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PREFACE

In 1996 the author wrote reviews for “Zentralblatt fiir Mathe-
matik” for books [1] and [2] and this was him first contact of with
the Smarandache’s problems.

In [1] Florentin Smarandache formulated 105 unsolved problems,
while in [2] C. Dumitrescu and V. Seleacu formulated 140 unsolved
problems. The second book contains almost all problems from [1],
but now every one problem has unique number and by this reason
the author will use the numeration of the problems from [2]. Also,
in [2] there are some problems, which are not included in [1]. On
the other hane, there are problems from [1], which are not included
in [2]. One of them is Problem 62 from [1], which is included here
under the same number.

In the summer of 1998 the author found the books in his library
and for a first time tried to solve a problem from them. After
some attempts one of the problems was solved and this was a power
impulse for the next research. In the present book are collected the
27 problems solved by the middle of February 1999.

The bigger part of the problems discussed in the present book (22
in number) are related to different sequences. For each of them the
form of the n—th member is determined and for all of them except 4
problems - the form of the n—th partial sum. Four of the problems
are proved; modifications of two of the problems are formulated;
counterexamples to two of the problems are constructed.

When the text was ready, the author received from “Zentralblatt
fir Mathematik” Charles Ashbacher’s book [8] for reviewing. The
author read immediatelly the book [8] and he was delighted to see
that only five of the problems on which he had worked are discussed
there and that the approach to these problems is different in both
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books. Reading [8], the author understood that there are other
books related to the Smarandache’s problems [9-13], which he had
not known up to the moment.

The author hopes to prove some other problems from [1] and {2]
in fature, but there are problems, for which it is not clear whether
they will be solved in the next years or will share the fate of Fermat’s
Last Theorem.

The author would like to express his acknowledgements to Dr.
Mladen V. Vassilev - Missana and Nikolai G. Nikolov, who read and
corrected the text, to his daughter Vassia K. Atanassova and his
students Valentina V. Radeva and Hristo T. Aladjov for collabora-
tion, to Prof. Vasile Seleacu and Dr. M. L. Perez who encouraged
him to prepare the book, and to Prof. Florentia Smarandache for
the interesting problems which were a pleasant preoccupation for
the author during half an year.

March 6, 1999 Krassimir Atanassov
CLBME - Bulgarian Academy of Sciences
Bulgaria, Sofia-1113, P.0.Box 12
e-mail: krat@bgcict.acad.bg



§1. ON THE 4-th SMARANDACHE'’S PROBLEM !

The 4-th problem from [2] (see also 18-th problem from [1]) is
the following:

Smarandache deconstructive sequence:

1, 23, 456, 7891, 23456, 789123, 4567891, 23456789,

123456789, 1234567891,

Let the n-th term of the above sequence be a,. Then we can see
that the first digits of the first nine members are, respectively: 1, 2,
4,7,2,7,4,2,1. Let us define the function w as follows:

r|w(r)
0j 1
1] 1
2| 2
3| 4
41 7
51-2
6] 7
7| 4
81 2
9| 1

lsee also
K. Atanassov, On the 4-th Smarandache’s problem. Notes on Number Theory
and Discrete Mathematics, Vol. 5 (1999), No. 1, 33-35.



Here we shall use the arithmetic function ¥, discussed shortly in
§16 and detailed in the aunthor’s paper [3] .

Now, we can prove that the form of the n—th member of the
above sequence is

an = bybs...bs,
where

n
by = w(n~[7])
by = $(w(n - [5)+1)

n
ba = $(w(n~[g) +n-1).
Every natural number n can be represented in the form
n=9¢+r,

where ¢ > 0 is a natural number and r € {1,2,...,9}.
We shall prove by induction that the forms of nine sequential
members @ny1, Gp42s-+y Gnt9, Where n = 9g + r, are the following:

agg4) = 32...9 12..9... 12...531

q times

Gags2 = 23.:123..1.23.:123

g times

Ggg43 = f5...345..3 ...45...15456

q times

9944 = 38...6 78...6... 78...? 7891

Ry

¢ times



agg4+s = 23...123...1...23...1 23456

q ti‘r'nes
Gog46 = @;9@;._@...@;5;789123
) q tiYnes ’
Q9q4+7 = @M...M4567891
- : E{nes _

Goqts = 23...123...1...23...1 23456789

q times

Ggq49 = 12...912...9...12...9

—

q+1 times
When ¢ = 0 the validity of the above assertion is obvious. Let
us assume that for some natural number ¢q, agyt1, Ggq42, ... Aggt9

have the above forms. Then for agy410, @9g+411, .- @gg4+18 We obtain
the following representations, taking p = ¢ + 1:

Q99410 = Qgp41 = 12...912..9...12..91

p times

G9q4+11 = Gopg2 = 23...123...1...23...123

p times

Ggg412 = Qgp43 = 45...345...3...45...3 456

p times

Gog+13 = Gopta = 78...678...6 ... 78...6 7891

p times

A9q4+14 = Q9py5 = 23...123...1...23...123456

p times
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G9¢+15 = G9p46 = 78...678...6... 78...6 789123
» ﬁ;xxes

Gari16 = Ggpy7 = 453453 .. 45..34567891

-

» ti;nes

Ggg418 = Ggpi9 = L2...9 12..9... 12...?

p+1 times

o
To the above sequence {a,} we can juxtapose the sequence

n=1
o0
{¥(a,)} for which we can prove (as above) that its basis is
=1
[1,5,6,7,2,3,4,8,9].
The problem can be generalized, e.g., to the following form:
Study the sequence {a,}32,, which s—th member has the form

Q, = b1b2-"bs.k»

where byby...b, x € {1,2,...,9} and
b =u(e-[2])

by = $(/(s - [5]) +1)

box = $(w'(s - [2]) + 2 - 1),
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and here
w'(r)
1
$(k +1)

P(3k +1)
Y(6k+1)
¥(10k + 1)
P(15k + 1)
¥(21k+ 1)
P(28k + 1)
¥(36k + 1)

O 00 IO bW

For example, when k = 2:

12, 3456, 789123, 45678912, 3456789123, 456789123456,

789123456789 12, 3456789 123456789,
-~ ~ ~ — o N !

123456789 123456789, ...

To the last sequence {a,}3%, we can juxtapose again the se-
quence {1(a,)}3%, for which we can prove (as above) that its basis
is [3,9,3,6,3,6,9,8,9].
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§2. ON THE 16-th SMARANDACHE'’S PROBLEM ?

The 16-th problem from [2] (see also 21-st problem from {1]) is
the following:

Digital sum:

0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9,10, 11,

3,4,5,6,7,8,9,10,11,12,4,5,6,7,8,9, 10,11,12,13,

R p—

5,6,7,8,9,10,11,12,13,14, .. (1)

(ds(n) is the sum of digits.)
Study this segquence.

First we shall note that function d, is the first step of another
arithmetic (digital) function ¢, discussed in details in the author’s
paper [3] and shortly - in §16.

After applying of this function over the set of the natural num-
bers, or over the above sequence, we obtain the sequence

0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,10,2,3,4,5,6,7,8,9, .

o —

10,11,3,4,5,6,7,8,9,...10,11,12,4,5,6,7,8,9, ...

2see also
K. Atanassov, On the 16-th Smarandache’s problem. Notes on Number Theory
and Discrete Mathematics, Vol. 5 (1999), No. 1, 36-38.
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On the other hand, in [3] (shortly in §16) another function (¢) is
introduced. After its applying over the set of the natural numbers,
or over the above sequence, we obtain the sequence

0,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,1,2,3,4,5,6,7,8,9,..

and the set [1,2,3,4,5,6,7,8,9] is called a basis of the set of the
natural numbers about .

Below we shall show the form of the general term of the sequence
from the Smarandache’s problem. Let its members are denoted as
ay,0az,..., 0y, .... The form of the member a, is:

a, =n-9. E [ ] (2)
k=1

The validity of (2) can be proved, e.g., by induction. It is ob-
viously valid for n = 1. Let us assume that for some n (2) is true.
For n there are two cases.

Case 1: n#99 ...9 (m > 1). Therefore

Ny e’

m times
n+1<99.9
m times
and
© ® n41
3 = X ,
k=1 [ O"] k=1 [ 10% ]
from where
® n+1
—nl—n92 +1=(n+1)-9. % .
Gn41 an + e [lok] ( + ) it IOk]
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Case 2: n=99 ...9. Therefore
m times
n+1=100...0
m times

and

6r41=1=100..0-99...9=100...0-9.(1 00...0

m times m times m times m-1 times
- +1 00..0 +..1)
m~2 {imes
® 100...0 X n+1
=100.0-9. ¥ [—]= 1)-9. T .
80-0-9. 2 [rl=(+D)-0 T [So]
m times

Therefore (2) is true.

The second important question, which must be disccused about
the sequence (1), is the validity of the equality d,(m) + d,(n) =
d,(m + n). Obviously, it is not always valid. For example

dy(2) +4d,(3) =2+ 3 =5 =d,(5),

but
d,(52) + d,(53) = 7+ 8 = 15 # 6 = d,(105).

The following assertion is true
(
dy(m) + dy(n), if dy(m) + d,(n) < 9.max({2{™)),

d(min) = (efely

| du(m) +dy(n) - 9.max({%gm)), (%)), otherwise
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The proof can be made again by the method of induction.

Let
Re=k+(k+1)+ ...+ (k+9) = 10k + 45.

Obviously, Ry is the sum of the elements of the k—th group of (1).
Therefore, the sum of the first » members of (1) will be

Sn = [_2]:— Re+ (5 ]+([ ]+1)+ -+ 3 ]+n-10[ ]—1)

=353 ]([ ]+8)+(n 10[ ])[ ]+ (n - 10[ o)

(n-10[7] - 1),

ie.,

Sn = 5155155 LD (A5= - 4l

This equality can be proved directly or by induction.
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§3. ON THE 22-nd, THE 23-rd, AND THE 24-th
SMARANDACHE'’S PROBLEMS 3

The 22-nd problem from [2] (see also 27-th problem from [1}]) is
the following:

Smarandache square complements:
1,2,3,1,5,6,7,2,1,10,11, 3, 14,15, 1,17, 2, 19, 5, 21, 22, 23, 6, 1, 26,

3,7,29,30,31,2,33,34,35,1, 37, 38, 39, 10,41, 42, 43, 11, 5,46, 47, 3,
1,2,51,13,53, 6,55, 14, 57, 58, 59, 15, 61,62, 7, 1, 65, 66,67, 17, 69,
70,71,2,...

For each integer n to find the smallest integer k such that nk is a
perfect square.
(All these numbers are square free.)

The 23-rd problem from [2] (see also 28-th problem from [1}) is
the following:

Smarandache cubic complements:
1,4,9,2,25,36,49,1,3,100,121, 18, 169, 196, 225, 4, 289, 12, 361, 50,

441, 484,529,9,5,676, 1,841, 900,961, 2, 1089, 1156, 1225, 6, 1369,
1444, 1521, 25,1681, 1764, 1849, 242, 75, 2116, 2209, 36, 7, 20, ...

3see also
K. Atanassov, On the 22-nd, the 23-rd, and the 24-th Smarandache’s problems.
Notes on Number Theory and Discrete Mathematics, Vol. 5 (1998), No. 2, 80-82.




17

For each integer n to find the smallest integer k such that nk is a
perfect cub.
(All these numbers are cube free.)

The 24-th problem from [2] (see also 29-th problem from [1]) is
the following:

Smarandache m—power complements:

For each integer n to find the smallest integer k such that nk is a
perfect m—power (m > 2).

(All these numbers are m—power free.)

Let us define by ¢,,(n) the m—power complement of the natural
number n. Let everywhere below

k
n= I p,
=1
where p; < p2 < ... < pi are different prime numbers and a,, ay, ...,
ax > 1 are natural numbers.
Each of the three problems is related to determining the form of
¢m(n) for an arbitrary number n. When m = 2, we obtain

k
c?(")z H p?i7

=1
where
b; = a;(mod 2)

and b; € {0,1} for every i = 1,2,..., k.
We shall prove that the following properties hold for function ¢,
(1) For every natural number n:

n > ca(n);
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(2) For every natural number n:

k
n=cyn)iff * n= I p,
i=1

for the different prime numbers p; < p3 < ... < pi;
(3) For every natural number n:

ca(cz(w)) = ea(n)-

The validity of these assertions is checked easily.

k
Hn= II p;for the different prime numbers p; < p2 < ... <

=1
Pk, then, obviously,
n = cp(n).

On the other hand, if n = cz(n), then for every ¢ (1 < i< k):
a; = b;.
But a; > 1 and b; < 1. Therefore,
a;=b=1,
k

ie,n= 11 p;.

=1

The check of (3) can be performed as follows. Let

k
am= 1 p
=

9

teverywhere we shall write “iff* instead of *if and only if”.
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where b; € {0,1} for every i (1 < i < k). Let
k .
alam)= I g,

where d; € {0,1} for every i (1 <i <k).
Now, if for some i b; = 0, then d; = 0, too; and if for some ¢
b; = 1, then d; = 1, too. Therefore,

k k
cfcx(n))= I pii= T p =cyn).
=1 =1
When m = 3 we obtain
k "
e3(n) = .Hl P,

where

b; = —a;(mod 3)

and b; € {0,1,2} for every : = 1,2,..., k.

Immediately it can be seen that none of the above three proper-
ties is valid for c¢3. Now holds the property
(2’) For every natural number n:

c3(n) # n.

Indeed, for the a; there are three cases (the same is valid for a5,
weey G, t0O):
Case 1: a; = 3s + 1 for some integer s > 0. Then b; = 2. If s = 0,
then p; is a divisor of n, but p} is not a divisor of n, while p? is a
divisor of c3(n); if s > 0, then p} is a divisor of n, but p? is not a
divisor of ¢3(n);
Case 2: a) = 35+2 for some integer s > 0. Then b, = 1. Therefore,
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where b; € {0,1} for every i (1 < i < k). Let
k .
alam)= I g,

where d; € {0,1} for every i (1 <i <k).
Now, if for some i b; = 0, then d; = 0, too; and if for some ¢
b; = 1, then d; = 1, too. Therefore,

k k
cfcx(n))= I pii= T p =cyn).
=1 =1
When m = 3 we obtain
k "
e3(n) = .Hl P,

where

b; = —a;(mod 3)

and b; € {0,1,2} for every : = 1,2,..., k.

Immediately it can be seen that none of the above three proper-
ties is valid for c¢3. Now holds the property
(2’) For every natural number n:

c3(n) # n.

Indeed, for the a; there are three cases (the same is valid for a5,
weey G, t0O):
Case 1: a; = 3s + 1 for some integer s > 0. Then b; = 2. If s = 0,
then p; is a divisor of n, but p} is not a divisor of n, while p? is a
divisor of c3(n); if s > 0, then p} is a divisor of n, but p? is not a
divisor of ¢3(n);
Case 2: a) = 35+2 for some integer s > 0. Then b, = 1. Therefore,
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p? is a divisor of n, but p? is not a divisor of c3(n);
Case 3: a; = 3s for some integer s > 1. Then b; = 0. Therefore,
p is a divisor of n, but p; is not a divisor of c3(n).

Finally, when m < 2 is an arbitrary natural number, then

k
em(n)= T pf,
=1

where
b; = —a;(mod m)

and b; € {0,1,2,...,m -1} forevery i = 1,2, ..., k.

If m is an even number, the above property (3) is valid. Property
(1) now has the form:
(17) I for every i = 1,2,...,k has the form p; = [m.s + 3], or
pi=[ms+ -'5‘- +1},0r..., orp = m.s, where [z] is the integer
part of the real number z, then

n 2 em(n),
but the opposite is not always valid.

Also, in this case the equality (2) has the form:
(27) For every natural number n:

n = em(n) iff m = 2s for some natural number sand n = 1 p?,

for the different prime numbers p; < p; < ... < pi.
The validity of the following equalities is easily proved:
(4) For every natural number n:

k
nd = ci(n)es(n)iff n= 1 pf,
=1
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and
(5) For every three natural numbers n,p,q:

¢p(n) = co(n) iff forevery i =1,2,..,k: there exists a natural
number s, such that a; = pgs, or a; = pgs ~ 1,
or &; = pgs — 2, or ..., Or a; = pgs — min(p,q)
+ 1.



§4. ON THE 37-th AND 38-th SMARANDACHE’S
PROBLEMS *

The 37-th and 38-th problems from [2] (see also 39-th problem
from [1]) are the following:
(Inferior) prime part:
2,3,3,5,5,7,7,7,7, 11,11, 13, 13, 13, 13, 17,17, 19, 19, 19, 19, 23, 23,

23,23,23,23,29,29, 31, 31, 31, 31, 31, 31, 37,37, 37, 37,41, 41, 43,43,
43,43,47,47,47,47,47,47,53, 53, 53,53, 53, 53, 59, ...

(For any positive real number n one defines py(n) as the largest
prime number less than or equal to u.)

(Superior) prime part:
2,2,2,3,5,5,7,7,11,11,11, 11, 13,13,17,17,17,17, 19, 19, 23, 23, 23,

23,29, 29, 29,29, 29,29, 31, 31,37, 37,37,37,37,37,41,41,41, 41,43,
43,47,47,47, 47, 53, 53, 53, 53, 53, 53, §9, 59, 59, 59, ...

(For any positive real number n one defines Fp(n) as the smallest

prime number grealer than or equal to n.)
Study these sequences.

Ssee also
K. Atanassov, On the 37-th and 38-th Smarandache’s problems. Notes on Num-
ber Theory and Discrete Mathematics, Vol. 5 (1999), No. 2, 83-85.
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First, we should note that in the first sequence n > 2, while in
the second one n > 0. Would be better, if the first two members of
the second sequence are omitted. Let everywhere below n > 2.

Second, let us denote by

{pl’p27p3, '"} = {273’ 57 "'}9

the set of all prime numbers. Let py = 1, and let x(n) be the number
of the prime numbers less or equal to n (see e.g., [3]).
Then the n—th member of the first sequence is

pp(n) = Pr(n)-1

and of the second sequence is

PP("’) = Px(n)+B(n)»
where
_§ 0, ifnisaprime number
B(n) = { 1, otherwise

(see [5]).

The checks of these equalities are straightforward, or by induc-
tion.

Therefore, the values of the n-th partial sums

Xn = py(k)

1

| 13

and

Yo= 5 Py(k)
k=1

of the two Smarandache’s sequences are, respectively,

x(n)
Xn = ki (Pk = Pk=1)-Pr-1 + (B = Px(n) + 1)-Pr(n) (1)



and
=(n)
Yo = kfl (Pr = Pr=1)-Pk + (B = Pr(n))-Pr(n)+B(n)- (2)

The proofs can be made by the method of induction. For exam-
ple, the validity of (2) is proved as follows.

Let n = 2. Then the validity of (2) is obvious. Let us assume
that (2) is valid for some natural number n. For the forms of n and
n + 1 there are three cases:

(a) » and n + 1 are not prime numbers. Therefore,

x(n+ 1) = x(n)

and
B(n+1)=B(n)=1,

and then
Xﬂ.}.l = Y,. + P,,(n + 1)

#(n)
= Ex (Pk = Pi-1)-Pk + (B = Px(n))-Px(n)+5(n) + Px(n+1)+B(n+1)

z(n+1)
= 31 (Pk = Pi~1)-Pik + (B = Pr(ns1))-Pr(n+1)+B(n+1)
+Px(n+1)4B(n+1)
z(n+1)
= 21 (Pk = Pk-1 )'Pk + ((” + 1) - pf(n+l))'pf(n+l)+8(n+l)-

(b) n is a prime number. Therefore, for n > 2 n 4+ 1 is not a prime
number,

x(n+1) = x(n),

R = Px(n)s
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B(n) =0,
B(n+1)=1,

and then
Yop1 = Yo+ Pp(n+1)

x(n)
= ’3_31 (Pk = Pk=1)-Pk + (B — Pa(n))-Pr(n)+B(n) T Pr(n+1)+B(n+1)

(from n — py(n) =0 and B+ 1 = Pr(ny1) =0 + 1= Ppatn) = 1)

x(n+1)

= 151 (P = Pr=1)-Pk + (7 + 1) = Pr(n41))-Pr(n+1)+B(n+1)-

(c) n + 1 is a prime number. Therefore, for n > 2 n is not a prime
number,
w(n+1)=x(n)+1,
nt+l= Pr(n+1)>
B(n) =1,
B(n+1)=0,
and then

Yot1 = Yo+ Py(n+1)

x(n)
151 (P = Pk=1)-Pk + (B = Pa(n))-Pr(n)+B(n) + Pr(n+1)+B(n+1)

(from Pa(n)+B(n+1) = Pr(n)+140 = Pr(n)+B(n))

=(n)

= k§1 (pr - Pi-1)-Pk + ((n+ 1) - Pr(n))'pr(n)+8(n)



z(n)

= 'El (Pk = Pr-1)-Pk + (Pe(ni1) = Prin)-Prtns1)

x(n+1)
= '31 (Pr = Pi-1)Pr + (2 + 1) = Pr(nt1)) Pe(nt1)+B(me1)

Therefore, (2) is valid.
The validity of (1) is proved analogically.
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§5. ON THE 39-th, 40-th, 41-st AND THE 42-nd
SMARANDACHE’S PROBLEMS

The 39-th and 40-th problems from [2] (see also 40-th problem
from [1]) are the following:

(Inferior) square part:
0,1,1,1,4,4,4,4,4,9,9,9,9,9,9,9,16,16,16,16,16,16,16, 16, 16,
25,25, 25, 25,25, 25,25, 25, 25, 25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36,
36, 36, 36, 36,49,49, ...

(the largest square less than or equal to n.)
(Superior) square part:
0,1,4,4,4,9,9,9,9.9,16, 16, 16, 16, 16, 16, 16, 25, 25, 25, 25, 25, 25,

25,25, 25, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36, 36,49, 49, ...

(the smallest square greater than or equal to n.)
Study these sequences.

The 41-st and 42-nd problems from [1] (see also 41-st problem
from [1]) are the following:

Ssee also
V. Radeva and K. Atanassov, On the 40-th and 41-st Smarandache’s problems.
Notes on Number Theory and Discrete Mathematics, Vol. 4 (1998), No. 3,
101-104.



(Inferior) cube part:

01,1,1,1,1,1,1,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,8,27,27,
27,27,21,21,27,21,217,27,21,217,27,27, 21,27, 27, 27, 27,27, 27, 27,

27,27,27,27,27,27,27,21,27,27, 27, 27,27,27, 27, 64,64, 64, ...
(the largest cube less than or equal to n.)

(Superior) cube part:

0,1,8,8,8,8,8,8,8,27,27,27,27,27,27, 27,27, 27, 27,217,217, 27, 27,

217,217,27,27,27, 64,64, 64,64, 64, 64,64, 64, 64, 64, 64, 64,64, 64, 64,

64,64, 64, 64, 64, 64, 64, 64,64, 64, 64, 64,64, 64, 64, 64,64, 64, 64, 64,
64,64, 64,64,64,125,125,125, ...

(the smallest cube greater than or equal to n.)

Study these sequences.

Below we shall use the usual notations: [z] and {z] for the integer
part of the real number z and for the least integer > z, respectively.
The n-th term of every one of the above sequences is, respectively

Gy = [\/'-‘]2’
of the second -

ba = f\/ﬂz,
of the third -

Cp = [\3/;]3’
and of the fourth -

dn = [V/n]°.

The checks of these equalities is direct, or by induction.



We can prove easily the validity of the following equalities:

ERCERT S B
él (2K +1).k2 = n(n + 1)(37(;2 +5n + 1)’ 2)

n(n+ 1)(5nt +4n3 —4n? - n+1)

n
T (3k*-3k+1).k%= , (3)
k=1 10
n
T (3K +3k+1).8°
k=1
n(n + 1)(5n% + 16n% + 14n% + 5n + 1)
- 10 ' )

For example,

T (2k-1).k%=2. £ K- T K
k=1 k=1 k=1

nf(n+1)* n(n+1)(2r+1) n(n+1)@n*+n+1)
T4 6 - 6 ’
i.e. (1) is true.

Now using (1) - (4), we shall show the values of the n-th partial
sums

=2




n
By= X bks

k=1

n
C‘= 2 Ck

k=1

and

n
Dy= X dk’

k=1

of the four Smarandache’s sequences. They are, respectively,
4 = WA= (VA -1+ )EIVE - 1P +5l/a~1]+1)
" 6

+n ~ [va]* +1).[vaP, (5)

B,. = [‘/ﬂ([ﬁ] + 1)(3(&@2 + [\/ﬂ - 1)+(n_[\/a2).r\/ﬂ2’ (6)

c. = W 1(¥m -1+ 1)(5(¢/a - 1] + 16[¢/n - 1]°
" 10

U[/n-1P+[yn-1]-1)
T 10

+(n = [Va] + 1).[¥/mP, (M

D. = AR+ 1)(IYA)* + 4{YRP - 4¢P - [¥a]+ 1)
" 10
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(n— [Vaf + 1).[Va]. (8)

The proofs can be made again by induction. For example, the
validity of (6) is proved as follows.

Let n = 1. Then the validity of (6) is obvious. Let us assume

that (6) is valid for some natural number n. For the form of n there

are three cases:
(a) n and n + 1 are not squares. Therefore, [v/n + 1] = [{/n] and

[vn + 1] = [v/n] and then
Bpny1 = Bn 4 bup1 = Ba + [Vn+1]% = By + [Vn]?

WVAl(YAL + DEIVER + [Vl - 1) 3 [yt [y
- : +(n= [VAP).IVA? + [Va)

_ WatT(Ve+ 11+ 1)@Vr+112 + [Vr +1] - 1)
6

+(n+1-[Vr+1P).[Va+ 1%
(b) nis a square (hence, n+1 is not a square). Therefore, [vn + 1} =

[VA], n = [Vn]* = [Van +1)? and [vn + 1] = [v/n] + 1 and then
Bpy1 = Bp+ by = By + [V +1]2

= [\/ﬂ([\/ﬁl + 1)(3([;\/ﬂ2 + {\/”TJ - 1) + (n _ [\/ﬁ]2)[\/ﬂ2

+[vn +1]?

[val(lval + DGV + [Va] - 1)
= ; +0+1.[va+1)?
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_ VA (VAT + DEVAF I+ [Va+T] - 1)
6

+Hn+1-[Va+1P).[Va+1]3
(c) n + 1 is a square (for » > 1 it follows that n is not a square).

Therefore, [v/n + 1] = [/n] + 1 and [vn + 1] = [/n] and then
Bat1 = By +bp41 = B+ [Va +1]? = Ba + [Va]?

_ val(lva] + DEIVRE + [ve] - 1)

= 5 +(n~[Val).[Val* + [Val®.

From the equalities
a+1=[Va+1]’ = ([va]+1)
[vn] = [vn] +1
and

(n - VA + 1).[vR]? = ((VA] + 1) - [Va]?).[Va]?
= (2[vn] + 1)({Vn) + 1)°

it follows that

[VRI([YA] + DEWAPR + [vA] - 1)
5 +(2Ava)+1)(VA]+1)?

Ba+1 =

_ (WAl + 1)(val + 2)3(lva] +1) + [Vn])
6
_WrtI(vr+T]+ D)E(VR+ 1P +[Vr+1]-1)
6

+(n+1-[Vn+1P3).[vn+1].

Therefore, (6) is valid.
The validity of formulas (5), (7) and (8) are proved analogically.
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§6. ON THE 43-rd AND 44-th SMARANDACHE’S
PROBLEMS 7’

The 43-rd and 44-th problems from [2] (see also 42-nd problem
from [1]) are the following:

(Inferior) factorial part:
1,2,2,2,2,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,6,24,24, 24, 24,24,
24,24,24,24,24,24,24,24, 24,24, 24, 24, 24, 24,24, 24, 24, 24, 24, 24,

24,94,24,24,24, 24,24, 24,24, 24, ...
(Fp(n) is the largest factorial less than or equal to n.)

(Superior) factorial part:
1,2,6,6,6,6,24,24,24,24,24,24,24,24, 24, 24, 24, 24, 24, 24, 24, 24,

24, 24,120,120, 120, 120, 120, 120,120, 120, ...

(fp(n) is the smallest factorial greater than or equal to n.)
Study these sequences.

It must be noted immediately that p is not an index in F,, and
-

"see also
V. Atanassova and K. Atanassov, On the 43-rd and 44-th Smarandache’s prob-
lems. Notes on Number Theory and Discrete Mathematics, Vol. 5 (1999), No.

2, 86-88.




34

Below we shall use the usual notations: [z] and [z] for the integer
part of the real number z and for the least integer 2 z, respectively.
First, we shall extend the definition of the function “factorial”
(possibly, it is already defined, but the authors do not know this).
It is defined only for natural numbers and for a given such number
n it has the form:
al=12....n.

Let the new form of the function “factorial” be the following for
the real positive number y:

Y=y(y-1D(y-2)..(y-[¥] + 1),

where [y] denotes the integer part of y.
Therefore, for the real number y > 0:

(y+1)=y(y+1)
This new factorial has I'—representation

_ I'(y+1)
YET-R+ D)

and representation by the Pochhammer symbol

yl= (.'/)[y]

(see, e.g., [7})-

Obviously, if y is a natural number, y! is the standard function
“factorial”.

It can be easily seen that the extended function has the proper-
ties similar to these of the standard function.

Second, we shall define a new function (possibly, it is already
defined, too, but the authors do not know this). It is an inverse
function of the function “factorial” and for the arbitraty positive
real numbers z and y it has the form:

2?=y iff y'=2. (1)



Let us show only one of its integer properties.
For every positive real number 2:

[z?7]+ 1, if there exists a natural number n such

t 1=
(z+1)7 = hat nl=z 41

[z7], otherwise

From the above discussion it is clear that we can ignore the new
factorial, using the definition

=y ifft (y)y =2

Practically, everywhere below y is a natural number, but in some
places z will be a positive real number (but rot an integer).
Then the n—th member of the first sequence is

Fy(n) = [n?)!
and of the second sequence it is
fy(m) = [n7]0.
The checks of these equalities is direct, or by the method of

induction.
Therefore, the values of the n-th partial sums

Xo= I Fy(k)
k=1

and
n
Ya= 2 fp(k)
k=1

of the two above Smarandache’s sequences are, respectively,



36

In?

Xy = ,3 (= (k= D)(k - 1)1+ (n - [a7)!+ )N (2
1

and

Y, = E’ (K - (k= 1))k +(n = [a?) + 1).[a7]!  (3)
1

The proofs can be made by induction. For example, the validity
of (2) is proved as follows.

Let n = 1. Then the validity of (2) is obvious. Let us assume
that (2) is valid for some natural number n. For the formof n + 1
there are two cases:

(a) for n+1 does not exist a natural number m for which n+1 = m!.
Therefore,
[(n+ 1)7] = [n7]

and then
Xns1=Yn + F,,(n + 1)

= ? (k! = (k = )).(k = )14 (n = [n?! + 1).[a?7) + [(n + 1)I]!
=1

(n+1)7]
= I (R (k=)= D04+ D)= [(a+ DI+ 1) (4 170

(b) for n+ 1 there exists a natural number m for which n +1 = m!.
Therefore, for n > 2 does not exist a natural number m for which
n=m!

(n+ 1)1 =[n?+1,

(r+1)]=n+1,
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from (1), and then

Xot1 = Yo + Fy(n+1)

é (K = (k= 1)).(k = 1)1+ (n = [02)! + 1).[n7]! + [(n + 1)2)!
7

ksjl (k! = (k= D).(k = D!+ ((n + 1) = [R7)1).([(n + 1)7] - 1)!

+[(n +1)7)!

{(n+1)7]
= kfl (K= (k= 1N.(k= 1)1+ ((n+1) = [(n+ 1)) + 1)

J(n 4+ 1)7L
Therefore, (2) is valid.
The validity of (3) is proved analogically.



$7. ON THE 61-st, THE 62-nd, AND THE 63-rd
SMARANDACHE’S PROBLEM 2

The 61-st problem from [2] (see also 66-th problem from [1]) is
the following:

Smarandache exponents (of power 2):

0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0,2,0,1,0,3,0,1,0,2,0, 1,
0,5,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0,4,0,1,0, 2,0, 1,0, 3,0, 1,0,2,
9,1,0,6,0,1,...

{e2(n) is the largest ezponent (of power 2) which divides n.)
Or, e3(n) = k if 2% divides n but 25+! does not.
In [1] and [2] there are two misprints in the above sequence.
The 62-nd problem from [2] (see also 67-th problem from [1}) is
the following:

Smarandache ezponents (of power 3):

0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,3,0,0,1,
0,0,1,9,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,

S3ce also
K. Atamassov, On the 61-st, 62-nd and 63-rd Smarandache’s problems. Notes
on Number Theory and Discrete Mathematics, Vol. 4 (1998), No. 4, 175-182.
and
M. Vassilev - Missana and K. Atanassov, Some representations related to =l
Notes on Number Theory and Discrete Mathematics, Vol. 4 (1998), No. 4,
148-153.




39

0,0,2,0,0,1,0...

(e3(n) is the largest exponent (of power 3) which divides n.)
Or, e3(n) = k if 3% divides n but 3**1 does not.

The 63-rd problem from [2] (see also 68-th problem from [1]) is
the following:

Smarandache ezponents (of power p) { generalization }:

(ex(n) is the largest ezponent (of power p) which divides n, where p
is an integer > 2.)

Or, ep(n) = k if p* divides n but p**! does not.

Let [z] be the integer part of the real number z.

We can rewrite the first sequence to the form:

0,1,

0,2,0,1,

0’ 370, 170’ 2? 0’ 1’

0’4’0, 17072, 0’ 1’ 0’370’ 1,0’2707 1’

07 57 07 1,0’2, 07 1’ 0’ 3’0, 1’0’ 2’ 0’ 1’0’4’0’ 1, 0’ 27 O’ 17073, 0’ 17
0’ 2, 07 1’

0,6,0,1,...,

and we can obtain formulas for the n—th member of the new se-
quence and of the the sum of its first n elements, but the following
form of the first sequence is more suitable and the two corresponding
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formulas will be simpler:

0,

1,0,

2,0,1,0,

3,0,1,0,2,0,1,0,

4’ 0’ 1’ 0’2,0’ 1‘09 3,0, 1’ o, 210) 1’0’

5’ 09 1,01 2,09 1’ o’ 3' 0’ 1909 2)0’ 1’0’ 4’ o’ 1’0921 o’ l’ o, 3’ 0! 1’ 0’
2,0,1,0,

6,0,1,...,

Therefore, the k—th row (k > 0) contains 2* members and let
they be:

bk,h bk,Zo evey bk,zh
and for every i = 1,2,...,2%1 ;

brai = 0.

The second form of the sequence shows that for every k > 1:

bO.l =0,
k, fe=1
brgi-1 = { Dk-1.2i-1, if2gig2k? 1)
by_ygigr-1_y, f25241<ig 28!

Obviously, for every two natural numbers k, i there exists a na-
tural number n: by ; = e3(n).

Let the natural number n be fixed. Therefore, we can determine
the number of the row and the place in this row in which is places
e2(n). They are:

k= [loggn]

and
§=n-2lm g
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Then, from (1) and from the second form of the sequence it
follows the following explicit representation:

[k, ifi=1

k-1, ifi=2F241

k-2, ifi=2F3410ri=2F24983 4
k-3, ifi=2F4410ri=2k342k-44

ori=2k14492292k3 41
ori=2k"4432k341
k—4, ifi=2541
ori=2k"5 4 9k=4 41
ori=2F5_499k4
ori=2k5_439k4 1
b,2i-1 = { ori=2K5442F4 4 (2)
ori=2k5 452911
ori=2F546.2k1441
ori=2k5_479k4 4

k—s, ifi=2ks141
ori=2k-s=1_4 ok-s L4
ori=2k=s=14 9 9k-s 1 |
ori=2k-2=1_ 39k=s 4 {0or ..
ori=2F"2"1 4 (251 _1).2k-s 4 g

for s < k.

The validity of (2) is seen directly by our construction, or it can
be proved, e.g., by induction.

Let R? is the sum of the member from k—th row. Easily it can
be seen that

R}=2F_-1.

Now, let S2 be the sum of the first n members of the sequence
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{e2(n)}2,;, i-e.

From (2) it can be seen that

2 flogan]-1 2 n—2llonz»l 41
S“ = ‘21 RJ' + _21 b[logzn],i
J= =

{logan}] — 9llogan] 99
= (g{lmn] ~1-{[logsn]) + {logan] + % j.[n Y t
=1

Therefore,

llogan] g _ ollogan} 4 29
25+1

S: = ollogan]+l _ 1 4 (3)

j=1
The validity of (3) can be proved, e.g., by induction, using (2).

Also by induction it can be proved that

[logan} _ 2[10337;]
53 = gllesan#1 _ 1 4 -21 j,(["___2.;__
=

n — Qllogan] 4 97

- 97+1 (4)

On the other hand, it can be proved directly, that the right parts

of (3) and (4) coincide. For this aim, it is enough to prove that for

every patura.l pumber n and for every natural number j such that
n > 27*1 the following identity is valid:

n- 2(1092'-]} [n — 9llogan] 4 2:'] n — lloman) 4 97

2 27+1 9i+1

k]
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which can be made, e.g., by induction.
Analogically, we shall rewrite the second sequence to the form:

1’070, 170’ 0’
2,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,
3, 0’ 0, 1’07 0’ 1’ 0’ 0’ 27 07 0, 1’0,0) 1’0’ 07 2’ 07 0, 1, 0? 07 1707 O’
3, 0’ 07 1’0’ 0’ 1, 0’ 0’2’ 070’1’0,0’ 1,0!0721 0? 0, 1’0,0, 1’0,0’
4,0,0,1,0,0,1,0,0,2,0,0,1,0,0,1,0,0,2,0...

Therefore, the k—th row (k > 1) contains 2.3* members and let
they be:
bi,1,bk,2y ooy bp 2 3¢

and for every i = 1,2,...,2.3571 :
bk3i-1 = bi3i = 0.
The second form of this sequence shows that for every k > 1:
k, ifi=1
br—-13i if 2 <i<2.3k2

bi_y3i—ak—1, if2.3F241<i< 3k (5)
br_ysioar,  if3F141<i<23k1

bi3i—2 =

As in the first case, for every two natural numbers k,: there
exists a natural number n: bi; = ex(n).

Let the natural number n be fixed. Therefore, we can determine
the number of the row and the place in this row in which is places
e2(n). They are:

k = [logsn]

and
i=n—3lossnl 41,

Then, from (5) and from the second form of this sequence it
follows the following explicit representation (for s < k):



( k, ifi=lori=3%141

k-1, ifi=32410ri=23241
ori=432410ri=53"2+1

k-2, Hfi=33410ori=23%3+1
ori=33 43241
ori=233 43241
ori=33423241
ori=233423%24
ori=33 433241
ori=23k3 43324

begi-2 = 4 ori=3%3 443241 (6)

ori=233443-241

ori=3%3453241

ori=23F3453-24

k-s, fi=3**1410ri=23"*141
ori=3F*1 4354
ori=23k143k>s 4107 ..
ori=3"14(231-1)3*+1
ori=23k%14(23"1-1)3*+1

\

The validity of (6) is seen directly by our construction, or it can
be proved, e.g., by induction.
Let R; is the sum of the members from the k—th row. It is easily

seen that
R} =3 -1

Now, let S3 be the sum of the first n members of the sequence
{es(n)}az1s ie. '

§3= T ei).
=1

From (6) it can be seen, that it is valid:
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3 [logan}-1 n-3lioganl 4y
S, = '2 5+ .2 b[logsn],i
J=1 =1
3llogan] _ 1 {logsn] n — 3llogan]
= ————— —[logan]+ X j([———
2 [logan] E il ]
n — 3llogan]
- l .
[2=51) + logsn]
Therefore,
3[109371] -1 [logan) on- 3[log;m}
1=1
n — 3llogan]
~[— ) (7)

The validity of (7) can be proved, e.g., by induction, using (6).
By analogy with the above constructions, we can write the se-
quence of the p—th powers, where p is a prime number of the form:



p-1
0,..,0,2,0,...,0,1,..5,0, .., 0, 1,...,0, ..., 0,2,0,...,0, 1,...,0, ..., 0, 1
e e et e et e e e N o

p-1 r—1 p-1 p-1 -1 p—1
p:l vzl
p—1
0,..,0,3,0,...,0,1,..,0,..,0,1,0,...,0,2,0,...,0, 1,..,0, ...,0, 1, .., 0,....,0,2,0, ..., 0, 1,...., 0, ..., 0, 1
p~1 p-1 p-1 p~—1 p—~1 r—1 p—1 p~-1 p—-1 P
P:l P:I p:l
9:1
°..03,0..01,..0,..01,0,..,0,2,0,..,0,1, ey 0,..,,0,1,..,,0,..,,0,2,0,...,0, 1,...,, 0, ..., 0, 1
p-1 r-1 p~1 p—-1 p~-1 p~1 p-1 p~1 p-1 P
p—1 p—1 p-1
p-1
® [ ] [ ]

0,.,0,3,0,.,0,1,..0,0,..,0,1,0,..1,0,2,0,...,0,1,...,0,...,0, 1,..., 0, ..,0,2,0, ..., 0, 1, ..., 0, .., 1
p~-1 . p-1 p-1 p-—1 p—-1 p-1 p—1 o p-1 p—-1

- (- - >

" — g

p-1 p=-1 p-1 P

p—1
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Therefore, the k—th row (k > 1) contains (p — 1).p* members
and let them be:

bk,1,bk,2, .- bk,(p-l).p“

and for every i = 1,2,...,(p— 1).pF 1 :
bk pi—p+2 = Dk pip43 = «.. = b pi = 0.

The second form of this sequence shows that for every k > 1:

[ k, fi=1
bk-1p.45 if2<i<(p-1).pr?
bk—l,p.i—pk—z, if (p_ 1)'pk_2 +1<4
< pk?
bkp.i—ps1 = < . : (8)
bk—l,p.i—s.p"—la if S-Pk—l +1< ?
< (s+ 1)1
{ fors=1,2,...,p—2

As in the first case, for every two natural numbers k,: there
exists a natural number n: by ; = e,(n).

Let the natural number n be fixed. Therefore, we can determine
the number of the row and the place in this row where ey(n) is.
They are:

k = [logyn]

and

i=n-—plornl 4 1,

Then, from (8) and from the second form of this sequence it
follows the following explicit representation:



[k, fi=lori=g141
ori=2pori=(p-2)p1+1

k-1, fi=pF?+lori=2p2%24+1
or..ori=(p-1)p*2%+1
ori=(p+1)p*2+1or..
ori=(2p-1)p"2+1or..
ori=((p-2).p)+1).p523+10r..
ori=((p-1)p)-1)p"%+1

bkpi—pt1 =14 : : 9

k-s, fi=pFl4lori=2p"141
or..ori=(p-1).pF* 141
oriz=pF*liprylor...
ori=(p-1)pF*l+pt*41..
ori=p*1 4 ((p-1)p'' - 1)
R an S Y
ori=(p~-1)pt*1

{ +{(p- 1) = 1) + 1

for s < k.

The validity of (9) is seen directly by our construction, or it can
be proved, e.g., by induction.

Let R} is the sum of the members from the k—th row. It can be
easily seen that

R::p"-—l.

Now, let S: be the sum of the first n members of the sequence
{ep(n)}oys e

M3

5= ep(3).

1

ﬁ-
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From (9) it can be seen that it is valid:

Bospnl-1  nopltomriyy

Sz = _2 Rj + _2 b[log,n],i
i=1 =1

p[logpn]+l -1 [logpn} - p[log,n] n— p[log,n]
- p—1 j=1 7 P SUopt

D. (10)

The validity of (10) can be proved, e.g., by induction, using (9).

Finally, we shall note that (10) can be used for representation of
nl. It is

[logpn]+1 _ 1 {logpn] T - logpn]
n!l=1I + X 3
I (P——r—p_ z ( po
n— p[logpn]
——piT_
or
x(n) [logpn}+1 _ [logpn] _ mllogpn]
T O it S S L i
=1 p- 1 =1 P’
_ pllogen]
n—p
—[T])),
where

P = {p1,p2,P3,.-} = {2,3,5,...}

is the set of the prime numbers.



§8. ON THE 97-th, THE 98-th AND THE 99-th
SMARANDACHE’S PROBLEMS °

The 97-th problem from [2] (see also 6-th problem from [1}) is
the following:

Smarandache constructive set (of digits 1,2):
1,2,11,12,21,22,111,112,121, 122,211, 212, 221,222, 1111, 1112,

1121,1122,1211,1212,1221,1222,2111,2112,2121,2122,2211,
2212,2221,2222, ...
(Numbers formed by digits 1 and 2 only.)

Definition:

al) 1, 2 belongs to Sy;

a2) if a, b belongs to S,, then ab belongs to S, too;

a3) only elements obtained by rules al) and a2) applied a finite num-
ber of times belong to S,.

Remark:

- there are 2F numbers of k digits in the sequence, for k = 1,2,3,...;
- to obtain from the k— digits number group the (k + 1)—digits num-
ber group, just put first the digit 1 and second the digit 2 in the
front of all k—digits numbers.

9see also
H. Aladjov and K. Atanassov, On the 97-th, 98-th and 99-th Smarandache’s
problems. Notes on Number Theory and Discrete Mathematics, Vol. 5 (1999),
No. 3, 83-93.
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The 98-th problem from [2] (see also 7-th problem from [1]) is
the following:

Smarandache constructive set (of digits 1,2,3):
1,2,3,11,12,13,21,22,23, 31,32,33,111,112,113,121, 122, 123, 131,

132,133,211, 212,213, 221, 222,223,231, 232,233, 311, 312, 313, 321,
322, 323,331, 332, 333, ...
(Numbers formed by digits 1, 2, and 3 only.)

Definition:

al) 1, 2, 3 belongs to S3;

a2) if a,b belongs to S, then ab belongs to S5 too;

a3) only elements obtained by rules al) and a2) applied a finite num-
ber of times belong to Ss3.

Remark:

- there are 3% numbers of k digits in the sequence, for k = 1,2,3,..;
- to obtain from the k—digits number group the (k + 1)—digits num-
ber group, just put first the digit 1, second the digit 2, and third
the digit 3 in the front of all k—digits numbers.

The 99-th problem from [2] (see also 8-th problem from [1)]) is
the following:

Smarandache generalized constructive set:
(Numbers formed by digits dy,dy, ..., dn, only, and d; being different
each other, 1 <m <9.)

Definition:

al) dy,ds,...,d,, belongs to Sp,;

a2) if a,b belongs to Sy, then ab belongs to S, too; ,
a3) only elements obtained by rules al) and a2) applied a finite num-
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ber of times belong to Sp,.

Remark:

- there are m* numbers of k digits in the sequence, fork=1,2,3,..;
- to obtain from the k—digits number group the (k + 1)—digits num-
ber group, just put first the digit dy, second the digit dy, ..., and
the m—time digit dm in the front of all k—digits num- bers.

More general: all digits d; can be replaced by numbers as large as
we want (therefore of many digits each), and also m can be as large
as we want.

As in the previous sections, we can construct new sequences for
every one of the three sequences in the following forms, respectively:
a new form of the first sequence

1,2,

11,12,21,22,

111,112,121,122, 211,212,221, 222,

1111,1112,1121,1122, 1211, 1212, 1221,1222,2111,2112,2121,
2122,2211,2212, 2221, 2222, ...

a new form of the second sequence

1,2,3,

11,12,13,21,22,23,31,32,33,

111,112,113,121,122,123,131,132, 133,211, 212, 213,221, 222,
223,231, 232,233, 311, 312, 313, 321, 322, 323, 331, 332, 333,

1111,1112,1113,...

a new form of the third sequence

d, d?) sey dm
dldl, dld% eeey dldﬂn d2dl’ "-d‘mdﬂu
dldldl) dldld27 seey dmdmdﬂu s
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As it is noted in the beginning of the section, the number of the
members of the k—th row in the first, second and third sequence in
the new form will be respectively 2%, 3* and m*.

Let us label the three sequences, respectively, as S, §3 and S,,.
Therefore, we can represent these sets, respectively, by:

o0 o
S2= U {@1az3.6, | a,0a2,..,a, € {1,2}}= U Ay,
n=1 n=1

and, as it was mentioned above,
card(Azn) = 2",

where card(X) is the cardinality of the set X;

o o ]
Sz3= U {alag...a,, I a1,Q2,...,8, € {1,2, 3}} = U A3,n
n=1 n=1
and
card(Az,) = 3%
o0
Sm= U {@@3...G, | a1, 02, ...,0, € {d1,dy, ...,d}}
n=1
o0
= U Anmna
n=1
and

card(A,, ») = m".

In the general (third) case we shall define:

Bp,= Y =
$€Am,n



Therefore,
By =3= 2°.3.1,

Bg,g =66= 21.3.11,
By 3 = 1332 = 223.111,
By 4 = 26664 = 22.3.1111, ...

By;=6= 3%6.1,
B3z =198 = 31.6.11,
Ba 3 = 5994 = 32.6.111,
B34 = 59994 = 33.6.1111, ...

It is interesting to note, for example, that
By, =4°.101,

B,z = 440 = 41.10.11,
B3 = 17760 = 42.10.111,...

Now we can prove by induction that

Ban=m""1( T d) 11..1. 6))
=1 ntimes

Indeed, for m - fixed natural number and n = 1 we obtain that

Bpi= L di=m®( T d).1.
=1 =1
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Let us assume that By, , satisfies (1) for some natural number
n > 1 (mis fixed). Then from the above construction it is seen that

Brpns1 = m(m" 7L 2 d;). 11...1) + m".10"( T d;)
=1 ntlmes =1

=m"( 5 di).(1 00..0 + 11..1)

=1
ntlmes ntlmes

m
=m0 % 4). 111 ),
1=1 W—’
(n+1)times
with which (1) is proved.

Below, using the usual notation [z] for the integer part of the
real number z, we shall give a formula for the s—th member z,, ; of
the general (third) sequence. The validity of this formula is proved
also by induction. It is:

t—l 1

flogm(s+1)(m=-1)] m. [ B ]
v 101 (r([ = m‘f} Lm)+1), (2)

Tm,s =
=1

where

p
r(p,q)=p- q-[;]
for every two natural numbers p and ¢, i.e., function r determines
the remainder of the division of p by gq.

When m = 2, (2) obtains the form

[log2(s+1)]
T, = Y - 10'-1( ([__2_m__+_n_1
i=1

L2+ 1),
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and when m = 3, (2) obtains the form

‘ L mitl -
R 10 o 3'[_3_1]1, 3)+1).

AT

3:'-1

Zms =
=1

Using formula (2) we can show the s—th partial sum of the third
sequence (and from there - of the first and the second sequences).
Itis ‘

&

Sm,. = X ZTm,3
=1

but we can construct the following simpler formula by a calculating
point of view, having in mind that the s—th member of the third se-
quence is placed in the ([logm((s—2)}(m—1)+1)]+1)—th subsequence
and also the sum of the members of the first {[logm ((s—2)(m—1)+1)]
sequences can be calculated by (1):

{logm((s—2)(m—1)+1)] s
ms = by Bm.:' + z Tm,ey
=1 t=s~t41

where
mllogm{(s=2)(m-1)+1)] _ 1

m-1
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§9. ON THE 100-th, THE 101-st AND THE 102-nd
SMARANDACHE’S PROBLEMS 1°

The 100-th problem from [2] (see also 80-th problem from [1}) is
the following:

Square roots:

0,1,1,1,2,2,2,2,2,3,3,3,3,3,3,3,4,4,4,4,4,4,4,4,4,5,5,5,5, 5,5,
5,5,5,5,5,6,6,6,6,6,6,6,6,6,6,6,6,6,7,7, ...

(34(n) is the superior integer part of square root of n.)

Remark: this sequence is the natural sequence, where each number
is repeated 2n + 1 times, because between n? (included) and (n + 1)2
(ezcluded) there are (n + 1)? — n? different numbers.

Study this sequence.

The 101-st problem from [2] (see also 81-st problem from [1}) is
the following:

Cubical roots:
0,1,1,1,1,1,1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,

3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,
3,3,4,4,4, ...

195¢e also
K. Atanassov, On the 100-th, 101-st and 102-nd Smarandache’s problems. Notes
on Number Theory and Discrete Mathematics, Vol. 5 (1999), No. 3, 94-96.
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(cq(n) is the superior integer part of cubical root of n.)

Remark: this sequence is the natural sequence, where each number
is repeated 3n? + 3n + 1 times, because between n® (included) and
(» + 1)3 (ezcluded) there are (n + 1)° — n® different numbers.
Study this sequence.

The 102-nd problem from [2] (see also 82-nd problem from [1])
is the following:

m— power roots:

(m4(n) is the superior integer part of m— power root of n.)
Remark: this sequence is the natural sequence, where each number
is repeated (n + 1)™ — n™ times.

Study this sequence.

Below we shall use the usunal notation: [z} for the integer part of
the real number z.

The author thinks that these are some of the most trivial S-
marandache’s problems. The n-th term of each of the above se-
quences is, respectively

zn = [V},
of the second -

¥ = [V,
and of the third -

2 =[Vn).

The checks of these equalities is straightforward, or by induction.
We can easily prove the validity of the following equalities:

S (2k+1)k= 2Bt D0Ent5) (1)
k=1 6
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S (3k2+3k+ 1)k = n(n + )(31(1s +7n+ ).
k=1

(2)

Now using (1) and (2), we shall show the values of the n-th
partial sums

n
Xn= X zp,
k=1
n
Yn—' z Yk
k=
and
n
2y = L oz,

=1

of the three Smarandache’s sequences. They are, respectively,

Xn = ([\/ﬂ - 1)[@(“[\/’?‘ + 1) +n- [\/E]Z + 1).[\/ﬂ, (3)

Y, = ([\S/H_ 1)[@2(3[%'{' 1) + (n _ [{;/aS + 1)'[\3/ﬂ, (4)

Za= T (VR + )" - VR VE- 1"

+(n = [¥/a]™ +1).[ V/n]. (5)

The proofs can be made by induction. For example, the validity
of (3) is proved as follows.

Let n = 1. Then the validity of (3) is obvious. Let us assume
that (3) is valid for some natural number n. For the form of n there
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are two cases:
(a) » + 1 is not a square. Therefore,

[Va+1]=[va]

and then
Xot1 = Xa + Zap

_ vnl(ve] - D4lval +1)
= = + (n - [vVaP + 1).Jva) + [Va + 1]

_ WAF(vaET) ;1)(41\/” U+, (nt+1-WaTI+1)
VAT

(b) » + 1 is a square (for n > 1 it follows that n is not a square).

Therefore,
[Vn+1]=[vn] +1

and then
Xm}-l =Xa+ Ta+l

- [\/ﬂ([\/;‘] —61)(4[\/7q + 1) + (n _ [‘/a2 + 1)‘[‘/',@ + [\/"_“_"—1]

_ (Vrn+1] - 1)([vn+ 1] - 2)(4[vn + 1] - 3)
6

+n+1-([Va+1]-1)))([Va]- 1)+ [Vn+1]

_l/nt N([vn+1] - 1)(4lvan +1} +1)
6
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—([vn+1} - 1D)(2[Vn+1}-1)
+(n+1-([Vr+1]-1))).(Vr] - 1)+ [Va +1]

_ [Va+1)([vr +1] ; (dVn+1]+1) +[VaF

_ [(Vr+1l([vrn+1]-1)4vn+1]+1)
-6

+(r+1)-[Va+12+1).[va+1]

Therefore, (3) is valid.
The validity of formulas (4) and (5) are proved analogically.



§10. ON THE 117-th SMARANDACHE'’S PROBLEM 11

The 117-th Smarandache’s problem (see [2}) is:

Let p be an odd positive number. Then p and p+ 2 are twin primes
if and only if
1 2 1 1
— D= Y- —
LA Ty
15 an integer.
Below we shall present a solution of this problem.
Let

AE(P-I)!(1+-—?—-)+.1.+ 1 (p=-1)'(3p+2)+2p+2

p p+2 p p+2° pp+2)
=B
p+2)
where
B=(p-1)3p+2)+2p+2.
Hence,
B=3p'+2p+2((p—-1)!+1).
Therefore,

p|B i pl((p~1)! + 1) iff p is a prime number

(from Wilson’s theorem - see, e.g. {4]).

gee also
K. Atanassov, On the 117-th Smarandache’s problem. Notes on Number Theory
anrd Discrete Mathematics, Vol. 5 (1999), No. 3, 97-98.
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On the other hand,

B=(p+2)p-1)!+2(p+2)+2p!-2
=+ Dp- D+ 20+ 2+ =7 @+ i - (p+1)

2
=(p+2)p-1)!+20p+2)+ m(((? + 11+ 1) - (p+2)).
Therefore (from (p+ 1,p+ 2) = 1 for p > 2),
(p+2)|Biff (p+2)|((p+1)!+1)iff p+2is a prime number

(from Wilson’s theorem).
Hence,

p(p+ 2)|B iff p and p + 2 are twin primes.

Therefore, A is an integer if and only if p and p + 2 are twin
primes. Thus, we solved the problem.
Finally, we shall note that in [6] the following assertion is proved:

p and p+ 2 are twin primes iff p(p + 2)|C,

where
C=4p-1)+p+4.

It is easily to see that
B=C+3p(2(p-1)+1). (*)

From (p + 2)|(2(p — 1)! + 1) if and only if (p + 2) is a prime
number, from (*) and from the above assertion from [6] we obtain
another proof of the Smarandache’s problem. Also, both our first
proof and (*) yield another proof of the assertion from [6].



§11. ON THE 118-th SMARANDACHE’S PROBLEM 12

The 118-th Smarandache’s problem (see [2]) is:
“Smarandache criterion for coprimes”:
If a,b are strictly positive integers, then: a and b are coprimes
if and only if
a?®)+1 4 pela)+l = g 4 b(mod ab),
where ¢ is Euler’s totient.

For the natural number

k
n= I pJ,

=1

where p, p2, ..., Pk are different prime numbers and ay, ag,...,ax 2 1
are natural numbers, the Euler’s totient is defined by:

k
pln)= I P (pi - 1)
=

Below we shall introduce a solution of one direction of this prob-
lem and we shall introduce a counterexample to the other direction
of the problem.

125¢e also
K. Atanassov, On the 118-th Smarandache’s problem. Notes on Number Theory

and Discrete Mathematics, Vol. 5 {1999), No. 3, 99.
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Let a, b are strictly positive integers for which (a,b) = 1. Hence,
from one of the Euler’s theorems:

If m and n are natural numbers and (m,n) = 1, then
m#™ = 1(mod n)
(see, e.g., [4]) it follows that
a?® = 1(mod b)

and
) = 1(mod a).

Therefore,
a?®*1 = g(mod ab)

and
b#®)+1 = p(mod ab)

from where it follows that really
a?®+1 4 pe(a)+! = 4 4 h(mod ab).

It can be seen easily that the other direction of the Smaran-
dache’s problem is not valid. For example, if @ = 6 and b = 10, and,
therefore, (a,b) = 2, then:

6e(10+1 § 109(6)+1 = 65 4 10% = 7776 + 1000 = 8776 = 16(mod 60).

Therefore, the “Smarandache’s criterion for coprimes” is valid
only in the form:
If a, b are strictly positive coprime integers, then

a?®+1 4 pe(a)+1 = g 4 b(mod ab).
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§12. ON THE 125-th SMARANDACHE’S PROBLEM ¥

The 125-th Smarandache’s problem (see [2]) is:
To prove that

k-1 .
al>km ko [—)t (*)
=0 k

for any non-null positive integers n and k.

Below we shall introduce a solution to the problem.

First, let us define for every negative integer m : m! = 0.

Let everywhere k be a fixed natural number. Obviously, if for
some n: k > n, then the inequality (*) is obvious, because its right
side is equal to 0. Also, it can be easily seen that (*) is valid for
n = 1. Let us assume that (*) is valid for some natural number n.
Then,

k-1 _ -
(n+ 1)~k %42 1 [f‘_“*’l}g
i=0 k

(by the induction assumption)

k-1 ; k-1 .
>(n+ 1).]:"—1‘+1 I [ull _ k2 g ['" -1+ 1]!
=k i=0 k

3see also
K. Atanassov, On the 125-th Smarandache’s problem. Notes on Number Theory
and Discrete Mathematics, Vol. 5 (1999), No. 2, 125.
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=k""‘+1 ((n+ 1). [" k+1] k[ 1 >0,
3—0
because k41 + )
n-— n
(n+ DL - k()
k 1 - k 1
PR bl [ k.[f—zi— + 1)

=[———"“1'( +1-k [

With this the problem is solved.

Finally, we shall formulate two new problems:

1. Let y > 0 be a real number and let k be a natural number.
Will the inequality

k-1

> BT [y;i]!
1=0

be valid again?
2. For the same y and k will the inequality

k-1

g!> kv F o1 2;{!
=0 k

be valid?
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§13. ON THE 126-th SMARANDACHE’S PROBLEM ¢

The following Smarandache’s problem is formulated in {2] with
the title “Smarandache divisibility theorem”:

If a and m are integers, and m > 0, then:
(a™ —a)(m—1)!
ts divisible by m.

The proof of this assertion follows directly from the Fermat’s
Little Theorem (see, e.g. [4]).

Really, let @ and m are integers and let m > 0.

There are two cases for m:
(a) m is a prime number. Then from the Fermat’s Little Theorem
follows that a™ — a is divisible by m and, therefore,

A=(a" -a)(m-1)!

is divisible by m.

(b) m is not a prime number. Then m = p.r for the natural numbers
r and the prime number p. If r # p (r can be as a prime number,
as well as a composite number), then 2 < p,r < m —1 and p,r €
{1,2,..,m}. Therefore, p and r are different divisors of (m — 1)!
and, hence, (m — 1)! is divisible by m. Hence A is divisible by m,
too.

Msee also
K. Atanassov, On the 126-th Smarandache’s problem. Notes on Number Theory
and Discrete Mathematics, Vol. 5 (1999), No. 1, 39-40.
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The last case is 7 = p, i.e., 7 is a prime number and m = p?.
Therefore, (m — 1)! = p.B for some natural number B and we must
prove that

@ —a= p.C

for some natural number C.
Indeed, if pla, then pi(a”2 - a), i.e.

o” —a= p.C,

for some natural number C. On the other hand, if it is not valid
that pla, pl(a”2 — a), too, because of the representation

o —a= a.(DP"1 - 1),
where
D= pp+1

and the fact that p|(D?~1—1) according to Fermat’s Little Theorem,
i.e., again ,
e —a=pC

for some natural number C.
Therefore,
A=p’.B.C,

i.e., A is divisible by m.
Therefore, the “Smarandache’s divisibility theorem” is valid.
There are other ways for proving the last part of the proof. For
example, Dr. Mladen Vassilev - Missana gave the following.
Let m = p?. We remind the Legendre’s formula

z T z
ord,z! =[-1+[=]+ ][]+ ...
4 [P] [pz] [ps]
For z = m — 1 we obtain

ordy(m —1)! = ordy(p® — 1)! = [p - 11;] +1- I%] —p—1.
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Therefore, p?}l(m - 1)!iff p— 12> 2,i.e, iff p2> 3.
There remains only the case m = 22 = 4. In this case 2 =
pl(m — 1)! and obviously, we have

2=pl(a™-a)=a'-a= a(a®~1)(a*+1) = a(a—-1)(a+ 1)(a® +1),
so again it is fulfilled
p? = m|(a™ - 1)(m - 1)

Therefore, the problem is soived.
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§14. ON THE 62-nd SMARANDACHE’S PROBLEM *°

The 62-th problem from [1] is the following:
Let 1 < a3 < az < ... be an infinite sequence of integers such that
any three members do not constitute an arithmetic progression. Is
it true that always

r <
n>1 Gn

Here we shall give a counterexample.

Easily it can be seen that the set of numbers {1,2,4,5,10} does
not contain three numbers being members of an arithmetic progres-
sion. On the other hand

1 1 1 1 1 9 1 9
1ttt st n

Therefore, Smarandache’s problem is not true in the present
form, because the sum of the members of every one sequence with
the above property and with first members 1, 2, 4, 5, 10 will be
bigger than 2.

The sequence 1, 3, 4, 6, 10, 11, 13 is another (more complex)
counterexample, because

l+1+1+l+1+1+1— 158
1 3 46 10 11 13 78580

15see also
K. Atanassov, On the 62-nd Smarandache’s problem. Notes on Number Theory
and Discrete Mathematics, Vol. 5 (1999), No. 3, 100-101.
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The third counterexample is the sequence 1, 4, 5, 8, 10, 13, 14,
17, 28, 31, 32, 35, because
11111 1 1 1 1 1 1 1
I+z+3+§+ﬁ+ﬁ'+ﬁ+'ﬁ+§§+§i+3—2+g = 2.009968957...

Essentially interesting is the problem in the following form:

Let 2 € a; < a3 < ... be an infinite sequence of integers such that
any three members do not constitute an arithmetic progression. Is
it true that
g =<2
n>1 Gy

Unfortunately, neither this is so. The set
{2,3,5,6,11,12,14, 15,29, 30, 32, 33, 38, 39, 41, 42, 83, 84, 86, 87, 92,
93,95,96,110,111,113,114,119,120, 122, 123,245, 246, 248, 249,
254, 255,257,258, 272,273,275, 276, 281, 282, 284, 285, 326, 327,
329, 330, 335, 336, 338, 339, 353, 354, 356, 357, 362, 363}
is a counterexample, because
1111 1 1 1 1 1 1 1

1 1 1 1 1
tststnt et it sttt tutetntata

Jl,1 1,1 1.1 11 1 1 1 1
83 '8 8 87 92 93 95 96 110 111 113 114 119

1 1 1 1 1 1. 1. 1,1 1 1
St st ot ot oast 249 254 T 355 T 357 T 356

t 1227123 T 2457 246 ' 248 249 ' 254 ' 255 257 ' 258

toetostast e Tae T2se T 2sa T 285 326 T 327 T 329
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L1 11 1 1 111 1 11
330 335 336 338 339 353 354 356 357 362 363

= 2.00169313...

Some modifications of this problem will be discussed in a further
research held by the author.
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§15. CONCLUSION

As it is written in the Preface, the Problems from {1,2,8,14] ge-
nerate the interest of the author to them. He hopes that in future
he will solve some other problems.

On the other hand, the solutions of some of the described in the
present book problems generate ideas for further modifications and
extensions.

For example, the last problem (the 62-nd from [1]) can obtain
the following form:

Let 3 < a3 < az < ... be an infinite sequence of integers such that
any three members do not constitute an arithmetic progression. Is
il true that

1

Y —<2?
n>1 G

The computer check shows that it is valid. Now, we can would
like to construct the sequence which has the minimal possible mem-
bers; and, therefore, the maximal possible sum. As it is easily seen
from the first three counterexamples, the minimal sequence, starting
with 1is 1, 2, 4, 5, 10, 11, 13, 14, ... For it we can prove easily that
it has the basis [1,2,4,5] with a length 4 with respect to function ¥
from (3] (see §16).

The fourth counterexample contains the elements of the minimal
sequence, starting with 2, and it is 2, 3, 5, 6, 11, 12, 14, 15, 29, ...
For it we can prove that it has the basis [2,3,5,6] with a length 4
with respect to function ¥ from §16.
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Now, we can define the number

1
Smin(k) = r —,
( ) n>1 G@n

where the sequence {a,}%2, is the minimal possible and for it
k<a;<a;<..

A further author’s research will be devoted to this sequence.

The described solutions of the problems 61-st, 62-nd and 63-rd
from [2] show some new possibilities for research related to function
“factorial” and to the Smarandache’s function S, while the new
function, which is dual to the function “factorial” and which is used
in the solutions of the problems 43-rd and 44-th from [2], must be
studied in details. Author hopes that in the near future he will
receive new results related to these problems.

Up to now the author does not know explicit formulas for the
partial sums of the sequences from 4-th, 22-nd, 23-rd and 24-th
problems and determining of such formulas will be an aim for him.

The author thinks that the formulation of 125-th and 126-th
problems from [2] can be generalized in future, too.

Some of the problems from [8] also will be discussed in a further
research of him.
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§16. APPENDIX

Here we shall describe two arithmetic functions which were used
in some of the previous sections, following [3] (see also [15-20].
For

m
n= Y, .10 =a1a3...Gm,

i=1
where @; is a natural number and 0 < a; < 9 (1 < i < m) let (see
[3):
0 ,ifn=0
‘P(n) = m
> a; , otherwise

=1

and for the sequence of functions ¢yp, ©1,¢2, -.., where (I is a natural
number)
¢o(n) = n,
w141 = p(@i(n),
let the function 3 be defined by

¥(n) = @i(n),
in which
w141(n) = @i(n).
This function has the following (and other) properties (see [3]):

¥(m + n) = Y(¥(m) + ¥(n)),
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P(m.n) = Y(P(m).9h(n)) = Y(m.¢(n)) = P(¢(m).n),
P(m") = Pp(¥(m)"),
P(n+9) = ¥(n),
P(9n) = 9.

Let the sequence a;, az,... with members - natural numbers, be
given and let

¢ = '/)(ai) (1 = 1’2’"')'

Hence, we deduce the sequence ¢y, ¢z, ... from the former sequence.
If k£ and ! exist, such that I > 0,

Citl = Cktitl = C2ktitl = -

for 1 < i < k, then we shall say that

lei41, C1425 -0 L]

is a base of the sequence ¢y, ¢z, ... with a length k and with respect
to function %.
For example, the Fibonacci sequence {F;}{2,, for which

FO::O,Flzl,Fn+2=Fn+l+Fn (n20)

has a base with a length of 24 with respect to the function 9 and it
is the following:

[1’ 172’3? 57 8’ 4’ 37 77 178, 978’ 8’ 776’4’ 1, 5’ 67 2’8’ 1’9];
the Lucas sequence {L;}32,, for which
Ly=2,L1=1,Lny2= Lay1+ Ln (n>0)

also has a base with a length of 24 with respect to the function ¢
and it is the following:

[2,1,3,4,7,2,9,2,2,4,6,1,7,8,6,5,2,7,9,7, 7,5,3,8);
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even the Lucas-Lehmer sequence {I;}52,, for which
h=4,lp=03-2(n20)
has a base with a length of 1 with respect to the function ¥ and it

is [5).
The k — th triangular number ¢, is defined by the formula
k(k+1
= HEXD
and it has a base with a length of 9 with the form
[1,3,6,1,5,3,1,9,9].

It is directly checked that the bases of the sequences {n*}, for
n=1,2,...,9 are those introduced in the following table.

n | a base of a sequence {n*}2, | a length of the base
11 IE
2124875,1 6
319 1
41471 3
5 15,7,84,2,1 6
619 1
7174,1 3
8 18,1 2
919 1

On the other hand, the sequence {n"}3%; has a base (with a
length of 9) with the form

[1,4’ 9’ 1’ 2’ 9, 79 1’9]’

and the sequence {k™}%, has a base with a length of 9 with the
form

{ [1] , if £ # 3m some some natural number m

[8] , if kK = 3m some some natural number m
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We must note that in [3] there are some misprints, corrected
here.

An obvious, but unpublished up to now result is that the se-
quence {¥(n!)}22, has a base with a length of 1 with respect to the

n=1
function 9 and it is [9]. The first members of this sequence are

1,2.6,6,3,9,9,9, ...

We shall finish with two new results related to the concept “fac-
torial” which occur in some places in this book.

The concepts of n!! is already introduced and there are some
problems in {1,2] related to it. Let us define the new factorial n!!!
only for numbers with the forms 3k + 1 and 3k + 2:

!l =1.24.5.7.8.10.11...n

We shall prove that the sequence {#(n!"!)}32; has a base with a
length of 12 with respect to the function ¢ and it is

[1,2,8,4,1,8,8,7,1,5,8,1].

Really, the validity of the assertion for the first 12 natural num-
bers with the above mentioned forms, i.e., the numbers

1,2,4,5,7,8,10,11,13, 14, 16, 17,

is directly checked. Let us assume that the assertion is valid for the
numbers

(18k+1)M1, (18k+2)M, (18k+4)1, (18k-+5)1L, (18k+7)M, (18k+8)!1,
(18k + 10)!1, (18K + 1), (18K + 13)!1!, (18K + 14)M, (18K + 16)11,
(18k + 17)ML.

Then
P((18k + 19)M) = ((18k + 17)1.(18k + 19))



= P((18k + 17)M.9p(18k + 19))
= p(11)= 1}

Y((18K + 20)11) = ((18% + 19)1L.(18K + 20))
= P($(18k + 19)1.%(18k + 20))
=9¥(1.2)=2;
$((18k + 22)1) = P((18k + 20)11.(18k + 22))
= P(H(18k + 20)M.9(18k + 22))
= $(24) = 8,

etc., with which the assertion is proved.

Having in mind that every natural number has exactly one of the
forms 3k + 3, 3k + 1 and 3k + 2, for the natural number n = 3k+m,
where m € {1,2,3} and k > 1 is a natural number, we can define:

14..(3k+1), fn=3k+landm=1
nln={ 25.(3k+2), ifn=3k+2andm=2

3.6..(3k+3), fn=3k+3andm=3

As above, we can prove that:
e for the natural number n with the form 3k + 1, the sequence
{#(n"1)}, has a base with a length of 3 with respect to the func-
tion ¥ and it is
[1,%(3k + 1),1];

e for the natural number n with the form 3k + 2, the sequence
{%(n1)}2, has a base with a length of 6 with respect to the func-
tion ¥ and it is

(2, ¥(6k + 4),8,7,%(3k + 5), 1};
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¢ for the natural number n with the form 3k + 3, the sequence
{#(n))}2, has a base with a length of 1 with respect to the func-
tion ¢ and it is [9] and only its first member is 3.

Now we can see that

{ (3k+1)4.(3k—1);, ifn=3k+1landk21
=

(3k + 1)!1.(3k+ 2)!2, ifn=3k+2andk >1



83

REFERENCES:

F. Smarandache, Only Problems, Not Solutions!. Xiquan
Publ. House, Chicago, 1993.

C. Dumitrescu, V. Seleacu, Some Sotions and Questions in
Number Theory, Erhus Univ. Press, Glendale, 1994.

K. Atanassov, An arithmetic function and some of its app-
lications. Bull. of Number Theory and Related Topics, Vol.
IX (1985), No. 1, 18-27.

T. Nagell, Introduction to Number Theory. John Wiley &
Sons, Inc., New York, 1950.

K. Atanassov, Remarks on prime numbers, Notes on Num-
ber Theory and Discrete Mathematics, Voi. 2 (1996), No. 4,
49 - 51.

P. Ribenboim, The Book of Prime Number Records, Sprin-
ger-Verlag, New York, 1989.

L. Comtet, Advanced Combinatorics, D. Reidel Publ. Co.,
Dordrecht-Holland, 1974.

C. Ashbacher, Pluckings from the Tree of Smarandachz Se-
quences and Functions. American Research Press, Lupton,
1998.



84

[9]

[10]

[11]

(12]

[13]

(14]

[15]

[16]

[17]

C. Ashbacher, Collection of Problems on Smarandache No-
tions. Erhus University Press, Vail, AZ, 1996.

R. Muller, Unsolved Problems Related to Smarandache
Function. Number Theory Publishing Co., Phoenix, AZ,
1993.

K. Kashihara, Comments and Topics on Smarandache No-
tions and Problems. Erhus University Press, Vail, AZ,
1996.

H. Ibstedt, Surfing on the Ocean of Numbers — a few Sma-
randache Notions and Similar Topics. Erhus University
Press, Vail, AZ, 1997.

H. Ibstedt, Smarandache-Fibonacci Triplets, Smarandache
Notions Journal, Vol. 7, No. 1-3, 1996, page 130.

C. Ashbacher, An Introduction to the Smarandache Functi-
on. Erhus University Press, Vail, AZ, 1995.

J. Turner, A. Shannon, On k-th-order colored convolution
trees and a generalized Zeckendorf integer representation
theorem, The Fibonacci Quarterly, Vol. 27 (1989), No. 5,
439-447.

A. Shannon, A. Horadam, Generalized staggered sums, The
Fibonacci Quarterly, Vol. 29 (1991), No. 1, 47-51.

J. Turner, A. Shannon, T. Robb, On generalizations of Fi-
bonacci trees and Zeckendorf integer representation theo-
rems. Research Report of the University of Waikato, Ha-
milton, New Zealand, No. 164, 1988.



[18]

[19]

[20]

85

V. Atanassova, One property of ¥ function, Notes on Num-
ber Theory and Discrete Mathematics, Vol. 2 {1996), No.

4, 30 - 31.

K. Atanassov, More on ¥—function (I). Bull. of Number
Theory and Related Topics Vol. XI (1987), No. 1, 27-30.

K. Atanassov, More on ¥—function (II). Bull. of Number
Theory and Related Topics Vol. XI (1987), No. 1, 31-36.



86

CURRICULUMVITAE
of Prof. Krassimir Todorov Atanassov

K. T. Atanassov was born in the town of Bourgas (Bulgaria) on
March 23, 1954. In 1978 he graduated the Mathematical faculty
of the Kliment Ochridski Unversity in Sofia, in 1986 he defended
a Ph. dissertation on the theme “Generalized nets” and in 1997
he defended a Second (hability; D.Sc.) dissertation on the theme
“Generalized nets: Theory and Applications”. In the period 1975-86
he worked at the Central Laboratory on Automation and Scientific
Instrumentation - Physical Insitute of the Bulgarian Academy of
Sciences and since 1987 he has been a research associate (Assis.
Prof.) and (since 1991) Senior research associate (Assoc. Prof.)
in the Institute for Microsystems. Since 1992 he has been head of
the Mathematical Research Laboratory in the frames of the same
institute. Since July 1994 he has been a Senior research associate
and Professor (since 1998) at the Centre of Biomedical Engineering
of the Bulgarian Academy of Sciences.

His scientific interests are in the field of the discrete mathemat-
ics. He has about 330 papers in journals, 120 conference reports, 7
books (and other 4 in press):

{1] Atanassov K., Generalized Nets, World Scientific, Singapore,
New Jersey, London, 1991.

[2] Atanassov K., Introduction in the Theory of the Generalized Nets
(Bourgas, Pontica Print, 1992; in Bulgarian)

[3] Shannon A., J. Sorsich, K. Atanassov. Generalized Nets in
Medicine. “Prof. M. Drinov” Academic Publishing House, Sofia,
1996. -

[4] Atanassov K., Generalized Nets and Systems Theory, “Prof. M.



87

Drinov” Academic Publishing House, Sofia, 1997.

[5] Atanassov K., M. Daskalov, P. Georgiev, S. Kim, Y. Kim, N.
Nikolov, A., Shannon, J. Sorsich. Generalized Nets in Neurolo-
gy. “Prof. M. Drinov” Academic Publishing House, Sofia, 1997.

[6] Shannon A., J. Sorsich, K. Atanassov, N. Nikolov, P. Georgiev.
Generalized Nets in General and Internal Medicine. Vol. 1.
“Prof. M. Drinov” Academic Publishing House, Sofia, 1998.

[7] Atanassov K., Generalized Nets in Artificial Intelligence. Vol. 1:
Generalized nets and Expert Systems, “Prof. M. Drinov” Aca-
demic Publishing House, Sofia, 1998.

and he is an editor of the book

[1] Applications of generalized nets, (K. Atanassov, Ed.), World Sci-
entific, Singapore, New Jersey, London, 1993.

K. Atanassov’s basic scientific results belong to the following
three areas:
o Petri nets: he has introduced the objects “Generalized E-Net”
(1981-82), and “Generalized Net” and investigated their basic pro-
perties and some of their applications in medicine, economics, trans-
port, chemical industry and other (1982-);
o fuzzy sets: he had introduced the object “Intuitionistic Fuzzy Set”
and investigated its basis properties and some of their applications
in expert systems, decision making and other (1983-);
¢ number theory: he has introduced new extensions of the Fibonac-
ci sequence (1985-), confirmed one hypothesis of A. Mullin (1984),
solved one open problem of L. Comtet (1987), one of W. Sierpins-
ki (1991-93) and the problems of F. Smarandache described in the
present book (1998-99).

K. Atanassov is an Editor-in-Chief of the “Notes on Intuitio-
nistic Fuzzy Sets” and of “Notes on Number Theory and Discrete
Mathematics” (since 1995), reviewer of the journals “The Fibonac-
ci Quarterly” (since 1986) and “Fuzzy Sets and Systems” (since
1988), member of the Editorial Boards of “AMSE Press” (since



88

1994) and “Smarandachs Notions Journal” (since 1999), and re-
viewer of “Mathematical Reviews” (since 1989) and “Zentralblatt
fir Mathematik” (since 1991).

K. Atanassov is a member (since 1979) and head (since 1992) of
a section of Union of Bulgarian Mathematicians, a member of the
American Mathematical Society (since 1989), a Honorary Associate
of the University of Technology, Sydney (since 1995) and a member
of Zadeh Institute for Information Technology, USA (since 1999).





