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Abstract

Under an appropriate change of the perturbation variable Lifshitz-

Khalatnikov propagation equations for the scalar perturbation reduce to

d’Alembert equation. The change of variables is based on the Darboux

transform.

1 Introduction

The gauge-invariant perturbation theories efficiently eliminate non-
physical perturbations, yet they provide the propagation equations in noncanon-
ical form — different for each theory. In this case, pure artefacts of the choice
of the reference system, gauge or the perturbation variable, are likely to be
confused with new dynamical phenomena yet unknown in the laboratory-scale
physics. This particularly concerns the large scale limit, where some “non-
oscillatory behaviour” outside the particle horizon is commonly expected.

In this paper we show that the definition of the gauge-invariant variables still
possesses a freedom to chose the canonical variables, i.e. variables which satisfy
d’Alembert equation in its standard form. To show that we have used the classi-
cal Lifshitz-Khalatnikov formalism, which after being appropriately extended is
equivalent to other “manifestly” gauge invariant descriptions. A systematic con-
struction of the gauge-invariant canonical variables is provided. Consequently,
the scalar perturbation propagates like a massless scalar field in the Roberson-
Walker space-time, and therefore there is a close analogy between the pertur-
bation theory (the acoustics of the expanding universes) and the field theory in
the curved space-time. Propagation of the sound waves in the early universe
may be also considered as an example of the acoustic geometry in the sense of
Unruh [1].

The paper is organized as follows: In the second Section we remind the
method of elimination of spurious modes in the Lifshitz-Khalatnikov theory [2].
This Section is a generalization of the procedure given in [3] to the case of
arbitrary space curvature and arbitrary density-dependent pressure p = p(ǫ).
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In Section 3 we present the general method of construction of gauge-invariant
quantities in the synchronous system of reference. We show that the procedure
is not unique, and therefore, there exist vast classes of physically relevant gauge-
invariant variables. The remaining freedom to choose between them may be used
to better describe the perturbation dynamical properties, or to construct more
adequate observables. A specific choice depends on the researcher motivation,
and on the character of the problem to be solved. Finally in Section 4 we adopt
the previously defined methods to obtain a canonical form of the perturbation
equations — the d’Alembert equation.

2 Synchronous system of reference — techniques

of reduction of the gauge freedom

Consider the Robertson-Walker universe of arbitrary space curvature (K =
−1, 0, +1)

gµν = a2(η) diag

[
−1, 1,

sin2(
√

Kχ)

K
,

sin2(
√

Kχ)

K
sin2 θ

]
, (1)

with the hydrodynamic energy-momentum tensor

T µν = (ǫ + p) uµuν + p gµν (2)

and the barotropic equation of state p = p(ǫ). We investigate small perturba-
tions δgµν of the metric (1). We limit ourselves to scalar (density) perturbations,
therefore, δgµν is defined by two scalar functions λ(k)(η) and µ(k)(η)

δgµ0 = 0, (3)

δg n
m =

∑

k

(
λ(k)(η)P n

m + µ(k)(η)Q n
m

)
+ c.c., (4)

where P n
m and Q n

m stand for scalar harmonics [2],

Q n
m =

1

3
Q(k)(x)δ n

m , (5)

P n
m =

1

k2 − K
Q ;n

;m + Q n
m , (6)

Q(k)(x) is the complex solution of the Helmholtz equation Q(k)(x) ;m
;m = −(k2−

K)Q(k)(x), x = {χ, θ, ϕ}, and the amplitudes λ(k)(η) and µ(k)(η) satisfy the
system of two second order equations convoluted to each other

λ′′

(k)(η) + 2
a′(η)

a(η)
λ′

(k)(η) − k2 − K

3

[
λ(k)(η) + µ(k)(η)

]
= 0, (7)

µ′′

(k)(η) +
[
2 + 3c2

s(η)
] a′(η)

a(η)
µ′

(k)(η)

+
k2 − 4K

3

[
1 + 3c2

s(η)
] [

λ(k)(η) + µ(k)(η)
]

= 0. (8)
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cs(η) denotes the sound velocity: cs(η) =
√

p′(η)/ǫ′(η) 6= 0. Then the density
contrast1 δ = δǫ/ǫ is a linear combination [2]

δ(η,x) =
∑

k

δ(k)(η) Q(k)(x) + c.c., (9)

and

δ(k)(η) =
A(k)

3ǫ(η)a2(η)

[
(k2 − 4K)(λ(k)(η) + µ(k)(η)) + 3

a′(η)

a(η)
µ′

(k)(η)

]
, (10)

where A(k) are arbitrary complex numbers. The system (7–8) defines the four
dimensional phase-space, which means that the system possesses two physi-
cal and two gauge degrees of freedom. Pure gauge solutions are known, and
for λ(k)(η) they respectively read [2]

G1(η) = 1, (11)

G2(η) = −(k2 − K)

∫
1

a(η)
dη. (12)

Difficulties with fixing the gauge freedom have stimulated elaboration of the
gauge-invariant theories [4, 5, 6, 7, 8, 9]. After the famous Bardeen’s paper [10]
these theories were intensively developed for almost two decades. Yet, the orig-
inal Lifshitz-Khalatnikov formalism, when appropriately extended, provides an
equally good description of inhomogeneities. The procedure is as follows: we
reduce (7–8) system to the single fourth-order equation for λ(k)(η).

λ(k)
(4)(η) + a(η)H(η)

[
4 + 3c2

s(η)
]
λ(k)

(3)(η)

+

{
−5K + a2(η)

[
2

(
ǫ(η)

3
− p(η)

)
+

(
9H2(η) − ǫ(η)

)
c2
s (η)

]

+
(
k2 − K

)
c2
s (η)

}
λ′′

(k)(η) + a(η)H(η)
[
−a2(η) [ǫ(η) + 3p(η)]

+ 2a2(η)H2(η)
[
1 + 3c2

s (η)
]

+
(
k2 − K

)
c2
s (η)

]
λ′

(k)(η) = 0, (13)

where H(η) stands for the Hubble parameter H(η) = a′(η)/a2(η). The knowl-
edge of the gauge solutions (11–12) enables one to extract the gauge space from
the space of all solutions. First, we write the solutions in the form

λ(k)(η) = f1λ1(k)(η) + f2λ2(k)(η) + g1G1(k)(η) + g2G2(k)(η) (14)

with explicitly separated linear subspace g1G1(k)(η) + g2G2(k)(η) carrying all
the gauge freedom (g1, g2 two arbitrary coefficients). Subsequently, we adopt
the Darboux transform2 [12] of λ(k)(η) to express the two remaining (physical)

1In more rigorous notation one should write δ = δǫ/ǫ0, where ǫ0 denotes background,
unperturbed energy density. For the sake of simplicity we skip the subscript “0” in formulas.

2Darboux transform of a function f(x) is defined as f̂(x) = A(x)f(x)+B(x)f ′(x) (compare
also formula (18) in section 3) with arbitrary x-dependent coefficients A and B. The same
transform is extensively exploited in the soliton theory [11].
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degrees of freedom. A new perturbation variable B(k)(η) appears

B(k)(η) = a(η)
d

d η

[(
d

d η

λ(k)(η)

G1(k)(η)

)(
d

d η

G2(k)(η)

G1(k)(η)

)−1
]

= a(η)
d

d η

d
d η

λ(k)(η)
d
d η

G2(k)(η)
.

(15)
On strength of (13) the variable B(k)(η) satisfies the second order equation

B′′

(k)(η) −
[
1 − 3c2

s(η)
]
a(η)H(η) B′

(k)(η)

−
[(

1

3
+ c2

s (η)

)
a2(η)ǫ(η) −

(
k2 − K

)
c2
s (η)

]
B(k)(η) = 0. (16)

Equation (16) does not contain gauge the coefficients, therefore, the variable
B(k)(η) is gauge-invariant. Now, the function λ(k)(η) can be found by the inverse
Darboux transform of the two linearly independent solutions to equation (16)3

λ(k)(η) = f1(K − k2)

∫
1

a(η)

[∫
B1(k)(η)

a(η)
dη

]
dη

+f2(K − k2)

∫
1

a(η)

[∫
B2(k)(η)

a(η)
dη

]
dη + g1G1(k)(η) + g2G2(k)(η). (17)

On can insert λ(k)(η) to (7) and solve it algebraically to obtain the second
unknown function µ(k)(η). As a result, by fixing four numbers {f1, f2, g1, g2} one
uniquely determines the metric correction δgµν . The metric correction is not
gauge-invariant and cannot be such in any perturbation formalism. Quantities
containing time integrals of B(k)(η) would exhibit similar properties, while those
containing B(k)(η) and derivatives are obviously gauge-invariant.

3 Families of gauge-invariant variables in the

synchronous reference system

The metric perturbation can be written in the form (17) if the solutions of the
equation (16) are explicitly known. However, even in the case when these so-
lutions are not known one may employ the equation (16) to “convert” some
non-gauge-invariant perturbation variables into gauge-invariant ones. This par-
ticularly refers to perturbation measures based on hydrodynamic quantities,
since they involve the metric derivatives and are free of the metric elements
themselves. The procedure is following:
1) For the non-gauge-invariant perturbation variable X we take the linear com-
bination of X and its time derivative X ′ (the Darboux transform)

X̂(η,x) = c1(η)

[
∂

∂η
X(η,x) + c2(η)X(η,x)

]
, (18)

3The integration constants in the inverse Darboux transform can be set arbitrary, because
the gauge freedom is already guaranteed by free choice of the coefficients g1 and g2.
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which means that

X̂(η,x) =
∑

k

X̂(k)(η) Q(k)(x) + c.c., (19)

and

X̂(k)(η) = c1(η)

[
d

d η
X(k)(η) + c2(η)X(k)(η)

]
. (20)

2) We apply the equation (16) to formally express the coefficients X̂(k)(η) in the
form

X̂(k)(η) = F1(η)
d

d η
B(k)(η) + F2(η)B(k)(η) + F3(η)

∫
B(k)(η)

a(η)
dη. (21)

3) We look for c1(η) and c2(η) such that X̂(k)(η) contains solely function B(k)(η)
and its derivatives but not integrals. (Integral over η in (21) introduces arbi-

trary constant c(k), which depends on the wave vector k. The variable X̂(η,x)
(formula (19)) would contain then terms being arbitrary functions of the space
coordinate x. In this way integration constant c(k) restores one degree of the
gauge freedom.) The relevant condition F3(η) = 0 leads to a linear equation
for c2(η), and leaves c1(η) free. Therefore, the new gauge-invariant variable

X̂(η,x) is actually a c1(η)-dependent family of variables, where c1(η) is an ar-
bitrary function of time. Below we show some examples.

3.1 The density contrast

On strength of (9), (7–8) and (17) the density contrast δ(k)(η) can be expressed
by use of the gauge invariant function B(k)(η).

δ(k)(η) = − 3
H(η)

a3(η)ǫ(η)
B′

(k)(η) − 1

a2(η)

[
k2 − K

a2(η)ǫ(η)
− 1

]
B(k)(η)

+
3

2
[p(η) + ǫ(η)]

H(η)

ǫ(η)

∫
B(k)(η)

a(η)
dη. (22)

The contrast δ(k)(η) is not gauge-invariant, as it is well known [10]. The gauge
freedom is caused by the last term in (22) containing the integral of B(k)(η).
Let us introduce a new variable — the “modified density contrast”

δ̂(k)(η) = c1(η)

[
d

d η
δ(k)(η) + c2(η)δ(k)(η)

]
. (23)

With the aid of (16) one obtains

δ̂(k)(η) = F1(η)
d

d η
B(k)(η) + F2(η)B(k)(η) + F3(η)

∫
B(k)(η)

a(η)
dη, (24)
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where the function F3(η) reads4

F3(η) =
3

2
c1(η)H(η)

[
1 +

p(η)

ǫ(η)

] [
d

d η
ln

(
1

a(η)

ǫ′(η)

ǫ(η)

)
+ c2(η)

]
. (25)

By setting

c2(η) = − d

d η
ln

(
1

a(η)

ǫ′(η)

ǫ(η)

)
, (26)

one eliminates the integral of B(k)(η) (F3(η) = 0), hence δ̂(k)(η) becomes a gauge
independent quantity

δ̂(k)(η) = c1(η)
ǫ′(η)

a(η)ǫ(η)

d

d η

[
a(η)ǫ(η)

ǫ′(η)
δ(k)(η)

]
. (27)

This variable is still defined up to the factor c1(η) being an arbitrary function
of time.

3.2 The expansion rate contrast

Identically we proceed with inhomogeneities in the expansion rate5 δϑ(η,x).

δϑ(η,x) =
∑

k

δϑ(k)(η) Q(k)(x) + c.c., (28)

where

δϑ(k)(η) =
1

a3(η)

[
k2 − K

a2(η)(p(η) + ǫ(η))
− 3

2

]
B′

(k)(η)

− H(η)

a2(η)

[
k2 − K

a2(η)(p(η) + ǫ(η))
− 3

2

]
B(k)(η)

+
3

2

[
1

2
(p(η) + ǫ(η)) − K

a2(η)

]∫
B(k)(η)

a(η)
dη . (29)

We introduce δ̂ϑ(k)(η) defined as a linear combination

δ̂ϑ(k)(η) = c1(η)

[
d

d η
δϑ(k)(η) + c2(η)δϑ(k)(η)

]
, (30)

and eliminate the integral of B(k)(η). We finally obtain

δ̂ϑ(k)(η) = c1(η)

[
d

d η
δϑ(k)(η) − d

d η
ln

[
H ′(η)

a(η)

]
δϑ(k)(η)

]
. (31)

4F1(η) and F2(η) are irrelevant to the problem discussed here, therefore we skip writing
them explicitly.

5ϑ ≡ uµ

;µ is the expansion [13].
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3.3 Other variables

By employing the same procedure one may define gauge-invariant variables
which combine inhomogeneities in Hubble flow with inhomogeneities of the en-
ergy density

r̂(η,x) = c1(η)

[
δǫ(η,x) − 1

3

ǫ′(η)

H ′(η)
δϑ(η,x)

]
. (32)

It is clear that functions F (δ̂, δ̂ϑ, r̂, . . . , ǫ, H, . . .) of the gauge-invariant variables

{δ̂, δ̂ϑ, r̂, . . .} and the parameters of the background universe {ǫ, H, . . .} are also
gauge-invariant. None of these variables is preferred by the perturbation theory
itself. The choice of the variable depends on its physical meaning and usefulness,
its relation to other physical concepts and theories, and eventually on the ability
to construct relevant observables.

4 Perturbation equations in the canonical form

In all the examples above we constructed the gauge-invariant variables which re-
fer to the synchronous system of reference. The function c2(η) was uniquely de-

termined for each δ̂(η), ϑ̂(η) and X̂(η) by the demand of their gauge-invariance.
The freedom to make an arbitrary choice of the time-dependent factor c1(η) still
remains, and therefore, we are now able to construct gauge-invariant variables
with particular dynamical properties. Consider the variable δ̂(η) with c1(η)
chosen as

c1(η) = a2(η)H2(η)
ǫ(η)

ǫ′(η)
. (33)

We obtain the gauge-invariant variable6

δ̂(k)(η) = a(η)H2(η)
d

d η

[
a(η)

ǫ(η)

ǫ′(η)
δ(k)(η)

]
, (34)

which satisfies the propagation equation of the form

δ̂′′(k)(η) +

[
2
a
′(η)

a(η)
− c′s(η)

cs(η)

]
δ̂′(k)(η) + c2

s (η)(k2 − K)δ̂(k)(η) = 0, (35)

with the function a(η) defined as

a(η) = a(η)

√
1

cs(η)

ǫ(η) + p(η)

3H2(η)
. (36)

Now we introduce the new time parameter dξ = cs(η)dη (acoustic conformal
time [14]). After this reparametrization the propagation equation reduces to
d’Alembert equation

∇µ∇µ δ̂(ξ,x) = 0 (37)

6Please note the misprint in paper [14] formula (7), already corrected in gr-qc/0302091.

7



in the Robertson-Walker space-time with coordinates {ξ, χ, θ, ϕ} and the metric
form

gµν = a
2(ξ) diag

[
−1, 1,

sin2(
√

Kχ)

K
,

sin2(
√

Kχ)

K
sin2 θ

]
, (38)

Therefore, the modified density contrast δ̂(ξ,x) propagates in the Robertson-
Walker space-time with the scale factor a(ξ) in the same manner as minimally
coupled scalar field in the Robertson-Walker space-time with the scale factor
a(η) [15]. All the classical results obtained in the field theory on the curved
space-times apply to the density perturbations in the expanding universe. One
can introduce the Lagrangian

L =
1

2
g

µν δ̂,µδ̂,ν (39)

for field δ̂(ξ,x) and derive the equation of motion (37) by use of the Euler-
Lagrange equations

∇µ

∂

∂δ̂,µ

L− ∂

∂δ̂
L = 0. (40)

An appropriate change of the perturbation variables [14] reduces the propa-
gation equation of any gauge-invariant theory to the form of the equation (16).
By use of the procedure discussed above one can construct canonical variables,
and as a consequence, each of these formalism can be expressed in the Lagrange-
Hamilton language.

The authors thank L.M. Soko lowski for reading the manuscript and for con-
structive critics.
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