi}\left(E \backslash E_{y_{3}}\right)+\left|A_{1}\right|+2\left|A_{5}\right|+\left|A_{4}\right|  \tag{6}\\
& c r_{\phi_{4}}\left(G_{4}\right)=c r_{\phi}\left(E \backslash E_{y_{4}}\right)+\left|A_{2}\right|+2\left|A_{1}\right|+\left|A_{5}\right|  \tag{7}\\
& c r_{\phi_{5}}\left(G_{5}\right)=c r_{\phi}\left(E \backslash E_{y_{5}}\right)+\left|A_{1}\right|+2\left|A_{2}\right|+\left|A_{3}\right| \tag{8}
\end{align*}
$$

Since each $G_{i}(1 \leq i \leq 5)$ is isomorphic to the complete graph $K_{5, n+1}$, we get that $c r_{\phi_{i}}\left(G_{i}\right) \geq Z(5, n+1)$. Therefore, by (4)-(8) above, we have

$$
\begin{aligned}
5 Z(5, n+1) & \leq \sum_{i=1}^{5} c r_{\phi_{i}}\left(G_{i}\right) \\
& =\sum_{i=1}^{5} c r_{\phi}\left(E \backslash E_{y_{i}}\right)+4 \sum_{i=1}^{5}\left|A_{i}\right| \\
& =\sum_{i=1}^{5} c r_{\phi}\left(E \backslash E_{y_{i}}\right)+4 n \\
& =3 c r_{\phi}(E)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)+2 c r_{\phi}\left(E_{X Y}\right)+4 n \quad(\text { by Lemma ?? (2) ) } \\
& \left.=3 c r_{\phi}(E)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)+4 n \quad \text { (because } c r_{\phi}\left(E_{X Y}\right)=0\right)
\end{aligned}
$$

So it follows that

$$
\begin{aligned}
\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) & \geq 5 Z(5, n+1)-3 c r_{\phi}(E)-4 n \\
& =5 Z(5, n+1)-3\left(Z(6, n)+4\left[\frac{n}{2}\right]-a\right)-4 n \\
& =\left\{\begin{array}{cc}
2 k^{2}-2 k+3 a, & \text { when } n=2 k \\
2 k^{2}-4+3 a, & \text { when } n=2 k+1
\end{array}\right.
\end{aligned}
$$

This proves the lemma.
Lemma 2.4 Let $G$ be the complete tripartite graph $K_{1,5, n}$ with the edge set $E$ and the vertex tripartition $(X, Y, Z)$, where $X=\{x\}, Y=\left\{y_{1}, \cdots, y_{5}\right\}$, and $Z=\left\{z_{1}, \cdots, z_{n}\right\}$. Assume that $n=2 k+1$, where $k \geq 0$. If $\phi$ is a good drawing of $G$ satisfying that $c_{\phi}\left(E \backslash E_{z_{j}}\right)=$ $Z(6, n-1)+4\left[\frac{n-1}{2}\right]$ for any $1 \leq j \leq n$, then $\operatorname{cr}_{\phi}(E) \neq Z(6, n)+4\left[\frac{n}{2}\right]-1$.

Proof Assume to contrary that $\operatorname{cr}_{\phi}(E)=Z(6, n)+4\left[\frac{n}{2}\right]-1$. By using the formula (2) in the proof of lemma 2.2, we have

$$
Z(6, n)+4\left[\frac{n}{2}\right]-1=c r_{\phi}(E)=c r_{\phi}\left(E_{X Z}\right)+c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)
$$

Since $\left\langle E_{X Y} \cup E_{Y Z}\right\rangle$ is isomorphic to the complete bipartite graph $K_{5, n+1}$, we have that $c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right) \geq Z(5, n+1)$. Noting that $c r_{\phi}\left(E_{X Z}\right)=0$, we thus have

$$
\sum_{i=1}^{5} c r_{\phi}\left(E_{X Y}, E_{y_{i}}\right) \leq Z(6, n)+4\left[\frac{n}{2}\right]-1-Z(5, n+1)=2 k^{2}-1
$$

On the other hand, by our assumption that $c r_{\phi}(E)=Z(6, n)+4\left[\frac{n}{2}\right]-1$, and that $n=2 k+1$, with the help of Lemma 2.3(ii) we have $\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) \geq 2 k^{2}-1$. This implies that

$$
\begin{equation*}
\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)=2 k^{2}-1 \tag{9}
\end{equation*}
$$

Since $\left\langle E \backslash E_{z_{j}}\right\rangle$ is isomorphic to the complete tripartite graph $K_{1, m, n-1}$ with the vertex tripartition ( $X, Y, Z \backslash\left\{z_{j}\right\}$ ), applying the formula (2) in the proof of Lemma 2.2 to the graph $\left\langle E \backslash E_{z_{j}}\right\rangle$, we have

$$
c r_{\phi}\left(E \backslash E_{z_{j}}\right)=c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}\right)+c r_{\phi}\left(E_{X Y} \cup E_{Y\left(Z \backslash\left\{z_{j}\right\}\right)}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)
$$

where $E_{y_{i}}^{\prime}=E_{X\left\{y_{i}\right\}} \cup E_{\left(Z \backslash\left\{z_{j}\right\}\right)\left\{y_{i}\right\}}$.
Since $\left\langle E_{X Y} \cup E_{Y\left(Z \backslash\left\{z_{j}\right\}\right)}\right\rangle$ is isomorphic to the complete bipartite graph $K_{5, n}, c r_{\phi}\left(E_{X Y} \cup\right.$ $\left.E_{Y\left(Z \backslash\left\{z_{j}\right\}\right)}\right) \geq Z(5, n)$. Again, since $E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}$ is the set of edges incident to $x$, we have that
$\operatorname{cr}_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}\right)=0$ by the good drawing $\phi$. Therefore we have

$$
\begin{aligned}
\sum_{i=1}^{5} c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right) & =c r_{\phi}\left(E \backslash E_{z_{j}}\right)-c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}\right)-c r_{\phi}\left(E_{X Y} \cup E_{Y\left(Z \backslash\left\{z_{j}\right\}\right)}\right) \\
& =c r_{\phi}\left(E \backslash E_{z_{j}}\right)-c r_{\phi}\left(E_{X Y} \cup E_{Y\left(Z \backslash\left\{z_{j}\right\}\right)}\right) \\
& \leq Z(6, n-1)+4\left[\frac{n-1}{2}\right]-Z(5, n) \\
& =2 k^{2}-2 k
\end{aligned}
$$

That is to say, we have

$$
\begin{equation*}
\sum_{i=1}^{5} c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right) \leq 2 k^{2}-2 k \tag{10}
\end{equation*}
$$

Because $E_{X\left\{z_{j}\right\}} \cup E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}$ is the set of edges incident to $z_{j}, c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right)=0$ by the good drawing $\phi$. Note that $E_{y_{i}}^{\prime}=E_{y_{i}} \backslash E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}$. Hence, we have

$$
\begin{aligned}
c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)= & c r_{\phi}\left(E_{X Z}, E_{y_{i}}^{\prime}\right)+c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
= & \left(c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)+c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}^{\prime}\right)\right)+c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
= & c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)+c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}} \backslash E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
& +c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
= & c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)+c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}\right)-c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
& +c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right)-c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
= & \left.c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)+c r_{\phi}\left(E_{X\left\{z_{j}\right\}}\right), E_{y_{i}}\right)+c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right)
\end{aligned}
$$

Taking sum for $i$ on two sides of the last equality above, we have

$$
\begin{aligned}
\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)= & \sum_{i=1}^{5} c r_{\phi}\left(E_{X\left(Z \backslash\left\{z_{j}\right\}\right)}, E_{y_{i}}^{\prime}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}\right) \\
& +\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right)
\end{aligned}
$$

Combining with (9) and (10) above, we then obtain that

$$
\begin{equation*}
2 k^{2}-1 \leq 2 k^{2}-2 k+\sum_{i=1}^{5} c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \tag{11}
\end{equation*}
$$

Again, taking sum for $j$ on the two sides of the inequality (11) above, and noticing $n=$ $2 k+1$, we get that

$$
\begin{aligned}
\sum_{j=1}^{n}\left(2 k^{2}-1\right) \leq & \sum_{j=1}^{n}\left(2 k^{2}-2 k\right)+\sum_{j=1}^{n} \sum_{i=1}^{5} c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}\right)+\sum_{j=1}^{n} \sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right) \\
= & (2 k+1)\left(2 k^{2}-2 k\right)+\sum_{i=1}^{5}\left(\sum_{j=1}^{n} c r_{\phi}\left(E_{X\left\{z_{j}\right\}}, E_{y_{i}}\right)\right) \\
& +\sum_{i=1}^{5}\left(\sum_{j=1}^{n} c r_{\phi}\left(E_{X Z}, E_{\left\{z_{j}\right\}\left\{y_{i}\right\}}\right)\right) \\
= & (2 k+1)\left(2 k^{2}-2 k\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{Z\left\{y_{i}\right\}}\right) \\
= & (2 k+1)\left(2 k^{2}-2 k\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) \\
& +\sum_{i=1}^{5}\left(c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)-c r_{\phi}\left(E_{X Z}, E_{X\left\{y_{i}\right\}}\right) \quad \quad\left(\text { because } E_{Z\left\{y_{i}\right\}}=E_{y_{i}} \backslash E_{X\left\{y_{i}\right\}}\right)\right. \\
= & (2 k+1)\left(2 k^{2}-2 k\right)+2 \sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)
\end{aligned}
$$

(This is because $E_{X Z} \cup E_{X\left\{y_{i}\right\}}$ is the set of edges incident to $x$, by the good drawing $\phi, c r_{\phi}\left(E_{X Z}, E_{Z\left\{y_{i}\right\}}\right)=0$ for any $\left.1 \leq i \leq 5\right)$

$$
=(2 k+1)\left(2 k^{2}-2 k\right)+2\left(2 k^{2}-1\right) \quad(\text { by }(9) \text { above })
$$

Therefore, it follows that $(2 k+1)(2 k-1) \leq 2\left(2 k^{2}-1\right)$. This is a contradiction for any real number $k$, and proving the conclusion.

## §3. Proof of Theorem 1

Let the complete tripartite graph $K_{1,5, n}$ having the edge set $E$ and the vertex tripartition $(X, Y, Z)$, where $X=\{x\}, Y=\left\{y_{1}, \cdots, y_{5}\right\}$, and $Z=\left\{z_{1}, \cdots, z_{n}\right\}$. To show that $\operatorname{cr}\left(K_{1,5, n}\right) \leq$ $Z(6, n)+4\left[\frac{n}{2}\right]$, we consider a drawing of $K_{1,5, n}$ as a immersion into $R^{2}$, satisfying the following:
(1) $\phi(x)=(0,1)$;
(2) $\phi\left(y_{i}\right)=\left(0,(-1)^{i} i\right), i=1,2, \phi\left(y_{3}\right)=(\varepsilon,-2), \phi\left(y_{4}\right)=(\varepsilon, 3), \phi\left(y_{5}\right)=(2 \varepsilon, 4)$, where $\varepsilon$ is a sufficiently small positive;
(3) $\phi\left(z_{j}\right)=\left((-1)^{j}\left[\frac{j+1}{2}\right], 0\right)$.

For example, a drawing of $K_{1,5,5}$ on the plane is shown in the Fig.4. It is not difficult to see that $c r_{\phi}(E)=Z(6, n)+4\left[\frac{n}{2}\right]$. This thus shows that $\operatorname{cr}\left(K_{1,5, n}\right) \leq Z(6, n)+4\left[\frac{n}{2}\right]$. In order to prove the theorem, we only need to prove the conclusion that $c r_{\phi}\left(K_{1,5, n}\right) \geq Z(6, n)+4\left[\frac{n}{2}\right]$ for any good drawing $\phi$. Assume to contrary that there is a good drawing $\phi$ of $K_{1,5, n}$ satisfying $c r_{\phi}\left(K_{1,5, n}\right)=Z(6, n)+4\left[\frac{n}{2}\right]-a$, where $a \geq 1$. We now consider the following two cases, according to as $n$ is even or odd.

Claim 1 The desired conclusion is true when $n(=2 k)$ is even.

Subproof By our assumption that $c r_{\phi}\left(K_{1,5, n}\right)=Z(6, n)+4\left[\frac{n}{2}\right]-a$, it then follows from Lemma 2.3(i) that

$$
\sum_{i=1}^{5} c r_{\phi}\left(E_{x z}, E_{y_{i}}\right) \geq 2 k^{2}-2 k+3 a
$$



Fig. 4
Note that $\operatorname{cr}_{\phi}\left(E_{X Z}\right)=0$ by the good drawing $\phi$. Since $\left\langle E_{X Z} \cup E_{Y Z}\right\rangle$ is isomorphic to the complete bipartite graph $K_{5, n+1}$ with the vertex bipartition $(Y, X \cup Z)$, we have that $c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right) \geq Z(5, n+1)$. Using the formulas (2) in the proof of Lemma 2.2, we get that

$$
\begin{aligned}
Z(6, n)+4\left[\frac{n}{2}\right]-a & =c r_{\phi}(E) \\
& =c r_{\phi}\left(E_{X Z}\right)+c r_{\phi}\left(E_{X Y} \cup E_{Y Z}\right)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right) \\
& \geq Z(5, n+1)+\sum_{i=1}^{5}\left(E_{X Z}, E_{y_{i}}\right)
\end{aligned}
$$

Therefore, $\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E\left(y_{i}\right)\right) \leq 2 k^{2}-2 k-a$. So, we get that $2 k^{2}-2 k+3 a \leq 2 k^{2}-2 k-a$, namely, $a \leq 0$. This contradicts to the hypothesis that $a \geq 1$, proving the claim.

Claim 2 The desired conclusion is true when $n(=2 k+1)$ is odd.
Subproof. Since $n$ is odd, by Lemma $2.3(i i)$ we first have

$$
\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E\left(y_{i}\right)\right) \geq 2 k^{2}-4+3 a
$$

Similarly, using the formulas (2) in the proof of Lemma 2.2, we get that

$$
\begin{aligned}
Z(6, n)+4\left[\frac{n}{2}\right]-a & =c r_{\phi}(E) \\
& \geq Z(5, n+1)+\sum_{i=1}^{5} c r_{\phi}\left(E_{X Z}, E_{y_{i}}\right)
\end{aligned}
$$

which follows that $\sum_{i=1}^{5}\left(E_{X Z}, E_{y_{i}}\right) \leq 2 k^{2}-a$. Hence, we get that $2 k^{2}-4+3 a \leq 2 k^{2}-a$, namely $a \leq 1$. Since $a \geq 1$ by our assumption, this implies that $a=1$, and thus it must be that

$$
\begin{equation*}
c r_{\phi}(E)=Z(6, n)+4\left[\frac{n}{2}\right]-1 \tag{12}
\end{equation*}
$$

Again, with the help of the formula (1), we have

$$
\begin{aligned}
c r_{\phi}(E) & =c r_{\phi}\left(E_{X Y} \cup E_{X Z} \cup E_{Y Z}\right) \\
& =c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right)+c r_{\phi}\left(E_{X Y}, E_{X Z} \cup E_{Y Z}\right) \\
& =c r_{\phi}\left(E_{X Y}\right)+c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)
\end{aligned}
$$

Since $\left\langle E_{X Z} \cup E_{Y Z}\right\rangle$ is isomorphic to the complete bipartite graph $K_{6, n}$ with the vertex bipartition $(X \cup Y, Z)$, it has that $c r_{\phi}\left(E_{X Z} \cup E_{Y Z}\right) \geq Z(6, n)$. Noting that $c r_{\phi}\left(E_{X Y}\right)=0$ by the good drawing of $\phi$, we thus have

$$
Z(6, n)+4\left[\frac{n}{2}\right]-1=c r_{\phi}(E) \geq Z(6, n)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right)
$$

which follows that

$$
\begin{equation*}
\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{i}}\right) \leq Z(6, n)+4\left[\frac{n}{2}\right]-1-Z(6, n)=4 k-1 \tag{13}
\end{equation*}
$$

Combining with Lemma 2.2(i), we have

$$
\begin{aligned}
\sum_{i=1}^{n} c r_{\phi}\left(E \backslash E_{z_{i}}\right) & =2 c r_{\phi}\left(E_{X Y}\right)+\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{j}}\right)+(n-2) c r_{\phi}(E) \\
& =\sum_{i=1}^{n} c r_{\phi}\left(E_{X Y}, E_{z_{j}}\right)+(n-2) c r_{\phi}(E) \quad\left(\text { because } c r_{\phi}\left(E_{X Y}\right)=0\right) \\
& \leq 4 k-1+(n-2)\left(Z(6, n)+4\left[\frac{n}{2}\right]-1\right) \quad(\text { by }(12) \text { and }(13) \text { above }) \\
& =n\left(Z(6, n-1)+4\left[\frac{n-1}{2}\right]\right) \quad(\text { because } n=2 k+1)
\end{aligned}
$$

That is to say, we have

$$
\begin{equation*}
\sum_{i=1}^{n} c r_{\phi}\left(E \backslash E_{z_{i}}\right) \leq n\left(Z(6, n-1)+4\left[\frac{n-1}{2}\right]\right) \tag{14}
\end{equation*}
$$

On the other hand, since, for any $1 \leq i \leq n,\left\langle E \backslash E\left(z_{i}\right)\right\rangle$ is isomorphic to the complete tripartite graph $K_{1,5, n-1}$, and since $n-1$ is even, it follows from the truth of Claim 1 that $c r_{\phi}\left(E \backslash E_{z_{i}}\right) \geq Z(6, n-1)+4\left[\frac{n-1}{2}\right]$ for any $1 \leq i \leq n$. Combined with (14) above, it must happen that $\operatorname{cr}_{\phi}\left(E \backslash E_{z_{i}}\right)=Z(6, n-1)+4\left[\frac{n-1}{2}\right]$ for any $1 \leq i \leq n$. This, together with $n$ being odd and (12) above, contradicts Lemma 2.4, proving this claim.

Therefore, the proof of Theorem 1 is finished.

## References

[1] Kouchei Asano, The crossing number of $K_{1,3, n}$ and $k_{2,3, n}$, J.Graph Theory, 10 (1980), 1-8.
[2] A.M.Dean and R.B.Richter, The crossing number of $C_{4} \times C_{4}$, J.Graph Theory, 19 (1995), 125-129.
[3] P.Erdös and R.K.Guy, Crossing number problems, Am.Math.Month, 80 (1973), 52-58.
[4] M.R.Garey and D.S.Johnson, Crossing number is NP-complete, SIAM J.Algebraic.Discrete Methods, 4 (1983), 312-316.
[5] Yuanqiu Huang, The crossing number of $K_{1,4, n}$, Discrete Mathematics(to appear).
[6] Stanislav Jendrol and Marián Klešč, On the graphs whose line graphs have crossing number one, J. Graph Theory, 37 (2001), 181-188.
[7] D.J.Kleitman, The crossing number of $K_{5, n}$, J.Combinatorial Theory, 9 (1970) 315-323.
[8] L.F.Mao, An introduction to Smarandache multi-spaces and mathematical combinatorics, Scientia Magna, Vol.3, No.1(2007), 54-80.
[9] Marián Kles̆c̆, The crossing numbers of products of path ans stars with 4-vertex graphs, $J$. Graph Theory, 18(6) (1994), 605-614.
[10] V.R.Kulli, D.G.Akka and L.W.Beineke, On the line graphs with crossing number 1, J. Graph Theory, 3 (1979), 87-90.
[11] Marián Kles̆č,R.Bruce Richter and Ian Stobert, The crossing number of $C_{5} \times C_{n}$, J. Graph Theory, 22(3) (1996), 239-243.
[12] Dan McQuillan and R.Bruce Richter, On the crossing numbers of certain generalized peterson graphs, Discrete Math., 104 (1992), 311-320.
[13] R.Bruce Richter and Gelasio Salazar, The crossing number of $C_{6} \times C_{n}$, Australasian J.of Combinatorics, 23 (2001), 135-143.
[14] R.B.Richter and C.Thomassen, Intersection of curve systems and the crossing number of $C_{5} \times C_{5}$, Discrete Comp. Geom., 13(1995), 149-159.
[15] D.R.Woodall, Cyclic-order graphs and Zarankiewicz's crossing number conjecture J.Graph Theory, 17(1993), 657-671.

# Pseudo-Manifold Geometries with Applications 

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100080, P.R.China)
E-mail: maolinfan@163.com


#### Abstract

A Smarandache geometry is a geometry which has at least one Smarandachely denied axiom(1969), i.e., an axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways and a Smarandache $n$-manifold is a $n$-manifold that support a Smarandache geometry. Iseri provided a construction for Smarandache 2-manifolds by equilateral triangular disks on a plane and a more general way for Smarandache 2-manifolds on surfaces, called map geometries was presented by the author in [9] - [10] and [12]. However, few observations for cases of $n \geq 3$ are found on the journals. As a kind of Smarandache geometries, a general way for constructing dimensional $n$ pseudo-manifolds are presented for any integer $n \geq 2$ in this paper. Connection and principal fiber bundles are also defined on these manifolds. Following these constructions, nearly all existent geometries, such as those of Euclid geometry, LobachevshyBolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler geometry, ...,etc., are their sub-geometries.


Key Words: Smarandache geometry, Smarandache manifold, pseudo-manifold, pseudomanifold geometry, multi-manifold geometry, connection, curvature, Finsler geometry, Riemann geometry, Weyl geometry and Kähler geometry.
AMS(2000): 51M15, 53B15, 53B40, 57N16

## §1. Introduction

Various geometries are encountered in update mathematics, such as those of Euclid geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler geometry, ..., etc.. As a branch of geometry, each of them has been a kind of spacetimes in physics once and contributes successively to increase human's cognitive ability on the natural world. Motivated by a combinatorial notion for sciences: combining different fields into a unifying field, Smarandache introduced neutrosophy and neutrosophic logic in references [14] [15] and Smarandache geometries in [16].

Definition 1.1([8][16]) An axiom is said to be Smarandachely denied if the axiom behaves in at least two different ways within the same space, i.e., validated and invalided, or only invalided but in multiple distinct ways.

A Smarandache geometry is a geometry which has at least one Smarandachely denied

[^3]axiom(1969).
Definition 1.2 For an integer $n, n \geq 2$, a Smarandache $n$-manifold is a $n$-manifold that support a Smarandache geometry.

Smarandache geometries were applied to construct many world from conservation laws as a mathematical tool([2]). For Smarandache $n$-manifolds, Iseri constructed Smarandache manifolds for $n=2$ by equilateral triangular disks on a plane in [6] and [7] (see also [11] in details). For generalizing Iseri's Smarandache manifolds, map geometries were introduced in [9] - [10] and [12], particularly in [12] convinced us that these map geometries are really Smarandache 2manifolds. Kuciuk and Antholy gave a popular and easily understanding example on an Euclid plane in [8]. Notice that in [13], these multi-metric space were defined, which can be also seen as Smarandache geometries. However, few observations for cases of $n \geq 3$ and their relations with existent manifolds in differential geometry are found on the journals. The main purpose of this paper is to give general ways for constructing dimensional $n$ pseudo-manifolds for any integer $n \geq 2$. Differential structure, connection and principal fiber bundles are also introduced on these manifolds. Following these constructions, nearly all existent geometries, such as those of Euclid geometry, Lobachevshy-Bolyai geometry, Riemann geometry, Weyl geometry, Kähler geometry and Finsler geometry, ...,etc., are their sub-geometries.

Terminology and notations are standard used in this paper. Other terminology and notations not defined here can be found in these references [1], [3] - [5].

For any integer $n, n \geq 1$, an $n$-manifold is a Hausdorff space $M^{n}$, i.e., a space that satisfies the $T_{2}$ separation axiom, such that for $\forall p \in M^{n}$, there is an open neighborhood $U_{p}, p \in U_{p} \subset$ $M^{n}$ and a homeomorphism $\varphi_{p}: U_{p} \rightarrow \mathbf{R}^{n}$ or $\mathbf{C}^{n}$, respectively.

Considering the differentiability of the homeomorphism $\varphi: U \rightarrow \mathbf{R}^{n}$ enables us to get the conception of differential manifolds, introduced in the following.

An differential $n$-manifold $\left(M^{n}, \mathcal{A}\right)$ is an $n$-manifold $M^{n}, M^{n}=\bigcup_{i \in I} U_{i}$, endowed with a $C^{r}$ differential structure $\mathcal{A}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in I\right\}$ on $M^{n}$ for an integer $r$ with following conditions hold.
(1) $\left\{U_{\alpha} ; \alpha \in I\right\}$ is an open covering of $M^{n}$;
(2) For $\forall \alpha, \beta \in I$, atlases $\left(U_{\alpha}, \varphi_{\alpha}\right)$ and $\left(U_{\beta}, \varphi_{\beta}\right)$ are equivalent, i.e., $U_{\alpha} \bigcap U_{\beta}=\emptyset$ or $U_{\alpha} \bigcap U_{\beta} \neq \emptyset$ but the overlap maps

$$
\varphi_{\alpha} \varphi_{\beta}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\beta}\left(U_{\beta}\right) \text { and } \varphi_{\beta} \varphi_{\alpha}^{-1}: \varphi_{\beta}\left(U_{\alpha} \cap U_{\beta}\right) \rightarrow \varphi_{\alpha}\left(U_{\alpha}\right)
$$

are $C^{r}$;
(3) $\mathcal{A}$ is maximal, i.e., if $(U, \varphi)$ is an atlas of $M^{n}$ equivalent with one atlas in $\mathcal{A}$, then $(U, \varphi) \in \mathcal{A}$.

An $n$-manifold is smooth if it is endowed with a $C^{\infty}$ differential structure. It is well-known that a complex manifold $M_{c}^{n}$ is equal to a smooth real manifold $M_{r}^{2 n}$ with a natural base

$$
\left\{\frac{\partial}{\partial x^{i}}, \left.\frac{\partial}{\partial y^{i}} \right\rvert\, 1 \leq i \leq n\right\}
$$

for $T_{p} M_{c}^{n}$, where $T_{p} M_{c}^{n}$ denotes the tangent vector space of $M_{c}^{n}$ at each point $p \in M_{c}^{n}$.

## §2. Pseudo-Manifolds

These Smarandache manifolds are non-homogenous spaces, i.e., there are singular or inflection points in these spaces and hence can be used to characterize warped spaces in physics. A generalization of ideas in map geometries can be applied for constructing dimensional $n$ pseudomanifolds.

Construction 2.1 Let $M^{n}$ be an n-manifold with an atlas $\mathcal{A}=\left\{\left(U_{p}, \varphi_{p}\right) \mid p \in M^{n}\right\}$. For $\forall p \in$ $M^{n}$ with a local coordinates $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$, define a spatially directional mapping $\omega: p \rightarrow \mathbf{R}^{n}$ action on $\varphi_{p}$ by

$$
\omega: p \rightarrow \varphi_{p}^{\omega}(p)=\omega\left(\varphi_{p}(p)\right)=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)
$$

i.e., if a line $L$ passes through $\varphi(p)$ with direction angles $\theta_{1}, \theta_{2}, \cdots, \theta_{n}$ with axes $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}$ in $\mathbf{R}^{n}$, then its direction becomes

$$
\theta_{1}-\frac{\vartheta_{1}}{2}+\sigma_{1}, \theta_{2}-\frac{\vartheta_{2}}{2}+\sigma_{2}, \cdots, \theta_{n}-\frac{\vartheta_{n}}{2}+\sigma_{n}
$$

after passing through $\varphi_{p}(p)$, where for any integer $1 \leq i \leq n, \omega_{i} \equiv \vartheta_{i}(\bmod 4 \pi), \vartheta_{i} \geq 0$ and

$$
\sigma_{i}=\left\{\begin{array}{cc}
\pi, & \text { if } 0 \leq \omega_{i}<2 \pi \\
0, & \text { if } 2 \pi<\omega_{i}<4 \pi
\end{array}\right.
$$

A manifold $M^{n}$ endowed with such a spatially directional mapping $\omega: M^{n} \rightarrow \mathbf{R}^{n}$ is called an $n$-dimensional pseudo-manifold, denoted by $\left(M^{n}, \mathcal{A}^{\omega}\right)$.

Theorem 2.1 For a point $p \in M^{n}$ with local chart $\left(U_{p}, \varphi_{p}\right), \varphi_{p}^{\omega}=\varphi_{p}$ if and only if $\omega(p)=$ $\left(2 \pi k_{1}, 2 \pi k_{2}, \cdots, 2 \pi k_{n}\right)$ with $k_{i} \equiv 1(\bmod 2)$ for $1 \leq i \leq n$.

Proof By definition, for any point $p \in M^{n}$, if $\varphi_{p}^{\omega}(p)=\varphi_{p}(p)$, then $\omega\left(\varphi_{p}(p)\right)=\varphi_{p}(p)$. According to Construction 2.1, this can only happens while $\omega(p)=\left(2 \pi k_{1}, 2 \pi k_{2}, \cdots, 2 \pi k_{n}\right)$ with $k_{i} \equiv 1(\bmod 2)$ for $1 \leq i \leq n$.

Definition 2.1 A spatially directional mapping $\omega: M^{n} \rightarrow \mathbf{R}^{n}$ is euclidean if for any point $p \in$ $M^{n}$ with a local coordinates $\left(x_{1}, x_{2}, \cdots, x_{n}\right), \omega(p)=\left(2 \pi k_{1}, 2 \pi k_{2}, \cdots, 2 \pi k_{n}\right)$ with $k_{i} \equiv 1(\bmod 2)$ for $1 \leq i \leq n$, otherwise, non-euclidean.

Definition 2.2 Let $\omega: M^{n} \rightarrow \mathbf{R}^{n}$ be a spatially directional mapping and $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$, $\omega(p)(\bmod 4 \pi)=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$. Call a point $p$ elliptic, euclidean or hyperbolic in direction $\mathbf{e}_{i}$, $1 \leq i \leq n$ if $o \leq \omega_{i}<2 \pi, \omega_{i}=2 \pi$ or $2 \pi<\omega_{i}<4 \pi$.

Then we get a consequence by Theorem 2.1.

Corollary 2.1 Let $\left(M^{n}, \mathcal{A}^{\omega}\right)$ be a pseudo-manifold. Then $\varphi_{p}^{\omega}=\varphi_{p}$ if and only if every point in $M^{n}$ is euclidean.

Theorem 2.2 Let $\left(M^{n}, \mathcal{A}^{\omega}\right)$ be an $n$-dimensional pseudo-manifold and $p \in M^{n}$. If there are euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic points in a same direction in $\left(U_{p}, \varphi_{p}\right)$, then $\left(M^{n}, \mathcal{A}^{\omega}\right)$ is a Smarandache $n$-manifold.

Proof On the first, we introduce a conception for locally parallel lines in an $n$-manifold. Two lines $C_{1}, C_{2}$ are said locally parallel in a neighborhood $\left(U_{p}, \varphi_{p}\right)$ of a point $p \in M^{n}$ if $\varphi_{p}\left(C_{1}\right)$ and $\varphi_{p}\left(C_{2}\right)$ are parallel straight lines in $\mathbf{R}^{n}$.

In $\left(M^{n}, \mathcal{A}^{\omega}\right)$, the axiom that there are lines pass through a point locally parallel a given line is Smarandachely denied since it behaves in at least two different ways, i.e., one parallel, none parallel, or one parallel, infinite parallels, or none parallel, infinite parallels.

If there are euclidean and non-euclidean points in $\left(U_{p}, \varphi_{p}\right)$ simultaneously, not loss of generality, we assume that $u$ is euclidean but $v$ non-euclidean, $\omega(v)(\bmod 4 \pi)=\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$ and $\omega_{1} \neq 2 \pi$. Now let $L$ be a straight line parallel the axis $\mathbf{e}_{1}$ in $\mathbf{R}^{n}$. There is only one line $C_{u}$ locally parallel to $\varphi_{p}^{-1}(L)$ passing through the point $u$ since there is only one line $\varphi_{p}\left(C_{q}\right)$ parallel to $L$ in $\mathbf{R}^{n}$ by these axioms for Euclid spaces. However, if $0<\omega_{1}<2 \pi$, then there are infinite many lines passing through $u$ locally parallel to $\varphi_{p}^{-1}(L)$ in $\left(U_{p}, \varphi_{p}\right)$ since there are infinite many straight lines parallel $L$ in $\mathbf{R}^{n}$, such as those shown in Fig.2.1(a) in where each straight line passing through the point $\bar{u}=\varphi_{p}(u)$ from the shade field is parallel to $L$.


## Fig. 2.1

But if $2 \pi<\omega_{1}<4 \pi$, then there are no lines locally parallel to $\varphi_{p}^{-1}(L)$ in $\left(U_{p}, \varphi_{p}\right)$ since there are no straight lines passing through the point $\bar{v}=\varphi_{p}(v)$ parallel to $L$ in $\mathbf{R}^{n}$, such as those shown in Fig.2.1(b).


Fig. 2.2
If there are two elliptic points $u, v$ along a direction $\vec{O}$, consider the plane $\mathcal{P}$ determined
by $\omega(u), \omega(v)$ with $\vec{O}$ in $\mathbf{R}^{n}$. Let $L$ be a straight line intersecting with the line $u v$ in $\mathcal{P}$. Then there are infinite lines passing through $u$ locally parallel to $\varphi_{p}(L)$ but none line passing through $v$ locally parallel to $\varphi_{p}^{-1}(L)$ in $\left(U_{p}, \varphi_{p}\right)$ since there are infinite many lines or none lines passing through $\bar{u}=\omega(u)$ or $\bar{v}=\omega(v)$ parallel to $L$ in $\mathbf{R}^{n}$, such as those shown in Fig.2.2.

Similarly, we can also get the conclusion for the case of hyperbolic points. Since there exists a Smarandachely denied axiom in $\left(M^{n}, \mathcal{A}^{\omega}\right)$, it is a Smarandache manifold. This completes the proof.

For an Euclid space $\mathbf{R}^{n}$, the homeomorphism $\varphi_{p}$ is trivial for $\forall p \in \mathbf{R}^{n}$. In this case, we abbreviate $\left(\mathbf{R}^{n}, \mathcal{A}^{\omega}\right)$ to $\left(\mathbf{R}^{n}, \omega\right)$.

Corollary 2.2 For any integer $n \geq 2$, if there are euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic points in a same direction in $\left(\mathbf{R}^{n}, \omega\right)$, then $\left(\mathbf{R}^{n}, \omega\right)$ is an $n$-dimensional Smarandache geometry.

Particularly, Corollary 2.2 partially answers an open problem in [12] for establishing Smarandache geometries in $\mathbf{R}^{3}$.

Corollary 2.3 If there are points $p, q \in \mathbf{R}^{3}$ such that $\omega(p)(\bmod 4 \pi) \neq(2 \pi, 2 \pi, 2 \pi)$ but $\omega(q)(\bmod 4 \pi)=$ $\left(2 \pi k_{1}, 2 \pi k_{2}, 2 \pi k_{3}\right)$, where $k_{i} \equiv 1(\bmod 2), 1 \leq i \leq 3$ or $p, q$ are simultaneously elliptic or hyperbolic in a same direction of $\mathbf{R}^{3}$, then $\left(\mathbf{R}^{3}, \omega\right)$ is a Smarandache space geometry.

Definition 2.3 For any integer $r \geq 1$, a $C^{r}$ differential Smarandache $n$-manifold $\left(M^{n}, \mathcal{A}^{\omega}\right)$ is a Smarandache n-manifold ( $M^{n}, \mathcal{A}^{\omega}$ ) endowed with a differential structure $\mathcal{A}$ and a $C^{r}$ spatially directional mapping $\omega$. A $C^{\infty}$ Smarandache n-manifold $\left(M^{n}, \mathcal{A}^{\omega}\right)$ is also said to be a smooth Smarandache $n$-manifold.

According to Theorem 2.2, we get the next result by definitions.
Theorem 2.3 Let $\left(M^{n}, \mathcal{A}\right)$ be a manifold and $\omega: M^{n} \rightarrow \mathbf{R}^{n}$ a spatially directional mapping action on $\mathcal{A}$. Then $\left(M^{n}, \mathcal{A}^{\omega}\right)$ is a $C^{r}$ differential Smarandache $n$-manifold for an integer $r \geq 1$ if the following conditions hold:
(1) there is a $C^{r}$ differential structure $\mathcal{A}=\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in I\right\}$ on $M^{n}$;
(2) $\omega$ is $C^{r}$;
(3) there are euclidean and non-euclidean points simultaneously or two elliptic or hyperbolic points in a same direction in $\left(U_{p}, \varphi_{p}\right)$ for a point $p \in M^{n}$.

Proof The condition (1) implies that $\left(M^{n}, \mathcal{A}\right)$ is a $C^{r}$ differential $n$-manifold and conditions (2), (3) ensure $\left(M^{n}, \mathcal{A}^{\omega}\right)$ is a differential Smarandache manifold by definitions and Theorem 2.2.

For a smooth differential Smarandache $n$-manifold $\left(M^{n}, \mathcal{A}^{\omega}\right)$, a function $f: M^{n} \rightarrow \mathbf{R}$ is said smooth if for $\forall p \in M^{n}$ with an chart ( $U_{p}, \varphi_{p}$ ),

$$
f \circ\left(\varphi_{p}^{\omega}\right)^{-1}:\left(\varphi_{p}^{\omega}\right)\left(U_{p}\right) \rightarrow \mathbf{R}^{n}
$$

is smooth. Denote by $\Im_{p}$ all these $C^{\infty}$ functions at a point $p \in M^{n}$.

Definition 2.4 Let $\left(M^{n}, \mathcal{A}^{\omega}\right)$ be a smooth differential Smarandache $n$-manifold and $p \in M^{n}$. A tangent vector $v$ at $p$ is a mapping $v: \Im_{p} \rightarrow \mathbf{R}$ with these following conditions hold.
(1) $\forall g, h \in \Im_{p}, \forall \lambda \in \mathbf{R}, v(h+\lambda h)=v(g)+\lambda v(h)$;
(2) $\forall g, h \in \Im_{p}, v(g h)=v(g) h(p)+g(p) v(h)$.

Denote all tangent vectors at a point $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$ by $T_{p} M^{n}$ and define addition+and scalar multiplication for $\forall u, v \in T_{p} M^{n}, \lambda \in \mathbf{R}$ and $f \in \Im_{p}$ by

$$
(u+v)(f)=u(f)+v(f), \quad(\lambda u)(f)=\lambda \cdot u(f)
$$

Then it can be shown immediately that $T_{p} M^{n}$ is a vector space under these two operations+and.
Let $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$ and $\gamma:(-\varepsilon, \varepsilon) \rightarrow \mathbf{R}^{n}$ be a smooth curve in $\mathbf{R}^{n}$ with $\gamma(0)=p$. In $\left(M^{n}, \mathcal{A}^{\omega}\right)$, there are four possible cases for tangent lines on $\gamma$ at the point $p$, such as those shown in Fig.2.3, in where these bold lines represent tangent lines.

(a)

(b)

(c)

(d)

Fig. 2.3
By these positions of tangent lines at a point $p$ on $\gamma$, we conclude that there is one tangent line at a point $p$ on a smooth curve if and only if $p$ is euclidean in $\left(M^{n}, \mathcal{A}^{\omega}\right)$. This result enables us to get the dimensional number of a tangent vector space $T_{p} M^{n}$ at a point $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$.

Theorem 2.4 For any point $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$ with a local chart $\left(U_{p}, \varphi_{p}\right), \varphi_{p}(p)=\left(x_{1}^{\prime} x_{2}^{0}, \cdots, x_{n}^{0}\right)$, if there are just $s$ euclidean directions along $\mathbf{e}_{i_{1}}, \mathbf{e}_{i_{2}}, \cdots, \mathbf{e}_{i_{s}}$ for a point, then the dimension of $T_{p} M^{n}$ is

$$
\operatorname{dim} T_{p} M^{n}=2 n-s
$$

with a basis

$$
\left\{\left.\left.\frac{\partial}{\partial x^{i_{j}}}\right|_{p} \right\rvert\, 1 \leq j \leq s\right\} \bigcup\left\{\left.\frac{\partial^{-}}{\partial x^{l}}\right|_{p}, \left.\left.\frac{\partial^{+}}{\partial x^{l}}\right|_{p} \right\rvert\, 1 \leq l \leq n \text { and } l \neq i_{j}, 1 \leq j \leq s\right\}
$$

Proof We only need to prove that

$$
\begin{equation*}
\left\{\left.\left.\frac{\partial}{\partial x^{i_{j}}}\right|_{p} \right\rvert\, 1 \leq j \leq s\right\} \bigcup\left\{\frac{\partial^{-}}{\partial x^{l}}, \left.\left.\frac{\partial^{+}}{\partial x^{l}}\right|_{p} \right\rvert\, 1 \leq l \leq n \text { and } l \neq i_{j}, 1 \leq j \leq s\right\} \tag{2.1}
\end{equation*}
$$

is a basis of $T_{p} M^{n}$. For $\forall f \in \Im_{p}$, since $f$ is smooth, we know that

$$
\begin{aligned}
f(x) & =f(p)+\sum_{i=1}^{n}\left(x_{i}-x_{i}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}}(p) \\
& +\sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}} \frac{\partial^{\epsilon_{j}} f}{\partial x_{j}}+R_{i, j, \cdots, k}
\end{aligned}
$$

for $\forall x=\left(x_{1}, x_{2}, \cdots, x_{n}\right) \in \varphi_{p}\left(U_{p}\right)$ by the Taylor formula in $\mathbf{R}^{n}$, where each term in $R_{i, j, \cdots, k}$ contains $\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \cdots\left(x_{k}-x_{k}^{0}\right), \epsilon_{l} \in\{+,-\}$ for $1 \leq l \leq n$ but $l \neq i_{j}$ for $1 \leq j \leq s$ and $\epsilon_{l}$ should be deleted for $l=i_{j}, 1 \leq j \leq s$.

Now let $v \in T_{p} M^{n}$. By Definition 2.4(1), we get that

$$
\begin{aligned}
v(f(x)) & =v(f(p))+v\left(\sum_{i=1}^{n}\left(x_{i}-x_{i}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}}(p)\right) \\
& +v\left(\sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}} \frac{\partial^{\epsilon_{j}} f}{\partial x_{j}}\right)+v\left(R_{i, j, \cdots, k}\right)
\end{aligned}
$$

Application of the condition (2) in Definition 2.4 shows that

$$
\begin{gathered}
v(f(p))=0, \quad \sum_{i=1}^{n} v\left(x_{i}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}}(p)=0 \\
v\left(\sum_{i, j=1}^{n}\left(x_{i}-x_{i}^{0}\right)\left(x_{j}-x_{j}^{0}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}} \frac{\partial^{\epsilon_{j}} f}{\partial x_{j}}\right)=0
\end{gathered}
$$

and

$$
v\left(R_{i, j, \cdots, k}\right)=0
$$

Whence, we get that

$$
\begin{equation*}
v(f(x))=\sum_{i=1}^{n} v\left(x_{i}\right) \frac{\partial^{\epsilon_{i}} f}{\partial x_{i}}(p)=\left.\sum_{i=1}^{n} v\left(x_{i}\right) \frac{\partial^{\epsilon_{i}}}{\partial x_{i}}\right|_{p}(f) . \tag{2.2}
\end{equation*}
$$

The formula (2.2) shows that any tangent vector $v$ in $T_{p} M^{n}$ can be spanned by elements in (2.1).

All elements in (2.1) are linearly independent. Otherwise, if there are numbers $a^{1}, a^{2}, \cdots, a^{s}$, $a_{1}^{+}, a_{1}^{-}, a_{2}^{+}, a_{2}^{-}, \cdots, a_{n-s}^{+}, a_{n-s}^{-}$such that

$$
\sum_{j=1}^{s} a_{i_{j}} \frac{\partial}{\partial x_{i_{j}}}+\left.\sum_{i \neq i_{1}, i_{2}, \cdots, i_{s}, 1 \leq i \leq n} a_{i}^{\epsilon_{i}} \frac{\partial^{\epsilon_{i}}}{\partial x_{i}}\right|_{p}=0
$$

where $\epsilon_{i} \in\{+,-\}$, then we get that

$$
a_{i_{j}}=\left(\sum_{j=1}^{s} a_{i_{j}} \frac{\partial}{\partial x_{i_{j}}}+\sum_{i \neq i_{1}, i_{2}, \cdots, i_{s}, 1 \leq i \leq n} a_{i}^{\epsilon_{i}} \frac{\partial^{\epsilon_{i}}}{\partial x_{i}}\right)\left(x_{i_{j}}\right)=0
$$

for $1 \leq j \leq s$ and

$$
a_{i}^{\epsilon_{i}}=\left(\sum_{j=1}^{s} a_{i_{j}} \frac{\partial}{\partial x_{i_{j}}}+\sum_{i \neq i_{1}, i_{2}, \cdots, i_{s}, 1 \leq i \leq n} a_{i}^{\epsilon_{i}} \frac{\partial^{\epsilon_{i}}}{\partial x_{i}}\right)\left(x_{i}\right)=0
$$

for $i \neq i_{1}, i_{2}, \cdots, i_{s}, 1 \leq i \leq n$. Therefore, (2.1) is a basis of the tangent vector space $T_{p} M^{n}$ at the point $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$.

Notice that $\operatorname{dim} T_{p} M^{n}=n$ in Theorem 2.4 if and only if all these directions are euclidean along $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}$. We get a consequence by Theorem 2.4.

Corollary 2.4([4]-[5]) Let $\left(M^{n}, \mathcal{A}\right)$ be a smooth manifold and $p \in M^{n}$. Then

$$
\operatorname{dim} T_{p} M^{n}=n
$$

with a basis

$$
\left\{\left.\left.\frac{\partial}{\partial x^{i}}\right|_{p} \right\rvert\, 1 \leq i \leq n\right\}
$$

Definition 2.5 For $\forall p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$, the dual space $T_{p}^{*} M^{n}$ is called a co-tangent vector space at $p$.

Definition 2.6 For $f \in \Im_{p}, d \in T_{p}^{*} M^{n}$ and $v \in T_{p} M^{n}$, the action of d on $f$, called a differential operator $d: \Im_{p} \rightarrow \mathbf{R}$, is defined by

$$
d f=v(f)
$$

Then we immediately get the following result.

Theorem 2.5 For any point $p \in\left(M^{n}, \mathcal{A}^{\omega}\right)$ with a local chart $\left(U_{p}, \varphi_{p}\right), \varphi_{p}(p)=\left(x_{1}^{\prime} x_{2}^{0}, \cdots, x_{n}^{0}\right)$, if there are just $s$ euclidean directions along $\mathbf{e}_{i_{1}}, \mathbf{e}_{i_{2}}, \cdots, \mathbf{e}_{i_{s}}$ for a point, then the dimension of $T_{p}^{*} M^{n}$ is

$$
\operatorname{dim} T_{p}^{*} M^{n}=2 n-s
$$

with a basis

$$
\left\{\left.d x^{i_{j}}\right|_{p} \mid 1 \leq j \leq s\right\} \bigcup\left\{d^{-} x_{p}^{l},\left.d^{+} x^{l}\right|_{p} \mid 1 \leq l \leq n \text { and } l \neq i_{j}, 1 \leq j \leq s\right\}
$$

where

$$
\left.d x^{i}\right|_{p}\left(\left.\frac{\partial}{\partial x^{j}}\right|_{p}\right)=\delta_{j}^{i} \text { and }\left.d^{\epsilon_{i}} x^{i}\right|_{p}\left(\left.\frac{\partial^{\epsilon_{i}}}{\partial x^{j}}\right|_{p}\right)=\delta_{j}^{i}
$$

for $\epsilon_{i} \in\{+,-\}, 1 \leq i \leq n$.

## §3. Pseudo-Manifold Geometries

Here we introduce Minkowski norms on these pseudo-manifolds $\left(M^{n}, \mathcal{A}^{\omega}\right)$.

Definition 3.1 A Minkowski norm on a vector space $V$ is a function $F: V \rightarrow \mathbf{R}$ such that
(1) $F$ is smooth on $V \backslash\{0\}$ and $F(v) \geq 0$ for $\forall v \in V$;
(2) $F$ is 1-homogenous, i.e., $F(\lambda v)=\lambda F(v)$ for $\forall \lambda>0$;
(3) for all $y \in V \backslash\{0\}$, the symmetric bilinear form $g_{y}: V \times V \rightarrow \mathbf{R}$ with

$$
g_{y}(u, v)=\sum_{i, j} \frac{\partial^{2} F(y)}{\partial y^{i} \partial y^{j}}
$$

is positive definite for $u, v \in V$.
Denote by $T M^{n}=\bigcup_{p \in\left(M^{n}, \mathcal{A}^{\omega}\right)} T_{p} M^{n}$.
Definition 3.2 A pseudo-manifold geometry is a pseudo-manifold $\left(M^{n}, \mathcal{A}^{\omega}\right)$ endowed with a Minkowski norm $F$ on $T M^{n}$.

Then we get the following result.
Theorem 3.1 There are pseudo-manifold geometries.
Proof Consider an eucildean $2 n$-dimensional space $\mathbf{R}^{2 n}$. Then there exists a Minkowski norm $F(\bar{x})=|\bar{x}|$ at least. According to Theorem $2.4, T_{p} M^{n}$ is $\mathbf{R}^{s+2(n-s)}$ if $\omega(p)$ has $s$ euclidean directions along $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}$. Whence there are Minkowski norms on each chart of a point in $\left(M^{n}, \mathcal{A}^{\omega}\right)$.

Since $\left(M^{n}, \mathcal{A}\right)$ has finite cover $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right) \mid \alpha \in I\right\}$, where $I$ is a finite index set, by the decomposition theorem for unit, we know that there are smooth functions $h_{\alpha}, \alpha \in I$ such that

$$
\sum_{\alpha \in I} h_{\alpha}=1 \text { with } 0 \leq h_{\alpha} \leq 1
$$

Choose a Minkowski norm $F^{\alpha}$ on each chart $\left(U_{\alpha}, \varphi_{\alpha}\right)$. Define

$$
F_{\alpha}=\left\{\begin{array}{ccc}
h^{\alpha} F^{\alpha}, & \text { if } \quad p \in U_{\alpha} \\
0, & \text { if } \quad p \notin U_{\alpha}
\end{array}\right.
$$

for $\forall p \in\left(M^{n}, \varphi^{\omega}\right)$. Now let

$$
F=\sum_{\alpha \in I} F_{\alpha}
$$

Then $F$ is a Minkowski norm on $T M^{n}$ since it satisfies all of these conditions (1) - (3) in Definition 3.1.

Although the dimension of each tangent vector space maybe different, we can also introduce principal fiber bundles and connections on pseudo-manifolds.

Definition 3.3 A principal fiber bundle (PFB) consists of a pseudo-manifold $\left(P, \mathcal{A}_{1}^{\omega}\right)$, a projection $\pi:\left(P, \mathcal{A}_{1}^{\omega}\right) \rightarrow\left(M, \mathcal{A}_{0}^{\pi(\omega)}\right)$, a base pseudo-manifold $\left(M, \mathcal{A}_{0}^{\pi(\omega)}\right)$ and a Lie group $G$, denoted by ( $P, M, \omega^{\pi}, G$ ) such that (1), (2) and (3) following hold.
(1) There is a right freely action of $G$ on $\left(P, \mathcal{A}_{1}^{\omega}\right)$, i.e., for $\forall g \in G$, there is a diffeomorphism $R_{g}:\left(P, \mathcal{A}_{1}^{\omega}\right) \rightarrow\left(P, \mathcal{A}_{1}^{\omega}\right)$ with $R_{g}\left(p^{\omega}\right)=p^{\omega} g$ for $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$ such that $p^{\omega}\left(g_{1} g_{2}\right)=\left(p^{\omega} g_{1}\right) g_{2}$ for $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right), \forall g_{1}, g_{2} \in G$ and $p^{\omega} e=p^{\omega}$ for some $p \in\left(P^{n}, \mathcal{A}_{1}^{\omega}\right), e \in G$ if and only if $e$ is the identity element of $G$.
(2) The map $\pi:\left(P, \mathcal{A}_{1}^{\omega}\right) \rightarrow\left(M, \mathcal{A}_{0}^{\pi(\omega)}\right)$ is onto with $\pi^{-1}(\pi(p))=\{p g \mid g \in G\}, \pi \omega_{1}=\omega_{0} \pi$, and regular on spatial directions of $p$, i.e., if the spatial directions of $p$ are $\left(\omega_{1}, \omega_{2}, \cdots, \omega_{n}\right)$, then $\omega_{i}$ and $\pi\left(\omega_{i}\right)$ are both elliptic, or euclidean, or hyperbolic and $\left|\pi^{-1}\left(\pi\left(\omega_{i}\right)\right)\right|$ is a constant number independent of $p$ for any integer $i, 1 \leq i \leq n$.
(3) For $\forall x \in\left(M, \mathcal{A}_{0}^{\pi(\omega)}\right)$ there is an open set $U$ with $x \in U$ and a diffeomorphism $T_{u}^{\pi(\omega)}$ : $(\pi)^{-1}\left(U^{\pi(\omega)}\right) \rightarrow U^{\pi(\omega)} \times G$ of the form $T_{u}(p)=\left(\pi\left(p^{\omega}\right), s_{u}\left(p^{\omega}\right)\right)$, where $s_{u}: \pi^{-1}\left(U^{\pi(\omega)}\right) \rightarrow G$ has the property $s_{u}\left(p^{\omega} g\right)=s_{u}\left(p^{\omega}\right) g$ for $\forall g \in G, p \in \pi^{-1}(U)$.

We know the following result for principal fiber bundles of pseudo-manifolds.

Theorem 3.2 Let $\left(P, M, \omega^{\pi}, G\right)$ be a PFB. Then

$$
\left(P, M, \omega^{\pi}, G\right)=(P, M, \pi, G)
$$

if and only if all points in pseudo-manifolds $\left(P, \mathcal{A}_{1}^{\omega}\right)$ are euclidean.
Proof For $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$, let $\left(U_{p}, \varphi_{p}\right)$ be a chart at $p$. Notice that $\omega^{\pi}=\pi$ if and only if $\varphi_{p}^{\omega}=\varphi_{p}$ for $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$. According to Theorem 2.1, by definition this is equivalent to that all points in $\left(P, \mathcal{A}_{1}^{\omega}\right)$ are euclidean.

Definition 3.4 Let $\left(P, M, \omega^{\pi}, G\right)$ be a PFB with $\operatorname{dim} G=r$. A subspace family $H=\left\{H_{p} \mid p \in\right.$ $\left.\left(P, \mathcal{A}_{1}^{\omega}\right), \operatorname{dim} H_{p}=\operatorname{dim} T_{\pi(p)} M\right\}$ of $T P$ is called a connection if conditions (1) and (2) following hold.
(1) For $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$, there is a decomposition

$$
T_{p} P=H_{p} \bigoplus V_{p}
$$

and the restriction $\left.\pi_{*}\right|_{H_{p}}: H_{p} \rightarrow T_{\pi(p)} M$ is a linear isomorphism.
(2) $H$ is invariant under the right action of $G$, i.e., for $p \in\left(P, \mathcal{A}_{1}^{\omega}\right), \forall g \in G$,

$$
\left(R_{g}\right)_{* p}\left(H_{p}\right)=H_{p g} .
$$

Similar to Theorem 3.2, the conception of connection introduced in Definition 3.4 is more general than the popular connection on principal fiber bundles.

Theorem 3.3(dimensional formula) Let $\left(P, M, \omega^{\pi}, G\right)$ be a $P F B$ with a connection $H$. For $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$, if the number of euclidean directions of $p$ is $\lambda_{P}(p)$, then

$$
\operatorname{dim} V_{p}=\frac{(\operatorname{dim} P-\operatorname{dim} M)\left(2 \operatorname{dim} P-\lambda_{P}(p)\right)}{\operatorname{dim} P}
$$

Proof Assume these euclidean directions of the point $p$ being $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{\lambda_{P}(p)}$. By definition $\pi$ is regular, we know that $\pi\left(\mathbf{e}_{1}\right), \pi\left(\mathbf{e}_{2}\right), \cdots, \pi\left(\mathbf{e}_{\lambda_{P}(p)}\right)$ are also euclidean in $\left(M, \mathcal{A}_{1}^{\pi(\omega)}\right)$. Now since

$$
\pi^{-1}\left(\pi\left(\mathbf{e}_{1}\right)\right)=\pi^{-1}\left(\pi\left(\mathbf{e}_{2}\right)\right)=\cdots=\pi^{-1}\left(\pi\left(\mathbf{e}_{\lambda_{P}(p)}\right)\right)=\mu=\text { constant }
$$

we get that $\lambda_{P}(p)=\mu \lambda_{M}$, where $\lambda_{M}$ denotes the correspondent euclidean directions in $\left(M, \mathcal{A}_{1}^{\pi(\omega)}\right)$. Similarly, consider all directions of the point $p$, we also get that $\operatorname{dim} P=\mu \operatorname{dim} M$. Thereafter

$$
\begin{equation*}
\lambda_{M}=\frac{\operatorname{dim} M}{\operatorname{dim} P} \lambda_{P}(p) \tag{3.1}
\end{equation*}
$$

Now by Definition 3.4, $T_{p} P=H_{p} \bigoplus V_{p}$, i.e.,

$$
\begin{equation*}
\operatorname{dim} T_{p} P=\operatorname{dim} H_{p}+\operatorname{dim} V_{p} \tag{3.2}
\end{equation*}
$$

Since $\left.\pi_{*}\right|_{H_{p}}: H_{p} \rightarrow T_{\pi(p)} M$ is a linear isomorphism, we know that $\operatorname{dim} H_{p}=\operatorname{dim} T_{\pi(p)} M$. According to Theorem 2.4, we have formulae

$$
\operatorname{dim} T_{p} P=2 \operatorname{dim} P-\lambda_{P}(p)
$$

and

$$
\operatorname{dim} T_{\pi(p)} M=2 \operatorname{dim} M-\lambda_{M}=2 \operatorname{dim} M-\frac{\operatorname{dim} M}{\operatorname{dim} P} \lambda_{P}(p)
$$

Now replacing all these formulae into (3.2), we get that

$$
2 \operatorname{dim} P-\lambda_{P}(p)=2 \operatorname{dim} M-\frac{\operatorname{dim} M}{\operatorname{dim} P} \lambda_{P}(p)+\operatorname{dim} V_{p}
$$

That is,

$$
\operatorname{dim} V_{p}=\frac{(\operatorname{dim} P-\operatorname{dim} M)\left(2 \operatorname{dim} P-\lambda_{P}(p)\right)}{\operatorname{dim} P}
$$

We immediately get the following consequence by Theorem 3.3.

Corollary 3.1 Let $\left(P, M, \omega^{\pi}, G\right)$ be a PFB with a connection $H$. Then for $\forall p \in\left(P, \mathcal{A}_{1}^{\omega}\right)$,

$$
\operatorname{dim} V_{p}=\operatorname{dim} P-\operatorname{dim} M
$$

if and only if the point $p$ is euclidean.
Now we consider conclusions included in Smarandache geometries, particularly in pseudomanifold geometries.

Theorem 3.4 A pseudo-manifold geometry $\left(M^{n}, \varphi^{\omega}\right)$ with a Minkowski norm on $T M^{n}$ is a Finsler geometry if and only if all points of $\left(M^{n}, \varphi^{\omega}\right)$ are euclidean.

Proof According to Theorem 2.1, $\varphi_{p}^{\omega}=\varphi_{p}$ for $\forall p \in\left(M^{n}, \varphi^{\omega}\right)$ if and only if $p$ is eucildean. Whence, by definition $\left(M^{n}, \varphi^{\omega}\right)$ is a Finsler geometry if and only if all points of $\left(M^{n}, \varphi^{\omega}\right)$ are euclidean.

Corollary 3.1 There are inclusions among Smarandache geometries, Finsler geometry, Riemann geometry and Weyl geometry following

$$
\begin{aligned}
\{\text { Smarandache geometries }\} & \supset\{\text { pseudo }- \text { manifold geometries }\} \\
& \supset\{\text { Finsler geometry }\} \supset\{\text { Riemann geometry }\} \\
& \supset\{\text { Weyl geometry }\} .
\end{aligned}
$$

Proof The first and second inclusions are implied in Theorems 2.1 and 3.3. Other inclusions are known in a textbook, such as [4] - [5].

Now we consider complex manifolds. Let $z^{i}=x^{i}+\sqrt{-1} y^{i}$. In fact, any complex manifold $M_{c}^{n}$ is equal to a smooth real manifold $M^{2 n}$ with a natural base $\left\{\frac{\partial}{\partial x^{i}}, \frac{\partial}{\partial y^{i}}\right\}$ for $T_{p} M_{c}^{n}$ at each point $p \in M_{c}^{n}$. Define a Hermite manifold $M_{c}^{n}$ to be a manifold $M_{c}^{n}$ endowed with a Hermite inner product $h(p)$ on the tangent space $\left(T_{p} M_{c}^{n}, J\right)$ for $\forall p \in M_{c}^{n}$, where $J$ is a mapping defined by

$$
J\left(\left.\frac{\partial}{\partial x^{i}}\right|_{p}\right)=\left.\frac{\partial}{\partial y^{i}}\right|_{p}, \quad J\left(\left.\frac{\partial}{\partial y^{i}}\right|_{p}\right)=-\left.\frac{\partial}{\partial x^{i}}\right|_{p}
$$

at each point $p \in M_{c}^{n}$ for any integer $i, 1 \leq i \leq n$. Now let

$$
h(p)=g(p)+\sqrt{-1} \kappa(p), \quad p \in M_{c}^{m}
$$

Then a Kähler manifold is defined to be a Hermite manifold ( $M_{c}^{n}, h$ ) with a closed $\kappa$ satisfying

$$
\kappa(X, Y)=g(X, J Y), \forall X, Y \in T_{p} M_{c}^{n}, \forall p \in M_{c}^{n} .
$$

Similar to Theorem 3.3 for real manifolds, we know the next result.

Theorem 3.5 A pseudo-manifold geometry $\left(M_{c}^{n}, \varphi^{\omega}\right)$ with a Minkowski norm on $T M^{n}$ is a Kähler geometry if and only if $F$ is a Hermite inner product on $M_{c}^{n}$ with all points of $\left(M^{n}, \varphi^{\omega}\right)$ being euclidean.

Proof Notice that a complex manifold $M_{c}^{n}$ is equal to a real manifold $M^{2 n}$. Similar to the proof of Theorem 3.3, we get the claim.

As a immediately consequence, we get the following inclusions in Smarandache geometries.

Corollary 3.2 There are inclusions among Smarandache geometries, pseudo-manifold geometry and Kähler geometry following
$\{$ Smarandache geometries $\} \supset\{$ pseudo-manifold geometries $\}$
$\supset$ \{Kähler geometry $\}$.

## §4. Further Discussions

Undoubtedly, there are many and many open problems and research trends in pseudo-manifold geometries. Further research these new trends and solving these open problems will enrich one's knowledge in sciences.

Firstly, we need to get these counterpart in pseudo-manifold geometries for some important results in Finsler geometry or Riemann geometry.
4.1. Stokes Theorem $\operatorname{Let}\left(M^{n}, \mathcal{A}\right)$ be a smoothly oriented manifold with the $T_{2}$ axiom hold. Then for $\forall \varpi \in A_{0}^{n-1}\left(M^{n}\right)$,

$$
\int_{M^{n}} d \varpi=\int_{\partial M^{n}} \varpi
$$

This is the well-known Stokes formula in Riemann geometry. If we replace $\left(M^{n}, \mathcal{A}\right)$ by $\left(M^{n}, \mathcal{A}^{\omega}\right)$, what will happens? Answer this question needs to solve problems following.
(1) Establish an integral theory on pseudo-manifolds.
(2) Find conditions such that the Stokes formula hold for pseudo-manifolds.
4.2. Gauss-Bonnet Theorem Let $S$ be an orientable compact surface. Then

$$
\iint_{S} K d \sigma=2 \pi \chi(S)
$$

where $K$ and $\chi(S)$ are the Gauss curvature and Euler characteristic of $S$ This formula is the well-known Gauss-Bonnet formula in differential geometry on surfaces. Then what is its counterpart in pseudo-manifold geometries? This need us to solve problems following.
(1) Find a suitable definition for curvatures in pseudo-manifold geometries.
(2) Find generalizations of the Gauss-Bonnect formula for pseudo-manifold geometries, particularly, for pseudo-surfaces.

For a oriently compact Riemann manifold $\left(M^{2 p}, g\right)$, let

$$
\Omega=\frac{(-1)^{p}}{2^{2 p} \pi^{p} p!} \sum_{i_{1}, i_{2}, \cdots, i_{2 p}} \delta_{1, \cdots, 2 p}^{i_{1}, \cdots, i_{2 p}} \Omega_{i_{1} i_{2}} \wedge \cdots \wedge \Omega_{i_{2 p-1} i_{2 p}}
$$

where $\Omega_{i j}$ is the curvature form under the natural chart $\left\{e_{i}\right\}$ of $M^{2 p}$ and

$$
\delta_{1, \cdots, 2 p}^{i_{1}, \cdots, i_{2 p}}=\left\{\begin{array}{cc}
1, & \text { if permutation } i_{1} \cdots i_{2 p} \text { is even } \\
-1, & \text { if permutation } i_{1} \cdots i_{2 p} \text { is odd } \\
0, & \text { otherwise }
\end{array}\right.
$$

Chern proved that ${ }^{[4]-[5]}$

$$
\int_{M^{2 p}} \Omega=\chi\left(M^{2 p}\right)
$$

Certainly, these new kind of global formulae for pseudo-manifold geometries are valuable to find.
4.3. Gauge Fields Physicists have established a gauge theory on principal fiber bundles of Riemannian manifolds, which can be used to unite gauge fields with gravitation. Similar consideration for pseudo-manifold geometries will induce new gauge theory, which enables us to asking problems following.

Establish a gauge theory on those of pseudo-manifold geometries with some additional conditions.
(1) Find these conditions such that we can establish a gauge theory on a pseudo-manifold geometry.
(2) Find the Yang-Mills equation in a gauge theory on a pseudo-manifold geometry.
(2) Unify these gauge fields and gravitation.

## References

[1] R.Abraham, J.E.Marsden and T.Ratiu, Manifolds, tensor analysis, and applications, AddisonWesley Publishing Company, Inc. 1983.
[2] G.Bassini and S.Capozziello, Multi-Spaces and many worlds from conservation laws, Progress in Physics, Vol.4(2006), 65-72.
[3] D.Bleecker, Gauge theory and variational principles, Addison-Wesley Publishing Company, Inc. 1981.
[4] S.S.Chern and W.H.Chern, Lectures in Differential Geometry(in Chinese), Peking University Press, 2001.
[5] W.H.Chern and X.X.Li, Introduction to Riemannian Geometry, Peking University Press, 2002.
[6] H.Iseri, Smarandache manifolds, American Research Press, Rehoboth, NM,2002.
[7] H.Iseri, Partially Paradoxist Smarandache Geometries, http://www.gallup.unm. edu/s̃mar-andache/Howard-Iseri-paper.htm.
[8] L.Kuciuk and M.Antholy, An Introduction to Smarandache Geometries, Mathematics Magazine, Aurora, Canada, Vol.12(2003).
[9] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73.
[10] L.F.Mao, A new view of combinatorial maps by Smarandache's notion, in Selected Papers on Mathematical Combinatorics(I), World Academic Union, 2006, also in arXiv: math.GM/0506232.
[11] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[12] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ2006.
[13] L.F.Mao, On multi-metric spaces, Scientia Magna, Vol.2, No.1(2006), 87-94.
[14] F.Smarandache, A Unifying Field in Logics. Neutrosopy: Neturosophic Probability, Set, and Logic, American research Press, Rehoboth, 1999.
[15] F.Smarandache, A Unifying Field in Logic: Neutrosophic Field, Multi-Valued Logic, Vol.8, No.3(2002)(special issue on Neutrosophy and Neutrosophic Logic), 385-438.
[16] F.Smarandache, Mixed non-euclidean geometries, eprint arXiv: math/0010119, 10/2000.

# Minimum Cycle Base of 

 Graphs Identified by Two Planar GraphsDengju Ma<br>(School of Science, Nantong University, Jiangsu 226007, P.R.China)<br>E-mail:jdm8691@yahoo.com.cn<br>Han Ren<br>(Department of Mathematics, East China Normal University, Shanghai 200062, P.R.China)<br>E-mail:hren@math.ecnu.edu.cn


#### Abstract

In this paper, we study the minimum cycle base of the planar graphs obtained from two 2-connected planar graphs by identifying an edge (or a cycle) of one graph with the corresponding edge (or cycle) of another, related with map geometries, i.e., Smarandache 2-dimensional manifolds. Also, we give a formula for calculating the length of minimum cycle base of a planar graph $N(d, \lambda)$ defined in paper [11].


Key Words: graph, planar graph, cycle space, minimum cycle base.
AMS(2000) : O5C10

## §1. Introduction

Throughout this paper we consider simple and undirected graphs. The cardinality of a set $A$ is $|A|$. Let's begin with some terminologies and some facts about cycle bases of graphs. Let $G(V, E)$ be a 2-connected graph with vertex set $V$ and edge set $E$. The set $\mathcal{E}$ of all subsets of $E$ forms an $|E|$-dimensional vector space over $G F(2)$ with vector addition $X \oplus Y=(X \cup Y) \backslash(X \cap Y)$ and scalar multiplication $1 \bullet X=X, 0 \bullet X=\emptyset$ for all $X, Y \in \mathcal{E}$. A cycle is a connected graph whose any vertex degree is 2 . The set $\mathcal{C}$ of all cycles of $G$ forms a subspace of $(\mathcal{E}, \oplus, \bullet)$ which is called the cycle space of $G$. The dimension of the cycle space $\mathcal{C}$ is the Betti number of $G$, say $\beta(G)$, which is equal to $|E(G)|-|V(G)|+1$. A base $\mathcal{B}$ of the cycle space of $G$ is called a cycle base of $G$.

The length $|C|$ of a cycle $C$ is the number of its edges. The length $l(\mathcal{B})$ of a cycle base $\mathcal{B}$ is the sum of lengths of all its cycles. A minimum cycle base (or MCB in short) is a cycle base with minimal length. A graph may has many minimum cycle bases, but every two minimum cycle bases have the same length.

Let $G$ be a 2-connected planar graph embedded in the plane. $G$ has $|E(G)|-|V(G)|+2$ faces by Euler formula. There is exactly one face of $G$ being unbounded which is called the

[^4]exterior of $G$. All faces but the exterior of $G$ are called interior faces of $G$. Each interior face of $G$ has a cycle as its boundary which is called an interior facial cycle. Also, the cycle of $G$ being incident with the exterior of $G$ is called the exterior facial cycle.

We know that if $G$ is a 2-connected planar graph embedded in the plane, then any set of $|E(G)|-|V(G)|+1$ facial cycles forms a cycle base of $G$. For a 2-connected planar graph, we ask whether there is a minimum cycle base such that each cycle is a facial cycle. The answer isn't confirmed. The counterexample is easy to be constructed by Lemma 1.1. Need to say that Lemma 1.1 is a special case of Theorem A in the reference [10] which is deduced by Hall Theorem.

Lemma 1.1 Let $\mathcal{B}$ be a cycle base of a 2-connected graph $G$. Then $\mathcal{B}$ is a minimum cycle base of $G$ if and only if for any cycle $C$ of $G$ and cycle $B$ in $\mathcal{B}$, if $B \in \operatorname{Int}(C)$, then $|C| \geq|B|$, where Int $(C)$ denotes the set of cycles in $\mathcal{B}$ which generate $C$.

For some special 2-connected planar graph, there exist a minimum cycle base such that each cycle is a facial cycle. For example, Halin graph and outerplanar graph are such graphs. A Halin graph $H(T)$ consists of a tree $T$ embedded in the plane without subdivision of an edge together with the additional edges joining the 1 -valent vertices consecutively in their order in the planar embedding. It is clear that a Halin graphs is a 3-connected planar graph. The exterior facial cycle is called leaf-cycle.

Lemma $1.2[9,12]$ Let $H(T)$ be a Halin graph embedded in the plane such that the leaf-cycle is the exterior facial cycle. Let $\mathcal{F}$ denote the set of interior facial cycles of $H(T)$. Then $\mathcal{F}$ is a minimum cycle base of $H(T)$.

A planar graph $G$ is outerplanar if it can be embedded in the plane such that all vertices lie on the exterior facial cycle $C$.

Lemma 1.3[6,9] Let $G(V, E)$ be a 2-connected outerplanar graph embedded in the plane with $C$ as its exterior facial cycle. Let $\mathcal{F}$ be the set of interior facial cycles. Then $\mathcal{F}$ is the minimum cycle base of $G$, and $l(\mathcal{F})=2|E|-|V|$.

Apart from the above mentioned minimum cycle bases of a Halin graph and an outerplanar graph, many peoples researched minimum cycle bases of graphs. H. Ren et al. [9] not only gave a sufficient and necessary condition for minimum cycle base of a 2-connected planar graph, but also studied minimum cycle bases of graphs embedded in non-spherical surfaces and presented formulae for length of minimum cycle bases of some graphs such as the generalized Petersen graphs, the circulant graphs, etc. W.Imrich et al. [4] studied the minimum cycle bases for the cartesian and strong product of two graphs. P.Vismara [13] discussed the union of all the minimum cycle bases of a graph. What about the minimum cycle base of the graph obtained from two 2-connected planar graphs by identifying some corresponding edges? This problem is related with map geometries, i.e., Smarandache 2-dimensional manifolds (see [8] for details). We will consider it in this paper.

## $\S 2$. MCB of graphs obtained by identifying an edge of planar graphs

Let $G_{1}$ and $G_{2}$ be two graphs and $P_{i}$ be a path (or a cycle) in $G_{i}$ for $i=1,2$. Suppose the length of $P_{1}$ is same as that of $P_{2}$. By identifying $P_{1}$ with $P_{2}$, we mean that the vertices of $P_{1}$ are identified with the corresponding vertices of $P_{2}$ and the multiedges are deleted.

Theorem 2.1 Let $G_{1}$ and $G_{2}$ be two 2-connected planar graphs embedded in the plane. Let $e_{i}$ be an edge in $E\left(G_{i}\right)$ such that $e_{i}$ is in the exterior facial cycle of $G_{i}$ for $i=1,2$. Let $G$ be the graph obtained from $G_{1}$ and $G_{2}$ by identifying $e_{1}$ and $e_{2}$ such that $G_{2}$ is in the exterior of $G_{1}$. If the set of interior facial cycles of $G_{i}$, say $\mathcal{F}_{i}$, is a minimum cycle base of $G_{i}$ for $i=1,2$, then $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a minimum cycle base of $G$.

Proof Obviously, the graph $G$ is a 2-connected planar graph and each cycle of $\mathcal{F}_{1} \cup \mathcal{F}_{2}$ is a facial cycle of $G$. Since $|E(G)|=\left|E\left(G_{1}\right)\right|+\left|E\left(G_{2}\right)\right|-1$ and $|V(G)|=\left|V\left(G_{1}\right)\right|+\left|V\left(G_{2}\right)\right|-2, G$ has $|E(G)|-|V(G)|+2=\left(\left|E\left(G_{1}\right)\right|-\left|V\left(G_{1}\right)\right|+1\right)+\left(\left|E\left(G_{2}\right)\right|-\left|V\left(G_{2}\right)\right|+1\right)+1=\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|+1$ faces. So $|\mathcal{F}|=\left|\mathcal{F}_{1}\right|+\left|\mathcal{F}_{2}\right|=|E(G)|-|V(G)|+1$, and $\mathcal{F}$ is a cycle base of $G$.

Now we prove that $\mathcal{F}$ is a minimum cycle base of $G$. Suppose $F$ is a cycle of $G$ and $F=f_{1} \oplus f_{2} \oplus \cdots \oplus f_{q}$, where $f_{j} \in \mathcal{F}$ for $j=1,2, \cdots, q$. By Lemma 1.1, We need to prove $|F| \geq\left|f_{j}\right|$ for $j=1,2, \cdots, q$.

If $E(F) \subset E\left(G_{1}\right)$ (or $E\left(G_{2}\right)$ ), then $f_{j}$ is in $\mathcal{F}_{1}\left(\right.$ or $\left.\mathcal{F}_{2}\right)$ for $j=1,2, \cdots, q$. By the fact that $\mathcal{F}_{i}$ is a minimum cycle base of $G_{i}$ for $i=1,2$ and Lemma $1.1,|F| \geq\left|f_{j}\right|$ for $j=1,2, \cdots, q$.

Let $e$ be the edge of $G$ obtained by $e_{1}$ identified with $e_{2}$. Suppose $e=\{u v\}$. If edges of $F$ aren't in $G_{1}$ entirely, then $F$ must pass through $u$ and $v$. So $e \cup F$ can be partitioned into two cycles, say $F_{1}$ and $F_{2}$. Suppose $E\left(F_{i}\right) \subset E\left(G_{i}\right)$ for $i=1,2$. Then $|F|>\left|F_{i}\right|$ for $i=1,2$. Suppose $F_{1}=f_{1} \oplus f_{2} \oplus \cdots \oplus f_{p}$ and $F_{2}=f_{p+1} \oplus f_{p+2} \oplus \cdots \oplus f_{q}$. By the fact that $\mathcal{F}_{i}$ is a minimum cycle base of $G_{i}$ for $i=1,2$ and Lemma 1.1, $|F|>\left|F_{1}\right| \geq\left|f_{i}\right|$ for $i=1,2, \cdots, p$ and $|F|>\left|F_{2}\right| \geq\left|f_{i}\right|$ for $i=p+1, p+2, \cdots, q$.

Thus we complete the proof.
Applying Theorem 2.1 and the induction principle, it is easy to prove the following conclusion.

Corollary 2.1 Let $G_{1}, G_{2}, \cdots, G_{k}$ be $k(k \geq 3)$ 2-connected planar graphs embedded in the plane. Let $e_{i}$ be an edge in $E\left(G_{i}\right)$ such that $e_{i}$ is in the exterior facial cycle of $G_{i}$ for $i=$ $1,2, \cdots, k$. Let $G_{1}^{\prime}$ be the graph obtained from $G_{1}$ and $G_{2}$ by identifying $e_{1}$ with $e_{2}$ such that $G_{2}$ is in the exterior of $G_{1}$, Let $G_{2}^{\prime}$ be the graph obtained from $G_{1}^{\prime}$ and $G_{3}$ by identifying e $e_{3}$ with some edge in the exterior face of $G_{1}^{\prime}$ such that $G_{3}$ is in the exterior of $G_{1}^{\prime}$, and so on. Let $G$ be the last obtained graph in the above process. If the set of interior facial cycles of $G_{i}$, say $\mathcal{F}_{i}$, is a minimum cycle base of $G_{i}$ for $i=1,2, \cdots, k$, then $\cup_{i=1}^{k} \mathcal{F}_{i}$ is a minimum cycle base of $G$.


Fig.2.1

Remark: In Theorem 2.1, if $e_{1}$ is replaced by a path with length at least two and $e_{2}$ by the corresponding path, then the conclusion of the theorem doesn't hold. We consider the graph $H$ shown in Fig.2.1, where $H$ is obtained from $H_{1}$ and $H_{2}$ by identified $P_{1}=u_{1} u_{2} u_{3} u_{4}$ with $P_{2}=v_{1} v_{2} v_{3} v_{4}$. For the graph $H$, let $C=x_{1} x_{2} x_{3} x_{4} x_{1}$ and $D=x_{1} y x_{4} x_{1}$. Since $|C|>|D|$, the set of interior facial cycle of $H$ isn't its minimum cycle base by Lemma 1.1.

Furthermore, if $e_{1}$ is replaced by a cycle and $e_{2}$ by the corresponding cycle in Theorem 2.1, then the conclusion of Theorem isn't true. The counterexample is easy to construct, which is left to readers. But if $G_{1}$ is a special planar graph, similar results to Theorem 2.1 will be shown in the next section.

## §3. MCB of graphs obtained by identifying a cycle of planar graphs

An $r \times s$ cylinder is the graph with $r$ radial lines and $s$ cycles, where $r \geq 0, s>0$. A $4 \times 3$ cylinder is shown in Fig.3.1. The innermost cycle is called the central cycle, $r \times s$ cylinder take an important role in discussion of the minor of planar graph with sufficiently large tree-width in paper[10].


Fig.3.1

Theorem 3.1 Let $G_{1}$ be an $r \times s(r \geq 4)$ cylinder embedded in the plane such that $C$ is its central cycle. Let $G_{2}$ be a planar graph embedded in the plane such that the exterior facial cycle $D$ has the same vertices as that of $C$. Let $G$ be the graph obtained from $G_{1}$ and $G_{2}$ by identifying $C$ and $D$ such that $G_{2}$ is in the interior of $G_{1}$. If the set of interior facial cycles of $G_{2}$, say $\mathcal{F}_{2}$, is its a minimum cycle base, then the set of interior facial cycles of $G$, say $\mathcal{F}$, is a minimum cycle base of $G$.

Proof At first, $\mathcal{F}$ is a cycle base of $G$. We need prove $\mathcal{F}$ is minimal.
Let $\mathcal{F}_{1}=\mathcal{F} \backslash \mathcal{F}_{2}$. Obviously, each element of $\mathcal{F}_{1}$ has length 4 . Suppose $F$ is a cycle of $G$ and $F=f_{1} \oplus f_{2} \oplus \cdots \oplus f_{q}$, where $f_{j} \in \mathcal{F}$ for $j=1,2, \cdots, q$. If we prove $|F| \geq\left|f_{j}\right|$ for $j=1,2, \cdots, q$, then $\mathcal{F}$ is a minimum cycle base of $G$ by Lemma 1.1.

Let $R$ be the open region bounded by $F$, and $R^{\prime}$ be the open region bounded by $C$ (or $D$ ) of $G_{1}$ (or $G_{2}$ ). We consider the following four cases.

Case $1 \quad R^{\prime} \cap R=\emptyset$.
Then $F$ is a cycle of $G_{1}$ and $F$ is generated by $\mathcal{F}_{1}$. Since the girth of $G_{1}$ is $4,|F| \geq\left|f_{j}\right|=4$ for $j=1,2, \cdots, q$.

Case $2 \quad R^{\prime} \subset R$.
Then $|F| \geq|C| \geq 4$, because the number of radial lines which $F$ crosses can't be less than the number of vertices of $C$. For a fixed $f_{j}$, if it is in the interior of $C$ then $\left|f_{j}\right| \leq|C| \leq|F|$ by Lemma 1.1, because $\mathcal{F}_{2}$ is a minimum cycle base of $G_{2}$. If $f_{j}$ is in the exterior of $C$, then $\left|f_{j}\right|=4$. So $\left|f_{i}\right| \leq|F|$ for $j=1,2, \cdots, q$.

Case $3 \quad R \subset R^{\prime}$.
Then $F$ is a cycle of $G_{2}$. By Lemma 1.1, $|F| \geq\left|f_{j}\right|$ for $j=1,2, \cdots, q$.
Case $4 \quad R^{\prime} \cap R \neq \emptyset$ and $R^{\prime}$ is not in the interior of $R$.
Then $F$ must has at least one edge in $E\left(G_{2}\right) \backslash E(C)$ and at least three edges in $E\left(G_{1}\right)$. So $|F| \geq 4$. No loss of generality, suppose $f_{1}, f_{2}, \cdots, f_{p}$ are cycles of $\left\{f_{1}, f_{2}, \cdots, f_{q}\right\}$ that are in the exterior of $C$. Since $\left|f_{j}\right|=4,|F| \geq\left|f_{j}\right|$ for $j=1,2, \cdots, p$.

Next we prove $|F| \geq\left|f_{j}\right|$ for $j=p+1, p+2, \cdots, q$, where $f_{j}$ is in the interior of $C$.


Fig. 3.2

Let $R "=R \backslash\left(R^{\prime} \cap R\right)$. $R "$ may be the union of several regions. Let $R "=R_{1} \cup R_{2} \cup \cdots \cup R_{l}$ satisfying the condition that $R_{i} \cap R_{j}$ is empty or a point for $i \neq j, 1 \leq i, j \leq l$. Let $B_{i}$ be the boundary of $R_{i}$ for $i=1,2, \cdots, l$. Then $B_{i}$ is a cycle in the exterior of $C$. For a fixed $B_{i}$, there may be many vertices of $B_{i}$ in $V(F) \cap V(C)$, which can be found in Fig.3.2. We select two vertices $u_{i}$ and $v_{i}$ of $B_{i}$ satisfying the following conditions:
(1) $\quad u_{i}$ and $v_{i}$ are in $C$;
(2) there is a path of $B_{i}$, say $P_{i}$, such that its endvertices are $u_{i}$ and $v_{i}$ and $P_{i}$ is in the exterior of $C$;
(3) if $M_{i}$ is the path of $B_{i}$ deleted $E\left(P_{i}\right)$, and if $M_{i}^{\prime}$ is the path of $C$ such that its endvertices are $u_{i}$ and $v_{i}$ and $M_{i}^{\prime}$ is internally disjoint from $B_{i}$, then $M_{i}$ is in the interior of the cycle which is the union of $M_{i}^{\prime}$ and $P_{i}$.

Note that $M_{i}$ may contains many disjoint paths of $C$, suppose they are $Q_{1}^{i}, Q_{2}^{i}, \cdots, Q_{t}^{i}$. Let $x, y$ be two vertices in $P_{i}$, which are adjacent to $u_{i}, v_{i}$ respectively.

Obviously, $x, y$ are in $G_{1}$. Let $P_{i}^{\prime}$ be the subpath of $P_{i}$ between $x$ and $y$. Considering the number of radial lines (including radial line $x, y$ lie on) which $P_{i}^{\prime}$ crosses is not less than the number of vertices of $\cup_{j=1}^{t} Q_{j}^{i},\left|P_{i}\right|>\left|P_{i}^{\prime}\right| \geq \sum_{j=1}^{t}\left|Q_{j}^{i}\right|$.

Since $R^{\prime} \cap R$ may be the union of some regions, we suppose $R^{\prime} \cap R=D_{1} \cup D_{2} \cup \cdots \cup D_{s}$. Let $A_{1}, A_{2}, \cdots, A_{s}$ be boundaries of $D_{1}, D_{2}, \cdots, D_{s}$ respectively. For a fixed $A_{i}$, its edges may be partitioned into two groups, one containing edges of $F$, denoted as $A_{i}^{F}$, another containing edges of $C$, denoted as $A_{i}^{C}$. Then

$$
\begin{aligned}
\sum_{i=1}^{s}\left|A_{i}\right| & =\sum_{i=1}^{s}\left|A_{i}^{F}\right|+\sum_{i=1}^{s}\left|A_{i}^{C}\right| \\
& =\sum_{i=1}^{s}\left|A_{i}^{F}\right|+\sum_{i=1}^{l} \sum_{j=1}^{t}\left|Q_{j}^{i}\right| \\
& <\sum_{i=1}^{s}\left|A_{i}^{F}\right|+\sum_{i=1}^{s}\left|P_{i}\right| \\
& <|F|
\end{aligned}
$$

Hence $|F|>\left|A_{i}\right|$ for $i=1,2, \cdots, s$. Since any $A_{i}$ is a cycle of $G_{2}$ and $\mathcal{F}_{1}$ is a minimum cycle base of $G_{2},\left|A_{i}\right| \geq\left|f_{j}\right|$ for $j=i_{1}, i_{2}, \cdots, i_{n}$, by lemma 2.1, where $\left\{i_{1}, i_{2}, \cdots, i_{n}\right\} \subset$ $\{p+1, p+2, \cdots, q\}$. Hence, $|F|>\left|f_{p+j}\right|$ for $i=1,2, \cdots, q-p$.

By the previous discussion and Lemma $1.1, \mathcal{F}$ is a minimum cycle base of $G$.
Since the minimum cycle base of a cycle is itself, a minimum cycle base of an $r \times s(r \geq 4)$ cylinder embedded in the plane is the set of its interior facial cycles by Theorem 3.1, and the length of its MCB is $r+4 r(s-1)=r(4 s-3)$.

By Lemmas 1.2, 1.3 and Theorem 3.1. we get two corollaries following.
Corollary 3.1 Assume an $r \times s(r \geq 4)$ cylinder, a Halin graph $H(T)$ are embedded in the plane with $C$ the central cycle and $C^{\prime}$ the leaf-cycle of $H(T)$ containing the same vertices as $C$, respectively. Let $G$ be the graph obtained from the $r \times s$ cylinder and $H(T)$ by identifying $C$ and $C^{\prime}$ such that $H(T)$ is in the interior of the $r \times s$ cylinder. Then a minimum cycle base of $G$ is the set of interior facial cycles of $G$.

Corollary 3.2 Assume an $r \times s(r \geq 4)$ cylinder, a 2-connected outplanar graph $H$ be embedded in the plane with $C$ the central cycle and $C^{\prime}$ the exterior facial cycle containing same vertices as $C$ of $H$ containing the same vertices as $C$, respectively. Let $G$ be the graph obtained from the $r \times s$ cylinder and $H$ by identifying $C$ and $C^{\prime}$ such that $H$ is in the interior of the $r \times s$ cylinder. Then a minimum cycle base of $G$ is the set of interior facial cycles of $G$. Furthermore, the length of a $M C B$ of $G$ is $r(4 s-5)+2|E(H)|$.

Proof Let $\mathcal{F}$ be the set of interior facial cycles of $G$. By Theorem 3.1, $\mathcal{F}$ is a minimum cycle base of $G$. $\mathcal{F}$ can be partitioned into two groups $\mathcal{F}_{1}$ and $\mathcal{F}_{2}$, where $\mathcal{F}_{1}$ is the set of interior facial cycles of $H$ and $\mathcal{F}_{2}$ the set of 4-cycles. Then the length of a MCB of $G$ is $l(\mathcal{F})=l\left(\mathcal{F}_{1}\right)+l\left(\mathcal{F}_{2}\right)=4 r(s-1)+2|E(H)|-|V(H)|=(4 s-5) r+2|E(H)|$.

As application of Corollary 3.1, we find a formula for the length of minimum cycle base of a planar graph $N(d, \lambda)$, which can be found in paper[10].

When $\lambda \geq 1$ is an integer, the graph $Y_{\lambda}$ is tree as shown in Fig.3.3. Thus $Y_{\lambda}$ has $3 \times 2^{\lambda-1}$ 1-valent vertices and $Y_{\lambda}$ has $3 \times 2^{\lambda}-2$ vertices. If 1 -valent vertices of $Y_{\lambda}$ are connected in their order in the planar embedding, we obtain a special Halin graph, denoted by $H(\lambda)$.

Suppose a $\left(3 \times 2^{\lambda-1}\right) \times d$ cylinder is embedded in the plane such that its central cycle $C$ has $3 \times 2^{\lambda-1}$ vertices. The graph obtained from $\left(3 \times 2^{\lambda-1}\right) \times d$ cylinder and $H(\lambda)$ with leaf-cycle $C^{\prime}$ containing $3 \times 2^{\lambda-1}$ vertices by identifying $C$ and $C^{\prime}$ such that $H(\lambda)$ is in the interior of $\left(3 \times 2^{\lambda-1}\right) \times d$ cylinder is denoted as $N(d, \lambda)$. N. Roberterson and P.D. Seymour[10] proved that for all $d \geq 1, \lambda \geq 1$ the graph $N(d, \lambda)$ has tree-width $\leq 3 d+1$.


Fig.3.3
Theorem 3.2 The length of minimum cycle base of $N(d, \lambda)(\lambda \geq 2)$ is $3(d-1) \times 2^{\lambda+1}+9 \times$ $2^{\lambda}-3 \times 2^{\lambda-1}-6$.

Proof Let $\mathcal{F}$ be the set of interior facial cycles of $N(d, \lambda)$. Then $\mathcal{F}$ is a minimum cycle base of $N(d, \lambda)$ by Corollary 3.1.

Let $\mathcal{F}_{1}$ be a subset of $\mathcal{F}$ which is the set of interior facial cycles of $N(1, \lambda)$ (a Halin graph). Then $\mathcal{F}_{1}$ consists of $3 \quad(2 \lambda+1)$-cycles and $3 \times 2^{j} \quad(2 \lambda-2 j-1)$-cycles for $j=0,1,2, \cdots, \lambda-2$.

Let $\mathcal{F}_{2}=\mathcal{F} \backslash \mathcal{F}_{1}$. Then each cycle of $\mathcal{F}_{2}$ has length 4 . Since the leaf-cycle of $N(1, \lambda)$ has $3 \times 2^{\lambda-1}$ vertices, there are $3(d-1) \times 2^{\lambda-1} \quad 4$-cycles in $\mathcal{F}_{2}$ all together. The length of $\mathcal{F}$ is

$$
\begin{aligned}
l(\mathcal{F}) & =\sum_{j=0}^{\lambda-2} 3 \times 2^{j-1}(2 \lambda-2 j-1)+3(2 \lambda+1)+4 \times 3(d-1) \times 2^{\lambda-1} \\
& =3\left[\sum_{j=0}^{\lambda-2} \lambda 2^{j+1}-2 \sum_{j=0}^{\lambda-2} j 2^{j}-\sum_{j=0}^{\lambda-2} 2^{j}\right]+(6 \lambda+3)+3(d-1) \times 2^{\lambda+1} \\
& =3\left[\left(\lambda 2^{\lambda}-2 \lambda\right)-2(\lambda-3) 2^{\lambda-1}-4-2^{\lambda-1}+1\right] \\
& +(6 \lambda+3)+3(d-1) \times 2^{\lambda+1} \\
& =3(d-1) \times 2^{\lambda+1}+9 \times 2^{\lambda}-3 \times 2^{\lambda-1}-6
\end{aligned}
$$

Hence, the length of minimum cycle base of $N(d, \lambda)$ is $3(d-1) \times 2^{\lambda+1}+9 \times 2^{\lambda}-3 \times 2^{\lambda-1}-6$.

## Reference

[1] Bondy J.A. and Murty U.S.R., Graph Theory with Application, Macmillan, London, Elsevier, New York, 1976.
[2] Downs G.M., Gillet V.J., Holliday J.D. and Lynch M.F., Review of ring perception algorithms for chemical graph, J. Chem.Inf.Comput.Sci.,29: 172-187,1989.
[3] Horton J.D., A polynomial-time algorithm to find the shortest cycle base of a graph, SIAM.J.Comput., 1987, 16: 359-366.
[4] Imrich W. and Stadler P.F., Minimum Cycle Bases of Product Graphs, Australasian J. Comb., 26:233-244(2002).
[5] Mohar B. and Thomassen C., Graphs on Surfaces, Johns Hopkins University Press, 2001.
[6] Leydold J. and Stadler P.F., Minimum cycle bases of outerplanar graphs, Electronic J. Combin., 5 \# R16 (1998):1-14.
[7] Liu G.Z., On the connectivities of tree graphs, J. Graph Theory, 1988, 12: 453-459.
[8] L.F.Mao, On Automorphisms groups of Maps, Surfaces and Smarandache geometries, Sientia Magna, Vol.1(2005), No.2, 55-73.
[9] Ren H., Liu Y.P., Ma D.J. and Lu J.J., Generating cycle spaces for graphs on surfaces with small genera, J. European of Combin., 2004, 25: 1087-1105.
[10] Ren H. and Deng M., Short cycle structures for graphs on surfaces and an open problem of Mohar and Thomassen, Science in China: Series A math., 2006 Vol. 49 No.2:212-224.
[11] Robertson N. and Seymour P.D., Graph minor. III. Planar tree-width, J. Combinatorial Theory, Series B 36 (1984): 49-64.
[12] Stadler P.F., Minimum cycle bases of Halin graphs, J. Graph Theory, 2003, 43:150-155
[13] Vismara P., Union of all the minimum cycle bases of a graph, Electronic J. Combin., 4 \#R9 (1997):1-15.

## A Combinatorially

# Generalized Stokes Theorem on Integrations 

Linfan Mao

(Chinese Academy of Mathematics and System Science, Beijing 100080, P.R.China)
E-mail: maolinfan@163.com


#### Abstract

As an immediately application of Smarandache multi-spaces, a combinatorial manifold $\widetilde{M}$ with a given integer $m \geq 1$ is defined to be a geometrical object $\widetilde{M}$ such that for $\forall p \in \widetilde{M}$, there is a local chart $\left(U_{p}, \varphi_{p}\right)$ enable $\varphi_{p}: U_{p} \rightarrow B^{n_{i_{1}}} \cup B^{n_{i_{2}}} \cup \cdots \cup B^{n_{i}(p)}$ with $B^{n_{i_{1}}} \bigcap B^{n_{i_{2}}} \bigcap \cdots \bigcap B^{n_{i_{s(p)}}} \neq \emptyset$, where $B^{n_{i_{j}}}$ is an $n_{i_{j}}$-ball for integers $1 \leq j \leq s(p) \leq m$. Integral theory on these smoothly combinatorial manifolds are introduced. Some classical results, such as those of Stokes' theorem and Gauss' theorem are generalized to smoothly combinatorial manifolds. By a relation of smoothly combinatorial manifolds with vertexedge labeled graphs, counterparts of these conception and results are also established on graphs in this paper.


Key Words: combinatorial manifold, integration, Stokes' theorem, Gauss' theorem, vertex-edge labeled graph.

AMS(2000): 51M15, 53B15, 53B40, 57N16

## §1. Introduction

As a localized Euclidean space, an $n$-manifold $M^{n}$ is a Hausdorff space $M^{n}$, i.e., a space that satisfies the $T_{2}$ separation axiom such that for $\forall p \in M^{n}$, there is an open neighborhood $U_{p}, p \in U_{p} \subset M^{n}$ and a homeomorphism $\varphi_{p}: U_{p} \rightarrow \mathbf{R}^{n}$. These manifolds, particularly, differential manifolds are very important to modern geometries and mechanics. As an immediately application of Smarandache multi-spaces ([8]), also the application of the combinatorial speculation for classical mathematics, i.e. mathematics can be reconstructed from or turned into combinatorialization([3]), combinatorial manifolds were introduced in [4], which are the generalization of classical manifolds and can be also endowed with a topological or differential structure as geometrical objects.

Now for an integer $s \geq 1$, let $n_{1}, n_{2}, \cdots, n_{s}$ be an integer sequence with $0<n_{1}<n_{2}<$ $\cdots<n_{s}$. Choose $s$ open unit balls $B_{1}^{n_{1}}, B_{2}^{n_{2}}, \cdots, B_{s}^{n_{s}}$, where $\bigcap_{i=1}^{s} B_{i}^{n_{i}} \neq \emptyset$ in $\mathbf{R}^{n_{1}+n_{2}+\cdots n_{s}}$. A unit open combinatorial ball of degree $s$ is a union

$$
\widetilde{B}\left(n_{1}, n_{2}, \cdots, n_{s}\right)=\bigcup_{i=1}^{s} B_{i}^{n_{i}}
$$

[^5]Then a combinatorial manifold $\widetilde{M}$ is defined in the next.
Definition 1.1 For a given integer sequence $n_{1}, n_{2}, \cdots, n_{m}, m \geq 1$ with $0<n_{1}<n_{2}<\cdots<$ $n_{m}$, a combinatorial manifold $\widetilde{M}$ is a Hausdorff space such that for any point $p \in \widetilde{M}$, there is a local chart $\left(U_{p}, \varphi_{p}\right)$ of $p$, i.e., an open neighborhood $U_{p}$ of $p$ in $\widetilde{M}$ and a homoeomorphism $\varphi_{p}: U_{p} \rightarrow \widetilde{B}\left(n_{1}(p), n_{2}(p), \cdots, n_{s(p)}(p)\right)$ with $\left\{n_{1}(p), n_{2}(p), \cdots, n_{s(p)}(p)\right\} \subseteq\left\{n_{1}, n_{2}, \cdots, n_{m}\right\}$ and $\bigcup_{p \in \widetilde{M}}\left\{n_{1}(p), n_{2}(p), \cdots, n_{s(p)}(p)\right\}=\left\{n_{1}, n_{2}, \cdots, n_{m}\right\}$, denoted by $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ or $\widetilde{M}$ on the context and

$$
\left.\widetilde{\mathcal{A}}=\left\{\left(U_{p}, \varphi_{p}\right) \mid p \in \widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)\right)\right\}
$$

an atlas on $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$. The maximum value of $s(p)$ and the dimension $\widehat{s}(p)$ of $\bigcap_{i=1}^{s(p)} B_{i}^{n_{i}}$ are called the dimension and the intersectional dimensional of $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ at the point $p$, denoted by $d(p)$ and $\widehat{d}(p)$, respectively.

A combinatorial manifold $\widetilde{M}$ is called finite if it is just combined by finite manifolds without one manifold is contained in the union of others, is called smooth if it is finite endowed with a $C^{\infty}$ differential structure. For a smoothly combinatorial manifold $\widetilde{M}$ and a point $p \in \widetilde{M}$, it has been shown in [4] that $\operatorname{dim} T_{p} \widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)=\widehat{s}(p)+\sum_{i=1}^{s(p)}\left(n_{i}-\widehat{s}(p)\right)$ and $\operatorname{dim} T_{p}^{*} \widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)=\widehat{s}(p)+\sum_{i=1}^{s(p)}\left(n_{i}-\widehat{s}(p)\right)$ with a basis

$$
\left\{\left.\left.\frac{\partial}{\partial x^{h j}}\right|_{p} \right\rvert\, 1 \leq j \leq \widehat{s}(p)\right\} \bigcup\left(\bigcup_{i=1}^{s(p)} \bigcup_{j=\widehat{s}(p)+1}^{n_{i}}\left\{\left.\left.\frac{\partial}{\partial x^{i j}}\right|_{p} \right\rvert\, 1 \leq j \leq s\right\}\right)
$$

or

$$
\left.\left\{d x^{h j}{ }_{p} \mid\right\} 1 \leq j \leq \widehat{s}(p)\right\} \bigcup\left(\bigcup_{i=1}^{s(p)} \bigcup_{j=\widehat{s}(p)+1}^{n_{i}}\left\{\left.d x^{i j}\right|_{p} \mid 1 \leq j \leq s\right\}\right.
$$

for a given integer $h, 1 \leq h \leq s(p)$. Denoted all $k$-forms of $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ by $\Lambda^{k}(\widetilde{M})$ and $\Lambda(\widetilde{M})=\bigoplus_{k=0}^{\widehat{s}(p)+\sum_{i=1}^{s(p)}\left(n_{i}-\widehat{s}(p)\right)} \Lambda^{k}(\widetilde{M})$, then there is a unique exterior differentiation $\widetilde{d}: \Lambda(\widetilde{M}) \rightarrow$ $\Lambda(\widetilde{M})$ such that for any integer $k \geq 1, \widetilde{d}\left(\Lambda^{k}\right) \subset \Lambda^{k+1}(\widetilde{M})$ with conditions following hold similar to the classical tensor analysis([1]).
(i) $\widetilde{d}$ is linear, i.e., for $\forall \varphi, \psi \in \Lambda(\widetilde{M}), \lambda \in \mathbf{R}$,

$$
\widetilde{d}(\varphi+\lambda \psi)=\widetilde{d} \varphi \wedge \psi+\lambda \widetilde{d} \psi
$$

and for $\varphi \in \Lambda^{k}(\widetilde{M}), \psi \in \Lambda(\widetilde{M})$,

$$
\widetilde{d}(\varphi \wedge \psi)=\widetilde{d} \varphi+(-1)^{k} \varphi \wedge \widetilde{d} \psi
$$

(ii) For $f \in \Lambda^{0}(\widetilde{M}), \widetilde{d} f$ is the differentiation of $f$.
(iii) $\widetilde{d}^{2}=\widetilde{d} \cdot \widetilde{d}=0$.
(iv) $\widetilde{d}$ is a local operator, i.e., if $U \subset V \subset \widetilde{M}$ are open sets and $\alpha \in \Lambda^{k}(V)$, then $\widetilde{d}\left(\left.\alpha\right|_{U}\right)=$ $\left.(\widetilde{d} \alpha)\right|_{U}$.

Therefore, smoothly combinatorial manifolds poss a local structure analogous smoothly manifolds. But notes that this local structure maybe different for neighborhoods of different points. Whence, geometries on combinatorial manifolds are Smarandache geometries([6]-[8]).

There are two well-known theorems in classical tensor analysis, i.e., Stokes' and Gauss' theorems for the integration of differential $n$-forms on an $n$-manifold $M$, which enables us knowing that

$$
\int_{M} d \omega=\int_{\partial M} \omega
$$

for a $\omega \in \Lambda^{n-1}(M)$ with compact supports and

$$
\int_{M}(\operatorname{div} X) \mu=\int_{\partial M} \mathbf{i}_{X} \mu
$$

for a vector field $X$, where $\mathbf{i}_{X}: \Lambda^{k+1}(M) \rightarrow \Lambda^{k}(M)$ defined by $\mathbf{i}_{X} \varpi\left(X_{1}, X_{2}, \cdots, X_{k}\right)=$ $\varpi\left(X, X_{1}, \cdots, X_{k}\right)$ for $\varpi \in \Lambda^{k+1}(M)$. The similar local properties for combinatorial manifolds with manifolds naturally forward the following questions: wether the Stokes' or Gauss' theorem is still valid on smoothly combinatorial manifolds? or if invalid, What are their modified forms for smoothly combinatorial manifolds?.

The main purpose of this paper is to find the revised Stokes' or Gauss' theorem for combinatorial manifolds, namely, the Stokes' or Gauss' theorem is still valid for $\widetilde{n}$-forms on smoothly combinatorial manifolds $\widetilde{M}$ if $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$, where $\mathscr{H}_{\widetilde{M}}(n, m)$ is an integer set determined by its structure of a given smoothly combinatorial manifold $\widetilde{M}$. For this objective, we first consider a particular case of combinatorial manifolds, i.e., the combinatorial Euclidean spaces in the next section, establish a relation for finitely combinatorial manifolds with vertex-edge labeled graphs and calculate the integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ for a given vertex-edge labeled graph in Section 3, then generalize the definition of integration on manifolds to combinatorial manifolds in Section 4. The generalized form for Stokes' or Gauss' theorem, also their counterparts on graphs can be found in Section 5. Terminologies and notations used in this paper are standard and can be found in [1] - [2] or [4] for those of manifolds and combinatorial manifolds and [6] for graphs, respectively.

## §2. Combinatorially Euclidean Spaces

As a simplest case of combinatorial manifolds, we characterize combinatorially Euclidean spaces of finite and generalize some results in Euclidean spaces in this section.

Definition 2.1 For a given integer sequence $n_{1}, n_{2}, \cdots, n_{m}, m \geq 1$ with $0<n_{1}<n_{2}<\cdots<$ $n_{m}$, a combinatorially Euclidean space $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ is a union of finitely Euclidean spaces $\bigcup_{i=1}^{m} \mathbf{R}^{n_{i}}$ such that for $\forall p \in \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right), p \in \bigcap_{i=1}^{m} \mathbf{R}^{n_{i}}$ with $\widehat{m}=\operatorname{dim}\left(\bigcap_{i=1}^{m} \mathbf{R}^{n_{i}}\right)$ a constant.

By definition, we can present a point $p$ of $\widetilde{\mathbf{R}}$ by an $m \times n_{m}$ coordinate matrix $[\bar{x}]$ following with $x^{i l}=\frac{x^{l}}{m}$ for $1 \leq i \leq m, 1 \leq l \leq \widehat{m}$.

$$
[\bar{x}]=\left[\begin{array}{cccccccc}
x^{11} & \cdots & x^{1 \widehat{m}} & x^{1(\widehat{m})+1)} & \cdots & x^{1 n_{1}} & \cdots & 0 \\
x^{21} & \cdots & x^{2 \widehat{m}} & x^{2(\widehat{m}+1)} & \cdots & x^{2 n_{2}} & \cdots & 0 \\
\cdots & \cdots & \cdots & \ldots & \cdots & \cdots & & \\
x^{m 1} & \cdots & x^{m \widehat{m}} & x^{m(\widehat{m}+1)} & \cdots & \cdots & x^{m n_{m}-1} & x^{m n_{m}}
\end{array}\right]
$$

For making a combinatorially Euclidean space to be a metric space, we introduce inner product of matrixes similar to that of vectors in the next.

Definition 2.2 Let $(A)=\left(a_{i j}\right)_{m \times n}$ and $(B)=\left(b_{i j}\right)_{m \times n}$ be two matrixes. The inner product $\langle(A),(B)\rangle$ of $(A)$ and $(B)$ is defined by

$$
\langle(A),(B)\rangle=\sum_{i, j} a_{i j} b_{i j}
$$

Theorem 2.1 Let $(A),(B),(C)$ be $m \times n$ matrixes and $\alpha$ a constant. Then
(1) $\langle A, B\rangle=\langle B, A\rangle$;
(2) $\langle A+B, C\rangle=\langle A, C\rangle+\langle B, C\rangle$;
(3) $\langle\alpha A, B\rangle=\alpha\langle B, A\rangle$;
(4) $\langle A, A\rangle \geq 0$ with equality hold if and only if $(A)=O_{m \times n}$.

Proof (1)-(3) can be gotten immediately by definition. Now calculation shows that

$$
\langle A, A\rangle=\sum_{i, j} a_{i j}^{2} \geq 0
$$

and with equality hold if and only if $a_{i j}=0$ for any integers $i, j, 1 \leq i \leq m, 1 \leq j \leq n$, namely, $(A)=O_{m \times n}$.

Theorem $2.2(A),(B)$ be $m \times n$ matrixes. Then

$$
\langle(A),(B)\rangle^{2} \leq\langle(A),(A)\rangle\langle(B),(B)\rangle
$$

and with equality hold only if $(A)=\lambda(B)$, where $\lambda$ is a real constant.
Proof If $(A)=\lambda(B)$, then $\langle A, B\rangle^{2}=\lambda^{2}\langle B, B\rangle^{2}=\langle A, A\rangle\langle B, B\rangle$. Now if there are no constant $\lambda$ enabling $(A)=\lambda(B)$, then $(A)-\lambda(B) \neq O_{m \times n}$ for any real number $\lambda$. According to Theorem 2.1, we know that

$$
\langle(A)-\lambda(B),(A)-\lambda(B)\rangle>0
$$

i.e.,

$$
\langle(A),(A)\rangle-2 \lambda\langle(A),(B)\rangle+\lambda^{2}\langle(B),(B)\rangle>0
$$

Therefore, we find that

$$
\Delta=(-2\langle(A),(B)\rangle)^{2}-4\langle(A),(A)\rangle\langle(B),(B)\rangle<0
$$

namely,

$$
\langle(A),(B)\rangle^{2}<\langle(A),(A)\rangle\langle(B),(B)\rangle
$$

Corollary 2.1 For given real numbers $a_{i j}, b_{i j}, 1 \leq i \leq m, 1 \leq j \leq n$,

$$
\left(\sum_{i, j} a_{i j} b_{i j}\right)^{2} \leq\left(\sum_{i, j} a_{i j}^{2}\right)\left(\sum_{i, j} b_{i j}^{2}\right)
$$

Let $O$ be the original point of $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$. Then $[O]=O_{m \times n_{m}}$. Now for $\forall p, q \in$ $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$, we also call $\overrightarrow{O p}$ the vector correspondent to the point $p$ similar to that of classical Euclidean spaces, Then $\overrightarrow{p q}=\overrightarrow{O q}-\overrightarrow{O p}$. Theorem 2.2 enables us to introduce an angle between two vectors $\overrightarrow{p q}$ and $\overrightarrow{u v}$ for points $p, q, u, v \in \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$.

Definition 2.3 Let $p, q, u, v \in \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$. Then the angle $\theta$ between vectors $\overrightarrow{p q}$ and $\overrightarrow{u v}$ is determined by

$$
\cos \theta=\frac{\langle[p]-[q],[u]-[v]\rangle}{\sqrt{\langle[p]-[q],[p]-[q]\rangle\langle[u]-[v],[u]-[v]\rangle}}
$$

under the condition that $0 \leq \theta \leq \pi$.
Corollary 2.2 The conception of angle between two vectors is well defined.
Proof Notice that

$$
\langle[p]-[q],[u]-[v]\rangle^{2} \leq\langle[p]-[q],[p]-[q]\rangle\langle[u]-[v],[u]-[v]\rangle
$$

by Theorem 2.2. Thereby, we know that

$$
-1 \leq \frac{\langle[p]-[q],[u]-[v]\rangle}{\sqrt{\langle[p]-[q],[p]-[q]\rangle\langle[u]-[v],[u]-[v]\rangle}} \leq 1
$$

Therefore there is a unique angle $\theta$ with $0 \leq \theta \leq \pi$ enabling Definition 2.3 hold.
For two points $p, q$ in $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$, the distance $d(p, q)$ between points $p$ and $q$ is defined to be $\sqrt{\langle[p]-[q],[p]-[q]\rangle}$. We get the following result.

Theorem 2.3 For a given integer sequence $n_{1}, n_{2}, \cdots, n_{m}, m \geq 1$ with $0<n_{1}<n_{2}<\cdots<n_{m}$, $\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right) ; d\right)$ is a metric space.

Proof We need to verify that each condition for a metric space holds in $\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right) ; d\right)$. For two point $p, q \in \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$, by definition we know that

$$
d(p, q)=\sqrt{\langle[p]-[q],[p]-[q]\rangle} \geq 0
$$

with equality hold if and only if $[p]=[q]$, namely, $p=q$ and

$$
d(p, q)=\sqrt{\langle[p]-[q],[p]-[q]\rangle}=\sqrt{\langle[q]-[p],[q]-[p]\rangle}=d(q, p)
$$

Now let $u \in \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$. By Theorem 2.2, we then find that

$$
\begin{aligned}
& (d(p, u)+d(u, p))^{2} \\
& =\langle[p]-[u],[p]-[u]\rangle+2 \sqrt{\langle[p]-[u],[p]-[u]\rangle\langle[u]-[q],[u]-[q]\rangle} \\
& +\langle[u]-[q],[u]-[q]\rangle \\
& \geq\langle[p]-[u],[p]-[u]\rangle+2\langle[p]-[u],[u]-[q]\rangle+\langle[u]-[q],[u]-[q]\rangle \\
& =\langle[p]-[q],[p]-[q]\rangle=d^{2}(p, q) .
\end{aligned}
$$

Whence, $d(p, u)+d(u, p) \geq d(p, q)$ and $\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right) ; d\right)$ is a metric space.
By previous discussions, a combinatorially Euclidean space $\widetilde{R}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ can be turned to an Euclidean space $\mathbf{R}^{n}$ with $n=\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)$. It is the same the other way round, namely we can also decompose an Euclidean space into a combinatorially Euclidean space.

Theorem 2.4 Let $\mathbf{R}^{n}$ be an Euclidean space and $n_{1}, n_{2}, \cdots, n_{m}$ integers with $\widehat{m}<n_{i}<n$ for $1 \leq i \leq m$ and the equation

$$
\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)=n
$$

hold for an integer $\widehat{m}, 1 \leq \widehat{m} \leq n$. Then there is a combinatorially Euclidean space $\widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots\right.$, $\left.n_{m}\right)$ such that

$$
\mathbf{R}^{n} \cong \widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)
$$

Proof Not loss of generality, assume the coordinate system of $\mathbf{R}^{n}$ is $\left(x_{1}, x_{2}, \cdots, x_{n}\right)$ with a basis $\left\{\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}\right\}$. Since

$$
n-\widehat{m}=\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)
$$

Choose

$$
\begin{gathered}
\mathbf{R}_{1}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{\widehat{m}}, \mathbf{e}_{\widehat{m}+1}, \cdots, \mathbf{e}_{n_{1}}\right\rangle ; \\
\mathbf{R}_{2}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{\widehat{m}}, \mathbf{e}_{n_{1}+1}, \mathbf{e}_{n_{1}+2}, \cdots, \mathbf{e}_{n_{2}}\right\rangle ; \\
\mathbf{R}_{3}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{\widehat{m}}, \mathbf{e}_{n_{2}+1}, \mathbf{e}_{n_{2}+2}, \cdots, \mathbf{e}_{n_{3}}\right\rangle ;
\end{gathered}
$$

$$
\mathbf{R}_{m}=\left\langle\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{\hat{m}}, \mathbf{e}_{n_{m-1}+1}, \mathbf{e}_{n_{m-1}+2}, \cdots, \mathbf{e}_{n_{m}}\right\rangle
$$

Calculation shows $\operatorname{dim} \mathbf{R}_{i}=n_{i}$ and $\operatorname{dim}\left(\bigcap_{i=1}^{m} \mathbf{R}_{i}\right)=\widehat{m}$. Whence $\widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ is a combinatorially Euclidean space. By Definitions $2.1-2.2$ and Theorems $2.1-2.3$, we then get that

$$
\mathbf{R}^{n} \cong \widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)
$$

## §3. Determining $\mathscr{H}_{\widetilde{M}}(n, m)$

Let $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ be a smoothly combinatorial manifold. Then there exists an atlas $\mathscr{C}=$ $\left\{\left(\widetilde{U}_{\alpha},\left[\varphi_{\alpha}\right]\right) \mid \alpha \in \widetilde{I}\right\}$ on $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ consisting of positively oriented charts such that for $\forall \alpha \in \widetilde{I}, \widehat{s}(p)+\sum_{i=1}^{s(p)}\left(n_{i}-\widehat{s}(p)\right)$ is an constant $n_{\widetilde{U}_{\alpha}}$ for $\forall p \in \widetilde{U}_{\alpha}([4])$. The integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ is then defined by

$$
\mathscr{H}_{\widetilde{M}}(n, m)=\left\{n_{\widetilde{U}_{\alpha}} \mid \alpha \in \widetilde{I}\right\} .
$$

Notice that $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ is smoothly. We know that $\mathscr{H}_{\widetilde{M}}(n, m)$ is finite. This set is important to the definition of integral and the establishing of Stokes' or Gauss' theorems on smoothly combinatorial manifolds. We characterize it by a combinatorial manner in this section.

A vertex-edge labeled graph $G([1, k],[1, l])$ is a connected graph $G=(V, E)$ with two mappings

$$
\begin{gathered}
\tau_{1}: V \rightarrow\{1,2, \cdots, k\}, \\
\tau_{2}: E \rightarrow\{1,2, \cdots, l\}
\end{gathered}
$$

for integers $k$ and $l$. For example, two vertex-edge labeled graphs with an underlying graph $K_{4}$ are shown in Fig.3.1.


Fig.3.1
For a combinatorial finite manifold $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ with $1 \leq n_{1}<n_{2}<\cdots<n_{m}, m \geq$ 1, there is a natural $1-1$ mapping $\theta: \widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right) \rightarrow G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ determined in the following. Define

$$
V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)=V_{1} \bigcup V_{2},
$$

where $V_{1}=\left\{n_{i}\right.$ - manifolds $M^{n_{i}}$ in $\left.\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right) \mid 1 \leq i \leq m\right\}$ and $V_{2}=\{$ isolated intersection points $O_{M^{n_{i}}, M^{n_{j}}}$ of $M^{n_{i}}, M^{n_{j}}$ in $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ for $\left.1 \leq i, j \leq m\right\}$, and label each $n_{i}$-manifold $M^{n_{i}}$ in $V_{1}$ or $O$ in $V_{2}$ by $\tau_{1}\left(M^{n_{i}}\right)=n_{i}, \tau_{1}(O)=0$. Choose

$$
E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)=E_{1} \bigcup E_{2}
$$

where $E_{1}=\left\{\left(M^{n_{i}}, M^{n_{j}}\right) \mid \operatorname{dim}\left(M^{n_{i}} \bigcap M^{n_{j}}\right) \geq 1,1 \leq i, j \leq m\right\}$ and $E_{2}=\left\{\left(O_{M^{n_{i}}, M^{n_{j}}}, M^{n_{i}}\right)\right.$, $\left(O_{M^{n_{i}}, M^{n_{j}}}, M^{n_{j}}\right) \mid M^{n_{i}}$ tangent $M^{n_{j}}$ at the point $O_{M^{n_{i}}, M^{n_{j}}}$ for $\left.1 \leq i, j \leq m\right\}$, and for an edge $\left(M^{n_{i}}, M^{n_{j}}\right) \in E_{1}$ or $\left(O_{M^{n_{i}}, M^{n_{j}}}, M^{n_{i}}\right) \in E_{2}$, label it by $\tau_{2}\left(M^{n_{i}}, M^{n_{j}}\right)=\operatorname{dim}\left(M^{n_{i}} \bigcap M^{n_{j}}\right)$ or 0, respectively. This construction then enables us getting a $1-1$ mapping $\theta: \widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right) \rightarrow$ $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$.

Now let $\mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ denote all finitely combinatorial manifolds $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ and let $\mathcal{G}\left[0, n_{m}\right]$ denote all vertex-edge labeled graphs $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ with conditions following hold.
(1) Each induced subgraph by vertices labeled with 1 in $G$ is a union of complete graphs and vertices labeled with 0 can only be adjacent to vertices labeled with 1.
(2) For each edge $e=(u, v) \in E(G), \tau_{2}(e) \leq \min \left\{\tau_{1}(u), \tau_{1}(v)\right\}$.

Then we know a relation between sets $\mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ and $\mathcal{G}\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$.
Theorem 3.1 Let $1 \leq n_{1}<n_{2}<\cdots<n_{m}, m \geq 1$ be a given integer sequence. Then every finitely combinatorial manifold $\widetilde{M} \in \mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ defines a vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \in \mathcal{G}\left[0, n_{m}\right]$. Conversely, every vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \in$ $\mathcal{G}\left[0, n_{m}\right]$ defines a finitely combinatorial manifold $\widetilde{M} \in \mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ with a $1-1$ mapping $\theta: G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \rightarrow \widetilde{M}$ such that $\theta(u)$ is a $\theta(u)$-manifold in $\widetilde{M}, \tau_{1}(u)=\operatorname{dim} \theta(u)$ and $\tau_{2}(v, w)=\operatorname{dim}(\theta(v) \bigcap \theta(w))$ for $\forall u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$ and $\forall(v, w) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$.

Proof By definition, for $\forall \widetilde{M} \in \mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ there is a vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \in \mathcal{G}\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ and a $1-1$ mapping $\theta: \widetilde{M} \rightarrow G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ such that $\theta(u)$ is a $\theta(u)$-manifold in $\widetilde{M}$. For completing the proof, we need to construct a finitely combinatorial manifold $\widetilde{M} \in \mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ for $\forall G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \in \mathcal{G}\left[0, n_{m}\right]$ with $\tau_{1}(u)=\operatorname{dim} \theta(u)$ and $\tau_{2}(v, w)=\operatorname{dim}(\theta(v) \bigcap \theta(w))$ for $\forall u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$ and $\forall(v, w) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$. The construction is carried out by programming following.

STEP 1. Choose $\left|G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right|-\left|V_{0}\right|$ manifolds correspondent to each vertex $u$ with a dimensional $n_{i}$ if $\tau_{1}(u)=n_{i}$, where $V_{0}=\left\{u \mid u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right.$ and $\left.\tau_{1}(u)=0\right\}$. Denoted by $V_{\geq 1}$ all these vertices in $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ with label $\geq 1$.

STEP 2. For $\forall u_{1} \in V_{\geq 1}$ with $\tau_{1}\left(u_{1}\right)=n_{i_{1}}$, if its neighborhood set $N_{G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)}\left(u_{1}\right) \bigcap V_{\geq 1}=$ $\left\{v_{1}^{1}, v_{1}^{2}, \cdots, v_{1}^{s\left(u_{1}\right)}\right\}$ with $\tau_{1}\left(v_{1}^{1}\right)=n_{11}, \tau_{1}\left(v_{1}^{2}\right)=n_{12}, \cdots, \tau_{1}\left(v_{1}^{s\left(u_{1}\right)}\right)=n_{1 s\left(u_{1}\right)}$, then let the manifold correspondent to the vertex $u_{1}$ with an intersection dimension $\tau_{2}\left(u_{1} v_{1}^{i}\right)$ with manifold correspondent to the vertex $v_{1}^{i}$ for $1 \leq i \leq s\left(u_{1}\right)$ and define a vertex set $\Delta_{1}=\left\{u_{1}\right\}$.

STEP 3. If the vertex set $\Delta_{l}=\left\{u_{1}, u_{2}, \cdots, u_{l}\right\} \subseteq V_{\geq 1}$ has been defined and $V_{\geq 1} \backslash \Delta_{l} \neq \emptyset$, let $u_{l+1} \in V_{\geq 1} \backslash \Delta_{l}$ with a label $n_{i_{l+1}}$. Assume

$$
\left(N_{G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)}\left(u_{l+1}\right) \bigcap V_{\geq 1}\right) \backslash \Delta_{l}=\left\{v_{l+1}^{1}, v_{l+1}^{2}, \cdots, v_{l+1}^{s\left(u_{l+1}\right)}\right\}
$$

with $\tau_{1}\left(v_{l+1}^{1}\right)=n_{l+1,1}, \tau_{1}\left(v_{l+1}^{2}\right)=n_{l+1,2}, \cdots, \tau_{1}\left(v_{l+1}^{s\left(u_{l+1}\right)}\right)=n_{l+1, s\left(u_{l+1}\right)}$. Then let the manifold correspondent to the vertex $u_{l+1}$ with an intersection dimension $\tau_{2}\left(u_{l+1} v_{l+1}^{i}\right)$ with the manifold correspondent to the vertex $v_{l+1}^{i}, 1 \leq i \leq s\left(u_{l+1}\right)$ and define a vertex set $\Delta_{l+1}=\Delta_{l} \bigcup\left\{u_{l+1}\right\}$.

STEP 4. Repeat steps 2 and 3 until a vertex set $\Delta_{t}=V_{\geq 1}$ has been constructed. This construction is ended if there are no vertices $w \in V(G)$ with $\tau_{1}(w)=0$, i.e., $V_{\geq 1}=V(G)$. Otherwise, go to the next step.

STEP 5. For $\forall w \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right) \backslash V_{\geq 1}$, assume $N_{G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)}(w)=\left\{w_{1}, w_{2}, \cdots, w_{e}\right\}$. Let all these manifolds correspondent to vertices $w_{1}, w_{2}, \cdots, w_{e}$ intersects at one point simultaneously and define a vertex set $\Delta_{t+1}^{*}=\Delta_{t} \bigcup\{w\}$.
STEP 6. Repeat STEP 5 for vertices in $V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right) \backslash V_{\geq 1}$. This construction is finally ended until a vertex set $\Delta_{t+h}^{*}=V\left(G\left[n_{1}, n_{2}, \cdots, n_{m}\right]\right)$ has been constructed.

A finitely combinatorial manifold $\widetilde{M}$ correspondent to $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ is gotten when $\Delta_{t+h}^{*}$ has been constructed. By this construction, it is easily verified that $\widetilde{M} \in \mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ with $\tau_{1}(u)=\operatorname{dim} \theta(u)$ and $\tau_{2}(v, w)=\operatorname{dim}(\theta(v) \bigcap \theta(w))$ for $\forall u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$ and $\forall(v, w) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$. This completes the proof.

Now we determine the integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ for a given smoothly combinatorial manifold $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$. Notice the relation between sets $\mathcal{H}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ and $\mathcal{G}\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ established in Theorem 2.4. We can determine it under its vertex-edge labeled graph $G\left(\left[0, n_{m}\right]\right.$, $\left[0, n_{m}\right]$ ).

Theorem 3.2 Let $\widetilde{M}$ be a smoothly combinatorial manifold with a correspondent vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$. Then

$$
\begin{aligned}
\mathscr{H}_{\widetilde{M}}(n, m) \subseteq & \left\{n_{1}, n_{2}, \cdots, n_{m}\right\} \bigcup_{\widehat{d}(p) \geq 3, p \in \widetilde{M}}\left\{\widehat{d}(p)+\sum_{i=1}^{d(p)}\left(n_{i}-\widehat{d}(p)\right)\right\} \\
& \bigcup\left\{\tau_{1}(u)+\tau_{1}(v)-\tau_{2}(u, v) \mid \forall(u, v) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} .
\end{aligned}
$$

Particularly, if $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ is $K_{3}$-free, then

$$
\begin{aligned}
\mathscr{H}_{\widetilde{M}}(n, m)= & \left\{\tau_{1}(u) \mid u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} \\
& \bigcup\left\{\tau_{1}(u)+\tau_{1}(v)-\tau_{2}(u, v) \mid \forall(u, v) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} .
\end{aligned}
$$

Proof Notice that the dimension of a point $p \in \widetilde{M}$ is

$$
n_{p}=\widehat{d}(p)+\sum_{i=1}^{d(p)}\left(n_{i}-\widehat{d}(p)\right)
$$

by definition. If $d(p)=1$, then $n_{p}=n_{j}, 1 \leq j \leq m$. If $d(p)=2$, namely, $p \in M^{n_{i}} \cap M^{n_{j}}$ for $1 \leq i, j \leq m$, we know that its dimension is

$$
n_{i}+n_{j}-\widehat{d}(p)=\tau_{1}\left(M^{n_{i}}\right)+\tau_{1}\left(M^{n_{j}}\right)-\widehat{d}(p)
$$

Whence, we get that

$$
\begin{aligned}
\mathscr{H}_{\widetilde{M}}(n, m) \subseteq & \left\{n_{1}, n_{2}, \cdots, n_{m}\right\} \bigcup_{\widehat{d}(p) \geq 3, p \in \widetilde{M}}\left\{\widehat{d}(p)+\sum_{i=1}^{d(p)}\left(n_{i}-\widehat{d}(p)\right)\right\} \\
& \bigcup\left\{\tau_{1}(u)+\tau_{1}(v)-\tau_{2}(u, v) \mid \forall(u, v) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} .
\end{aligned}
$$

Now if $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ is $K_{3}$-free, then there are no points with intersectional dimension $\geq$ 3. In this case, there are really existing points $p \in M^{n_{i}}$ for any integer $i, 1 \leq i \leq m$ and $q \in M^{n_{i}} \cap M^{n_{j}}$ for $1 \leq i, j \leq m$ by definition. Therefore, we get that

$$
\begin{aligned}
\mathscr{H}_{\widetilde{M}}(n, m)= & \left\{\tau_{1}(u) \mid u \in V\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} \\
& \bigcup\left\{\tau_{1}(u)+\tau_{1}(v)-\tau_{2}(u, v) \mid \forall(u, v) \in E\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)\right\} .
\end{aligned}
$$

For some special graphs, we get the following interesting results for the integer set $\mathscr{H}_{\widetilde{M}}(n, m)$.
Corollary 3.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold with a correspondent vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$. If $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \cong P^{s}$, then

$$
\mathscr{H}_{\widetilde{M}}(n, m)=\left\{\tau_{1}\left(u_{i}\right), 1 \leq i \leq p\right\} \bigcup\left\{\tau_{1}\left(u_{i}\right)+\tau_{1}\left(u_{i+1}\right)-\tau_{2}\left(u_{i}, u_{i+1}\right) \mid 1 \leq i \leq p-1\right\}
$$

and if $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right) \cong C^{p}$ with $p \geq 4$, then

$$
\mathscr{H}_{\widetilde{M}}(n, m)=\left\{\tau_{1}\left(u_{i}\right), 1 \leq i \leq p\right\} \bigcup\left\{\tau_{1}\left(u_{i}\right)+\tau_{1}\left(u_{i+1}\right)-\tau_{2}\left(u_{i}, u_{i+1}\right) \mid 1 \leq i \leq p, i \equiv(\bmod p)\right\}
$$

## §4. Integration on combinatorial manifolds

We generalize the integration on manifolds to combinatorial manifolds and show it is independent on the choice of local charts and partition of unity in this section.

### 4.1 Partition of unity

Definition 4.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold and $\omega \in \Lambda(\widetilde{M})$. A support set Supp $\omega$ of $\omega$ is defined by

$$
\operatorname{Supp} \omega=\overline{\{p \in \widetilde{M} ; \omega(p) \neq 0\}}
$$

and say $\omega$ has compact support if Supp $\omega$ is compact in $\widetilde{M}$. A collection of subsets $\left\{C_{i} \mid i \in \widetilde{I}\right\}$ of $\widetilde{M}$ is called locally finite if for each $p \in \widetilde{M}$, there is a neighborhood $U_{p}$ of $p$ such that $U_{p} \cap C_{i}=\emptyset$ except for finitely many indices $i$.

A partition of unity on a combinatorial manifold $\widetilde{M}$ is defined in the next.
Definition 4.2 A partition of unity on a combinatorial manifold $\widetilde{M}$ is a collection $\left\{\left(U_{i}, g_{i}\right) \mid i \in\right.$ $\widetilde{I}\}$, where
(1) $\left\{U_{i} \mid i \in \widetilde{I}\right\}$ is a locally finite open covering of $\widetilde{M}$;
(2) $g_{i} \in \mathscr{X}(\widetilde{M}), g_{i}(p) \geq 0$ for $\forall p \in \widetilde{M}$ and $\operatorname{supp} g_{i} \in U_{i}$ for $i \in \widetilde{I}$;
(3) For $p \in \widetilde{M}, \sum_{i} g_{i}(p)=1$.

For a smoothly combinatorial manifold $\widetilde{M}$, denoted by $G[\widetilde{M}]$ the underlying graph of its correspondent vertex-edge labeled graph. We get the next result for a partition of unity on smoothly combinatorial manifolds.

Theorem 4.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold. Then $\widetilde{M}$ admits partitions of unity.

Proof For $\forall M \in V(G[\widetilde{M}])$, since $\widetilde{M}$ is smooth we know that $M$ is a smoothly submanifold of $\widetilde{M}$. As a byproduct, there is a partition of unity $\left\{\left(U_{M}^{\alpha}, g_{M}^{\alpha}\right) \mid \alpha \in I_{M}\right\}$ on $M$ with conditions following hold.
(1) $\left\{U_{M}^{\alpha} \mid \alpha \in I_{M}\right\}$ is a locally finite open covering of $M$;
(2) $g_{M}^{\alpha}(p) \geq 0$ for $\forall p \in M$ and $\operatorname{supp} g_{M}^{\alpha} \in U_{M}^{\alpha}$ for $\alpha \in I_{M}$;
(3) For $p \in M, \sum_{i} g_{M}^{i}(p)=1$.

By definition, for $\forall p \in \widetilde{M}$, there is a local chart $\left(U_{p},\left[\varphi_{p}\right]\right)$ enable $\varphi_{p}: U_{p} \rightarrow B^{n_{i_{1}}} \cup B^{n_{i_{2}}} \bigcup \cdots$ $\bigcup B^{n_{i_{s(p)}}}$ with $B^{n_{i_{1}}} \bigcap B^{n_{i_{2}}} \bigcap \cdots \bigcap B^{n_{i s(p)}} \neq \emptyset$. Now let $U_{M_{i_{1}}}^{\alpha}, U_{M_{i_{2}}}^{\alpha}, \cdots, U_{M_{i_{s(p)}}}^{\alpha}$ be $s(p)$ open sets on manifolds $M, M \in V(G[\widetilde{M}])$ such that

$$
\begin{equation*}
p \in U_{p}^{\alpha}=\bigcup_{h=1}^{s(p)} U_{M_{i_{h}}}^{\alpha} \tag{4.1}
\end{equation*}
$$

We define

$$
\widetilde{S}(p)=\left\{U_{p}^{\alpha} \mid \text { all integers } \alpha \text { enabling (4.1) hold }\right\}
$$

Then

$$
\widetilde{\mathcal{A}}=\bigcup_{p \in \widetilde{M}} \widetilde{S}(p)=\left\{U_{p}^{\alpha} \mid \alpha \in \widetilde{I}(p)\right\}
$$

is locally finite covering of the combinatorial manifold $\widetilde{M}$ by properties $(1)-(3)$. For $\forall U_{p}^{\alpha} \in$ $\widetilde{S}(p)$, define

$$
\sigma_{U_{p}^{\alpha}}=\sum_{s \geq 1} \sum_{\left\{i_{1}, i_{2}, \cdots, i_{s}\right\} \subset\{1,2, \cdots, s(p)\}}\left(\prod_{h=1}^{s} g_{M_{i_{h}}^{\varsigma}}\right)
$$

and

$$
g_{U_{p}^{\alpha}}=\frac{\sigma_{U_{p}^{\alpha}}}{\sum_{\widetilde{V} \in \widetilde{S}(p)} \sigma_{\widetilde{V}}}
$$

Then it can be checked immediately that $\left\{\left(U_{p}^{\alpha}, g_{U_{p}^{\alpha}}\right) \mid p \in \widetilde{M}, \alpha \in \widetilde{I}(p)\right\}$ is a partition of unity on $\widetilde{M}$ by properties (1)-(3) on $g_{M}^{\alpha}$ and the definition of $g_{U_{p}^{\alpha}}$.

Corollary 4.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold with an atlas $\widetilde{\mathcal{A}}=\left\{\left(V_{\alpha},\left[\varphi_{\alpha}\right]\right) \mid \alpha \in\right.$ $\widetilde{I}\}$ and $t_{\alpha}$ be a $C^{k}$ tensor field, $k \geq 1$, of field type $(r, s)$ defined on $V_{\alpha}$ for each $\alpha$, and assume that there exists a partition of unity $\left\{\left(U_{i}, g_{i}\right) \mid i \in J\right\}$ subordinate to $\widetilde{\mathcal{A}}$, i.e., for $\forall i \in J$, there exists $\alpha(i)$ such that $U_{i} \subset V_{\alpha(i)}$. Then for $\forall p \in \widetilde{M}$,

$$
t(p)=\sum_{i} g_{i} t_{\alpha(i)}
$$

is a $C^{k}$ tensor field of type $(r, s)$ on $\widetilde{M}$
Proof Since $\left\{U_{i} \mid i \in J\right\}$ is locally finite, the sum at each point $p$ is a finite sum and $t(p)$ is a type $(r, s)$ for every $p \in \widetilde{M}$. Notice that $t$ is $C^{k}$ since the local form of $t$ in a local chart $\left(V_{\alpha(i)},\left[\varphi_{\alpha(i)}\right]\right)$ is

$$
\sum_{j} g_{i} t_{\alpha(j)},
$$

where the summation taken over all indices $j$ such that $V_{\alpha(i)} \bigcap V_{\alpha(j)} \neq \emptyset$. Those number $j$ is finite by the local finiteness.

### 4.2 Integration on combinatorial manifolds

First, we introduce integration on combinatorial Euclidean spaces. Let $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ be a combinatorially Euclidean space and

$$
\tau: \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right) \rightarrow \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)
$$

a $C^{1}$ differential mapping with

$$
[\bar{y}]=\left[y^{\kappa \lambda}\right]_{m \times n_{m}}=\left[\tau^{\kappa \lambda}\left(\left[x^{\mu \nu}\right]\right)\right]_{m \times n_{m}} .
$$

The Jacobi matrix of $f$ is defined by

$$
\frac{\partial[\bar{y}]}{\partial[\bar{x}]}=\left[A_{(\kappa \lambda)(\mu \nu)}\right],
$$

where $A_{(\kappa \lambda)(\mu \nu)}=\frac{\partial \tau^{\kappa \lambda}}{\partial x^{\mu \nu}}$.
Now let $\omega \in T_{k}^{0}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)$, a pull-back $\tau^{*} \omega \in T_{k}^{0}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)$ is defined by

$$
\tau^{*} \omega\left(a_{1}, a_{2}, \cdots, a_{k}\right)=\omega\left(f\left(a_{1}\right), f\left(a_{2}\right), \cdots, f\left(a_{k}\right)\right)
$$

for $\forall a_{1}, a_{2}, \cdots, a_{k} \in \widetilde{R}$.
Denoted by $n=\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)$. If $0 \leq l \leq n, \operatorname{recall}([4])$ that the basis of $\Lambda^{l}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)$ is

$$
\left\{\mathbf{e}^{i_{1}} \wedge \mathbf{e}^{i_{2}} \wedge \cdots \wedge \mathbf{e}^{i_{l}} \mid 1 \leq i_{1}<i_{2} \cdots<i_{l} \leq n\right\}
$$

for a basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}$ of $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ and its dual basis $\mathbf{e}^{1}, \mathbf{e}^{2}, \cdots, \mathbf{e}^{n}$. Thereby the dimension of $\Lambda^{l}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)$ is

$$
\binom{n}{l}=\frac{\left(\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)\right)!}{l!\left(\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)-l\right)!}
$$

Whence $\Lambda^{n}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)$ is one-dimensional. Now if $\omega_{0}$ is a basis of $\Lambda^{n}(\widetilde{R})$, we then know that its each element $\omega$ can be represented by $\omega=c \omega_{0}$ for a number $c \in \mathbf{R}$. Let $\tau: \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right) \rightarrow \widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ be a linear mapping. Then

$$
\tau^{*}: \Lambda^{n}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right) \rightarrow \Lambda^{n}\left(\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)\right)
$$

is also a linear mapping with $\tau^{*} \omega=c \tau^{*} \omega_{0}=b \omega$ for a unique constant $b=\operatorname{det} \tau$, called the determinant of $\tau$. It has been known that ([1])

$$
\operatorname{det} \tau=\operatorname{det}\left(\frac{\partial[\bar{y}]}{\partial[\bar{x}]}\right)
$$

for a given basis $\mathbf{e}_{1}, \mathbf{e}_{2}, \cdots, \mathbf{e}_{n}$ of $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ and its dual basis $\mathbf{e}^{1}, \mathbf{e}^{2}, \cdots, \mathbf{e}^{n}$.
Definition 4.3 Let $\widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ be a combinatorial Euclidean space, $n=\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)$, $\widetilde{U} \subset \widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ and $\omega \in \Lambda^{n}(U)$ have compact support with

$$
\omega(x)=\omega_{\left(\mu_{i_{1}} \nu_{i_{1}}\right) \cdots\left(\mu_{i_{n}} \nu_{i_{n}}\right)} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d x^{\mu_{i_{n}} \nu_{i_{n}}}
$$

relative to the standard basis $\mathbf{e}^{\mu \nu}, 1 \leq \mu \leq m, 1 \leq \nu \leq n_{m}$ of $\widetilde{\mathbf{R}}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ with $\mathbf{e}^{\mu \nu}=e^{\nu}$ for $1 \leq \mu \leq \widehat{m}$. An integral of $\omega$ on $\widetilde{U}$ is defined to be a mapping $\int_{\widetilde{U}}: f \rightarrow \int_{\widetilde{U}} f \in \mathbf{R}$ with

$$
\begin{equation*}
\int_{\widetilde{U}} \omega=\int \omega(x) \prod_{\nu=1}^{\widehat{m}} d x^{\nu} \prod_{\mu \geq \widehat{m}+1,1 \leq \nu \leq n_{i}} d x^{\mu \nu} \tag{4.2}
\end{equation*}
$$

where the right hand side of (4.2) is the Riemannian integral of $\omega$ on $\widetilde{U}$.
For example, consider the combinatorial Euclidean space $\widetilde{\mathbf{R}}(3,5)$ with $\mathbf{R}^{3} \cap \mathbf{R}^{5}=\mathbf{R}$. Then the integration of an $\omega \in \Lambda^{7}(\widetilde{U})$ for an open subset $\widetilde{U} \in \widetilde{\mathbf{R}}(3,5)$ is

$$
\int_{\widetilde{U}} \omega=\int_{\tilde{U} \cap\left(\mathbf{R}^{3} \cup \mathbf{R}^{5}\right)} \omega(x) d x^{1} d x^{12} d x^{13} d x^{22} d x^{23} d x^{24} d x^{25} .
$$

Theorem 4.2 Let $U$ and $V$ be open subsets of $\widetilde{\mathbf{R}}\left(n_{1}, \cdots, n_{m}\right)$ and $\tau: U \rightarrow V$ is an orientationpreserving diffeomorphism. If $\omega \in \Lambda^{n}(V)$ has a compact support for $n=\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)$, then $\tau^{*} \omega \in \Lambda^{n}(U)$ has compact support and

$$
\int \tau^{*} \omega=\int \omega
$$

Proof Let $\omega(x)=\omega_{\left(\mu_{i_{1}} \nu_{i_{1}}\right) \cdots\left(\mu_{i_{n}} \nu_{i_{n}}\right)} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d x^{\mu_{i_{n}} \nu_{i_{n}}} \in \Lambda^{n}(V)$. Since $\tau$ is a diffeomorphism, the support of $\tau^{*} \omega$ is $\tau^{-1}(\operatorname{supp} \omega)$, which is compact by that of supp $\omega$ compact.

By the usual change of variables formula, since $\tau^{*} \omega=(\omega \circ \tau)(\operatorname{det} \tau) \omega_{0}$ by definition, where $\omega_{0}=d x^{1} \wedge \cdots \wedge d x^{\widehat{m}} \wedge d x^{1(\widehat{m}+1)} \wedge d x^{1(\hat{m}+2)} \wedge \cdots \wedge d x^{1 n_{1}} \wedge \cdots \wedge d x^{m n_{m}}$, we then get that

$$
\begin{aligned}
\int \tau^{*} \omega & =\int(\omega \circ \tau)(\operatorname{det} \tau) \prod_{\nu=1}^{\widehat{m}} d x^{\nu} \prod_{\mu \geq \widehat{m}+1,1 \leq \nu \leq n_{\mu}} d x^{\mu \nu} \\
& =\int \omega
\end{aligned}
$$

Definition 4.4 Let $\widetilde{M}$ be a smoothly combinatorial manifold. If there exists a family $\left\{\left(U_{\alpha},\left[\varphi_{\alpha}\right] \mid \alpha \in\right.\right.$ $\widetilde{I})\}$ of local charts such that
(1) $\bigcup_{\alpha \in \widetilde{I}} U_{\alpha}=\widetilde{M}$;
(2) for $\forall \alpha, \beta \in \widetilde{I}$, either $U_{\alpha} \bigcap U_{\beta}=\emptyset$ or $U_{\alpha} \bigcap U_{\beta} \neq \emptyset$ but for $\forall p \in U_{\alpha} \bigcap U_{\beta}$, the Jacobi matrix

$$
\operatorname{det}\left(\frac{\partial\left[\varphi_{\beta}\right]}{\partial\left[\varphi_{\alpha}\right]}\right)>0
$$

then $\widetilde{M}$ is called an oriently combinatorial manifold and $\left(U_{\alpha},\left[\varphi_{\alpha}\right]\right)$ an oriented chart for $\forall \alpha \in \widetilde{I}$.
Now for any integer $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$, we can define an integral of $\widetilde{n}$-forms on a smoothly combinatorial manifold $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$.

Definition 4.5 Let $\widetilde{M}$ be a smoothly combinatorial manifold with orientation $\mathscr{O}$ and $(\widetilde{U} ;[\varphi])$ a positively oriented chart with a constant $n_{\widetilde{U}} \in \mathscr{H}_{\widetilde{M}}(n, m)$. Suppose $\omega \in \Lambda^{n_{\tilde{U}}(\widetilde{M}), \widetilde{U} \subset \widetilde{M} \text { has }}$ compact support $\widetilde{C} \subset \widetilde{U}$. Then define

$$
\begin{equation*}
\int_{\widetilde{C}} \omega=\int \varphi_{*}\left(\left.\omega\right|_{\widetilde{U}}\right) \tag{4.3}
\end{equation*}
$$

Now if $\mathscr{C}_{\widetilde{M}}$ is an atlas of positively oriented charts with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$, let $\widetilde{P}=\left\{\left(\widetilde{U}_{\alpha}, \varphi_{\alpha}, g_{\alpha}\right) \mid \alpha \in \widetilde{I}\right\}$ be a partition of unity subordinate to $\mathscr{C}_{\widetilde{M}}$. For $\forall \omega \in \Lambda^{\widetilde{n}}(\widetilde{M})$, $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$, an integral of $\omega$ on $\widetilde{P}$ is defined by

$$
\begin{equation*}
\int_{\tilde{P}} \omega=\sum_{\alpha \in \tilde{I}} \int_{\alpha} g_{\alpha} \omega . \tag{4.4}
\end{equation*}
$$

The next result shows that the integral of $\widetilde{n}$-forms for $\forall \widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$ is well-defined.
Theorem 4.3 Let $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ be a smoothly combinatorial manifold. For $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$, the integral of $\widetilde{n}$-forms on $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ is well-defined, namely, the sum on the right hand side of (4.4) contains only a finite number of nonzero terms, not dependent on the choice of $\mathscr{C}_{\widetilde{M}}$ and if $P$ and $Q$ are two partitions of unity subordinate to $\mathscr{C}_{\widetilde{M}}$, then

$$
\int_{\widetilde{P}} \omega=\int_{\widetilde{Q}} \omega
$$

Proof By definition for any point $p \in \widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$, there is a neighborhood $\widetilde{U}_{p}$ such that only a finite number of $g_{\alpha}$ are nonzero on $\widetilde{U}_{p}$. Now by the compactness of supp $\omega$, only a finite number of such neighborhood cover supp $\omega$. Therefore, only a finite number of $g_{\alpha}$ are nonzero on the union of these $\widetilde{U}_{p}$, namely, the sum on the right hand side of (4.4) contains only a finite number of nonzero terms.

Notice that the integral of $\widetilde{n}$-forms on a smoothly combinatorial manifold $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ is well-defined for a local chart $\widetilde{U}$ with a constant $n_{\widetilde{U}}=\widehat{s}(p)+\sum_{i=1}^{s(p)}\left(n_{i}-\widehat{s}(p)\right)$ for $\forall p \in \widetilde{U} \subset$ $\widetilde{M}\left(n_{1}, \cdots, n_{m}\right)$ by (4.3) and Definition 4.3. Whence each term on the right hand side of (4.4) is well-defined. Thereby $\int_{\widetilde{P}} \omega$ is well-defined.

Now let $\widetilde{P}=\left\{\left(\widetilde{U}_{\alpha}, \varphi_{\alpha}, g_{\alpha}\right) \mid \alpha \in \widetilde{I}\right\}$ and $\widetilde{Q}=\left\{\left(\widetilde{V}_{\beta}, \varphi_{\beta}, h_{\beta}\right) \mid \beta \in \widetilde{J}\right\}$ be partitions of unity subordinate to atlas $\mathscr{C}_{\widetilde{M}}$ and $\mathscr{C}_{\widetilde{M}}^{*}$ with respective integer sets $\mathscr{H}_{\widetilde{M}}(n, m)$ and $\mathscr{H}_{\frac{M}{M}}^{*}(n, m)$. Then these functions $\left\{g_{\alpha} h_{\beta}\right\}$ satisfy $g_{\alpha} h_{\beta}(p)=0$ except only for a finite number of index pairs $(\alpha, \beta)$ and

$$
\sum_{\alpha} \sum_{\beta} g_{\alpha} h_{\beta}(p)=1, \text { for } \forall p \in \widetilde{M}\left(n_{1}, \cdots, n_{m}\right)
$$

Since $\sum_{\beta}=1$, we then get that

$$
\begin{aligned}
\int_{\widetilde{P}} & =\sum_{\alpha} \int g_{\alpha} \omega=\sum_{\beta} \sum_{\alpha} \int h_{\beta} g_{\alpha} \omega \\
& =\sum_{\alpha} \sum_{\beta} \int g_{\alpha} h_{\beta} \omega=\int_{\widetilde{Q}} \omega
\end{aligned}
$$

By the relation of smoothly combinatorial manifolds with these vertex-edge labeled graphs established in Theorem 3.1, we can also get the integration on a vertex-edge labeled graph $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ by viewing it that of the correspondent smoothly combinatorial manifold $\widetilde{M}$ with $\Lambda^{l}(G)=\Lambda^{l}(\widetilde{M}), \mathscr{H}_{G}(n, m)=\mathscr{H}_{\widetilde{M}}(n, m)$, namely define the integral of an $\widetilde{n}$-form $\omega$ on $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ for $\widetilde{n} \in \mathscr{H}_{G}(n, m)$ by

$$
\int_{G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)} \omega=\int_{\widetilde{M}} \omega
$$

Then each result in this paper can be restated by combinatorial words, such as Theorem 5.1 and its corollaries in next section.

Now let $n_{1}, n_{2}, \cdots, n_{m}$ be a positive integer sequence. For any point $p \in \widetilde{M}$, if there is a local chart $\left(\widetilde{U}_{p},\left[\varphi_{p}\right]\right)$ such that $\left[\varphi_{p}\right]: U_{p} \rightarrow B^{n_{1}} \bigcup B^{n_{2}} \bigcup \cdots \bigcup B^{n_{m}}$ with $\operatorname{dim}\left(B^{n_{1}} \bigcap B^{n_{2}} \bigcap \cdots \bigcap\right.$ $\left.B^{n_{m}}\right)=\widehat{m}$, then $\widetilde{M}$ is called a homogenously combinatorial manifold. Particularly, if $m=1$, a homogenously combinatorial manifold is nothing but a manifold. We then get consequences for the integral of $\left(\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)\right)$-forms on homogenously combinatorial manifolds.

Corollary 4.2 The integral of $\left(\widehat{m}+\sum_{i=1}^{m}\left(n_{i}-\widehat{m}\right)\right)$-forms on a homogenously combinatorial manifold $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ is well-defined, particularly, the integral of $n$-forms on an $n$-manifold is well-defined.

Similar to Theorem 4.2 for the change of variables formula of integral in a combinatorial Euclidean space, we get that of formula in smoothly combinatorial manifolds.

Theorem 4.4 Let $\widetilde{M}\left(n_{1}, n_{2}, \cdots, n_{m}\right)$ and $\widetilde{N}\left(k_{1}, k_{2}, \cdots, k_{l}\right)$ be oriently combinatorial manifolds and $\tau: \widetilde{M} \rightarrow \widetilde{N}$ an orientation-preserving diffeomorphism. If $\omega \in \Lambda^{\widetilde{k}}(\widetilde{N}), \widetilde{k} \in \mathscr{H}_{\widetilde{N}}(k, l)$ has compact support, then $\tau^{*} \omega$ has compact support and

$$
\int \omega=\int \tau^{*} \omega
$$

Proof Notice that $\operatorname{supp} \tau^{*} \omega=\tau^{-1}(\operatorname{supp} \omega)$. Thereby $\tau^{*} \omega$ has compact support since $\omega$ has so. Now let $\left\{\left(U_{i}, \varphi_{i}\right) \mid i \in \widetilde{I}\right\}$ be an atlas of positively oriented charts of $\widetilde{M}$ and $\widetilde{P}=\left\{g_{i} \mid i \in \widetilde{I}\right\}$ a subordinate partition of unity with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$. Then $\left\{\left(\tau\left(U_{i}\right), \varphi_{i} \circ \tau^{-1}\right) \mid i \in \widetilde{I}\right\}$ is an atlas of positively oriented charts of $\widetilde{N}$ and $\widetilde{Q}=\left\{g_{i} \circ \tau^{-1}\right\}$ is a partition of unity subordinate to the covering $\left\{\tau\left(U_{i}\right) \mid i \in \widetilde{I}\right\}$ with an integer set $\mathscr{H}_{\tau(\widetilde{M})}(k, l)$. Whence, we get that

$$
\begin{aligned}
\int \tau^{*} \omega & =\sum_{i} \int g_{i} \tau^{*} \omega=\sum_{i} \int \varphi_{i *}\left(g_{i} \tau^{*} \omega\right) \\
& =\sum_{i} \int \varphi_{i *}\left(\tau^{-1}\right)_{*}\left(g_{i} \circ \tau^{-1}\right) \omega=\sum_{i} \int\left(\varphi_{i} \circ \tau^{-1}\right)_{*}\left(g_{i} \circ \tau^{-1}\right) \omega=\int \omega
\end{aligned}
$$

## §5. A generalized of Stokes' or Gauss' theorem

Definition 5.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold. A subset $\widetilde{D}$ of $\widetilde{M}$ is with boundary if its points can be classified into two classes following.

Class 1(interior point $\operatorname{Int} \widetilde{D})$ For $\forall p \in \operatorname{Int} D$, there is a neighborhood $\widetilde{V}_{p}$ of $p$ enable $\widetilde{V}_{p} \subset \widetilde{D}$.

Case 2(boundary $\partial \widetilde{D}$ ) For $\forall p \in \partial \widetilde{D}$, there is integers $\mu, \nu$ for a local chart $\left(U_{p} ;\left[\varphi_{p}\right]\right)$ of $p$ such that $x^{\mu \nu}(p)=0$ but

$$
\widetilde{U}_{p} \cap \widetilde{D}=\left\{q \mid q \in U_{p}, x^{\kappa \lambda} \geq 0 \text { for } \forall\{\kappa, \lambda\} \neq\{\mu, \nu\}\right\}
$$

Then we generalize the famous Stokes' theorem on manifolds in the next.
Theorem 5.1 Let $\widetilde{M}$ be a smoothly combinatorial manifold with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ and $\widetilde{D}$ a boundary subset of $\widetilde{M}$. For $\forall \widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$ if $\omega \in \Lambda^{\widetilde{n}}(\widetilde{M})$ has a compact support, then

$$
\int_{\widetilde{D}} \tilde{d} \omega=\int_{\partial \widetilde{D}} \omega
$$

with the convention $\int_{\partial \widetilde{D}} \omega=0$ while $\partial \widetilde{D}=\emptyset$.
Proof By Definition 4.5, the integration on a smoothly combinatorial manifold was constructed with partitions of unity subordinate to an atlas. Let $\mathscr{C}_{\widetilde{M}}$ be an atlas of positively oriented charts with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ and $\widetilde{P}=\left\{\left(\widetilde{U}_{\alpha}, \varphi_{\alpha}, g_{\alpha}\right) \mid \alpha \in \widetilde{I}\right\}$ a partition of unity subordinate to $\mathscr{C}_{\widetilde{M}}$. Since supp $\omega$ is compact, we know that

$$
\begin{aligned}
\int_{\widetilde{D}} \widetilde{d} \omega & =\sum_{\alpha \in \widetilde{I}} \int_{\widetilde{D}} \widetilde{d}\left(g_{\alpha} \omega\right), \\
\int_{\partial \widetilde{D}} \omega & =\sum_{\alpha \in \widetilde{I}} \int_{\partial \widetilde{D}} g_{\alpha} \omega
\end{aligned}
$$

and there are only finite nonzero terms on the right hand side of the above two formulae. Thereby, we only need to prove

$$
\int_{\widetilde{D}} \widetilde{d}\left(g_{\alpha} \omega\right)=\int_{\partial \widetilde{D}} g_{\alpha} \omega
$$

for $\forall \alpha \in \widetilde{I}$.
Not loss of generality we can assume that $\omega$ is an $\widetilde{n}$-forms on a local chart $(\widetilde{U},[\varphi])$ with a compact support for $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$. Now write

$$
\omega=\sum_{h=1}^{\widetilde{n}}(-1)^{h-1} \omega_{\mu_{i_{h}} \nu_{i_{h}}} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d \widehat{x^{\mu_{i_{h}} \nu_{i_{h}}}} \wedge \cdots \wedge d x^{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}}
$$

where $\widehat{x^{\mu_{i_{h}} \nu_{i}}}{ }_{h}$ means that $d x^{\mu_{i_{h}} \nu_{i_{h}}}$ is deleted, where

$$
i_{h} \in\left\{1, \cdots, \widehat{n}_{U},\left(1\left(\widehat{n}_{U}+1\right)\right), \cdots,\left(1 n_{1}\right),\left(2\left(\widehat{n}_{U}+1\right)\right), \cdots,\left(2 n_{2}\right), \cdots,\left(m n_{m}\right)\right\}
$$

Then

$$
\begin{equation*}
\widetilde{d} \omega=\sum_{h=1}^{\tilde{n}} \frac{\partial \omega_{\mu_{i_{h}} \nu_{i_{h}}}}{\partial x^{\mu_{i_{h}} \nu_{i_{h}}}} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d x^{\mu_{i_{\tilde{n}}} \nu_{\tilde{n}}} . \tag{5.1}
\end{equation*}
$$

Consider the appearance of neighborhood $\widetilde{U}$. There are two cases must be considered.
Case $1 \quad \widetilde{U} \bigcap \partial \widetilde{D}=\emptyset$
In this case, $\int_{\partial \widetilde{D}} \omega=0$ and $\widetilde{U}$ is in $\widetilde{M} \backslash \widetilde{D}$ or in $\operatorname{Int} \widetilde{D}$. The former is naturally implies that $\int_{\widetilde{D}} \widetilde{d}\left(g_{\alpha} \omega\right)=0$. For the later, we find that

$$
\begin{equation*}
\int_{\widetilde{D}} \widetilde{d} \omega=\sum_{h=1}^{\tilde{n}} \int_{\widetilde{U}} \frac{\partial \omega_{\mu_{i_{h}} \nu_{i_{h}}}}{\partial x^{\mu_{i_{h}} \nu_{i_{h}}}} d x^{\mu_{i_{1}} \nu_{i_{1}}} \cdots d x^{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}} \tag{5.2}
\end{equation*}
$$

Notice that $\int_{-\infty}^{+\infty} \frac{\partial \omega_{\mu_{i_{h}} \nu_{i_{h}}}}{\partial x^{\mu_{i_{i}} \nu_{\nu_{h}}}} d x^{\mu_{i_{h}} \nu_{i_{h}}}=0$ since $\omega_{\mu_{i_{h}} \nu_{i_{h}}}$ has compact support. Thus $\int_{\tilde{D}} \tilde{d} \omega=0$ as desired.

Case $2 \widetilde{U} \bigcap \partial \widetilde{D} \neq \emptyset$
In this case we can do the same trick for each term except the last. Without loss of generality, assume that

$$
\widetilde{U} \bigcap \widetilde{D}=\left\{q \mid q \in U, x^{\mu_{i \tilde{n}} \nu_{i \widetilde{n}}}(q) \geq 0\right\}
$$

and

$$
\widetilde{U} \bigcap \partial \widetilde{D}=\left\{q \mid q \in U, x^{\mu_{i_{\tilde{n}}} \nu_{\tilde{n}}}(q)=0\right\}
$$

Then we get that

$$
\begin{aligned}
\int_{\partial \widetilde{D}} \omega & =\int_{U \cap \partial \widetilde{D}} \omega \\
& =\sum_{h=1}^{\tilde{n}}(-1)^{h-1} \int_{U \cap \partial \widetilde{D}} \omega_{\mu_{i_{h}} \nu_{i_{h}}} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d \widehat{x^{\mu_{i_{h}} \nu_{i}}} \wedge \cdots \wedge d x^{\mu_{\tilde{n}} \nu_{i_{\tilde{n}}}} \\
& =(-1)^{\widetilde{n}-1} \int_{U \cap \partial \widetilde{D}} \omega_{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}} d x^{\mu_{i_{1}} \nu_{i_{1}}} \wedge \cdots \wedge d x^{\mu_{\tilde{n}-1} \nu_{i_{\tilde{n}-1}}}
\end{aligned}
$$

since $d x^{\mu_{i_{n}} \nu_{i_{n}}}(q)=0$ for $q \in \widetilde{U} \cap \partial \widetilde{D}$. Notice that $\mathbf{R}^{\tilde{n}-1}=\partial \mathbf{R}_{+}^{\tilde{n}}$ but the usual orientation on $\mathbf{R}^{\widetilde{n}-1}$ is not the boundary orientation, whose outward unit normal is $-\mathbf{e}_{\widetilde{n}}=(0, \cdots, 0,-1)$. Hence

$$
\int_{\partial \widetilde{D}} \omega=-\int_{\partial \mathbf{R}_{+}^{\tilde{n}}} \omega_{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}}\left(x^{\mu_{i_{1}} \nu_{i_{1}}}, \cdots, x^{\mu_{\tilde{n}-1} \nu_{\tilde{n}-1}}, 0\right) d x^{\mu_{i_{1}} \nu_{i_{1}}} \cdots d x^{\mu_{i_{\tilde{n}-1}} \nu_{i_{\tilde{n}-1}}} .
$$

On the other hand, by the fundamental theorem of calculus,

$$
\begin{aligned}
& \int_{\mathbf{R}^{\tilde{n}-1}}\left(\int_{0}^{\infty} \frac{\left.\partial \omega_{\mu_{i_{\tilde{\tilde{}}}} \nu_{\tilde{\tilde{n}}}}^{\partial x^{\mu_{\tilde{n}} \nu_{\tilde{n}}}}\right) d x^{\mu_{i_{1}} \nu_{i_{1}}} \cdots d x^{\mu_{\tilde{n}-1} \nu_{i_{\tilde{n}-1}}}}{=-\int_{\mathbf{R}^{\tilde{n}-1}} \omega_{\mu_{i_{\tilde{n}}} \nu_{\tilde{n}_{\tilde{n}}}}\left(x^{\mu_{i_{1}} \nu_{i_{1}}}, \cdots, x^{\mu_{i_{\tilde{n}-1}} \nu_{\tilde{i_{\tilde{n}}-1}}}, 0\right) d x^{\mu_{i_{1}} \nu_{i_{1}}} \cdots d x^{\mu_{i_{n-1}} \nu_{i_{n-1}}} .} .\right.
\end{aligned}
$$

Since $\omega_{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}}$ has a compact support, thus

$$
\int_{U} \omega=-\int_{\mathbf{R}_{\tilde{n}-1}} \omega_{\mu_{i_{\tilde{n}}} \nu_{i_{\tilde{n}}}}\left(x^{\mu_{i_{1}} \nu_{i_{1}}}, \cdots, x^{\mu_{\tilde{n}-1} \nu_{\tilde{n}-1}}, 0\right) d x^{\mu_{i_{1}} \nu_{i_{1}}} \cdots d x^{\mu_{\tilde{n}-1} \nu_{\tilde{n}-1}}
$$

Therefore, we get that

$$
\int_{\widetilde{D}} \widetilde{d} \omega=\int_{\partial \widetilde{D}} \omega
$$

This completes the proof.
Corollaries following are immediately obtained by Theorem 5.1
Corollary 5.1 Let $\widetilde{M}$ be a homogenously combinatorial manifold with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$ and $\widetilde{D}$ a boundary subset of $\widetilde{M}$. For $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$ if $\omega \in \Lambda^{\widetilde{n}}(\widetilde{M})$ has a compact support, then

$$
\int_{\widetilde{D}} \widetilde{d} \omega=\int_{\partial \widetilde{D}} \omega,
$$

particularly, if $\widetilde{M}$ is nothing but a manifold, the Stokes' theorem holds.
Corollary 5.2 Let $\widetilde{M}$ be a smoothly combinatorial manifold with an integer set $\mathscr{H}_{\widetilde{M}}(n, m)$. For $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$, if $\omega \in \Lambda^{\widetilde{n}}(\widetilde{M})$ has a compact support, then

$$
\int_{\widetilde{M}} \omega=0
$$

By the definition of integration on vertex-edge labeled graphs $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$, let a boundary subset of $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ mean that of its correspondent combinatorial manifold $\widetilde{M}$. Theorem 5.1 and Corollary 5.2 then can be restated by a combinatorial manner as follows.

Theorem 5.2 Let $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ be a vertex-edge labeled graph correspondent with an integer set $\mathscr{H}_{G}(n, m)$ and $\widetilde{D}$ a boundary subset of $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$. For $\forall \widetilde{n} \in \mathscr{H}_{G}(n, m)$ if $\omega \in$ $\Lambda^{\widetilde{n}}\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$ has a compact support, then

$$
\int_{\widetilde{D}} \widetilde{d} \omega=\int_{\partial \widetilde{D}} \omega
$$

with the convention $\int_{\partial \widetilde{D}} \omega=0$ while $\partial \widetilde{D}=\emptyset$.
Corollary 5.3 Let $G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)$ be a vertex-edge labeled graph correspondent with an integer set $\mathscr{H}_{G}(n, m)$. For $\forall \widetilde{n} \in \mathscr{H}_{G}(n, m)$ if $\omega \in \Lambda^{\widetilde{n}}\left(G\left(\left[0, n_{m}\right],\left[0, n_{m}\right]\right)\right)$ has a compact support, then

$$
\int_{G\left(\left[0, n_{m}\right]\left[0, n_{m}\right]\right)} \omega=0 .
$$

Similar to the case of manifolds, we find a generalization for Gauss' theorem on smoothly combinatorial manifolds in the next.

Theorem 5.3 Let $\widetilde{M}$ be a smoothly combinatorial manifold with an integer set $\mathscr{H}_{\widetilde{M}}(n, m), \widetilde{D}$ a boundary subset of $\widetilde{M}$ and $\mathbf{X}$ a vector field on $\widetilde{M}$ with a compact support. Then

$$
\int_{\widetilde{D}}(\operatorname{div} \mathbf{X}) \mathbf{v}=\int_{\partial \widetilde{D}} \mathbf{i}_{\mathbf{X}} \mathbf{v}
$$

where $\mathbf{v}$ is a volume form on $\widetilde{M}$, i.e., nonzero elements in $\Lambda^{\widetilde{n}}(\widetilde{M})$ for $\widetilde{n} \in \mathscr{H}_{\widetilde{M}}(n, m)$.
Proof This result is also a consequence of Theorem 5.1. Notice that

$$
(\operatorname{div} \mathbf{X}) \mathbf{v}=\widetilde{d}_{\mathbf{X}}^{\mathbf{X}} \mathbf{v}+\mathbf{i}_{\mathbf{X}} \widetilde{d} \mathbf{v}=\widetilde{d}_{\mathbf{X}}^{\mathbf{X}} \mathbf{v}
$$

According to Theorem 5.1, we then get that

$$
\int_{\widetilde{D}}(\operatorname{div} \mathbf{X}) \mathbf{v}=\int_{\partial \widetilde{D}} \mathbf{i}_{\mathbf{X}} \mathbf{v}
$$

## References

[1] R.Abraham, J.E.Marsden and T.Ratiu, Manifolds, Tensor Analysis and Application, Addison -Wesley Publishing Company, Inc, Reading, Mass, 1983.
[2] W.H.Chern and X.X.Li, Introduction to Riemannian Geometry, Peking University Press, 2002.
[3] L.F.Mao, Combinatorial speculations and combinatorial conjecture for mathematics, International J. Mathematical Combinatorics, Vol.1, No.1(2007),01-19.
[4] L.F.Mao, Geometrical theory on combinatorial manifolds, JP J.Geometry and Topology, Vol.7, No.1(2007),65-114. Also in arXiv: math.GM/0612760.
[5] L.F.Mao, Pseudo-Manifold Geometries with Applications, International J.Math.Combin, Vol.1,No.1(2007), 45-58. Also in e-print: arXiv: math. GM/061030\%.
[6] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[7] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ2006.
[8] F.Smarandache, Mixed non-euclidean geometries, eprint arXiv: math/0010119, 10/2000.

# A Note on the Maximum Genus of Graphs with Diameter 4 

Xiang Ren, WeiLi He and Lin Zhao<br>(Department of Mathematics of Beijing Jiaotong University, Beijing 100044, P.R.China)<br>Email: 05121759@bjtu.edu.cn


#### Abstract

Let $G$ be a simple graph with diameter four, if $G$ does not contain complete subgraph $K_{3}$ of order three. We prove that the Betti deficient number of $G, \xi(G) \leq 2$. i.e. the maximum genus of $G, \gamma_{M}(G) \geq \frac{1}{2} \beta(G)-1$ in this paper, which is related with Smarandache 2-manifolds with minimum faces.


Key words: Diameter, Betti deficiency number, maximum genus.
AMS (2000): 05C10.

## §1. Preliminaries and known results

In this paper, $G$ is a finite undirected simple connected graph. The maximum genus $\gamma_{M}(G)$ of $G$ is the largest genus of an orientable surface on which $G$ has a 2-cell embedding, and $\xi(G)$ is the Betti deficiency of $G$. To determine the maximum genus $\gamma_{M}(G)$ of a graph $G$ on orientable surfaces is related with map geometries, i.e., Smarandache 2-manifolds (see [1] for details) with minimum faces.

By Xuong's theory on the maximum genus of a connected graph, $\xi(G)$ equal to $\beta(G)-$ $2 \gamma_{M}(G)$, where $\beta(G)=|E(G)|-|V(G)|+1$ is the Betti number of $G$. For convenience, we use deficiency to replace the words Betti deficiency in this paper. Nebeský[2] showed that if $G$ is a connected graph and $A \subseteq E(G)$, let $v(G, A)=c(G-A)+b(G-A)-|A|-1$, where $c(G-A)$ denotes the number of components in $G-A$ and $b(G-A)$ denotes the number of components in $G-A$ with an odd Betti number, then we have $\xi(G)=\max \{v(G, A) \mid A \subseteq E(G)\}$.

Clearly, the maximum genus of a graph can be determined by its deficiency. In case of that $\xi(G) \leq 1$, the graph $G$ is said to be upper embeddable. As we known, following theorems are the main results on relations of the maximum genus with diameter of a graph.

Theorem 1.1 Let $G$ be a multigraph of diameter 2. Then $\xi(G) \leq 1$.
Skoviera proved Theorem 1.1 by a different method in [3] - [4].
Hunglin Fu and Minchu Tsai considered multigraphs of diameter 3 and proved the following theorem in [5].

[^6]Theorem 1.2 Let $G$ be a multigraph of diameter 3. Then $\xi(G) \leq 2$.
When the diameter of graphs is larger than 3 , the Betti deficiency of $G$ is unbounded. The following investigations have focused on graphs with a given diameter and some characters. Some results in this direction are presented in the following.

Theorem 1.3([16]) Let $G$ be a 3-connected multigraph of diameter 4, then $\xi(G) \leq 4$.
Theorem 1.4([16]) Let $G$ be a 3-connected simple graph of diameter 5. Then $\xi(G) \leq 18$.
Yuanqiu Huang and Yanpei Liu proved the following result in [6].

Theorem 1.5 Let $G$ be a simple, $K_{3}$-free graph of diameter 4 , then $\xi(G) \leq 4$, where $K_{3}$-free graph means that there are no spanning subgraphs $K_{3}$ in $G$.

The main purpose of this paper is to improve this result.

## §2. Main result and its proof

Nebesky's method is useful and the minimality property of the edge subset $A$ in this method plays an important role. For convenience, we call a graph with $\xi(G) \geq 2$ a deficient graph. Any set $A \subseteq E(G)$ such that $v(G, A)=\xi(G)$ will be called a Nebesky set. Furthermore, if $A$ is minimal, then it will be called a minimal Nebesky set.

Lemma 2.1([5]) Let $G$ be a deficient graph and $A$ a minimal Nebesky set of $G$. Then
(a) $b(G-A)=c(G-A) \geq 2$. More, if $G$ is a simple graph then every component of $G-A$ contains at least three vertices;
(b) the end vertices of every edge in $A$ belong to distinct components of $G-A$;
(c) any two components of $G-A$ are joined by at most one edge of $A$;
(d) $\xi(G)=2 c(G-A)-|A|-1$.

With the support of Lemma 2.1, we are able to construct a new graph based on the choice of $A$. Let $G$ be a deficient graph and $A$ a minimal Nebeský set of $G . G_{A}$ is called a testable graph of $G$ if $V\left(G_{A}\right)$ is the set of components of $G-A$ and two vertices in $G_{A}$ are adjacent if and only if they are joined in $G$ by an edge of $A$. We shall refer the vertices of $G_{A}$ to as the nodes of $G_{A}$, and $u_{A}, v_{A}, \ldots$ are typical notation for the nodes.

Lemma 2.2 Let $G$ be a deficient graph and A a minimal Nebesky set of $G$. Then

$$
\xi(G)=2 p\left(G_{A}\right)-q\left(G_{A}\right)-1
$$

where $p\left(G_{A}\right)$ and $q\left(G_{A}\right)$ are the numbers of nodes and edges of $G_{A}$, respectively.
Proof By the definition of $G_{A}$, we know that $p\left(G_{A}\right)=c(G-A)$ and $q\left(G_{A}\right)=|A|$. Applying Lemma 2.1, we find that

$$
\xi(G)=2 c(G-A)-|A|-1=2 p\left(G_{A}\right)-q\left(G_{A}\right)-1
$$

Lemma 2.3 If $G$ is triangle-free, there exist $a \omega_{A} \in V\left(G_{A}\right)$ such that $2 \leq\left|E\left(\omega_{A}, A\right)\right| \leq 3$, where $E\left(\omega_{A}, A\right)$ denotes the set of edges of $G_{A}$ incident with $\omega_{A}$.

Proof Let $T_{\omega_{A}}$ denote the component of $G-A$ which corresponds to $\omega_{A}$ in $G_{A}$. By Lemma $2.1\left|V\left(G_{A}\right)\right| \geq 2$. If for all $\omega_{A} \in V\left(G_{A}\right)$, there is $\left|E\left(\omega_{A}, A\right)\right| \geq 4$, then

$$
|A|=\frac{1}{2} \sum_{\omega_{A} \in V\left(G_{A}\right)}\left|E\left(\omega_{A}, A\right)\right| \geq 2\left|V\left(G_{A}\right)\right|
$$

Applying Lemma 2.1 and the definition of $G_{A}, \xi(G)=2 V\left(G_{A}\right)-|A|-1 \leq-1$, a contradiction.
For $G$ is connected, $\left|E\left(\omega_{A}, A\right)\right| \geq 1$. If $\left|E\left(\omega_{A}, A\right)\right|=1$, let $E\left(\omega_{A}, A\right)=\{e\}, e=f h, f \in$ $V\left(T_{\omega_{A}}\right), h \in V\left(T_{\sigma_{A}}\right), \sigma_{A} \in V\left(G_{A}\right)$. By Lemma 2.1, $\beta\left(T_{\omega_{A}}\right)$ is odd and $T_{\omega_{A}}$ is simple and triangle-free, there exists $f^{\prime} \in V\left(T_{\omega_{A}}\right)$ such that $f^{\prime} \neq f, f f^{\prime} \notin E(G)$. Similarly, there exists $h^{\prime} \in V\left(T_{\sigma_{A}}\right)$ such that $h^{\prime} \neq h, h h^{\prime} \notin E(G)$. Since $e$ is a bridge, $d_{G}\left(f^{\prime}, h^{\prime}\right) \geq 5$, a contradiction.

So we get that $2 \leq\left|E\left(\omega_{A}, A\right)\right| \leq 3$.
Theorem Let $G$ be a simple, triangle-free graph of diameter 4 , then $\xi(G) \leq 2$, i.e., the maximum genus of $G, \gamma_{M}(G) \geq \frac{1}{2} \beta(G)-1$.

Proof Let $\Pi=\{H \mid H$ is a simple graph of diameter 4 and does not contain a spanning subgraph $K_{3}$ with $\left.\xi(G)>2\right\}$. We claim that $\Pi$ is an empty set. Suppose it is not true, let $G \in \Pi$ be with minimum order. Clearly, $G$ is a deficient graph. Now let $A$ be a minimal Nebeský set. Applying Lemma 2.1(a), each component of $G-A$ has odd Betti number. Thus, each component of $G-A$ must be a quadrangle. Otherwise, there exists a graph $\left|V\left(G^{\prime}\right)\right|<|V(G)|$. Now let $T_{x_{A}}$ denote the component of $G-A$ which corresponds to $x_{A}$ in $G_{A}$ for each node $x_{A} \in V\left(G_{A}\right)$.

By Lemma 2.3, choose $z_{A} \in V\left(G_{A}\right)$ with $2 \leq\left|E\left(z_{A}, A\right)\right| \leq 3$, and define $D_{0}=\left\{z_{A}\right\}, D_{1}=$ $N\left(z_{A}\right)$ and $D_{2}=V\left(G_{A}\right)-N\left(z_{A}\right)$. We call $x \in V(G)$ a distance $k$ vertex, if min $\{d(x, z) \mid z \in$ $\left.V\left(T_{z_{A}}\right)\right\}=k$ and denote $E\left(D_{i}, D_{j}\right)=\left\{x_{A} y_{A} \in E\left(G_{A}\right) \mid x_{A} \in D_{i}\right.$ and $\left.y_{A} \in D_{j}\right\}$, where $0 \leq$ $i, j \leq 2$ (Note that the order of $x_{A}$ and $y_{A}$ is important throughout of the proof). We also need the following definitions.
$A_{1}=\left\{x_{A} y_{A} \in E\left(D_{2}, D_{1}\right) \mid\right.$ there exists a distance 1 vertex of $T_{y_{A}}$ adjacent to a distance 2 vertex of $T_{x_{A}}$, or a distance 2 vertex of $T_{y_{A}}$ adjacent to a distance 3 vertex of $T_{x_{A}}$ and a distance 1 vertex of $T_{\omega_{A}}$ for some $\left.\omega_{A} \in D_{1}-\left\{y_{A}\right\}\right\}$.
$A_{2}=\left\{x_{A} y_{A} \in E\left(D_{2}, D_{2}\right) \mid x_{A}\right.$ is not incident with any edge of $A_{1}$ and $y_{A}$ is incident with one edge of $A_{1}$ and $T_{y_{A}}$ contains a vertex both adjacent to a vertex of $T_{x_{A}}$ and a vertex of $T_{u_{A}}$ for some $\left.u_{A} \in D_{1}\right\} \cup\left\{x_{A} y_{A} \in E\left(D_{2}, D_{2}\right) \mid x_{A}\right.$ is not incident with any edge of $A_{1}$ and $y_{A}$ is incident with at least two edges of $\left.A_{1}\right\}$.
$A_{3}=\left\{x_{A} y_{A} \in E\left(D_{1}, D_{1}\right) \mid\right.$ there exists a distance 2 vertex of $T_{x_{A}}$ adjacent to a distance 1 vertex of $\left.T_{y_{A}}\right\}$.

Now, according to these edge subsets $A_{1}-A_{3}$ of $E\left(G_{A}\right)$, we define a directed graph $\overrightarrow{G_{A}}$ based on $G_{A}$ :
(i) $V\left(\overrightarrow{G_{A}}\right)=V\left(G_{A}\right)$;
(ii) if $x_{A} y_{A} \in E^{\prime}=\left(\bigcup_{i=1}^{3} A_{i}\right) \bigcup\left(D_{1}, D_{0}\right)$, then join two arcs from $y_{A}$ to $x_{A}$;
(iii) if $x_{A} y_{A} \in E\left(G_{A}\right)-E^{\prime}$, then let $\left(x_{A}, y_{A}\right)$ and $\left(y_{A}, x_{A}\right)$ be arcs of $\overrightarrow{G_{A}}$. By this definition, it is easy to see that

$$
\sum_{x_{A} \in V\left(G_{A}\right)} d e g\left(x_{A}\right)=\sum_{x_{A} \in V\left(\overrightarrow{G_{A}}\right)} d e g^{-}\left(x_{A}\right)
$$

where $\mathrm{deg}^{-}\left(x_{A}\right)$ denotes the in-degree of $x_{A}$ in $\overrightarrow{G_{A}}$. Therefore, the in-degree sum of $\overrightarrow{G_{A}}$ gives $2 q\left(G_{A}\right)$.

Now, we count the in-degree sum of $\overrightarrow{G_{A}}$. Let $x_{A}$ be an arbitrary node in $V\left(\overrightarrow{G_{A}}\right)$.
(1) $x_{A} \in D_{0}$. Then $\mathrm{deg}^{-}\left(x_{A}\right)=0$ clearly.
(2) $x_{A} \in D_{2}$. The situation is divided into the discussions (i)-(iv) following.
(i) $x_{A}$ is not incident with edges of $A_{1}$, but incident with edges of $A_{2}$.

Case $1 x_{A}$ is incident with at least two edges of $A_{2}$, then $\operatorname{deg}^{-}\left(x_{A}\right) \geq 4$.
Case $2 x_{A}$ is incident with one edge $e$ of $A_{2}$. Let $x_{1} y_{1}$ be an edge of $E(G)$ which corresponds to the edge $e$. Accordingly, $T_{z_{A}}$ is a quadrangle and $2 \leq\left|E\left(z_{A}, A\right)\right| \leq 3$. Then there exist $z_{1} \in V\left(T_{z_{A}}\right)$ and $\operatorname{deg}\left(z_{1}\right)=2$. We know that $d\left(x_{1}, z_{1}\right)=4$ in $G$. Let $V\left(T_{x_{A}}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. In $T_{x_{A}}, x_{2}$ must be incident with an edge of $E\left(G_{A}\right)-E^{\prime}$ such that $d\left(x_{2}, z_{1}\right) \leq 4$ (in fact $\left.d\left(x_{2}, z_{1}\right)=4\right)$. Similar discussion can be done done for vertices $x_{3}$ and $x_{4}$. So $\operatorname{deg}^{-}\left(x_{A}\right) \geq 4$.
(ii) $x_{A}$ is not incident with edges of $A_{1} \bigcup A_{2}$.

Let $V\left(T_{x_{A}}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. In $T_{x_{A}}, x_{1}$ must be incident with an edge of $E\left(G_{A}\right)-E^{\prime}$ such that $d\left(x_{1}, z_{1}\right) \leq 4\left(\right.$ in fact $\left.d\left(x_{2}, z_{1}\right)=4\right)$. Similar discussion can be done done for vertices $x_{2}, x_{3}$ and $x_{4}$. So $\operatorname{deg}^{-}\left(x_{A}\right) \geq 4$.
(iii) $x_{A}$ is incident with edges of $A_{1}$, but not incident with edges of $A_{2}$.

Case $1 x_{A}$ is incident with at least two edges of $A_{1}$, then $\operatorname{deg}^{-}\left(x_{A}\right) \geq 4$.
Case $2 x_{A}$ is incident with one edge $e$ of $A_{1}$. Let $x_{1} y_{1}$ be an edge of $E(G)$ which corresponds to the edge $e$. Let $V\left(T_{x_{A}}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $d\left(x_{1}, z_{1}\right) \geq 3$. In $T_{x_{A}}$, it supposes that $x_{3}$ is not incident with $x_{1}$, then $x_{3}$ must be incident an edge of $E\left(G_{A}\right)$. Let this edge be $e^{\prime}$. Then $e^{\prime} \in E\left(G_{A}\right)-E^{\prime}$, and $e^{\prime}$ contributes one de-agree. So $\operatorname{deg}^{-}\left(x_{A}\right) \geq 3$ (in fact, when $\operatorname{deg}^{-}\left(x_{A}\right)=3$, $\left.e^{\prime} \in E\left(D_{2}, D_{1}\right)\right)$.
(iv) $x_{A}$ is incident with edges of $A_{1}$ and $A_{2}$.

Case $1 x_{A}$ is incident with at least two edges of $A_{1}$, then $\operatorname{deg}^{-}\left(x_{A}\right) \geq 4$.
Case $2 x_{A}$ is incident with one edge $e$ of $A_{1}$. Let $x_{1} y_{1}$ be an edge of $E(G)$ which corresponds to the edge $e$. Let $V\left(T_{x_{A}}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$ and $d\left(x_{1}, z_{1}\right) \geq 3$. In $T_{x_{A}}$, it supposes that $x_{3}$ is not incident with $x_{1}$, then $x_{3}$ must be incident with an edge of $E\left(G_{A}\right)$. Let this edge be $e^{\prime}$. Then $e^{\prime} \in A_{2}$ or $e^{\prime} \in E\left(G_{A}\right)-E^{\prime}$. In the former, $e^{\prime}$ must contributes two de-agree for $x_{A}$. In the latter, $e^{\prime}$ contributes one de-agree. So $\operatorname{deg}^{-}\left(x_{A}\right) \geq 3$ (in fact, when $\operatorname{deg}^{-}\left(x_{A}\right)=3$, $\left.e^{\prime} \in E\left(D_{2}, D_{1}\right)\right)$.

Hence, for $x_{A} \in D_{2}, \operatorname{deg}^{-}\left(x_{A}\right) \geq 3$.

Let $M=\left\{x_{A} \in D_{2} \mid\right.$ deg $\left.^{-}\left(x_{A}\right)=3\right\}$. We get that

$$
\sum_{x_{A} \in D_{2}} d e g^{-}\left(x_{A}\right) \geq 4\left|D_{2}\right|-|M| .
$$

(3) $x_{A} \in D_{1}$.

By the definition of $\overrightarrow{G_{A}}$, the edge connects $D_{0}$ and $D_{1}$ contributes two de-agree for $x_{A}$. Let $x_{1} y_{1}$ be an edge of $E(G)$ corresponds to this edge $\left(y_{1} \in E\left(T_{z_{A}}\right)\right)$.

Let $V\left(T_{x_{A}}\right)=\left\{x_{1}, x_{2}, x_{3}, x_{4}\right\}$. In $T_{x_{A}}$, it supposes that $x_{3}$ is not incident with $x_{1}$. In $T_{z_{A}}$, there exists $z_{2} \in V\left(T_{z_{A}}\right)$ so that if $d\left(x_{3}, z_{2}\right) \leq 4$. If $x_{3}$ does not connect $z_{2}$ though $x_{2}$ or $x_{4}$, $x_{3}$ must be incident with one edge of $E\left(G_{A}\right)$. Let that edge be $e$. Then $e \in E\left(G_{A}\right)-E^{\prime}$ and $\operatorname{deg}\left(x_{A}\right) \geq 3$. If $x_{3}$ connects $z_{2}$ though $x_{2}$ or $x_{4}, x_{2}$ or $x_{4}$ is incident with one edge of $E\left(G_{A}\right)$. Let that edge be $e$. Then $e \in E\left(G_{A}\right)-E^{\prime}$ or $e \in A_{3}$, and $e$ contributes at least one de-agree. So $\operatorname{deg}\left(x_{A}\right) \geq 3$.

Hence, for all $x_{A} \in D_{1}$,

$$
\sum_{x_{A} \in D_{1}} d e g^{-}\left(x_{A}\right) \geq 3\left|D_{1}\right|+|M|
$$

Now by discussions (1) and (2), we get that

$$
\begin{aligned}
2 q\left(G_{A}\right) & =\sum_{x_{A} \in V\left(\vec{G}_{A}\right)} d e g^{-}\left(x_{A}\right) \\
& \geq 4\left|D_{2}\right|-|M|+3\left|D_{1}\right|+|M| \\
& =4 p\left(G_{A}\right)-\left|D_{1}\right|-4 \\
& \geq 4 P\left(G_{A}\right)-7
\end{aligned}
$$

Applying Lemma 2.2 again, we get that $\xi(G)=2 p\left(G_{A}\right)-1-q\left(G_{A}\right) \leq 2$, also a contradiction. This completes the proof.

To see that the upper bound presented in our theorem is best possible, let us consider the following family of infinite graphs, as depicts in Fig. 1. There are even paths with length 2 from $m$ to $n$. Thus, this graph is triangle-free with diameter 4 . It is not difficult to check that its Betti deficiency are equal to 2 .


Fig. 1

## References

[1] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[2] L.Nebeský, A new characterization of the maximum genus of a graph,Czechosolvak Math.J., 31(106)(1981),604-613.
[3] Skoviera M., The maximum genus of graphs of diameter two, Discrete Mathematics, 1991,87:175-180.
[4] Skoviera M., The decay number and the maximum genus of a graph, Mathematics Slovaca, 1992, 42(4):391-406.
[5] Hunglin Fu, Minchu Tsai, The maximum genus of diameter three graphs, Australasian J Combinatorics, 1996,14:187-197.
[6] Yuangqiu Huang, Yanpei Liu, On the Maximum Genus of Graphs with Diameter Four, Mathematica Scientia, 2001, 21A(3):349-354.
[7] Hung-Lin Fu, Ming-chun Tsai, The Maximum Genus of a Graph with Given Diameter and Connectivity, Electronic Notes of Discrete Math., Vol.11(2002).
[8] N.H.Xuong, How to determine the maximum genus of a graph, J.Combin.Theory(B), 26(1979),217-225.
[9] J.Chen, D.Archdeacon and J.L.Gross, Maximum genus and connectivity, Discrete Math., 149(1996),19-39.
[10] Nordhaus E, Stewart B and White A., On the maximum genus of a graph, J Combinatorial Theory B,1971,11:258-267.
[11] M.Knor, J. $\breve{S}$ iráă, Extremal graphs of diameter two and given maximum degree, embeddable in a fixed surface, J. Graph Theory, 24 (1997) No. 1, 1-8.
[12] D. Archdeacon, P.Bonnington, J. $\breve{S i r a ́ n}$, A Nebesky-type characterization for relative maximum genus, J. Combinat. Theory (B), 73 (1998), 77-98.
[13] Kanchi S.P and Chen J, A tight lower bound on the maximum genus of a 2-connected simplicial graph, manuscript(1992).
[14] Chen J,Kanchi S.P,Gross J.L., A tight lower bound on the maximum genus of a simplicial graph, Discrete Math.,1996,156:83-102.
[15] J. $\breve{S i r a ́ n} \breve{n}$, M. $\breve{S}$ koviera, Characterization of the maximum genus of a signed graph, J. Combinat. Theory (B) 52 (1991), 124-146.
[16] M.C.Tsai, A study of maximum genus via diameter, Ph.D.thesis, 1996, National Chiao Tung University, Hsin Chu,Tainwan,R.O.C.

# Long Dominating Cycles in Graphs 

Yongga A<br>(Department of Mathematics of Inner Mongolia Normal University, Huhhot 010022, P.R.China)<br>Zhiren Sun<br>(Department of Mathematics of Nanjing Normal University, Nanjing 210097, P.R. China)


#### Abstract

Let $G$ be a connected graph of order $n$, and $N C 2(G)$ denote $\min \{|N(u) \cup N(v)|$ : $\operatorname{dist}(u, v)=2\}$, where $\operatorname{dist}(u, v)$ is the distance between $u$ and $v$ in $G$. A cycle $C$ in $G$ is called a dominating cycle, if $V(G) \backslash V(C)$ is an independent set in $G$. In this paper, we prove that if $G$ contains a dominating cycle and $\delta \geq 2$, then $G$ contains a dominating cycle of length at least $\min \{n, 2 N C 2(G)-1\}$ and give a family of graphs showing our result is sharp, which proves a conjecture of R. Shen and F. Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces.


Key words: Dominating cycle, neighborhood union, distance.
AMS(2000): 05C38, 05C45.

## §1. Introduction

All graphs considered in this paper will be finite and simple. We use Bondy \& Murty [1] for terminology and notations not defined here.

Let $G=(V, E)$ be a graph of order $n$ and $C$ be a cycle in $G . C$ is called a dominating cycle, or briefly a $D$-cycle, if $V(G) \backslash V(C)$ is an independent set in $G$. For a vertex $v$ in $G$, the neighborhood of $v$ is denoted by $N(v)$, and the degree of $v$ is denoted by $d(v)$. For two subsets $S$ and $T$ of $V(G)$, we set $N_{T}(S)=\{v \in T \backslash S: N(v) \cap S \neq \emptyset\}$. We write $N(u, v)$ instead of $N_{V(G)}(\{u, v\})$ for any $u, v \in V(G)$. If $F$ and $H$ are two subgraphs of $G$, we also write $N_{F}(H)$ instead of $N_{V(F)}(V(H))$. In the case $F=G$, if no ambiguity can arise, we usually omit the subscript $G$ of $N_{G}(H)$. We denote by $G[S]$ the subgraph of $G$ induced by any subset $S$ of $V(G)$.

For a connected graph $G$ and $u, v \in V(G)$, we define the distance between $u$ and $v$ in $G$, denoted by $\operatorname{dist}(u, v)$, as the minimum value of the lengths of all paths joining $u$ and $v$ in $G$. If $G$ is non-complete, let $N C(G)$ denote $\min \{|N(u, v)|: u v \notin E(G)\}$ and $N C 2(G)$ denote $\min \{|N(u, v)|: \operatorname{dist}(u, v)=2\}$; if $G$ is complete, we set $N C(G)=n-1$ and $N C 2(G)=n-1$.

In [2], Broersma and Veldman gave the following result.
Theorem $\mathbf{1}([2])$ If $G$ is a 2-connected graph of order $n$ and $G$ contains a D-cycle, then $G$ has a D-cycle of length at least $\min \{n, 2 N C(G)\}$ unless $G$ is the Petersen graph.

For given positive integers $n_{1}, n_{2}$ and $n_{3}$, let $K\left(n_{1}, n_{2}, n_{3}\right)$ denote the set of all graphs

[^7]of order $n_{1}+n_{2}+n_{3}$ consisting of three disjoint complete graphs of order $n_{1}, n_{2}$ and $n_{3}$, respectively. For any integer $p \geq 3$, let $\mathcal{J}_{1}^{*}$ (resp. $\mathcal{J}_{2}^{*}$ ) denote the family of all graphs of order $2 p+3$ (resp. $2 p+4$ ) which can be obtained from a graph $H$ in $K(3, p, p)($ resp. $K(3, p, p+1))$ by adding the edges of two triangles between two disjoint triples of vertices, each containing one vertex of each component of $H$. Let $\mathcal{J}_{1}=\{G: G$ is a spanning subgraph of some graph in $\left.\mathcal{J}_{1}^{*}\right\}$ and $\mathcal{J}_{2}=\left\{G: G\right.$ is a spanning subgraph of some graph in $\left.\mathcal{J}_{2}^{*}\right\}$. In [5], Tian and Zhang got the following result.

Theorem 2([5]) If $G$ is a 2-connected graph of order $n$ such that every longest cycle in $G$ is a $D$-cycle, then $G$ contains a D-cycle of length at least $\min \{n, 2 N C 2(G)\}$ unless $G$ is the Petersen graph or $G \in \mathcal{J}_{1} \cup \mathcal{J}_{2}$.

In [4], Shen and Tian weakened the conditions of Theorem 2 and obtained the following theorem.

Theorem $3([4])$ If $G$ contains a $D$-cycle and $\delta \geq 2$, then $G$ contains a $D$-cycle of length at least $\min \{n, 2 N C 2(G)-3\}$.

Theorem $4([6])$ If $G$ contains a $D$-cycle and $\delta \geq 2$, then $G$ contains a $D$-cycle of length at least $\min \{n, 2 N C 2(G)-2\}$.

In [4], Shen and Tian believed the followings are true.
Conjecture 1 If $G$ satisfies the conditions of Theorem 3, then $G$ contains a D-cycle of length at least $\min \{n, 2 N C 2(G)-\epsilon(n)\}$, where $\epsilon(n)=1$ if $n$ is even, and $\epsilon(n)=2$ if $n$ is odd.

Conjecture 2 If $G$ contains a D-cycle and $\delta \geq 2$, then $G$ contains a $D$-cycle of length at least $\min \{n, 2 N C 2(G)\}$ unless $G$ is one of the exceptional graphs listed in Theorem 2. And the complete bipartite graphs $K_{m, m+q}(q \geq 1)$ show that the bound $2 N C 2(G)$ is sharp.

In this paper, we prove the following result, which solves Conjecture 1 due to Shen and Tian, also related with the cyclic structures of algebraically Smarandache multi-spaces (see [3] for details).

Theorem 5 If $G$ contains a $D$-cycle and $\delta \geq 2$, then $G$ contains a $D$-cycle of length at least $\min \{n, 2 N C 2(G)-1\}$ unless $G \in \mathcal{J}_{1}$.

Remark The Petersen graph shows that our bound $2 N C 2(G)-1$ is sharp.

## §2. Proof of Theorem 5

In order to prove Theorem 5, we introduce some additional notations.
Let $C$ be a cycle in $G$. We denote by $\vec{C}$ the cycle $C$ with a given orientation. If $u, v \in V(C)$, then $u \vec{C} v$ denotes the consecutive vertices on $C$ from $u$ to $v$ in the direction specified by $\vec{C}$. The same vertices, in reverse order, are given by $v \overleftarrow{C} u$. We will consider $u \vec{C} v$ and $v \overleftarrow{C} u$ both as paths and as vertex sets. We use $u^{+}$to denote the successor of $u$ on $\vec{C}$ and $u^{-}$to
denote its predecessor. We write $u^{+2}:=\left(u^{+}\right)^{+}$and $u^{-2}:=\left(u^{-}\right)^{-}$, etc. If $A \subseteq V(C)$, then $A^{+}=\left\{v^{+}: v \in A\right\}$ and $A^{-}=\left\{v^{-}: v \in A\right\}$. For any subset $S$ of $V(G)$, we write $N^{+}(S)$ and $N^{-}(S)$ instead of $(N(S))^{+}$and $(N(S))^{-}$,respectively.

Let $G$ be a graph satisfying the conditions of Theorem 4, i.e. $G$ contains a D-cycle and $\delta \geq 2$. Throughout, we suppose that
$-G$ is non-hamiltonian and $C$ is a longest D-cycle in $G$,
$-|V(C)| \leq 2 N C 2(G)-2$,
$-R=G \backslash V(C)$ and $x \in R$, such that $d(x)$ is as large as possible.
First of all, we prove some claims.
By the maximality of $C$ and the definition of D-cycle, we have
Claim $1 \quad N(x) \subseteq V(C)$.
Claim $2 N(x) \cap N^{+}(x)=N(x) \cap N^{-}(x)=\emptyset$.
Let $v_{1}, v_{2}, \ldots, v_{k}$ be the vertices of $N(x)$, in cyclic order around $\vec{C}$. Then $k \geq 2$ since $\delta \geq 2$. For any $i \in\{1,2, \ldots, k\}$, we have $v_{i}^{+} \neq v_{i+1}$ (indices taken modulo $k$ ) by Claim 2. Let $u_{i}=v_{i}^{+}, w_{i}=v_{i+1}^{-}$(indices taken modulo $k$ ), $T_{i}=u_{i} \vec{C} w_{i}, t_{i}=\left|T_{i}\right|$.

Claim $3 N_{R}\left(y_{1}\right) \cap N_{R}\left(y_{2}\right)=\emptyset$, if $y_{1}, y_{2} \in N^{+}(x)$ or $y_{1}, y_{2} \in N^{-}(x)$.In particular, $N^{+}(x) \cap$ $N\left(u_{i}\right)=N^{-}(x) \cap N\left(w_{i}\right)=\emptyset$.

For any $i, j \in\{1,2, \ldots, k\}(i \neq j)$, we also have the following Claims.
Claim 4 Each of the followings does not hold:
(1) There are two paths $P_{1}\left[w_{j}, z\right]$ and $P_{2}\left[u_{i}, z^{-}\right],\left(z \in v_{j+1} \vec{C} v_{i}\right)$ of length at most two that are internally disjoint from $C$ and each other ;
(2) There are two paths $P_{1}\left[w_{j}, z\right]$ and $P_{2}\left[u_{i}, z^{+}\right]\left(z \in v_{j+1} \vec{C} v_{i}\right)$ of length at two that are internally disjoint from $C$ and each other ;
(3) There are two paths $P_{1}\left[u_{i}, z\right]$ and $P_{2}\left[u_{j}, z^{+}\right]\left(z \in u_{j}^{+} \vec{C} v_{i}\right)$ of length at most two that are internally disjoint from $C$ and each other, and similarly for $P_{1}\left[u_{i}, z\right]$ and $P_{2}\left[u_{j}, z^{-}\right]\left(z \in u_{i}^{+} \vec{C} v_{j}\right)$.

Claim 5 For any $v \in V(G)$, we have $d_{R}(v) \leq 1$.
If not, then by Claim 1, there exists a vertex, say $v$, in $C$ such that $d_{R}(v)>1$. Let $x_{1}, x_{2} \in N_{R}(v)$, then $\left|N\left(x_{1}, x_{2}\right)\right| \geq N C 2(G)$.

First, we prove that $\left|N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)\right| \leq 2$. Otherwise, let $y_{1}, y_{2}$ and $y_{3}$ be three distinct vertices in $N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)$. By Claim 2, we know $y_{i} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ or $y_{i} \in N\left(x_{2}\right) \cap N^{+}\left(x_{1}\right)$ for any $i \in\{1,2,3\}$. Thus, there must exist $i$ and $j(i \neq j, i, j \in\{1,2,3\})$ such that $y_{i}, y_{j} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ or $y_{i}, y_{j} \in N\left(x_{2}\right) \cap N^{+}\left(x_{1}\right)$. In either case, it contradicts Claim 3. So we have that $\left|N\left(x_{1}, x_{2}\right) \cap N^{+}\left(x_{1}, x_{2}\right)\right| \leq 2$.

Now we have

$$
\begin{aligned}
|V(C)| & \geq\left|N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right)\right| \\
& \geq 2\left|N\left(x_{1}, x_{2}\right)\right|-2 \\
& \geq 2 N C 2(G)-2
\end{aligned}
$$

so $V(C)=N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right)$ by assumption on $|V(C)|$, and in particular, $N\left(x_{1}, x_{2}\right) \cap$ $N^{+}\left(x_{1}, x_{2}\right)=\left\{y_{1}, y_{2}\right\}$.Therefore $y_{1} \in N\left(x_{1}\right) \cap N^{+}\left(x_{2}\right)$ and $y_{2} \in N^{+}\left(x_{1}\right) \cap N\left(x_{2}\right)$.

Now, we prove that $d_{R}\left(v^{+}\right) \leq 1, d_{R}\left(v^{-}\right) \leq 1$. If not,suppose $d_{R}\left(v^{-}\right)>1$, let $z_{1}, z_{2} \in$ $N_{R}\left(v^{-}\right)$, by Claim 1 and $V(C)=N\left(x_{1}, x_{2}\right) \cup N^{+}\left(x_{1}, x_{2}\right), N\left(z_{1}, z_{2}\right) \subseteq N^{+}\left(x_{1}, x_{2}\right)$, so we have $x_{1}\left(\right.$ or $\left.x_{2}\right) \in N\left(v^{-2}\right)$. Using a similar argument as above, we have $z_{1}\left(\right.$ or $\left.z_{2}\right) \in N\left(v^{-3}\right)$, which contradicts Claim 3. Thus, we have $d_{R}\left(v^{-}\right) \leq 1$; similarly, $d_{R}\left(v^{+}\right) \leq 1$.

Now, we consider $N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$.Since $\operatorname{dist}\left(x_{2}, v^{-}\right)=\operatorname{dist}\left(x_{1}, v^{+}\right)=2$ and $\left|N\left(x_{2}, v^{-}\right)\right| \geq N C 2(G),\left|N^{-}\left(x_{1}, v^{+}\right)\right|=\left|N\left(x_{1}, v^{+}\right)\right| \geq N C 2(G)$. We prove that $\mid N_{C}\left(x_{2}, v^{-}\right) \cap$ $N_{C}^{-}\left(x_{1}, v^{+}\right) \mid \leq 1$. Let $z \in\left\{N_{C}\left(x_{2}, v^{-}\right) \cap N_{C}^{-}\left(x_{1}, v^{+}\right)\right\} \backslash\left\{y_{1}^{-}\right\}$.

We consider following cases.
(i) Let $z \in y_{1}^{+} \vec{C} y_{2}^{-2}$, if $z x_{2} \in E(G)$ and $x_{1} z^{+} \in E(G)$, or $z x_{2} \in E(G)$ and $v^{+} z^{+} \in E(G)$, or $v^{-} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, each case contradicts Claim 3; if $v^{-} z \in E(G)$ and $v^{+} z^{+} \in$ $E(G)$, then $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} z^{+} v^{+} \vec{C} z v^{-} \overleftarrow{C} y_{2} x_{2} v x_{1}$ is a $D$-cycle longer than $C$, a contradiction
(ii) Let $z \in y_{2}^{+} \vec{C} y_{1}^{-2}$, if $x_{2} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, or $x_{2} z \in E(G)$ and $v^{+} z^{+} \in$ $E(G)$, both contradict Claim 3; if $v^{-} z \in E(G)$ and $x_{1} z^{+} \in E(G)$, it contradicts Claim 3; if $v^{-} x_{1} \in E(G)$ and $z^{+} v^{+} \in E(G)$, then $C^{\prime}=x_{1} y_{1} \vec{C} v^{-} z \overleftarrow{C} v^{+} z^{+} \vec{C} y_{1}^{-} x_{2} v x_{1}$ is a $D$-cycle longer than $C$, for $z \in v \vec{C} y_{1}^{-}$; and $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} v^{+} z^{+} \vec{C} v^{-} z \overleftarrow{C} y_{2} x_{2} v x_{1}$ is a D-cycle longer than $C$ for $z \in y_{2} \vec{C} v^{-}$.

So, we have $\left|N_{C}\left(x_{2}, v^{-}\right) \cap N_{C}^{-}\left(x_{1}, v^{+}\right)\right| \leq 1$. Moreover, $y_{1}, y_{2}^{-} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. Otherwise, if $y_{1} \in N\left(v^{-}\right)$, then $C^{\prime}=x_{1} y_{2}^{-} \overleftarrow{C} y_{1} v^{-} \overleftarrow{C} y_{2} x_{2} y_{1}^{-} \overleftarrow{C} v x_{1}$ is a $D$-cycle longer than $C$. By Claim 2, $y_{1} \notin N\left(x_{2}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$, so we have $y_{1} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. By Claims 1 and 3 we have $y_{2}^{-} \notin N\left(x_{2}, v^{-}\right) \cup N^{-}\left(x_{1}, v^{+}\right)$. Thus, we have

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(x_{2}, v^{-}\right) \cup N_{C}^{-}\left(x_{1}, v^{+}\right)\right|+2 \\
& \geq\left|N_{C}\left(x_{2}, v^{-}\right)\right|+\left|N_{C}^{-}\left(x_{1}, v^{+}\right)\right|-1+2 \\
& =\left|N\left(x_{2}, v^{-}\right) \backslash N_{R}\left(x_{2}, v^{-}\right)\right|+\left|N\left(x_{1}, v^{+}\right) \backslash N_{R}\left(x_{1}, v^{+}\right)\right|+1 \\
& \geq 2 N C 2(G)-2+1 \\
& =2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. So, we have $d_{R}(v) \leq 1$, for any $v \in V(G)$.
Claim $6 \quad t_{i} \geq 2$.
If $t_{i}=1$ for all of $i$, then $N_{R}\left(u_{i}\right)=\emptyset$ for all of $i$ (if not, let $z \in N_{R}\left(u_{i}\right)$ for some $i$, by Claim 1 and Claim $5 N(z) \subseteq V(C)$ and $u_{j} z \in E(G)$ for some $j$. then, $z \in N_{R}\left(u_{i}\right) \cap N_{R}\left(u_{j}\right)$, a contradiction). Then $N\left(u_{i}\right) \cap N^{+}\left(u_{i}\right)=\emptyset$ ( otherwise, $y \in N\left(u_{i}\right) \cap N^{+}\left(u_{i}\right)$, then $C^{\prime}=$
$x v_{i+1} \vec{C} y^{-} u_{i} y \vec{C} v_{i} x$ is a $D$-cycle longer than $\left.C\right)$. Moreover, we have $N(x) \cap N^{+}(x)=\emptyset$ by Claim $2, N^{+}(x) \cap N\left(u_{i}\right)=N^{+}\left(u_{i}\right) \cap N(x)=\emptyset$ by Claim 3. Hence, $N\left(x, u_{i}\right) \cap N^{+}\left(x, u_{i}\right)=\emptyset$. So we have

$$
|V(C)| \geq\left|N\left(x, u_{i}\right) \cup N^{+}\left(x, u_{i}\right)\right| \geq 2\left|N\left(x, u_{i}\right)\right| \geq 2 N C 2(G)
$$

a contradiction. So we may assume $t_{i}=1$ for some $i$, without loss of generality, suppose $t_{1}=1$ and $N_{R}\left(w_{k}\right) \neq \emptyset$. Let $y \in N_{R}\left(w_{k}\right)$, choose $y_{1} \in N(y)$ such that $N(y) \cap\left(y_{1}^{+} \vec{C} w_{k}^{-}\right)=\emptyset$. Using a similar argument as above and $d_{R}\left(u_{1}\right) \leq 1$, by Claim 5 , we have

$$
|V(C)|=\left|N_{C}\left(x, u_{1}\right) \cup N_{C}^{+}\left(x, u_{1}\right)\right| \geq 2 N C 2(G)-2
$$

So $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{+}\left(x, u_{1}\right)$. Similarly, we know that $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Moreover, $u_{1} w_{k}^{-} \in E(G)$. If $\left|y_{1}^{+} \vec{C} w_{k}^{-}\right|=1$, then $C^{\prime}=x v_{2} \vec{C} y_{1} y w_{k} w_{k}^{-} u_{1} v_{1} x$ is a $D$-cycle longer than $C$, a contradiction. So we may assume that $\left|y_{1}^{+} \vec{C} w_{k}^{-}\right| \geq 2$.

Now, we consider $N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Since $\operatorname{dist}\left(y, y_{1}^{+}\right)=\operatorname{dist}\left(x, u_{1}\right)=2, \mid N\left(y, y_{1}^{+} \mid \geq\right.$ $N C 2(G),\left|N^{-}\left(x, u_{1}\right)\right|=\left|N\left(x, u_{1}\right)\right| \geq N C 2(G)$. Moreover, we have $v_{1}, v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$ and $N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \subseteq\left\{w_{k}\right\}$. In fact, $v_{1} \notin N\left(y, y_{1}^{+}\right)$by Claims 3 and 5 , if $v_{1} \in$ $N^{-}\left(x, u_{1}\right)$, then $v_{1}^{+} x \in E(G)$ or $v_{1}^{+} u_{1} \in E(G)$, which contradicts to Claims 2 and 3 . So $v_{1} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$;if $v_{2} \in N_{C}\left(y, y_{1}^{+}\right)$, then $v_{2} y^{+} \in E(G)$ by Claim 5, which contradicts to Claim 4. If $v_{2} \in N_{C}^{-}\left(x, u_{1}\right)$ then $v_{2}^{+} \in N\left(x, u_{1}\right)$, which contradicts to Claims 2 and 3. So $v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. Suppose $z \in N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \backslash\left\{w_{k}\right\}$. Now, we consider the following cases.
(i) $z \in v_{2} \vec{C} y_{1}^{-}$. If $y z \in E(G)$ and $x z^{+} \in E(G)$, then, it contradicts to Claim 3. Put

$$
C^{\prime}= \begin{cases}y z \overleftarrow{C} v_{2} x v_{1} u_{1} z^{+} \overleftarrow{C} w_{k} y & \text { if } y z \in E(G) \text { and } u_{1} z^{+} \in E(G) ; \\ x z^{+} \vec{C} y_{1} y w_{k} \overleftarrow{C} y_{1}^{+} z \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+} z \in E(G) \text { and } x z^{+} \in E(G) ; \\ x v_{2} \vec{C} z y_{1}^{+} \vec{C} w_{k} y y_{1} \overleftarrow{C} z^{+} u_{1} v_{1} x & \text { if } y_{1}^{+} z \in E(G) \text { and } u_{1} z^{+} \in E(G)\end{cases}
$$

(ii) $z \in y_{1} \vec{C} w_{k}^{-}$, then $z \in N\left(y_{1}^{+}\right)$since $N(y) \cap\left(y_{1}^{+} \vec{C} w_{k}^{-}\right)=\emptyset$. Let $z y_{1}^{+} \in E(G)$ and $z^{+} \in$ $N_{C}\left(x, u_{1}\right)$. Since $V(C)=N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$, So $y_{1}^{+} \in N_{C}\left(x, u_{1}\right) \cup N_{C}^{-}\left(x, u_{1}\right)$. If $u_{1} y_{1}^{+} \in$ $E(G)$ then $C^{\prime}=x v_{2} \vec{C} y_{1} y w_{k} \overleftarrow{C} y_{1}^{+} u_{1} v_{1} x$ is a $D$-cycle longer than $C$, a contradiction; if $x y_{1}^{+} \in$ $E(G)$, then it contradicts with Claim 3. Then, $y_{1}^{+} \in N^{-}\left(x, u_{1}\right)$. If $x z^{+} \in E(G)$ and $y_{1}^{+2} x \in$ $E(G)$, then it contradicts to Claim 3; Put

$$
C^{\prime}= \begin{cases}x y^{+2} \vec{C} z y_{1}^{+} \overleftarrow{C} u_{1} z^{+} \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+2} x \in E(G) \text { and } u_{1} z^{+} \in E(G) \\ x v_{2} \vec{C} y_{1}^{+} z \overleftarrow{C} y_{1}^{+2} u_{1} \overleftarrow{C} z^{+} x & \text { if } y_{1}^{+2} u_{1} \in E(G) \text { and } x z^{+} \in E(G) \\ x v_{2} \vec{C} y_{1}^{+} z \overleftarrow{C} y_{1}^{+2} u_{1} z^{+} \overleftarrow{C} v_{1} x & \text { if } y_{1}^{+2} u_{1} \in E(G) \text { and } u_{1} z^{+} \in E(G)\end{cases}
$$

In any cases, $C^{\prime}$ is a $D$-cycle longer than $C$, a contradiction. Therefore, $v_{1}, v_{2} \notin N_{C}\left(y, y_{1}^{+}\right) \cup$ $N_{C}^{-}\left(x, u_{1}\right), N_{C}\left(y, y_{1}^{+}\right) \cap N_{C}^{-}\left(x, u_{1}\right) \subseteq\left\{w_{k}\right\}$. Hence, we have

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(y, y_{1}^{+}\right) \cup N_{C}^{-}\left(x_{1}, u_{1}\right)\right|+2 \\
& \geq\left|N_{C}\left(y, y_{1}^{+}\right)\right|+\left|N_{C}^{-}\left(x_{1}, u_{1}\right)\right|-1+2 \\
& =\left|N\left(y, y_{1}^{+}\right) \backslash N_{R}\left(y, y_{1}^{+}\right)\right|+\left|N\left(x_{1}, u_{1}\right) \backslash N_{R}\left(x_{1}, u_{1}\right)\right|+1 \\
& \geq 2 N C 2(G)-2+1 \\
& =2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$.
Claim 7 If $\bigcup_{i=1}^{k} N_{R}\left(y_{i}\right) \neq \emptyset$, then $N_{R}\left(y_{i}\right) \neq \emptyset$ for all $i \in\{1,2, \ldots, k\}$, where $y_{i}=u_{i}\left(w_{i}\right.$, respectively).

If not, without loss of generality, we assume that $N_{R}\left(u_{1}\right) \neq \emptyset$ and $N_{R}\left(u_{k}\right)=\emptyset$. Suppose $x_{1} \in N_{R}\left(u_{1}\right)$ and $y \in N\left(x_{1}\right)\left(y \neq u_{1}\right)$. Then $\operatorname{dist}\left(x_{1}, y^{+}\right)=\operatorname{dist}\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{+}\right)\right| \geq$ $N C 2(G),\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$.
Case $1 N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)=\emptyset$.
If not, we may choose $y, y \in N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)$, such that $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. We define a mapping $f$ on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{k} \vec{C} y^{-} \\ v^{+} & \text {if } v \in y \vec{C} w_{k-1} ; \\ y^{-} & \text {if } v=v_{k}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|=\left|N_{C}\left(x, u_{k}\right)\right|=\left|N\left(x, u_{k}\right)\right| \geq N C 2(G)$ by Claim 1 and the assumption $N_{R}\left(u_{k}\right)=\emptyset$. Moreover, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}\right\}$. In fact, suppose that $z \in f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \backslash\left\{w_{k}, u_{1}\right\}$. Obviously, $z \neq v_{1}, y^{-}$by Claims 2 and 4 . Now we consider the following cases.
(i) If $z \in u_{k} \vec{C} w_{k}^{-}$, then $z \in N_{C}^{-}\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}u_{k} z^{+} \vec{C} v_{1} x v_{k} \overleftarrow{C} u_{1} x_{1} z \overleftarrow{C} u_{k} & \text { if } x_{1} z \in E(G) \\ u_{k} z^{+} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} z \overleftarrow{C} u_{k} & \text { if } y^{-} z \in E(G)\end{cases}
$$

(ii) If $z \in u_{1}^{+} \vec{C} y^{-2}$, then $z y^{-} \in E(G)$ since $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z y^{-} \overleftarrow{C} z^{+} x v_{1} \overleftarrow{C} y x_{1} u_{1} & \text { if } x z^{+} \in E(G) \\ u_{1} \vec{C} z y^{-} \overleftarrow{C} z^{+} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1} & \text { if } u_{k} z^{+} \in E(G)\end{cases}
$$

(iii) If $z \in y^{+} \vec{C} v_{k}$, we put

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z^{-} x v_{1} \overleftarrow{C} z x_{1} u_{1} & \text { if } x z^{-} \in E(G) \text { and } x_{1} z \in E(G) ; \\ u_{1} \vec{C} y^{-} z \vec{C} v_{1} x z^{-} \overleftarrow{C} y x_{1} u_{1} & \text { if } x z^{-} \in E(G) \text { and } y^{-} z \in E(G) ; \\ u_{1} \vec{C} z^{-} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} z x_{1} u_{1} & \text { if } u_{k} z^{-} \in E(G) \text { and } x_{1} z \in E(G) ; \\ u_{1} \vec{C} y^{-} z \vec{C} v_{k} x v_{1} \overleftarrow{C} u_{k} z^{-} \overleftarrow{C} y x_{1} u_{1} & \text { if } u_{k} z^{-} \in E(G) \text { and } y^{-} z \in E(G)\end{cases}
$$

In any cases, $C^{\prime}$ is a D-cycle longer than $C$, a contradiction. Therefore, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap$ $N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}\right\}$. By Claims 2 and 4 , we have $u_{1} \notin N\left(x, u_{k}\right)$ and $v_{1} \notin N\left(x_{1}, y^{-}\right)$. Then $v_{1} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{-}\right)$. Hence, by Claim 6 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+1 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+1 \\
& \geq 2 N C 2(G)-2 .
\end{aligned}
$$

So, we have $V(C)=N_{C}\left(x_{1}, y^{-}\right) \cup f\left(N_{C}\left(x, u_{k}\right)\right) \cup\left\{v_{1}\right\}, N_{C}\left(x_{1}, y^{-}\right) \cap f\left(N_{C}\left(x, u_{k}\right)\right)=$ $\left\{w_{k}, u_{1}\right\}$. Hence, $y^{-} w_{k} \in E(G)$ and $u_{k} u_{1}^{+} \in E(G)$ since $t_{i} \geq 2$.

Now, we prove that $N_{R}\left(y^{-}\right)=\emptyset$. If not, there exist $y_{1} \in N_{R}\left(y^{-}\right), z \in N_{C}\left(y_{1}\right)\left(z \neq y^{-}\right)$by Claim 1 and $\delta \geq 2$.

Subcase $1 N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$.
If not, we choose $z \in N\left(y_{1}\right)$, such that $N\left(y_{1}\right) \cap\left(z^{+} \vec{C} y^{-2}\right)=\emptyset$. Therefore we can define a mapping $f_{1}$ on $V(C)$ as follows:

$$
f_{1}(v)= \begin{cases}v^{-} & \text {if } v \in u_{k}^{+} \vec{C} z^{+} \\ v^{+} & \text {if } v \in z^{+2} \vec{C} w_{k-1} \\ z^{+2} & \text { if } v=v_{k} \\ z^{+} & \text {if } v=u_{k}\end{cases}
$$

Using an argument as above, we have $\mid f_{1}\left(N_{C}\left(x, u_{k}\right) \mid \geq N C 2(G)\right.$. Moreover, we have $z^{+}, v_{1}, y \notin$ $N_{C}\left(y_{1}, z^{+}\right) \cup f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$ and $N_{C}\left(y_{1}, z^{+}\right) \cap f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{z^{+2}, y^{-}, w_{k}\right\}$. Clearly, $z^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right)$. If $z^{+} \in f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$, then, $u_{k} \in N_{C}\left(x, u_{k}\right)$, a contradiction. $y_{1} v_{1} \notin E(G)$ by Claim 5. If $v_{1} z^{+} \in E(G)$, since $y, z^{+} \in N^{+}\left(y_{1}\right)$, the two paths $y x_{1} u_{1}$ and $z^{+} v_{1}$ contradict with Claim 4; By Claims 2 and 4 , we have $y \notin N\left(y_{1}, z^{+}\right)$, if $y \in f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$ then $y^{-} \in N_{C}\left(x, u_{k}\right)$, by Claim $3 y^{-} \notin N(x)$, so $y^{-} \in N\left(u_{k}\right)$, then $C^{\prime}=x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} u_{k} \vec{C} v_{1} x$ is a $D$-cycle longer than $C$, a contradiction. So we have $z^{+}, v_{1}, y \notin N_{C}\left(y_{1}, z^{+}\right) \cup f_{1}\left(N_{C}\left(x, u_{k}\right)\right)$. Suppose $s \in N_{C}\left(y_{1}, z^{+}\right) \cap f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{z^{+2}, y^{-}, w_{k}\right\}$.

Now, we consider the following cases.
(i) $s \in y^{+} \vec{C} v_{k}$. If $y_{1} s \in E(G)$ and $x s^{-} \in E(G)$ then it contradicts with Claim 4. We put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} s y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \overleftarrow{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{-} \in E(G) \\ x s^{-} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+} s \vec{C} v_{1} x & \text { if } z^{+} s, x s^{-} \in E(G) \\ x v_{k} \overleftarrow{C} s z^{+} \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{1} x_{1} y \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{-} \in E(G)\end{cases}
$$

(ii) $s \in u_{k} \vec{C} w_{k-1}$. We have $s \in N^{-}\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$.Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+}{ }_{s} \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{+} \in E(G)\end{cases}
$$

(iii) $s \in u_{1} \vec{C} y^{-2}$. If $y_{1} s, x s^{+} \in E(G)$ then contradicts to Claim 4. If $y_{1} s, u_{k} s^{+} \in E(G)$, then

$$
C^{\prime}=x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} s y_{1} y^{-} \overleftarrow{C} s^{+} u_{k} \vec{C} v_{1} x
$$

is a $D$-cycle longer than $C$, a contradiction. If $s \in z^{+} \vec{C} y^{-}$, we put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} z^{+} s \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{1} x_{1} y \vec{C} v_{1} x & \text { if } z^{+} s, s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, s^{-} u_{k} \in E(G)\end{cases}
$$

If $s \in u_{1} \vec{C} z$, we put

$$
C^{\prime}= \begin{cases}x s^{+} \vec{C} z y_{1} y^{-} \overleftarrow{C} z^{+} s \overleftarrow{C} u_{1} x_{1} y \vec{C} v_{1} x & \text { if } z^{+} s, x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} s z^{+} \vec{C} y^{-} y_{1} z \overleftarrow{C} s^{+} u_{k} \vec{C} v_{1} x & \text { if } z^{+} s, u_{k} s^{+} \in E(G)\end{cases}
$$

In any cases, $C^{\prime}$ is a $D$-cycle longer than $C$, a contradiction. Hence, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f_{1}\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(y_{1}, z^{+}\right)\right|+3 \\
& \geq\left|f_{1}\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(y_{1}, z^{+}\right)\right|-3+3 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$,
Subcase $2 N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$.
If not, we may choose $z \in N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)$, such that $N\left(y_{1}\right) \cap\left(y \vec{C} z^{-}\right)=\emptyset$. Therefore, we can define a mapping $f_{2}$ on $V(C)$ as follows:

$$
f_{2}(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} y^{-2} \cup z^{-} \vec{C} w_{k-1} ; \\ v^{-} & \text {if } v \in y^{+} \vec{C} z^{-2} \cup u_{k}^{+} \vec{C} v_{1} \\ z^{-} & \text {if } v=v_{k} ; \\ v_{1} & \text { if } v=u_{k} ; \\ z^{-2} & \text { if } v=y ; \\ u_{1} & \text { if } v=y^{-}\end{cases}
$$

Using a similar argument as above, we have $\left|f_{2}\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$. We consider $N_{C}\left(y_{1}, z^{-}\right) \cup$ $f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, then $v_{1}, u_{1}^{+} \notin N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, and $N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq$ $\left\{y^{-}, w_{k}\right\}$. In fact, $v_{1} \notin N\left(y_{1}, z^{-}\right)$by Claims 4,5 ; if $v_{1} \in f_{2}\left(N\left(x, u_{k}\right)\right)$ then $u_{k} \in N\left(x, u_{k}\right)$, a contradiction; if $u_{1}^{+} \in N\left(z^{-}\right)$, then the paths $y x_{1} u_{1}$ and $z^{-} u_{1}^{+}$contradict with Claim 5; if $u_{1}^{+} \in f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, then $u_{1} \in N\left(x, u_{k}\right)$, a contradiction. So we have $v_{1}, u_{1}^{+}, \notin N_{C}\left(y_{1}, z^{-}\right) \cup$ $f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$. For $s \in N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{y^{-}, w_{k}\right\}$, we consider the following cases.
(i) If $s \in u_{1} \vec{C} y$. We have $s \in N\left(z^{-}\right)$since $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \vec{C} y^{-} y_{1} z \vec{C} v_{1} x & \text { if } s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} s z \overleftarrow{C} y x_{1} u_{1} \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } s^{-} u_{k} \in E(G)\end{cases}
$$

(ii) If $s \in u_{k} \vec{C} v_{1}$, then $s^{+} \in N\left(u_{k}\right)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } z^{-} s \in E(G) ; \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} s \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s \in E(G)\end{cases}
$$

(iii) If $s \in y \vec{C} z^{-2}$, then we have $s \in N\left(z^{-}\right)$since $N\left(y_{1}\right) \cap\left(y \vec{C} z^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x_{1} y \vec{C} s z^{-} \overleftarrow{C} s^{+} x v_{1} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} & \text { if } x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{-} s^{+} u_{k} \vec{C} v_{1} x & \text { if } u_{k} s^{+} \in E(G)\end{cases}
$$

(iv) If $s \in z^{-} \vec{C} v_{k}$. If $y_{1} s, x s^{-} \in E(G)$ then it contradicts to Claim 4. We put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} s y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } y_{1} s, u_{k} s^{-} \in E(G) \\ x s^{-} \overleftarrow{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z^{-} s \vec{C} v_{1} x & \text { if } z^{-} s, s^{-} x \in E(G) \\ x v_{k} \overleftarrow{C} s z^{-} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \vec{C} s^{-} u_{k} \vec{C} v_{1} x & \text { if } z^{-} s, s^{-} u_{k} \in E(G)\end{cases}
$$

In any cases, $C^{\prime}$ is a $D$-cycle longer than $C$, a contradiction. Therefore, we have $v_{1}, u_{1}^{+}, \notin$ $N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)$, and $N_{C}\left(y_{1}, z^{-}\right) \cap f_{2}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. So

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}\left(y_{1}, z^{-}\right) \cup f_{2}\left(N_{C}\left(x, u_{k}\right)\right)\right|+2 \\
& \geq\left|N_{C}\left(y_{1}, z^{-}\right)\right|+\left|N_{C}\left(x, u_{k}\right)\right|-2+2 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. Hence, $N\left(y_{1}\right) \backslash\left\{y^{-}\right\} \subseteq\left(u_{k} \vec{C} u_{1}\right)$.
Subcase $3 N\left(y_{1}\right) \cap\left(u_{k} \vec{C} u_{1}\right)=\emptyset$.
If not, we may choose $z \in N\left(y_{1}\right) \cap\left(u_{k} \vec{C} u_{1}\right)$, such that $N\left(y_{1}\right) \cap\left(z^{+} \vec{C} u_{1}\right)=\emptyset$. We define a mapping $f_{3}$ on $V(C)$ as follows:

$$
f_{3}(v)= \begin{cases}v^{-} & \text {if } v \in y^{+} \vec{C} v_{k} \cup u_{k}^{+} \vec{C} z^{+} \\ v^{+} & \text {if } v \in z^{+2} \vec{C} y^{-2} \\ z^{+} & \text {if } v=u_{k} \\ v_{k} & \text { if } v=y \\ z^{+2} & \text { if } v=y^{-}\end{cases}
$$

Using a similar argument as above, we have $\left|f_{3}\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$. Moreover, $z^{+}, u_{1}^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right)\right), N_{C}\left(y_{1}, z^{+}\right) \cap f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. In fact, clearly, $z^{+} \notin$ $N_{C}\left(y_{1}, z^{+}\right)$, if $z^{+} \in f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$, then $u_{k} \in N_{C}\left(x, u_{k}\right)$, a contradiction; if $u_{1}^{+} \in N_{C}\left(y_{1}, z^{+}\right)$, then $u_{1}^{+} \in N\left(z^{+}\right)$since $N_{C}\left(y_{1}\right) \cap\left(y^{-2} \vec{C} u_{k}\right)=\emptyset$, so $C^{\prime}=x_{1} y \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1}^{+} z^{+} \vec{C} u_{1} x_{1}$ is a $D$-cycle longer than $C$, a contradiction; if $u_{1}^{+} \in f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$ then $u_{1} \in N_{C}\left(x, u_{k}\right)$, a contradiction; so we have $z^{+}, u_{1}^{+} \notin N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right)\right)$. Suppose $s \in N_{C}\left(y_{1}, z^{+}\right) \cap$ $f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \backslash\left\{y^{-}, w_{k}\right\}$. Now, we consider the following cases.
(i) If $s \in v_{k} \vec{C} z^{+}$, then We have $s^{+} u_{k} \in E(G)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} \overleftarrow{C} u_{k} s^{+} \vec{C} v_{1} x & \text { if } y_{1} s \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \overleftarrow{C} s^{+} u_{k} \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } z^{+} s \in E(G)\end{cases}
$$

(ii) If $s \in z^{+2} \vec{C} w_{k}^{-}$, then we have $s^{-} u_{k}, s z^{+} \in E(G)$ since $N(x) \cap\left(u_{k} \vec{C} w_{k}\right)=N\left(y_{1}\right) \cap$ $\left(z^{+} \vec{C} v_{1}\right)=\emptyset$. Put

$$
C^{\prime}=x v_{k} \vec{C} y x_{1} u_{1} \vec{C} y^{-} y_{1} z \overleftarrow{C} u_{k} s^{-} \overleftarrow{C} z^{+}{ }_{s} \vec{C} v_{1} x
$$

(iii) If $s \in u_{1} \vec{C} y^{-2}$, then we have $s z^{+} \in E(G)$ since $N\left(y_{1}\right) \cap\left(u_{1} \vec{C} y^{-2}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} v_{1} x & \text { if } x s^{-} \in E(G) \\ x v_{k} \overleftarrow{C} y x_{1} u_{1} \overleftarrow{C} s^{-} u_{k} \vec{C} z y_{1} y^{-} \overleftarrow{C} s z^{+} \vec{C} v_{1} x & \text { if } u_{k} s^{-} \in E(G)\end{cases}
$$

(iv) If $s \in y \vec{C} v_{k}$, then we have $s z^{+} \in E(G)$ since $N\left(y_{1}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. Put

$$
C^{\prime}= \begin{cases}x s^{+} \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } x s^{+} \in E(G) \\ x v_{k} \overleftarrow{C} s^{+} u_{k} \vec{C} z y_{1} y^{-} \overleftarrow{C} u_{1} x_{1} y \vec{C} s z^{+} \vec{C} v_{1} x & \text { if } u_{k} s^{+} \in E(G)\end{cases}
$$

In any cases, $C^{\prime}$ is a $D$-cycle longer than $C$, a contradiction. Therefore we have $N_{C}\left(y_{1}, z^{+}\right) \cap$ $f_{3}\left(N_{C}\left(x, u_{k}\right)\right) \subseteq\left\{y^{-}, w_{k}\right\}$. So we have

$$
\begin{aligned}
|V(C)| & \geq \mid N_{C}\left(y_{1}, z^{+}\right) \cup f_{3}\left(N_{C}\left(x, u_{k}\right) \mid+2\right. \\
& \geq \mid N_{C}\left(y_{1}, z^{+}\left|+\left|N_{C}\left(x, u_{k}\right)\right|-2+2\right.\right. \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction with $|V(C)| \leq 2 N C 2(G)-2$. Hence, $N\left(y_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$.
Thus, $N\left(y_{1}\right)=\left\{y^{-}\right\}$, which contradicts to $\delta \geq 2$. Therefore, we know that $N_{R}\left(y^{-}\right)=\emptyset$.
So we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+1 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+1 \\
& =\left|N\left(x, u_{k}\right) \backslash N_{R}\left(x, u_{k}\right)\right|+\left|N\left(x_{1}, y^{-}\right) \backslash N_{R}\left(x_{1}, y^{-}\right)\right|-1 \\
& =\left|N\left(x, u_{k}\right)\right|+\left|N\left(x_{1}, y^{-}\right)\right|-1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So we have $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)=\emptyset$, hence, $N\left(x_{1}\right) \subseteq u_{k} \vec{C} u_{1}$.
Case $2 N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$.
Otherwise, since $v_{1} x_{1} \notin E(G)$, we can choose $y, y \in u_{k} \vec{C} w_{k}$, such that $N\left(x_{1}\right) \cap\left(y^{+} \vec{C} v_{1}\right)=$ $\emptyset$. Therefore, we can define a mapping $g$ on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{-} & \text {if } v \in u_{1}^{+} \vec{C} y ; \\ v^{+} & \text {if } v \in y^{+} \vec{C} w_{k} ; \\ y^{+} & \text {if } v=u_{1}, \\ y & \text { if } v=v_{1} .\end{cases}
$$

Using a similar argument as before, we have $\left|g\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G), y^{+} \notin g\left(N_{C}\left(x, u_{k}\right)\right) \cup$ $N\left(x_{1}, y^{+}\right)$and $g\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{+}\right) \subseteq\left\{u_{1}\right\}$. Hence, by Claim 6 we have

$$
\begin{aligned}
|V(C)| & \geq\left|g\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{+}\right)\right|+1 \\
& \geq\left|g\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N\left(x_{1}, y^{+}\right)\right|-1+1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

a contradiction. So $N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$. Then $N\left(x_{1}\right)=\left\{u_{1}\right\}$, which contradicts to $\delta \geq 2$.
Claim 8 If $x_{1} \in N_{R}\left(u_{1}\right)$ and $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right) \neq \emptyset$, then $\left|\left\{u_{k} u_{1}^{+}, y^{-} w_{k}\right\} \cap E(G)\right|=1$ for $y \in N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right)$ with $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$.

First we have $d\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$.Let $u_{k} u_{1}^{+} \notin E(G)$. Now we define a mapping $f$ on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{k}^{+2} \vec{C} v_{1} \cup u_{1}^{+2} \vec{C} y^{-} \\ v^{+} & \text {if } v \in y \vec{C} w_{k-1} \\ y^{-} & \text {if } v=u_{k} \\ y & \text { if } v=v_{k} \\ u_{1} & \text { if } v=u_{k}^{+} \\ v_{1} & \text { if } v=u_{1}^{+} \\ u_{k} & \text { if } v=u_{1}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|=\left|N_{C}\left(x, u_{k}\right)\right| \geq N C 2(G)-1$ by Claim 5. Moreover using a similar argument as in Claim 7, we have $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{w_{k}, u_{1}, y\right\}$. But we have $y^{-}, v_{1}, u_{k} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N\left(x_{1}, y^{-}\right)$by the choice of $y$ Claims 2 and 4 , respectively. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+3 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-3+3 \\
& \geq 2 N C 2(G)-2
\end{aligned}
$$

So $V(C)=f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right) \cup\left\{v_{1}, y^{-}, u_{k}\right\}$ by the assumption on $|V(C)|$, and in particular, $f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x_{1}, y^{-}\right)=\left\{w_{k}, u_{1}, y\right\}$. Therefore, $y^{-} w_{k} \in E(G)$. Using a similar argument as above, we have if $y^{-} w_{k} \notin E(G)$, then $u_{k} u_{1}^{+} \in E(G)$.

Claim 9 There exists a vertex $x$ with $x \notin V(C)$ such that $N_{R}\left(u_{i}\right)=N_{R}\left(w_{i}\right)=\emptyset$.
We only prove $N_{R}\left(u_{i}\right)=\emptyset$. If not, we may choose $x \notin V(C)$ such that $\min \left\{t_{i}\right\}$ is as small as possible. By Claim 7, without loss of generality, suppose that $t_{k}=\min \left\{t_{i}\right\}$ for the vertex $x$. Let $x_{1} \in N_{R}\left(u_{1}\right), x_{2} \in N_{R}\left(u_{k}\right)$. By Claims 2 and $3, x \neq x_{1}, x_{2} ; x_{1} \neq x_{2}$. And by Claim 5 and the choice of $x$, we have $N\left(x_{i}\right) \cap\left(u_{k} \vec{C} v_{1}\right)=\emptyset$, for $i=1,2$. Since $\delta \geq 2$, $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} v_{k}\right) \neq \emptyset$. Choose $y \in N\left(x_{1}\right) \cap\left(u_{k} \vec{C} v_{k}\right)$ such that $N\left(x_{1}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$, then $d\left(x_{1}, y^{-}\right)=2$ and $\left|N\left(x_{1}, y^{-}\right)\right| \geq N C 2(G)$. By Claim 8 , we have $u_{k} u_{1}^{+}$or $y^{-} w_{k} \in E(G)$.

First we prove that $N\left(x_{2}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. If not, we may choose $z \in y^{+} \vec{C} v_{k}^{-}$such that $N\left(x_{2}\right) \cap\left(z^{+} \vec{C} v_{k}\right)=\emptyset$ by Claim 5. Then $d\left(x_{2}, z^{+}\right)=2$ and $\left|N\left(x_{2}, z^{+}\right)\right| \geq N C 2(G)$. Now we define a mapping $f$ on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{-} & \text {if } v \in u_{1}^{+} \vec{C} y^{-} \cup z^{+2} \vec{C} v_{k} ; \\ v^{+} & \text {if } v \in y \vec{C} z^{-} \cup u_{k} \vec{C} w_{k} ; \\ y & \text { if } v=z ; \\ v_{k} & \text { if } v=z^{+} ; \\ u_{k} & \text { if } v=v_{1} ; \\ y^{-} & \text {if } v=u_{1} .\end{cases}
$$

Then $\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right)\right|=\left|N_{C}\left(x_{2}, z^{+}\right)\right| \geq N C 2(G)-1$ by Claim 5. Moreover using a similar argument as in Claim 7, we have $f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{u_{1}, y\right\}$. But $y^{-}, v_{k}, v_{1} \notin$ $f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cup N\left(x_{1}, y^{-}\right)$, otherwise, $u_{1} z^{+} \in E(G)$ or $y^{-} v_{k} \in E(G)$ or $z^{+} w_{k} \in E(G)$ by Claim 5, and hence the D-cycle

$$
C^{\prime}= \begin{cases}u_{1} \vec{C} z x_{2} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} z^{+} u_{1} & \text { if } u_{1} z^{+} \in E(G) ; \\ u_{1} x_{1} y \vec{C} v_{k} y^{-} \overleftarrow{C} u_{1}^{+} u_{k} \vec{C} u_{1} & \text { if } y^{-} v_{k} \in E(G) ; \\ x v_{k} \overleftarrow{C} z^{+} w_{k} \overleftarrow{C} u_{k} x_{2} z \overleftarrow{C} v_{1} x & \text { if } z^{+} w_{k} \in E(G)\end{cases}
$$

is longer than $C$, a contradiction. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right) \cup N_{C}\left(x_{1}, y^{-}\right)\right|+3 \\
& \geq\left|f\left(N_{C}\left(x_{2}, z^{+}\right)\right)\right|+\left|N_{C}\left(x_{1}, y^{-}\right)\right|-2+3 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$. So we have $N\left(x_{2}\right) \cap\left(y \vec{C} v_{k}\right)=\emptyset$. Hence $N\left(x_{2}\right)\left(u_{1}^{+} \vec{C} y^{-}\right) \cup\left\{u_{k}\right\}$.

Now, we prove that $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$. In fact, we may choose $z \in u_{1}^{+} \vec{C} y^{-2}$ with $z \in N\left(x_{2}\right)$ such that $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} z^{-}\right)=\emptyset$. (Since $x_{2} y^{-} \notin E(G)$, otherwise, $C^{\prime}=$ $u_{1} \vec{C} y^{-} x_{2} u_{k} \vec{C} v_{1} x v_{k} \overleftarrow{C} y x_{1} u_{1}$ is a D-cycle longer than $C$, a contradiction.) Then $d\left(x_{2}, z^{-}\right)=2$ and $\left|N\left(x_{2}, z^{-}\right)\right| \geq N C 2(G)$. We define a mapping $g$ on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{-} & \text {if } v \in z^{+} \vec{C} v_{k} \\ v^{+} & \text {if } v \in u_{k} \vec{C} z^{-2} \\ v_{k} & \text { if } v=z \\ u_{k} & \text { if } v=z^{-}\end{cases}
$$

Then we have $\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right)\right| \geq N C 2(G)-1$ by Claim 5 . Moreover using a similar argument as in Claim 7, we have $g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cap N\left(x_{1}, y^{-}\right) \subseteq\left\{u_{1}\right\}$. But $v_{1}, u_{k} \notin g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cup N\left(x_{1}, y^{-}\right)$, otherwise since $u_{k} \notin g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cup N\left(x_{1}, y^{-}\right), w_{k} z^{-} \in E(G)$ by Claims 2 and 4 , and hence the D-cycle $u_{1} \vec{C} z^{-} w_{k} \overleftarrow{C} u_{k} x_{2} z \vec{C} v_{k} x v_{1} u_{1}$ is longer than $C$, a contradiction. Therefore, by Claim 5 we have

$$
\begin{aligned}
|V(C)| & \geq\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right) \cap N\left(x_{1}, y^{-}\right)\right|+2 \\
& \geq\left|g\left(N_{C}\left(x_{2}, z^{-}\right)\right)\right|+\left|N\left(x_{1}, y^{-}\right)\right|-1+2 \\
& \geq 2 N C 2(G)-1
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$. So we have $N\left(x_{2}\right) \cap\left(u_{1}^{+} \vec{C} y^{-}\right)=\emptyset$.
Therefore, $N\left(x_{2}\right)=\left\{u_{k}\right\}$, which contradicts to $\delta \geq 2$.
Claim 10 For any $x \notin V(C), t_{i} \geq 3$.
Otherwise, there exists a vertex $x, x \notin V(C)$, such that $\min \left\{t_{i}\right\}=2$ by Claim 6. Note that the choice of the vertex $x$ in Claim 9, we have $N_{R}\left(u_{i}\right)=N_{R}\left(w_{i}\right)=\emptyset$ for the vertex $x$. Without loss of generality, suppose $t_{1}=2$, then $N_{C}^{-}\left(u_{1}\right) \cap N_{C}\left(w_{1}\right)=\left\{u_{1}\right\}$ by Claim 4, $N(x) \cap N^{+}(x)=\emptyset$ by Claim 2, and $N_{C}^{-}\left(u_{1}\right) \cap N(x)=N^{-}(x) \cap N_{C}\left(w_{1}\right)=\emptyset$ by Claim 3. Hence, $N_{C}^{-}\left(x, u_{1}\right) \cap N_{C}\left(x, w_{1}\right)=\left\{u_{1}\right\}$. We also have $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, w_{1}\right)\right| \geq$ $N C 2(G)$ since $d\left(x, u_{1}\right)=d\left(x, w_{1}\right)=2$. Then

$$
\begin{aligned}
|V(C)| & \geq\left|N_{C}^{-}\left(x, u_{1}\right) \cup N_{C}\left(x, w_{1}\right)\right| \\
& \geq\left|N_{C}^{-}\left(x, u_{1}\right)\right|+\left|N_{C}\left(x, w_{1}\right)\right|-1 \\
& \geq 2 N C 2(G)-1,
\end{aligned}
$$

which contradicts to that $|V(C)| \leq 2 N C 2(G)-2$.
By Claim 10, we have $|V(C)|=k+\sum_{i=1}^{k} t_{i} \geq 4 k$. Thus we get the following.
Claim 11 For any $x, x \notin V(C)$,

$$
d(x) \leq \frac{|V(C)|}{4} \leq \frac{2 N C 2(G)-2}{4}=(N C 2(G)-1) / 2
$$

Claim $12 u_{i}^{+} u_{j} \notin E(G)$, for the vertex $x$ as in Claim 9.
In fact, if $u_{i}^{+} u_{j} \in E(G)$, then the cycle $u_{i}^{+} \vec{C} v_{j} x v_{i} \overleftarrow{C} u_{j} u_{i}^{+}$is a longest D-cycle not containing $u_{i}$, by Claim 9 . Thus $d\left(u_{i}\right) \leq(N C 2(G)-1) / 2$ by Claim 11 . So we have

$$
N C 2(G) \leq\left|N\left(x, u_{i}\right)\right| \leq d(x)+d\left(u_{i}\right) \leq N C 2(G)-1,
$$ a contradiction. We choose $x$ as in Claim 9, and define a mapping $f$ on $V(C)$ as follows:

$$
f(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} v_{k}^{-} \\ v^{-} & \text {if } v \in u_{k}^{+} \vec{C} v_{1} \\ u_{1} & \text { if } v=v_{k} \\ v_{1} & \text { if } v=u_{k}\end{cases}
$$

Then $\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$ by Claim 10. Moreover, we have $\left.f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x, u_{1}\right)_{\left\{v_{2}\right.}, v_{3}, \ldots, v_{k}, w_{k}\right\}$. By Claims 2, 4, and 12, we also have $u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+} \notin f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right)$. Therefore, we have

$$
\begin{aligned}
|V(C)| & \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right)\right|+k-2 \\
& \geq\left|f\left(N_{C}\left(x, u_{k}\right)\right)\right|+\left|N_{C}\left(x, u_{1}\right)\right|-k+k-2 \\
& \geq 2 N C 2(G)-2 .
\end{aligned}
$$

So

$$
V(C)=f\left(N_{C}\left(x, u_{k}\right)\right) \cup N_{C}\left(x, u_{1}\right) \cup\left\{u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+}\right\}
$$

by the assumption on $|V(C)|$, and in particular,

$$
f\left(N_{C}\left(x, u_{k}\right)\right) \cap N_{C}\left(x, u_{1}\right)=\left\{v_{2}, v_{3}, \ldots, v_{k}, w_{k}\right\}
$$

Then $u_{1} w_{k}, u_{k} w_{k-1} \in E(G)$.
Claim $13 k=2$.
If there exists $v \in V(C) \backslash\left\{v_{1}, v_{k}\right\}$, by partition of $V(C)$, we have $v^{+2} \in f\left(N_{C}\left(x, u_{k}\right)\right) \cup$ $N_{C}\left(x, u_{1}\right) \cup\left\{u_{2}^{+}, u_{3}^{+}, \ldots, u_{k-1}^{+}\right\}$. If $v^{+2} \in N_{C}\left(x, u_{1}\right)$, then $v^{+2} u_{1} \in E(G)$, and the cycle $u_{1} v^{+2} \vec{C} v_{1} x$ $v \overleftarrow{C} u_{1}$ is a D-cycle not containing $v^{+}$by Claim 9 . Thus $d\left(v^{+}\right) \leq(N C 2(G)-1) / 2$ by Claim 11 So we have

$$
N C 2(G) \leq\left|N\left(x, v^{+}\right)\right| \leq d(x)+d\left(v^{+}\right) \leq N C 2(G)-1
$$

a contradiction.So $v^{+} \in N\left(x, u_{k}\right)$, which contradicts to Claims 2,3. Hence we have $k=2$.
Claim 14 Each of the followings does not hold:
(1) There is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} u_{1} \in E(G)$ and $u^{-} u_{2} \in E(G)$.
(2) There is $u \in u_{2} \vec{C} v_{1}$, such that $u^{-} u_{1} \in E(G)$ and $u^{+} u_{2} \in E(G)$.
(3) There is $u \in u_{2} \vec{C} v_{1}$, such that $u^{+} w_{1} \in E(G)$ and $u^{-} w_{2} \in E(G)$.
(4) There is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} w_{2} \in E(G)$ and $u^{-} w_{1} \in E(G)$.

If not, suppose there is $u \in u_{1} \vec{C} v_{2}$, such that $u^{+} u_{1} \in E(G)$ and $u^{-} u_{2} \in E(G)$. We define a mapping $h$ on $V(C)$ as follows :

$$
h(v)= \begin{cases}v^{+} & \text {if } v \in u_{1} \vec{C} u^{-} u_{2} \cup u^{+} \vec{C} w_{1} ; \\ v^{-} & \text {if } v \in u_{2}^{+} \vec{C} v_{1} ; \\ u^{+} & \text {if } v=v_{2} ; \\ v_{1} & \text { if } v=u_{2} ; \\ u_{1} & \text { if } v=u ; \\ u & \text { if } v=u_{2}^{+} .\end{cases}
$$

Then $\left|h\left(N_{C}\left(x, u_{2}\right)\right)\right| \geq N C 2(G)$ and $\left|N_{C}\left(x, u_{1}\right)\right| \geq N C 2(G)$. Moreover we have $u_{1} \notin N\left(x, u_{1}\right) \cup$ $h\left(N\left(x, u_{2}\right)\right)$, and $N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \subseteq\left\{v_{2}, u^{+}\right\}$. In fact, clearly $u_{1} \notin N\left(x, u_{1}\right)$, if $u_{1} \in$ $h\left(N\left(x, u_{2}\right)\right)$, then $u \in N\left(x, u_{2}\right)$, a contradiction. Let $s \in N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \backslash\left\{v_{2}, u^{+}\right\}$, if $s \in u_{1}^{+} \vec{C} v_{2} \cap N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \backslash\left\{v_{2}, u^{+}\right\}$then $s u_{1} \in E(G)$ and $s^{-} u_{2} \in E(G)$; or if
$s \in u_{2} \vec{C} w_{2} \cap N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right)$, then $s u_{1} \in E(G)$ and $s^{+} u_{2} \in E(G)$, both cases contradict to Claim 3. So $u_{1} \notin N\left(x, u_{1}\right) \cup h\left(N\left(x, u_{2}\right)\right), N\left(x, u_{1}\right) \cap h\left(N\left(x, u_{2}\right)\right) \subseteq\left\{v_{2}, u^{+}\right\}$. Hence

$$
\begin{aligned}
|V(C)| & \geq\left|h\left(N_{C}\left(x, u_{2}\right)\right) \cup N_{C}\left(x, u_{1}\right)\right|+1 \\
& \geq\left|h\left(N_{C}\left(x, u_{2}\right)\right)\right|+\left|N_{C}\left(x, u_{1}\right)\right|-2+1 \\
& \geq 2 N C 2(G)-1
\end{aligned}
$$

a contradiction. Similarly, (2), (3) and (4) are true.
Claim $15 \quad N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{1}^{-}\right)=N\left(u_{1}\right) \cap\left(u_{2} \vec{C} w_{2}^{-}\right)=\emptyset$.
If not, we may choose $z \in N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{1}^{-}\right)$, such that $N\left(u_{2}\right) \cap\left(u_{1} \vec{C} z^{-}\right)=\emptyset$. then $u_{1} z \in E(G)$ ( if not, $u_{1} z \notin E(G)$ then $u_{2} z^{-} \in E(G)$ by partition of $V(G)$, which contradicts the choice of $z$ ) and $N\left(u_{1}\right) \cap\left(z^{+} \vec{C} w_{1}\right)=\emptyset$ (if not, we may choose $s \in N\left(u_{1}\right) \cap\left(z^{+} \vec{C} w_{1}\right)$, such that $N\left(u_{1}\right) \cap\left(z^{+} \vec{C} s^{-}\right)=\emptyset$ since $z^{+} u_{1} \notin E(G)$. So $s^{-} u_{1} \notin E(G)$, by partition of the $V(C)$, $s^{-2} u_{2} \in E(G)$. Which contradicts Claim 14 ) Moreover $u_{1}^{+} \vec{C} z \subseteq N\left(u_{1}\right)$, and $z \vec{C} v_{2} \subseteq N\left(u_{2}\right)$. Similarly, we have $y \in u_{2} \vec{C} w_{2}$, such that $u_{2} y, u_{1} y \in E(G)$ and $N\left(u_{1}\right) \cap\left(u_{2} \vec{C} y^{-}\right)=N\left(u_{2}\right) \cap$ $\left(y^{+} \vec{C} w_{2}\right)=\emptyset, y \vec{C} v_{1} \subseteq N\left(u_{1}\right)$ and $u_{2}^{+} \vec{C} y \subseteq N\left(u_{2}\right)$.

Now we define a mapping $g$ on $V(C)$ as follows:

$$
g(v)= \begin{cases}v^{+} & \text {if } v \in v_{2} \vec{C} w_{2}^{-} \\ v^{-} & \text {if } v \in u_{1} \vec{C} w_{1} \\ v_{2} & \text { if } v=w_{2} \\ w_{1} & \text { if } v=v_{1}\end{cases}
$$

Using similar argument as above, consider $N\left(x, w_{1}\right) \cup g\left(N\left(x, w_{2}\right)\right)$, there exists $u \in V(C)$, such that $w_{1} u, w_{2} u \in E(G)$. Without loss generality, we may assume $u \in u_{1} \vec{C} w_{1}$, Moreover then $N\left(w_{2}\right) \cap\left(u^{+} \vec{C} w_{1}\right)=N\left(w_{1}\right) \cap\left(u_{1} \vec{C} u^{-}\right)=\emptyset$, and $v_{1} \vec{C} u \subseteq N\left(w_{2}\right), u \vec{C} v_{2} \subseteq N\left(w_{1}\right)$. Let $u \neq z$. If $u \in z \vec{C} w_{1}^{-}, u^{-} u_{2} \in E(G)$ by partition of $V(C)$ since $u u_{1} \notin E(G)$, which contradicts to Claim 4 ; if $u \in u_{1} \vec{C} z$, then $C^{\prime}=x v_{2} w_{1} u \vec{C} w_{1}^{-} u_{2} \vec{C} w_{2} u^{-} \overleftarrow{C} v_{1} x$ is a D-cycle longer than $C$, a contradiction. If $u=z$, since $z^{+2} u_{1} \notin E(G), z^{+} u_{2} \in E(G)$ by partition of $V(C)$, which contradicts to Claim 4. Hence $N\left(u_{2}\right) \cap\left(u_{1} \vec{C} w_{2}^{-}\right)=\emptyset$. Similarly $N\left(u_{1}\right) \cap\left(u_{2} \vec{C} w_{1}^{-}\right)=\emptyset$.

By Claim 15 we have
Claim 16 If there exists $z \in v_{1} \vec{C} v_{2}$, such that $u_{2} z \in E(G)$, then $u_{1} z \in E(G)$ and $u_{1}^{+} \vec{C} z \subseteq$ $N\left(u_{1}\right), z \vec{C} w_{1} \subseteq N\left(u_{2}\right)$. similarly if there exists $z \in v_{2} \vec{C} v_{1}$, such that $u_{2} z \in E(G)$, then $u_{1} z \in E(G)$ and $u_{2}^{+} \vec{C} z \subseteq N\left(u_{2}\right), z \vec{C} w_{2} \subseteq N\left(u_{1}\right)$.

## Proof of Theorem 5

Now we are going to complete the proof of Theorem 5. We choose $x$ as in Claim 9. By Claim 13, we know that $k=2$.

First we prove that there exists $u \in V(C)$ such that $u_{1}, u_{2} \in N(u)$. If there is not any $u \in V(C) \backslash\left\{v_{2}, w_{1}, u_{2}^{+}\right\}$such that $u_{2} u \notin E(G)$, then $w_{1}^{-} u_{1} \in E(G)$ (if not, $w_{1}^{-2} u_{2} \in E(G)$ by
partition of $V(C))$. If $u_{1} w_{1} \notin E(G)$ then $u_{2} w_{1}^{-} \in E(G)$, so we have $u_{1}, u_{2} \in N\left(w_{1}^{-}\right)$; if there is $u \in V(C)$, such that $u_{2} u \in E(G)$ then, by Claim $16, u_{1} u \in E(G)$, hence $u_{1}, u_{2} \in N(u)$.

By Claim 16, clearly, there are not $z \in u_{1} \vec{C} w_{1}, y \in u_{2} \vec{C} w_{2}$, such that $y z \in E(G)$.
So we have $G \in \mathcal{J}_{1}$. The proof of Theorem 5 is finished.

## Acknowledgment

We were helped in completing this paper by conversations with Prof.F.Tian and L.Zhang.

## References

[1] J.A. Bondy and U.S.R. Murty, Graph Theory with Applications, Macmillan, London and Elsevier, New York(1976).
[2] H.J. Broersma and H.J. Veldman, Long dominating cycles and paths in graphs with large neighborhood unions, Journal of Graph Theory 15(1991), 29-38.
[3] L.F.Mao, Smarandache multi-space theory, Hexis, Phoenix, AZ2006.
[4] R.Q.Shen and F.Tian, Long dominating cycles in graphs, Discrete Mathematics, Vol.177(1997), 287-294.
[5] F. Tian and L.Z.Zhang Long dominating cycle in a kind of 2-connected graphs, Systems Science and Mathematical Science 8(1995), 66-74.
[6] Z.R.Sun, Long dominating cycle in graphs (Submitted).

# The Crossing Number of the Join of $C_{m}$ and $P_{n}$ 

Ling Tang, Jing Wang and Yuanqiu Huang

(Department of Mathematics, Normal University of Hunan, Changsha 410081, P.R.China)<br>E-mail: tanglingti@tom.com; wangjing1001@hotmail.com; hyqq@public.cs.hn.cn


#### Abstract

In this paper, the crossing numbers of $P_{m} \vee P_{n}, C_{m} \vee P_{n}$ and $C_{m} \vee C_{n}$ are determined for arbitrary integers $m, n \geq 1$, which are related with parallel bundles in planar map geometries, i.e., Smarandache spherical geometries.


Keywords: Crossing number, join of graphs, path, cycle.
AMS(2000): O5C25, O5C62.

## §1. Introduction

Let $G$ be a simple and undirected graph with vertex set $V$ and edge set $E$. The crossing number $\operatorname{cr}(G)$ of the graph $G$ is the minimum number of pairwise intersections of edges in all drawings of $G$ in a plane, which are related with parallel bundles in planar map geometries, i.e., Smarandache spherical geometries (see [6]-[7] for details). It is well known that the crossing number of a graph is attained only in good drawings, means that no edge crosses itself, no two edges cross more than once, no two edges incident with the same vertex cross, no more than two edges cross at a point of the plane, and no edge meets a vertex which is not one of its endpoints. It is easy to see that a drawing with the minimum number of crossings (an optimal drawing) is always a good drawing. Let $D$ be a good drawing of the graph $G$, we denote the number of crossings in $D$ by $c r_{D}(G)$. Let $A$ and $B$ be disjoint edge subsets of $G$. We denote by $c r_{D}(A, B)$ the number of crossings between edges of $A$ and $B$, and by $c r_{D}(A)$ the number of crossings whose two crossed edges are both in $A$. Let $H$ be a subgraph of $G$, the restricted drawing $\left.D\right|_{H}$ is said to be a subdrawing of $H$. As for more on the theory of crossing number, we refer readers to [1] and [2]. In this paper, we also use the term region in non-planar drawings. In this case, crossings are considered to be vertices of the map.

Let $G_{1}$ and $G_{2}$ be two disjoint graphs. The union of $G_{1}$ and $G_{2}$, denoted by $G_{1}+G_{2}$, has vertex set $V\left(G_{1}\right) \cup V\left(G_{2}\right)$ and edge set $E\left(G_{1}\right) \cup E\left(G_{2}\right)$, and the $j$ oin of $G_{1}$ and $G_{2}$ is obtained by adjoining every vertex of $G_{1}$ to every vertex of $G_{2}$ in $G_{1}+G_{2}$ which is denoted by $G_{1} \vee G_{2}$ (see [3]).

Let $K_{m, n}$ denote the complete bipartite graph on sets of $m$ and $n$ vertices, $P_{n}$ the path of length $n$ and $C_{m}$ the cycle with $m$ vertices.

From these definitions, following results are well-known.

[^8]Proposition 1.1 Let $G_{1}$ be a graph homeomorphic to $G_{2}$. Then $\operatorname{cr}\left(G_{1}\right)=\operatorname{cr}\left(G_{2}\right)$.
Proposition 1.2 If $G_{1}$ is a subgraph of $G_{2}$, then $\operatorname{cr}\left(G_{1}\right) \leq \operatorname{cr}\left(G_{2}\right)$.
Proposition 1.3 Let $D$ be a good drawing of a graph $G$. If $A, B$ and $C$ are three mutually disjoint edge subsets of $G$, then we have
(1) $c r_{D}(A \cup B)=c r_{D}(A)+c r_{D}(A, B)+c r_{D}(B)$;
(2) $c r_{D}(A \cup B, C)=c r_{D}(A, C)+c r_{D}(B, C)$.

Proposition 1.4([4]) If $G$ has $n$ vertices and $m$ edges with $n \geq 3$, then $\operatorname{cr}(G) \geq m-3 n+6$.
Computing the crossing number of graphs is a classical problem, and yet it is also an elusive one. In fact, Garey and Johnson in [5] have proved that to determine the crossing number of graphs is NP-complete in general. At present, the classes of graphs whose crossing numbers have been determined are very scarce.

On the crossing number of the complete bipartite graphs $K_{m, n}$, Zarankiewicz gave a drawing of $K_{m, n}$ in [8] which demonstrates that

$$
c r\left(K_{m, n}\right) \leq Z(m, n)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor .
$$

and conjectured $\operatorname{cr}\left(K_{m, n}\right)=Z(m, n)$, Which is called the Zarankiewicz conjecture. More precisely, Kleitman proved in [9] that if $m \leq 6$ and $m \leq n, \operatorname{cr}\left(K_{m, n}\right)=Z(m, n)$.

As we known, results for the join of graphs are fewer, particularly, Bogdan Oporowski proved $\operatorname{cr}\left(C_{3} \vee C_{5}\right)=6$ in [4]. Based on this, we begin to consider the crossing numbers of the join of $P_{m}$ and $P_{n}, C_{m}$ and $P_{n}, C_{m}$ and $C_{n}$, and get the following theorems which consist of these main results in this paper.

Theorem A If $m \geq 1, n \geq 1$ and $\min \{m, n\} \leq 5$, then

$$
\operatorname{cr}\left(P_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor .
$$

If $m \geq 3, n \geq 1$ and $\min \{m, n+1\} \leq 6$, then

$$
\operatorname{cr}\left(C_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor+1
$$

and if $m \geq 3, n \geq 3, \quad \min \{m, n\} \leq 6$, then

$$
\operatorname{cr}\left(C_{m} \vee C_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2 .
$$

Theorem B If the Zarankiewicz conjecture is held for $m \geq 7$ and $m \leq n$, then if $m \geq 1, n \geq$ 1 , $\min \{m, n\} \geq 6$,

$$
\operatorname{cr}\left(P_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor ;
$$

if $m \geq 3, n \geq 1, \quad \min \{m, n+1\} \geq 7$,

$$
\operatorname{cr}\left(C_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor+1
$$

and if $m \geq 3, n \geq 3, \quad \min \{m, n\} \geq 7$,

$$
\operatorname{cr}\left(C_{m} \vee C_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2 .
$$

## §2. Some Lemmas

Lemma 2.1 (1) There exists a good drawing $D_{1}$ of $P_{m} \vee P_{n}$ for given integers $m \geq 1$ and $n \geq 1$ such that

$$
c r_{D_{1}}\left(P_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor ;
$$

(2) There exists a good drawing $D_{2}$ of $C_{m} \vee P_{n}$ for given integers $m \geq 3$ and $n \geq 1$ such that

$$
c r_{D_{2}}\left(C_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor+1 ;
$$

(3) There exists a good drawing $D_{3}$ of $C_{m} \vee C_{n}$ for given integers $m \geq 3$ and $n \geq 3$ such that

$$
c r_{D_{3}}\left(C_{m} \vee C_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2
$$

Proof By Fig.2.1-Fig.2.3, the conclusions are immediately held.
Lemma $2.2 \quad \operatorname{cr}\left(C_{3} \vee C_{3}\right)=3$.
Proof From Lemma 2.1(3), $\operatorname{cr}\left(C_{3} \vee C_{3}\right) \leq 3$. We know $C_{3} \vee C_{3}$ has 6 vertices and 15 edges, then $\operatorname{cr}\left(C_{3} \vee C_{3}\right) \geq 15-3 \times 6+6=3$. Therefore the conclusion is held.

In the following Lemmas, let $G$ be a connected graph with $V(G)=\left\{x_{1}, x_{2}, \ldots, x_{n}(n \geq 3)\right\}$ and $C_{m}$ a cycle with $V\left(C_{m}\right)=\left\{y_{1}, y_{2}, \ldots, y_{m}\right\}$. Then we know that $V\left(C_{m} \vee G\right)=V\left(C_{m}\right) \cup V(G)$ and $E\left(C_{m} \vee G\right)=E\left(C_{m}\right) \cup E(G) \cup E^{*}$, here $E^{*}=\left\{x_{i} y_{j} \mid i=1,2, \ldots, n ; j=1,2, \ldots, m\right\}$.

Lemma 2.3 For any good drawing $D$ of $C_{m} \vee G$,

$$
\operatorname{cr}\left(C_{m} \vee G\right) \geq \operatorname{cr}_{D}\left(E^{*}\right) \geq \operatorname{cr}\left(K_{m, n}\right) .
$$

Proof Since the edge-induced subgraph of $E^{*}$ is $K_{m, n}$, the conclusion is evident.
Lemma 2.4 Let $\phi$ be an optimal drawing of $C_{m} \vee G$. Then $c r_{\phi}\left(E\left(C_{m}\right)\right)=0$.
Proof We assume there exists an optimal drawing $\phi$ of $C_{m} \vee G$ such that $c r_{\phi}\left(E\left(C_{m}\right)\right) \neq 0$. Then $m \geq 4$ and there exist two crossed edges $e, f \in E\left(C_{m}\right)$. We assume that $e=y_{i} y_{j}, f=y_{k} y_{l}$, where $i, j, k, l$ are distinct. For convenience, we denote the crossing between $e$ and $f$ by $v$. Since $C_{m}$ is 2-connected, there exist two paths $P_{1}$ and $P_{2}$ connected $y_{i}$ and $y_{k}, y_{j}$ and $y_{l}$, respectively and $P_{i}(i=1,2)$ does not pass $v$. In the following, we shall produce a new good drawing $\phi^{\prime}$ of $C_{m} \vee G$ (see Fig.2.2 below).


Fig.2.1


Fig.2.2


Fig.2.3

At first, we connect $y_{i}$ to $y_{l}$ sufficiently close to the section between $y_{i}$ and $v$ of $e$ and the section between $y_{l}$ and $v$ of $f$, then we get a new edge $e^{\prime}=y_{i} y_{l}$. Analogously, we can get another new edge $f^{\prime}=y_{j} y_{k}$. Secondly, we delete two original edges $e$ and $f$. In this way, we produce a new good drawing $\phi^{\prime}$ of $C_{m} \vee G$ such that the crossing $v$ in $\phi$ is deleted in $\phi^{\prime}$, the other crossings in $\phi$ are not changed in $\phi^{\prime}$ and there is no new crossing occurring in $\phi^{\prime}$, then we get that $c r_{\phi^{\prime}}\left(C_{m} \vee G\right)=c r_{\phi}\left(C_{m} \vee G\right)-1$, contradicts to that $\phi$ is an optimal drawing.


Fig. 2.2
Lemma 2.5 Let $\phi$ be a good drawing of $C_{m} \vee G$ such that $\operatorname{cr}_{\phi}\left(E\left(C_{m}\right)\right)=0, r_{\phi}\left(E\left(C_{m}\right), E(G)\right)=$

0 and $\operatorname{cr}_{\phi}\left(E\left(C_{m}\right), E^{*}\right) \leq 1$.
(1) If $c r_{\phi}\left(E\left(C_{m}\right), E^{*}\right)=0$, then $c r_{\phi}\left(C_{m} \vee G\right) \geq \frac{1}{2} n(n-1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$;
(2) If $c r_{\phi}\left(E\left(C_{m}\right), E^{*}\right)=1$, then $c r_{\phi}\left(C_{m} \vee G\right) \geq \frac{1}{2}(n-1)(n-2)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+1$.

Proof Since $c r_{\phi}\left(E\left(C_{m}\right)\right)=0$, the subdrawing $\left.\phi\right|_{C_{m}}$ divides the plane into two regions. As $c r_{\phi}\left(E\left(C_{m}\right), E(G)\right)=0$ and $G$ is connected, any vertex $x_{i}$ of $G$ lies in the same region, say the finite region. For convenience, let $E^{i}=\left\{x_{i} y_{j} \mid j=1,2, \ldots, m\right\}$ for $i=1,2, \ldots, n$. Then $c r_{\phi}\left(E^{i}\right)=0$. Since $E^{*}=\cup_{i=1}^{n} E^{i}$, we find that $c r_{\phi}\left(E^{*}\right)=\sum_{1 \leq i<k \leq n} c r_{\phi}\left(E^{i}, E^{k}\right)$.
(i) Since $\operatorname{cr}_{\phi}\left(E\left(C_{m}\right), E^{*}\right)=0$, then for any $i=1,2, \ldots, n, x_{i} y_{j}$ does not cross any edge in $E\left(C_{m}\right)$. For any integers $i, k, 1 \leq i<k \leq n, x_{i}$ must be connected to each $y_{j}(j=1,2, \ldots, m)$, these $m$ edges connecting $x_{i}$ to all $y_{j} \in V\left(C_{m}\right)$ which divide the finite region into $m$ subregions, we know that $x_{k}$ lies in one of these subregions. Thus the $m$ edges connecting $x_{k}$ to $y_{j}$ must cross the edges adjacent to $x_{i}$ at least $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$ times (see Fig.2.3 below). Then $c r_{\phi}\left(E^{i}, E^{k}\right) \geq$ $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. So $c r_{\phi}\left(C_{m} \vee G\right) \geq c r_{\phi}\left(E^{*}\right)=\sum_{1 \leq i<k \leq n} \operatorname{cr}_{\phi}\left(E^{i}, E^{k}\right) \geq \frac{1}{2} n(n-1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. Our conclusion (1) is held.


Fig. 2.3
(ii) Since $\operatorname{cr}_{\phi}\left(E\left(C_{m}\right), E^{*}\right)=1$, there exists only one $k \in\{1,2, \ldots, n\}$. Without loss of generality, we assume that $k=n$ such that for some $j \in\{1,2, \ldots, m\}, x_{n} y_{j}$ crosses exactly one edge in $E\left(C_{m}\right)$. For any integer $i=1,2, \ldots, n-1, x_{i} y_{j}$ does not cross any edge in $E\left(C_{m}\right)$. Similar to $(i)$, for $1 \leq i<k \leq n-1, c r_{\phi}\left(E^{i}, E^{k}\right) \geq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. Then $c r_{\phi}\left(C_{m} \vee G\right) \geq$ $c r_{\phi}\left(E^{*}\right)+1 \geq \sum_{1 \leq i<k \leq n-1} \operatorname{cr} r_{\phi}\left(E^{i}, E^{k}\right)+1 \geq \frac{1}{2}(n-1)(n-2)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+1$. Our conclusion (2) is held too.

## §3. Proofs

## Proof of Theorem A

(1) If $n=1, P_{m} \vee P_{1}$ is a planar graph, the conclusion is held.

If $n \geq 2$, from Lemma 2.1(1) we know $\operatorname{cr}\left(P_{m} \vee P_{n}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. Since $P_{n}$ is connected, combining with Lemma 2.3, $\operatorname{cr}\left(P_{m} \vee P_{n}\right) \geq \operatorname{cr}\left(K_{m+1, n+1}\right)$. For $\min \{m, n\} \leq 5$, $\operatorname{cr}\left(K_{m+1, n+1}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. Then $\operatorname{cr}\left(P_{m} \vee P_{n}\right) \geq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m+1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. So the conclusion is held.
(2) From Lemma 2.1(2), we know that $\operatorname{cr}\left(C_{m} \vee P_{n}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor+1$.

If $n=1, \operatorname{cr}\left(C_{m} \vee P_{1}\right) \leq 1$, and $C_{m} \vee P_{1}$ has a subgraph which is homeomorphic to $K_{5}$, then the conclusion is held.

If $n \geq 2$, since $P_{n}$ is connected, combining with Lemma 2.3 and $\min \{m, n+1\} \leq 6$, $\operatorname{cr}\left(C_{m} \vee P_{n}\right) \geq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. We assume there exists an optimal drawing $\phi$ such that $c r_{\phi}\left(C_{m} \vee P_{n}\right)=\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. By Lemma 2.3 and $\min \{m, n+1\} \leq 6, c r_{\phi}\left(E^{*}\right) \geq$ $\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$. While

$$
\begin{aligned}
c r_{\phi}\left(C_{m} \vee P_{n}\right) & =c r_{\phi}\left(E\left(C_{m}\right)\right)+c r_{\phi}\left(E\left(P_{n}\right)\right)+c r_{\phi}\left(E^{*}\right) \\
& +c r_{\phi}\left(E\left(C_{m}\right), E\left(P_{n}\right)\right)+c r_{\phi}\left(E\left(C_{m}\right), E^{*}\right)+c r_{\phi}\left(E\left(P_{n}\right), E^{*}\right)
\end{aligned}
$$

we get $c r_{\phi}\left(E\left(C_{m}\right)\right)=0, c r_{\phi}\left(E\left(C_{m}\right), E\left(P_{n}\right)\right)=0$ and $c r_{\phi}\left(E\left(C_{m}\right), E^{*}\right)=0$, combining with Lemma 2.5(1), $c r_{\phi}\left(C_{m} \vee P_{n}\right) \geq \frac{1}{2} n(n+1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. It is easy to check that $\frac{1}{2} n(n+1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$ $>\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n+1}{2}\right\rfloor$ for integers $m \geq 3$ and $n \geq 2$, a contradiction. Thus the conclusion is held.
(3) By Lemma 2.2, we have determined the crossing number of $C_{3} \vee C_{3}$. Without loss of generality, we can assume $n \geq 4$ in the following arguments.

From Lemma 2.1(3) we know that $\operatorname{cr}\left(C_{m} \vee C_{n}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+2$. Since $C_{n}$ is connected, by Lemma 2.3 and $\min \{m, n\} \leq 6, \operatorname{cr}\left(C_{m} \vee C_{n}\right) \geq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$. We assume there exists an optimal drawing $\varphi$ such that

$$
\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor \leq c r_{\varphi}\left(C_{m} \vee C_{n}\right) \leq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+1 .
$$

By Lemma 2.3 and $\min \{m, n\} \leq 6, c r_{\varphi}\left(E^{*}\right) \geq\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor$.
By Lemma 2.4, $c r_{\varphi}\left(E\left(C_{m}\right)\right)=0$ and $c r_{\varphi}\left(E\left(C_{n}\right)\right)=0$. As $c r_{\varphi}\left(C_{m} \vee C_{n}\right)=c r_{\varphi}\left(E\left(C_{m}\right)\right)+$ $c r_{\varphi}\left(E\left(C_{n}\right)\right)+c r_{\varphi}\left(E^{*}\right)+c r_{\varphi}\left(E\left(C_{m}\right), E\left(C_{n}\right)\right)+c r_{\varphi}\left(E\left(C_{m}\right), E^{*}\right)+c r_{\varphi}\left(E\left(C_{n}\right), E^{*}\right)$, we get that

$$
c r_{\varphi}\left(E\left(C_{m}\right), E\left(C_{n}\right)\right) \leq 1, \quad c r_{\varphi}\left(E\left(C_{m}\right), E^{*}\right) \leq 1
$$

If $\operatorname{cr}_{\varphi}\left(E\left(C_{m}\right), E\left(C_{n}\right)\right)=1$, since $C_{m}$ and $C_{n}$ are vertex-disjoint cycles, then they cross at least twice, also a contradiction. So $c r_{\varphi}\left(E\left(C_{m}\right), E\left(C_{n}\right)\right)=0$.

If $c r_{\varphi}\left(E\left(C_{m}\right), E^{*}\right)=0$, by Lemma 2.5(1), $c r_{\phi}\left(C_{m} \vee C_{n}\right) \geq \frac{1}{2} n(n-1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor$. It is easy to check that $\frac{1}{2} n(n-1)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor>\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+1$ for integers $m \geq 3$ and $n \geq 4$, a contradiction.

If $c r_{\varphi}\left(E\left(C_{m}\right), E^{*}\right)=1$, by Lemma 2.5 (2), $c r_{\phi}\left(C_{m} \vee C_{n}\right) \geq \frac{1}{2}(n-1)(n-2)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+1$, it is also easy to check that $\frac{1}{2}(n-1)(n-2)\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor+1>\left\lfloor\frac{m}{2}\right\rfloor\left\lfloor\frac{m-1}{2}\right\rfloor\left\lfloor\frac{n}{2}\right\rfloor\left\lfloor\frac{n-1}{2}\right\rfloor+1$ for $m \geq 3$ and $n \geq 4$, a contradiction too. So the conclusion is held.

This completes the proof of Theorem A.

## Proof of Theorem B

If the Zarankiewicz conjecture is held for integers $m \geq 7$ and $m \leq n$, then the crossing number of $K_{m, n}$ is $Z(m, n)$ for $m \geq 7$ and $m \leq n$, so the proof of Theorem B is analogous to the proof of Theorem A.

Notice that these drawings $D_{1}, D_{2}$ and $D_{3}$ in Fig.2.1-2.3 are optimal drawings of $P_{m} \vee P_{n}$ for integers $m \geq 1$ and $n \geq 1, C_{m} \vee P_{n}$ for integers $m \geq 3$ and $C_{m} \vee C_{n}$ for integers $m \geq 3$ and $n \geq 3$, respectively.

## References

[1] Jonathan L. Gross, Thomas W. Tucker, Topological Graph Theory, A Wiley-Interscience Publication, John Wiley \& Sons, Canada, 1987.
[2] F. Harary, Graph Theory, Addison-Wesley, Reading, Mass, 1969.
[3] J. A. Bondy and U. S. R. Murty, Graph Theory with Applications, The Macmillan Press LTD., London, 1976.
[4] Bogdan Oporowski and David Zhao, Coloring graphs with crossings, to appear.
[5] M.R. Garey and D. S. Johnson, Crossing number is NP-complete, SIAM J. Algebraic. Discrete Methods, 4, (1983), 312-316.
[6] L.F.Mao, Automorphism Groups of Maps, Surfaces and Smarandache Geometries, American Research Press, 2005.
[7] L.F.Mao, Parallel bundles in planar map geometries, Scientia Magna, Vol.1(2005), No.2,120133.
[8] K. Zarankiewicz, On a problem of P. Turán concerning graphs, Fund. Math., 41, (1954), 137-145.
[9] D. J. Kleitman, The crossing number of $K_{5, n}$, J. Combinatorial Theory, 9, (1970), 315-323.

# A Note on 4-Ordered Hamiltonicity of Cayley Graphs 

Lei Wang and Yongga A<br>( School of Mathematics, Inner Mongolia Normal University, Huhhot 010022, P.R. China)


#### Abstract

A hamiltonian graph $G$ of order $n$ is $k$-ordered for an integer $k, 2 \leq k \leq n$ if for every sequence $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of $k$ distinct vertices of $G$, there exists a hamiltonian cycle that encounters $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ in order. For any integer $k \geq 1$, let $G=\mathbb{Z}_{3 k-1}$ denote the additive group of integers modulo $3 k-1$ and $C$ the subset of $\mathbb{Z}_{3 k-1}$ consisting of these elements congruent to 1 modulo 3. Denote by $\operatorname{And}(k)$ the Cayley graph $\operatorname{Cay}(G: C)$. In this note, we show that $\operatorname{And}(k)$ is a 4 -ordered hamiltonian graph.


Keywords: Cayley graph, $k$-ordered, hamiltonicity.
AMS(2000): 05C25

## §1. Introduction

All groups and graphs considered in this paper are finite. For any integers $n \geq 3$ and $k, 2 \leq$ $k \leq n$, a hamiltonian graph $G$ of order $n$ is $k$-ordered if for every sequence $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ of $k$ distinct vertices of $G$, there exists a hamiltonian cycle that encounters $\left(v_{1}, v_{2}, \ldots, v_{k}\right)$ in order. Let $G=\mathbb{Z}_{3 k-1}$ denote the additive group of integers modulo $3 k-1$ with $k \geq 1$ and $C$ the subset of $\mathbb{Z}_{3 k-1}$ consisting of these elements congruent to 1 modulo 3 . We denote the Cayley graph $\operatorname{Cay}(G: C)$ by $\operatorname{And}(k)$ in this note.

For $\forall v_{i}, v_{j} \in V(\operatorname{And}(k)), \mathrm{d}\left(v_{i}\right)=\mathrm{d}\left(v_{j}\right)=k, v_{i} \sim v_{j}$ if and only if $j-i \equiv \pm 1(\bmod 3)$. We have known that the diameter of $\operatorname{And}(k)$ is 2 and the subgraph of $\operatorname{And}(k)$ induced by $\{0,1,2, \ldots, 3(k-1)-2\}$ is $\operatorname{And}(k-1)$ by results in references [2] - [3]. Therefore, we can get $\operatorname{And}(k-1)$ from $\operatorname{And}(k)$ by deleting the path $3 k-4 \sim 3 k-3 \sim 3 k-2$. As it has been shown also in [2], there exist 4-regular, 4-ordered graphs of order $n$ for any integer $n \geq 5$. In this note, we research 4-ordered property of $\operatorname{And}(k)$.

## §2. Main result and its proof

Theorem $\operatorname{And}(k)$ is a 4-ordered hamiltonian graph.
Proof We have known that $\operatorname{And}(k)$ is a hamiltonian graph. For any $S=(x, u, v, w) \subseteq$ $V[\operatorname{And}(k)]=\{0,1,2, \ldots, 3 k-2\}$, it is obvious that there is a hamiltonian cycle $C$ that encounters the vertices of $S$, not loss of generality, we can assume it passing through these vertices in the order $(x, u, v, w)$. By a reverse traversing, we also get a hamiltonian cycle that encounters the

[^9]vertices of $S$ in the order $(x, w, v, u)$. Notice that there are six cyclic orders for $(x, u, v, w)$ as follows:
\[

$$
\begin{array}{ll}
(x, u, v, w), & (x, w, v, u) \\
(x, w, u, v), & (x, v, u, w) \\
(x, u, w, v), & (x, v, w, u)
\end{array}
$$
\]

Here, in each row, one is a reversion of another.
Our proof is divided into following discussions.
Firstly, we show that there is a hamiltonian cycle $C$ that encounters the vertices of $S$ in the order $(x, v, u, w)$.

Case $1 \quad v-u \equiv 0(\bmod 3)$
Notice that $v-(u-1)=v-u+1 \equiv 1(\bmod 3), v \sim(u-1),(v+1)-u=v-u+1 \equiv 1(\bmod 3)$, $(v+1) \sim u$ in this case. There exists a hamiltonian cycle

$$
x=0,1,2,3, \ldots, u-1, v, v-1, v-2, \ldots, u, v+1, v+2, \ldots w, \ldots, 3 k-2
$$

in $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, v, u, w)$.
Case $2 \quad v-u \equiv 1(\bmod 3)$
In this case, $v-(u-3)=v-u+3 \equiv 1(\bmod 3), v \sim(u-3),(v+1)-(u-2)=v-u+3 \equiv$ $1(\bmod 3),(v+1) \sim(u-2)$. We find a hamiltonian cycle

$$
x=0,1,2, \ldots, u-3, v, v-1, \ldots, u, u-1, u-2, v+1, v+2, \ldots w, \ldots, 3 k-2
$$

in $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, v, u, w)$.
Case $3 \quad v-u \equiv 2(\bmod 3)$
Since $v-(u-2)=v-u+2 \equiv 1(\bmod 3), v \sim(u-2),(v+1)-(u-1)=v-u+2 \equiv 1(\bmod 3)$, $(v+1) \sim(u-1)$ in this case. We have a hamiltonian cycle

$$
x=0,1,2, \ldots, u-2, v, v-1, \ldots, u, u-1, v+1, v+2, \ldots w, \ldots, 3 k-2
$$

in $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, v, u, w)$.
By traversing this cycle in a reverse direction, there is also a hamiltonian cycle that encounters the vertices of $S$ in the order $(x, w, u, v)$.

Next, we show that there is also a hamiltonian cycle $C$ that encounters the vertices of $S$ in the order $(x, u, w, v)$.

Case $1 \quad w-v \equiv 0(\bmod 3)$
Notice that $w-(v-1)=w-v+1 \equiv 1(\bmod 3), w \sim(v-1),(w+1)-v=w-v+1 \equiv 1(\bmod 3)$, $(w+1) \sim v$ in this case. We find a hamiltonian cycle

$$
x=0,1,2, \ldots, u, \ldots, v-1, w, w-1, \ldots, v, w+1, w+2, \ldots, 3 k-2
$$

in $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, u, w, v)$.
Case $2 \quad w-v \equiv 1 \bmod 3$
In this case, $(w+1)-(v-2)=w-v+3 \equiv 1(\bmod 3),(w+1) \sim(v-2),(w+2)-(v-1)=$ $w-v+3 \equiv 1(\bmod 3),(w+2) \sim(v-1)$. There exists a hamiltonian cycle

$$
x=0,1,2, \ldots, u, \ldots, v-2, w+1, w, w-1, \ldots, v, v-1, w+2, \ldots, 3 k-2
$$

in the graph $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, u, w, v)$ if $w \neq 3 k-2, u \neq v-1$. While $w=3 k-2, u=v-1$, notice that $(3 k-2)-v \equiv 1(\bmod 3), 3 k-v \equiv 0(\bmod 3)$ and $v \equiv 0(\bmod 3)$. So $u+5=(v-1)+5=v+4 \equiv 1(\bmod 3), u+5 \sim 0$. The cycle

$$
x=0,1,2,3, \ldots, u, u+4, u+3, u+2, u+6, u+7, \ldots, 3 k-2, v(u+1), u+5,0
$$

in $\operatorname{And}(k)$ is a hamiltonian cycle encountering vertices of $S$ in the order $(x, u, w, v)$.
Case $3 \quad w-v \equiv 2(\bmod 3)$
By assumption, $(w+1)-(v-1)=w-v+2 \equiv 1(\bmod 3),(w+1) \sim(v-1),(w+2)-v=$ $w-v+2 \equiv 1(\bmod 3),(w+2) \sim v$. We get a hamiltonian cycle

$$
x=0,1,2, \ldots, u, \ldots, v-1, w+1, w, w-1, \ldots, v, w+2, \ldots, 3 k-2
$$

in $\operatorname{And}(k)$ encountering all vertices of $S$ in the order $(x, u, w, v)$ if $w \neq 3 k-2, u \neq v-1$. Now if $w=3 k-2, u=v-1, w-v \equiv 2(\bmod 3)$, notice that $(w-2)-u=(w-2)-(v-1)=w-v-1 \equiv$ $1(\bmod 3),(w-2) \sim u, w-(u-1)=w-(v-1-1)=w-v+2 \equiv 1(\bmod 3), w \sim(u-1)$, $(w-3)-0=(3 k-2)-3=3 k-5 \equiv 1(\bmod 3),(w-3) \sim 0,(3 k-2)-(u+1)=3 k-3-u \equiv 2(\bmod 3)$, $u-0 \equiv 1 \bmod 3), u \sim 0$. There is also a hamiltonian cycle

$$
x=0, u, w-2, w-1, w, u-1, \ldots, 1, v, v+1, v+2, \ldots, w-3,0
$$

in $\operatorname{And}(k)$ encountering vertices of $S$ in the order $(x, u, w, v)$.
By traversing the cycle in a reverse direction, we also find a hamiltonian cycle that encounters the vertices of $S$ in the order $(x, v, w, u)$.

This completes the proof.

## References

[1] Chris Godsil and Gordon Royle, Algebraic Graph TheorySpringer2004.
[2] Lenhard Ng, Michelle Schultz, $k$-ordered hamiltonian graphs, J.Graph Theory, Vol.24, No.1, 45-57, 1997.
[3] Faudree R. J., On $k$-ordered graphs, J. Graph Theory, Vol.35, 73-87, 2001.
[4] Bondy J. A. and Murty U. S. R., Graph Theory with Applications, The Macmillan Press LTD, 1976.
[5] Kun Cheng and Yongga A, An infinite construction of 3-regular 4-ordered graphs, J.Inner Mongolia Normal University (Natural Science), Vol.34, No.2, 158-162, 2005.

# The Crossing Number of Two Cartesian Products 

Lin Zhao, Weili He, Yanpei Liu and Xiang Ren<br>(Department of Mathematics, Beijing Jiaotong University, Beijing 100044, P.R.China.)<br>E-mail:05121752@bjtu.edu.cn


#### Abstract

There are several known exact results on the crossing number of Cartesian products of paths, cycles, and complete graphs. In this paper, we find the crossing numbers of Cartesian products of $P_{n}$ with two special 6-vertex graphs.


Keywords: Cartesian product; Crossing number.
AMS(2000) 05C10, 05C38.

## §1. Introduction

A drawing $D$ of a graph $G$ on a surface $S$ consists of an immersion of $G$ in $S$ such that no edge has a vertex as an interior point and no point is an interior point of three edges. We say a drawing of $G$ is a good drawing if the following conditions hold:
(1) no edge has a self-intersection;
(2) no two adjacent edges intersect;
(3) no two edges intersect each other more than once;
(4) each intersection of edges is a crossing rather than tangential.

The crossing number $\operatorname{cr}(G)$ of a graph $G$ is the smallest number of pairs of nonadjacent edges that intersect in a drawing of $G$ in the plane. An optimal drawing of a graph $G$ is a drawing whose number of crossings equals $\operatorname{cr}(G)$.

Now let $G_{1}$ and $G_{2}$ be two vertex-disjoint graphs. Then the union of $G_{1}$ and $G_{2}$, denoted by $G_{1} \bigcup G_{2}$, is a graph with $V\left(G_{1} \bigcup G_{2}\right)=V\left(G_{1}\right) \bigcup V\left(G_{2}\right)$ and $E\left(G_{1} \bigcup G_{2}\right)=E\left(G_{1}\right) \bigcup E\left(G_{2}\right)$. The Cartesian product $G_{1} \times G_{2}$ of graphs $G_{1}$ and $G_{2}$ has vertex set $V\left(G_{1} \times G_{2}\right)=V\left(G_{1}\right) \times V\left(G_{2}\right)$ and edge set $E\left(G_{1} \times G_{2}\right)=\left\{\left\{\left(u_{i}, v_{j}\right),\left(u_{h}, v_{k}\right)\right\} \mid\left(u_{i}=u_{h}\right.\right.$ and $\left.v_{j} v_{k} \in E\left(G_{2}\right)\right)$ or $\left(v_{j}=v_{k}\right.$ and $\left.\left.u_{i} u_{h} \in E\left(G_{1}\right)\right)\right\}$. A circuit $C$ of a graph $G$ is called non-separating if $G / V(C)$ is connected, and induced if the vertex-induced subgraph $G[V(C)]$ of $G$ is $C$ itself. A circuit is called to be an induced non-separating circuit if it is both induced and non-separating. For definitions not explained in this paper, readers are referred to [1]. The following result is obvious by definitions.

Lemma 1.1 If $C$ is an induced non-separating circuit of $G$, then $C$ must be the boundary of a face in the planar embedding.

The problem of determining the crossing number of a graph is NP-complete. As we known, the crossing number are known only for a few families of graphs, most of them are Cartesian products of special graphs. For examples,

[^10]\[

$$
\begin{aligned}
& c r\left(C_{3} \times C_{3}\right)=3(\text { Harary et al, 1973, see [5]); } \\
& c r\left(C_{3} \times C_{n}\right)=n(\text { Ringeisen and Beinekein, 1978, see [9]); } \\
& c r\left(C_{4} \times C_{4}\right)=8(\text { Dean and Richter, 1995, see [3]); } \\
& c r\left(C_{4} \times C_{n}\right)=2 n, \quad \operatorname{cr}\left(K_{4} \times C_{n}\right)=3 n \text { (Beineke and Ringeisen, 1980, see [2]) }
\end{aligned}
$$
\]

Let $S_{n-1}$ and $P_{n}$ be the star and path with $n$ vertices, respectively. Klesc [6] proved that $\operatorname{cr}\left(S_{4} \times P_{n}\right)=2(n-2)$ and $\operatorname{cr}\left(S_{4} \times C_{n}\right)=2(n-1)$. He also showed that $c r\left(K_{2,3} \times S_{n}\right)=2 n$ [7] and $\operatorname{cr}\left(K_{5} \times P_{n}\right)=6 n$ in [7]. Peng and Yiew [4] proved that $\operatorname{cr}\left(P_{3,1} \times P_{n}\right)=4(n-1)$.

In this paper, we extend these results to the product $G_{j} \times P_{n}, 1 \leq j \leq 2$ for two special graphs shown in Fig. 1 following.


Fig. 1

For convenience, we label these six vertices on their outer circuits of $G_{1}$ consecutively by integers $1,2,3,4,5$ and 6 in clockwise, such as those shown in Fig.1. Notice that for any graph $G_{i}, i=1,2, G_{i} \times P_{n}$ contains $n$ copies of $G_{i}$, denoted by $G_{i}^{j}(1 \leq j \leq n)$ and 6 copies of $P_{n}$. We call the edges in $G_{i}^{j}$ black and the edges in these copies of $P_{n}$ red. For $j=1,2, \cdots n-1$, let $L(j, j+1)$ denote the subgraph of $G_{i} \times P_{n}$, induced by six red edges joining $G_{i}^{j}$ to $G_{i}^{j+1}$. Note that $L(j, j+1)$ is homeomorphic to $6 K_{2}$.

## §2. The crossing number of $G_{1} \times P_{n}$

By joining all 6 vertices of $G_{1}$ to a new vertex $x$, we obtain a new graph, denoted by $G_{1}^{*}$. Let $T^{x}$ be the six edges incident with $x$, see Fig.1. We know $G_{1}^{*}=G_{1} \bigcup T^{x}$ by definition.

Lemma $2.1 \quad \operatorname{cr}\left(G_{1}^{*}\right)=2$.
Proof A good drawing of $G_{1}^{*}$ shown in Fig. 2 following enables us to get $\operatorname{cr}\left(G_{1}^{*}\right) \leq 2$. We prove the reverse inequality by a case-by-case analysis. In any good drawing $D$ of $G_{1}^{*}$, there are only three cases, i.e., $\operatorname{cr} r_{D}\left(G_{1}\right)=0, c r_{D}\left(G_{1}\right)=1$ or $c r_{D}\left(G_{1}\right) \geq 2$.

Case $1 \quad c r_{D}\left(G_{1}\right)=0$.
Use Euler's formula, $f=6$ and we note that there are 6 induced non-separating circuits 1231, $2342,3453,4564,12461,13561$. So there are at most 4 vertices of $G_{1}$ on each boundary.

Joining all 6 vertices to $x$, there are 2 crossings among the edges of $G_{1}$ and the edges of $T^{x}$ at least. This implies $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$.

Case $2 \quad c r_{D}\left(G_{1}\right)=1$.
There are at most five vertices of $G_{1}$ on each boundary. Joining all 6 vertices to $x$, there are at least one crossing made by edges of $G_{1}$ with edges of $T^{x}$. So $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$.

Case $3 \quad c r_{D}\left(G_{1}\right) \geq 2$.
Then $\operatorname{cr}\left(G_{1}^{*}\right) \geq 2$. Whence, $\operatorname{cr}\left(G_{1}^{*}\right)=2$.

$G_{1} \times P_{3}$

$K_{2,3} \times S_{2}$

Fig. 2

Lemma 2.2 In any good drawing of $G_{1} \times P_{n}, n \geq 2$, there are at least two crossings on the edges of $G_{1}^{i}$ for $i=1,2, \cdots n$.

Proof Let $w_{i}$ denote the number of crossings on the edges of $G_{1}^{i}$ for $i=1,2, \cdots n$ and $H_{i}=\left\langle V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)\right\rangle_{G_{1} \times P_{n}}$ for $i=1,2, \cdots n-1$. First, we prove that $w_{n} \geq 2$. Let $T^{\prime}$ be a graph obtained by contracting the edges of $G_{1}^{n-1}$ in $H_{n-1}$ resulting in a graph homeomorphic to $G_{1}^{*}$.

By the proof of Lemma 2.1, $w_{n} \geq \operatorname{cr}\left(T^{\prime}\right)=\operatorname{cr}\left(G_{1}^{*}\right)=2$. For $i=1,2, \cdots n-1$, let $T_{i}$ be the graph obtained by contracting the edges of $G_{1}^{i+1}$ in $H_{i}$ resulting in a graph homeomorphic to $G_{1}^{*}$. Similarly, by Lemma 2.1, we get that $w_{i} \geq \operatorname{cr}\left(T_{i}\right)=\operatorname{cr}\left(G_{1}^{*}\right)=2$ for $i=1,2, \cdots n-1$.

Lemma 2.3 If $D$ is a good drawing of $G_{1} \times P_{n}$ in which every copy of $G_{1}$ has at most three crossings on its edges, then $D$ has at least $4(n-1)$ crossings.

Proof Let $D$ be a good drawing of $G_{1} \times P_{n}$ in which every copy of $G_{1}$ has at most three crossings on its edges. We first show that in $D$ no black edges of $G_{1}^{i}$ cross any black edges of $G_{1}^{j}$ for $i \neq j$. If not, suppose there is a black edge of $G_{1}^{i}$ crossing with a black edge of $G_{1}^{j}$. Since $D$ is a good drawing and every edge of $G_{1}$ is an edge of a cycle, there exists a cycle induced by $V\left(G_{1}^{i}\right)$ which contains a black edge crossing with at least two black edges of $G_{1}^{j}$. Now delete the black edges of $G_{1}^{i}$. The resulting graph is either
(1) homeomorphic to $G_{1} \times P_{n-1}$ for $i=2,3, \cdots n-1$; or
(2) contains a subgraph homeomorphic to $G_{1} \times P_{n-1}$ for $i=1$ or $i=n$.

Since every copy of $G_{1}$ in $G_{1} \times P_{n}$ has at most three crossings on its edges, the drawing of the resulting graph has at most one crossing on the edges of $G_{1}^{j}$. Contradicts to Lemma 2.2.

Next, we show that no black edge of $G_{1}^{i}$ crosses with a red edge of $L(t-1, t)$ for $t \neq i$ and $t \neq i+1$. If not, suppose that in $D$ there is a black edge of $G_{1}^{i},(i \neq t$ or $i \neq t-1)$ crossing with a red edge of $L(t-1, t)$. Then the red edge crosses at least two black edges of $G_{1}^{i}$, for otherwise, in $D$, the subdrawing $D\left(G_{1}^{i}\right)$ separates two $G_{1}$ and $G_{1}^{i}$ is crossed by all six edges of $L(t-1, t)$, a contradiction. Therefore, the red edge crosses at least two black edges of $G_{1}^{i}$. Thus, $D$ contains a subdrawing of a graph homeomorphic to $G_{1} \times P_{2}$ induced by $V\left(G_{1}^{i-1}\right) \bigcup V\left(G_{1}^{i}\right)$ or $V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)$ with at most one crossing on the edges of $G_{1}^{i}$. Also contradicts to the Lemma 2.2.

For $i=2,3, \cdots n-1$, let

$$
Q^{i}=\left\langle V\left(G_{1}^{i-1}\right) \bigcup V\left(G_{1}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)\right\rangle_{G_{1} \times P_{n}}
$$

Thus, $Q^{i}$ has six red edges in each of $L(i-1, i)$ and $L(i, i+1)$, and ten black edges in each of $G_{1}^{i-1}, G_{1}^{i}$ and $G_{1}^{i+1}$. Note that $Q^{i}$ is homeomorphic to $G_{1} \times P_{3}$. See Fig. 2 for details.

Denote by $Q_{c}^{i}$ the subgraph of $Q^{i}$ obtained by removing nine edges $u_{2} u_{3}, u_{3} u_{4}, u_{4} u_{6}, v_{2} v_{3}$, $v_{3} v_{4}, v_{4} v_{6}, w_{2} w_{3}, w_{3} w_{4}$ and $w_{4} w_{6}$. Notice that $Q_{c}^{i}$ is homeomorphic to $K_{2,3} \times S_{2}$, such as shown in Fig.2.

In a good drawing of $G_{1} \times P_{n}$, define the force $f\left(Q_{c}^{i}\right)$ of $Q_{c}^{i}$ to be the total number of crossing types following.
(1) a crossing of a red edge in $L(i-1, i) \bigcup L(i, i+1)$ with a black edge in $G_{1}^{i}$;
(2) a crossing of a red edge in $L(i-1, i)$ with a red edge in $L(i, i+1)$;
(3) a self-intersection in $G_{1}^{i}$.

The total force of the drawing is the sum of $f\left(Q_{c}^{i}\right)$ for $i=2,3, \cdots n-1$. It is readily seen that a crossing contributes at most one to the total force of a drawing.

Consider now a drawing $D_{c}^{i}$ of $Q_{c}^{i}$ induced by $D$. As we have shown above, in $D_{c}^{i}$ no two black edges of different $G_{1}^{x}$ and $G_{1}^{y}$, for $x, y \in\{i-1, i, i+1\}$ cross each other, no red edge of $L(i-1, i)$ crosses a black edge of $G_{1}^{i+1}$ and no red edge of $L(i, i+1)$ crosses a black edge of $G_{1}^{i-1}$. Thus, we can easily see that in any optimal drawing $D_{c}^{i}$ of $Q_{c}^{i}$ there are only crossing of types $(i),(i i)$ or (iii) above. This implies that in $D$, for every $i, i=2,3, \cdots n-1$, $f\left(Q_{c}^{i}\right) \geq \operatorname{cr}\left(K_{2,3} \times S_{2}\right)=4([7])$, and thus the total force of $D$ is $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right) \geq 4(n-2)$.

By lemma 2.2, in $D$ there are at least two crossings on the edges of $G_{1}^{1}$ and at least two crossings on the edges of $G_{1}^{n}$. None of these crossings is counted in the total force of $D$. Therefore, in $D$ there are at least $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right)+4 \geq 4(n-1)$ crossings.

Theorem $2.1 \quad \operatorname{cr}\left(G_{1} \times P_{n}\right)=4(n-1)$, for $n \geq 1$.

Proof The drawing in Fig. 3 shows that $\operatorname{cr}\left(G_{1} \times P_{n}\right) \leq 4(n-1)$ for $n \geq 1$.


Fig. 3

We prove the reverse inequality by the induction on $n$. First we have $\operatorname{cr}\left(G_{1} \times P_{1}\right)=$ $4(1-1)=0$. So the result is true for $n=1$. Assume it is true for $n=k, k \geq 1$ and suppose that there is a good drawing of $G_{1} \times P_{k+1}$ with fewer than $4 k$ crossings. By Lemma 2.3, some $G_{1}^{i}$ must then be crossed at least four times. By the removal of all black edges of this $G_{1}^{i}$, we obtain either
(1) a graph homeomorphic to $G_{1} \times P_{k}$ for $i=2,3, \cdots n-1$; or
(2) a graph which contains the subgraph $G_{1} \times P_{k}$ for $i=1$ or $i=n$.

The drawing of any of these graphs has fewer than $4(k-1)$ crossings and thus contradicts the induction hypothesis.

## §3. The crossing number of $G_{2} \times P_{n}$

By joining all 6 vertices of $G_{2}$ to a new vertex $y$, we obtain a new graph denoted by $G_{2}^{*}$.


Fig. 4

Lemma $3.1 \quad \operatorname{cr}\left(G_{2}^{*}\right)=3$.
Proof A good drawing of $G_{2}^{*}$ in Fig. 4 shows that $\operatorname{cr}\left(G_{2}^{*}\right) \leq 3 .\left|V\left(G_{2}^{*}\right)\right|=7,\left|E\left(G_{2}^{*}\right)\right|=18$. Apply

$$
\begin{aligned}
& |E| \leq 3|V|-6, \\
& \left|E\left(G_{2}^{*}\right)\right|+2 \times \operatorname{cr}\left(G_{2}^{*}\right) \leq 3 \times\left(\mid V\left(G_{2}^{*} \mid+\operatorname{cr}\left(G_{2}^{*}\right)\right)-6,\right.
\end{aligned}
$$

it follows that $\operatorname{cr}\left(G_{2}^{*}\right) \geq 3$. Therefore $\operatorname{cr}\left(G_{2}^{*}\right)=3$.
Lemma 3.2 In any good drawing of $G_{2} \times P_{n}, n \geq 2$, there are at least three crossings on the edges of $G_{2}^{i}$ for $i=1,2, \cdots n$.

Proof Using the same way as in the proof of Lemma 2.2 just instead of $G_{1}^{i}$ by $G_{2}^{i}$ ), we can get the result.

Lemma 3.3 If $D$ is a good drawing of $G_{2} \times P_{n}$ in which every copy of $G_{2}$ has at most five crossings on its edges, then $D$ has at least $6(n-1)$ crossings.

Proof Let $D$ be a good drawing of $G_{2} \times P_{n}$ in which every copy of $G_{2}$ has at most five crossings on its edges. We first show that in $D$ no black edges of $G_{2}^{i}$ crosses with any black edges of $G_{2}^{j}$ for $i \neq j$. if not, suppose there is a black edge of $G_{2}^{i}$ crossing with a black edge of $G_{2}^{j}$. Since $D$ is a good drawing and there are four disjoint paths between any two vertices in $G_{2}$, there are at least four crossings on the edges of $G_{2}^{j}$ crossed with edges of $G_{2}^{i}$. Now delete the black edges of $G_{2}^{i}$. Then the resulting graph is either
(1) homeomorphic to $G_{2} \times P_{n-1}$ for $i=2,3, \cdots n-1$; or
(2) contains a subgraph homeomorphic to $G_{2} \times P_{n-1}$ for $i=1$ or $i=n$.

Since every copy of $G_{2}$ in $G_{2} \times P_{n}$ has at most five crossings on its edges, the drawing of the resulting graph has at most one crossing on the edges of $G_{1}^{j}$. Contradicts to Lemma 3.2.

Next, we show that no black edge of $G_{2}^{i}$ is crossed by a red edge of $L(t-1, t)$ for $t \neq i$ and $t \neq i+1$. If not, suppose that in $D$ there is a black edge of $G_{2}^{i},(i \neq t$ or $i \neq t-1)$ crossed by a red edge of $L(t-1, t)$. Then the red edge crosses at least four black edges of $G_{2}^{i}$, for otherwise, in $D$, the subdrawing $D\left(G_{2}^{i}\right)$ separates two $G_{2}$ and $G_{2}^{i}$ is crossed by all six edges of $L(t-1, t)$, a contradiction. Therefore, the red edge crosses at least four black edges of $G_{2}^{i}$. Thus, $D$ contains a subdrawing of a graph homeomorphic to $G_{2} \times P_{2}$ induced by $V\left(G_{2}^{i-1}\right) \bigcup V\left(G_{2}^{i}\right)$ or $V\left(G_{2}^{i}\right) \bigcup V\left(G_{1}^{i+1}\right)$ with one crossing on the edges of $G_{2}^{i}$ at most. Contradicts to Lemma 3.2.

For $i=2,3, \cdots n-1$, let

$$
Q^{i}=\left\langle V\left(G_{2}^{i-1}\right) \bigcup V\left(G_{2}^{i}\right) \bigcup V\left(G_{2}^{i+1}\right)\right\rangle_{G_{2} \times P_{n}}
$$

Thus, $Q^{i}$ has six red edges in each of $L(i-1, i)$ and $L(i, i+1)$, and twelve black edges in each of $G_{2}^{i-1}, G_{2}^{i}$, and $G_{2}^{i+1}$. Note that $Q^{i}$ is homeomorphic to $G_{2} \times P_{3}$. See Fig. 4 for details.

It is easy to see that $G_{2} \times P_{3}$ contains a subgraph homeomorphic to $G_{1} \times P_{3}$, denoted by $Q_{c}^{i}$. In a good drawing of $G_{2} \times P_{n}$, define the force $f\left(Q_{c}^{i}\right)$ of $Q_{c}^{i}$ to be the total number of crossing types following.
(1) a crossing of a red edge in $L(i-1, i) \bigcup L(i, i+1)$ with a black edge in $G_{2}^{i}$;
(2) a crossing of a red edge in $L(i-1, i)$ with a red edge in $L(i, i+1)$;
(3) a self-intersection in $G_{2}^{i}$.

The total force of the drawing is the sum of $f\left(Q_{c}^{i}\right)$ for $i=2,3, \cdots n-1$. It is readily seen that a crossing contributes at most one to the total force of the drawing.

Consider now a drawing $D_{c}^{i}$ of $Q_{c}^{i}$ induced by $D$. As we have shown previous, in $D_{c}^{i}$ no two black edges of $G_{2}^{x}$ and $G_{2}^{y}$, for $x, y \in\{i-1, i, i+1\}$ cross each other, no red edge of $L(i-1, i)$ crosses with a black edge of $G_{2}^{i+1}$ and no red edge of $L(i, i+1)$ crosses with a black edge of $G_{2}^{i-1}$. Thus, we can easily see that in any optimal drawing $D_{c}^{i}$ of $Q_{c}^{i}$ there are only crossings of types $(i),(i i)$ or (iii) above. This implies that in $D$, for every $i, i=2,3, \cdots n-1$, $f\left(Q_{c}^{i}\right) \geq \operatorname{cr}\left(G_{1} \times P_{3}\right)=8$, and thus the total force of $D$ is $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right) \geq 8(n-2)$.

By lemma 2.2, in $D$ there are at least three crossings on the edges of $G_{2}^{1}$ and at least three crossings on the edges of $G_{2}^{n}$. None of these crossings is counted in the total force of $D$. Therefore, there are at least $\sum_{i=2}^{n-1} f\left(Q_{c}^{i}\right)+6 \geq 6(n-1)$ crossings in $D$.


$$
G_{2} \times P_{n}
$$

Fig. 5

Theorem $3.1 \operatorname{cr}\left(G_{2} \times P_{n}\right)=6(n-1)$, for $n \geq 1$.
Proof The drawing in Fig. 5 following shows that $\operatorname{cr}\left(G_{2} \times P_{n}\right) \leq 6(n-1)$ for $n \geq 1$. We prove the reverse inequality by the induction on $n$. First we have $\operatorname{cr}\left(G_{2} \times P_{1}\right)=6(1-1)=0$. So the result is true for $n=1$. Assume it is true for $n=k, k \geq 1$ and suppose that there is a good drawing of $G_{2} \times P_{k+1}$ with fewer than $6 k$ crossings. By Lemma 2.3, some $G_{2}^{i}$ must then be crossed at least six times. By the removal of all black edges of this $G_{2}^{i}$, we obtain either
(1) a graph homeomorphic to $G_{2} \times P_{k}$ for $i=2,3, \cdots n-1$; or
(2) a graph which contains the subgraph $G_{2} \times P_{k}$ for $i=1$ or $i=n$.

The drawing of any of these graphs has fewer than $6(k-1)$ crossings and thus contradicts the induction hypothesis.

## References

[1] Bondy J. A. and Murty U.S.R., Graph Theory with Applications, New York: Macmilan Ltd Press, 1976.
[2] L.W.Beineke and R.D.Ringeisen, On the crossing numbers of product of cycles and graphs of order four, J. Graph Theory, 4 (1980), 145-155.
[3] A.M.Dean, R.B.Richter, The crossing number of $C_{4} \times C_{4}$, J. Graph Theory, 19(1995), 125129.
[4] Y.H.Peng, Y.C.Yiew, The crossing number of $P(3,1) \times P_{n}$, Discrete Mathematics, 306(2006), 1941-1946.
[5] F.Harary, P.C.Kainen, A.J.Schwenk, Toriodal graphs with arbitratily high crossing numbers, Nanta Math., 6(1973), 58-67.
[6] M.Klesc, On the crossing numbers of Cartesian products of paths and stars or cycles, Math. Slovaca, 41(1991), 113-120.
[7] M.Klesc, On the crossing numbers $K_{2,3} \times S_{n}$, Tatra Mountains Math Publ., 9(1996), 51-56.
[8] M.Klesc, The crossing numbers of $K_{5} \times P_{n}$, Tatra Mountains.Publ., 18(1999), 63-68.
[9] R.D.Ringeisen, L.W.Beineke, The crossing number of $C_{3} \times C_{n}$, J.Combin.Theory, Ser.B, 24(1978), 134-136.

Imagination is more important than knowledge.

By Albert Einstein, an American theoretical physicist.

## Author Information

Submission: Papers only in electronic form are considered for possible publication. Papers prepared in formats, viz., .tex, .dvi, .pdf, or.ps may be submitted electronically to one member of the Editorial Board for consideration in the International Journal of Mathematical Combinatorics (ISSN 1937-1055). An effort is made to publish a paper duly recommended by a referee within a period of 3 months. Articles received are immediately put the referees/members of the Editorial Board for their opinion who generally pass on the same in six week's time or less. In case of clear recommendation for publication, the paper is accommodated in an issue to appear next. Each submitted paper is not returned, hence we advise the authors to keep a copy of their submitted papers for further processing.

Abstract: Authors are requested to provide an abstract of not more than 250 words, latest Mathematics Subject Classification of the American Mathematical Society, Keywords and phrases. Statements of Lemmas, Propositions and Theorems should be set in italics and references should be arranged in alphabetical order by the surname of the first author in the following style:

## Books

[4]K. Kawakubo, The Theory of Transformation Groups, Oxford University Press, New York, 1991.

## Research papers

[8]K. K. Azad and Gunjan Agrawal, On the projective cover of an orbit space, J. Austral. Math. Soc. 46 (1989), 308-312.
[9]Kavita Srivastava, On singular H-closed extensions, Proc. Amer. Math. Soc. (to appear).
Figures: Figures should be sent as: fair copy on paper, whenever possible scaled to about 200\%, or as EPS file. In addition, all figures and tables should be numbered and the appropriate space reserved in the text, with the insertion point clearly indicated.

Copyright: It is assumed that the submitted manuscript has not been published and will not be simultaneously submitted or published elsewhere. By submitting a manuscript, the authors agree that the copyright for their articles is transferred to the publisher, if and when, the paper is accepted for publication. The publisher cannot take the responsibility of any loss of manuscript. Therefore, authors are requested to maintain a copy at their end.

Proofs: One set of galley proofs of a paper will be sent to the author submitting the paper, unless requested otherwise, without the original manuscript, for corrections after the paper is accepted for publication on the basis of the recommendation of referees. Corrections should be restricted to typesetting errors. Authors are advised to check their proofs very carefully before return.

Reprints: One copy of the journal included his or her paper(s) are provided to the authors freely. Additional sets may be ordered at the time of proof correction.

## Contents

Combinatorial Speculation and Combinatorial Conjecture for Mathematics BY LINFAN MAO1
Structures of Cycle Bases with Some Extremal Properties BY HAN REN and YUN BAI ..... 20
The Crossing Number of $K_{1,5, n}$
BY HANFEI MEI and YUANQIU HUANG ..... 33
Pseudo-manifold Geometries with Applications BY LINFAN MAO ..... 45
Minimum Cycle Base of Graphs Identified by Two Planar Graphs BY DENGJU MA and HAN REN ..... 59
A Combinatorially generalized Stokes Theorem on Integrations BY LINFAN MAO ..... 67
A Note on the Maximum Genus of Graphs with Diameter 4
BY XIANG REN, WEILI HE and LIN ZHAO ..... 87
Long Dominating Cycles in Graphs BY YONGGA A and ZHIREN SUN ..... 94
The Crossing Number of the Join of $C_{m}$ and $P_{n}$BY LING TANG, JING WANG and YUANQIU HUANG110
A Note on the 4-Ordered Hamiltonicity of Cayley Graphs BY LEI WANG and YONGGA A ..... 117
The Crossing Number of Two Cartesian ProductsBY LIN ZHAO, WEILI HE, YANPEI LIU and XIANG REN....120


[^0]:    ${ }^{1}$ Received May 25, 2007. Accepted June 15, 2007
    ${ }^{2}$ Reported at the 2nd Conference on Combinatorics and Graph Theory of China, Aug. 16-19, 2006, Tianjing, P.R.China

[^1]:    ${ }^{1}$ Received in May,30,2007. Accepted in June, 25, 2007
    ${ }^{2}$ Supported by NNSF of China under the granted NO. 10671073

[^2]:    ${ }^{1}$ Received June 6, 2007. Accepted July 18, 2007
    ${ }^{2}$ Supported by The NNSF and Program for New Century Excellent Talents in University of China

[^3]:    ${ }^{1}$ Received May 5, 2007. Accepted July 25, 2007

[^4]:    ${ }^{1}$ Received July 8, 2007. Accepted August 18, 2007
    ${ }^{2}$ Supported by NNSF of China under the granted NO. 10671073 and NSF of Jiangsu's universities under the granted NO.07KJB110090

[^5]:    ${ }^{1}$ Received June 5, 2007. Accepted August 15, 2007

[^6]:    ${ }^{1}$ Received July 24, 2007. Accepted August 25, 2007
    ${ }^{2}$ Supported by the NNSF of China under the granted No. 10571013

[^7]:    ${ }^{1}$ Received August 6, 2007. Accepted September 8, 2007
    ${ }^{2}$ Supported by the National Science Foundation of China(10671095) and the Tian Yuan Foundation on Mathematics.

[^8]:    ${ }^{1}$ Received August 6, 2007. Accepted September 10, 2007
    ${ }^{2}$ Supported by the key project of the Education Department of Hunan Province of China (05A037)

[^9]:    ${ }^{1}$ Received August 16, 2007. Accepted September 18, 2007

[^10]:    ${ }^{1}$ Received August 15, 2007. Accepted September 20, 2007

