QB215
$\mathrm{F}_{7} \mathrm{MB}_{3}$

T H E

HAROLDCDERNST

COLLECTION OF PORTABLE SUNDIALS
by

R。 Newton Mayall
and
Margaret Z．Mayall

FROM

HARVADD COLLEGEOBSERUATOK
（AMUR：DGH MASS

In

$M \in m \circ r i a m$

Dr. Harold Clarence Ernst

TABLE OF CONTENTS
PREFACE
I INTRODUCTION
II CLASSIFICATION
III FURNITURE
IV ORIENTAL DIALS
V DESCRIPTIVE CATALOG
VI COLLECTIONS IN THE U. S. A.
VII ILLUSTRATIONS

TABLE OF CONTENTS

PREFACE

I INTRODUCTION
II CLASSIFICATION
III FURNITUREIV ORIENTAL DIALS
V DESCRIPTIVE CATALOG
VI COLLECTIONS IN THE U. S. A.
VII IILUSTRATIONS

PREFACE
We like to think of this small volume not as a catalog but as a contribution to the Iiterature on the subjact and as a handy reference book for all those who are interested in sundials; and we hope that it may induce interest in others. To that end, certain material has been included that would not as a general rule be a part of a catalog.

The sundial is the most ancient scientific instrument to come dow to us unchanged. As such it is deserving of a better position in life than that of an ornament. It has played a vital part in the life of man for many thousands of years, and even today it serves us well where the mechanical watch fails.

We wish particularly to draw your attention to the system of classifying, labelling, and cataloging sundials, described in Chapter II. This is the first attempt to bring order out of confusion in sundials.

Public acknowledgement too must be made of our gratitude for the generosity and kindly help of Dr. Albert E. Navez of Milb n Academy, who provided the equipment and made the basic photographic catalog; to Dr. Serge Elisseeff, Professor of Far Eastern Languages in Harrard University, and to Dr. James Wave, Associate Professor of Chinese in Harvard University without whose help many of the oriental dials would still be a mystery; and to the Harvard-Yenching Institute for its kind cooperation in loaning the necessary characters for use in Chapter $\not \subset{ }^{2}$ IV.
R. Newton Mayall

Margaret L. (Walton) Mayall

[^0]The most important period in the history of sundials is that from the l6th to l9th centuries -- four hundred years -a period in which the portable sundial became as common as the watch is today. Many factors contributed to this great production and widespread use of small solar timepieces. The clock had been invented and by the end of the 15th century the use of equal hours had been accepted generallys astronomy and mathematics had become sound sciences; the printing press and movable type were introduced; and the mariner's compass was in use. Of these, astronomy and mathematics contributed most to the construction and use of the sundial as a timekeoper. Although it was known early in the Christian Era that greater accuracy in timekeeping by the sundial could be ob- , tained by using a sloping gnomon (lying parallel to the earth's axis) the concave hemisphere of Berosus (ca.350B.C.) with its unequal hours remained an important timepiece in many places until late in the Renaissance. Similar hemispherical and concave dials of recent vintage max be obtained in China and Japan today.

The temporary hours, also often referred to as the unequal or natural hours, are derived by dividing the period of daylight into equal portions. Because the period of daylight varies in length, it follows that if it is dicided into 12 equal parts throughout the jear, the parts would have a longer duration in summer than in winter.

The unequal hours are often found on concave Chinese and Japanese dials; and as additional lines on may l6th century Buropean dials. These additional lines on European dials are frem
quently labelled "Horae Ab Ortu Et Occasu", but they are easily distinguished if not labelled.
 dialling three types of hours are frequently mentioned together with their relation to the mequal hours sudh as we use today. These are the Jewish, Babylonian, and the Italian hours. The Jewish hours are the unequal hours mentioned above. The Babylonian and Italian hours may be distinguished by the numerals marixingthe hours, for the Babyleniens counted their hours from 1 to 84 from sunrise to sunrise, whereas the Italians counted theirs from 1 to 24 from sunset to sunset. Therefore the Babylonian hours are usually numbered from 1 to 12 2z Ansen ; and the Italian from 12 to 24 (fromen -

By the middle of the 17th century the use of temporary hours was pretty much a thing of the past in the western world. Equal hours were well established. At the same time many other changes had been wrought, particularly in man's relationship with his neighbors. Travel was constantly increasing and man's horizon was extended. These conditions also had a direct influence on the sundial. A pocket dial with only two or three hour bands, or perhaps three or four, would hardly suffice. Extensive travel required an instrument that could be used anywhere -- such are the universal dials.

Printing, travel, astronomy, mathematics, and the compass -all contributed to the general use of the sundial. Therefore it is only natural that the major portion if not all of any collection of portable dials would represent the period from the l6th
to the 19th century. At the close ofthe 19th century, the watch was the accepted pocket timepiece, the use of apparent time was succeoded by locel mean time, which in turn gave way in 1884 to Standard Time; but sundials kept up with the march of time and today they are made to tell standard fime, even in portable form.

In the spring of 1938 the Harvard College Observatory acquired the Harold C. X Frnst Collection of Portble Sundials, which does more than prove the widespread use of sundials and show a variety of types typical of \neq certain periods. Although it covers the period from 1575 to 1922, it also shows the development of the sundial over a period of 2000 years -- from the simple dial of Berosus (ca. 350B. C.) to the modern dial giving Standard time。 It is also representative of the artistry and craftsmanship of the period, in both the occident and the orient. A1l methods of employing the sun for timekeeping purposes are clearly portrayed. This colorful array of pocket solar timppieces used by our forefathers makes onep little bit envious -- it is more than a mere collection of antiques.

The instruments are arranged compactly in two large floor cases where the student or casual visitor may study them comfortably either as a whole or in part. Various features were borne in mindab -- educational, artistic, craftsmanship, etc.-so that no matter how short a time the visitor may have, that feature most interesting to him will be obvious. Special attention has also been paid to the ease with which instruction may be given to school groups (public and private) that fromp time to time visit the collection.

A short summary of the contents together with a few notes supplementary to the descriptive catalog may add to a better understanding of the instruments themselves and to the \emptyset illustrations. The numbers refer to the individual pieces in the descriptive catalog and to the illustrations which have been to placed together at the end in numerical order, for convenience. In order to facilitate the use of the catalog and for ready reference, the types, materials, makers, and so forth have been summarized at the beginning of the descriptive catalog, where they are keyed to the catalog and the illustrations.

The Ernst collection contains everything from the simple noon mark to multiface dials; in form, from tablets and cubes to spheres; in material, from paper to gold; and so far as we know, the largest aggregation of oriental dials in the world. The individual pieces vary in size from a liny dial mounted on a finger ring (No.50) to a large one four inches square pho mounted on gimbals for use at sea(No. 42). There are dials that tell time in the same manner as the one in your garden-by hour angle (No. 36); others make use of the sun's position in either altitude (No. 15) or in azimuth (No.224). Some make use of a thread to cast a shadow (No.45), some a perpendicular pin (No.224). Others make use of a ray of light (No.60), or a lens to focus the sun's rays (No. 21). There are also dials that enable you te tell time by the light of the moon (No. 88) as well as by the sun. Some are designed for particular localities (No, 82), others that may be used anywhere in the world (No. 12). Some are plain (No.36), others beautifuly embellished with colorfut floral designs and inlaid pearl (No. 88).

Is it any wonder that such a glittering array has attracted and held the attention of many thousands of Visitors, both young and old? But, even the most enthused are sometimes skeptical. "Are they accurate?" we are often asked. The only answer is -they are aspacurate as their construction, because the principle by which the sundial tells time is based on the sun, as is the watch. Small portable dials have been made that tell time as accurately as the ordinary watch. A sundial will show whatever time is desired such as apparent, local mean or Standard Times or all three combined in one instrument.

A statement frequently made is "What if they are accurate. We don't have enough sun to use them." This is a challenging remark. Consequently we have kept careful records as to the amount of time during the day that a shadow is cast. The rem sult for the vicinity of Boston is shown in the accompanying diagram, and we are sure that similar conditions exist elsewhere. Because most of us use a sundial from March to October more than any other period, only those months are shown. A full black square denotes that shadows could be seen on buildings, sidewalks, etc. all day long; the half black squares, for at least four hours, but not all day; and the white squares for less than four hours. The presence of a white square does not necessarily mean that the sun did not shine or that shadows were not cast sometime during the day, but rather that we felt anything less than four hours duration would not be sufficient to make the use of the sundial practical as a timekeeper. Thus the diagram disproves the statement there is not enough sunlight to use a sundial.

Courtesy "HORTICULTUIEE"

$$
\begin{aligned}
& \text { Figure } 1 \\
& \text { Note-LINE CUT AVAILABLE. }
\end{aligned}
$$

The selection of instruments usedin the notes to follow does not imply they are the most interesting or important in the collection - - each is equally Ind and important.

The oriental dials are always a source of attraction for the ladies. These dials are for the most part very small and to the western mind they have an air of femininity expressed by color and delicate workmanship. This is particularly true of the concave dials with unequal hours, of which there is a preponderance. No. 79 is a small silver dial and compass not as large as a watch. Note the delicate engraving.

A somewhat larger instrument, No. 213, is very suitable for a lady. It is decorated with inlaid pearl and carried in a gold brocade satchel.

In many ways the oriental instruments lead us to believe that their makers considered design and beauty paramount to practicality and the primary function of any sundial, which is that of keepingfime. Note the beautifully carved fish (No. 78) With a dial on one side and a compass on the other, in the position of the gills. Then too, there is the clam-shaped affair (No. 99) surmounted by a crab. When the clam shell is open a dial in one half and a compass in the other are exposed.

In other ways the sundial seems to be one of the necessities of life to the Oriental. No. 215 is a pistol and to the rear of the hammer, in the butt, is a small concave dial. Another instrument of this kind is No. 242, which foritalak consists of a beautifully polished olivewood box containing scissors, writing implements, awl, stylus, knife, inkwell, compass, pad sundial, and counting apparatus (abacus). Could any more be desired?

The more modern Oriental dials are similar to those of the occident; but there is a sharp contrast between all Oriental dials and those of the west. The Europeans never seem to have allowed design or embellishment overthrow the primary function of a sundial. Thefmeopean dials are remarkable for their accuracy and at the same time they reflect a just appreciation for beauty. An excellent example of this will be founopn No. 97, a small ivory dial carefully executed and beautifully engraved. Attached to this dial is a lunar calculator whereby the time at night may be obtained by the light of the moon, by using the stge dial that is used for telling time by the sun. The ingenuity of the European dial makers is obvious.

Universal armillaries draw theist share of attention. As many rings may be used as are required -- usually two and not morethan ten. These rings represent and show the various circles of the terrestrial sphere in their proper relation, one to the other. The two ring armillary with an axial bar through the center is most common (No. 71). One ring represents the meridian, which is graduated in degrees and used to set the dial to any latitude. This adjustment automatically brings the equatorial ring and the fly axial bar into their proper $\not \subset \beta \neq \alpha \not \subset \neq \phi p$ position. 4 pierced slide, which runs up and down the bar, may be set in accordance with the day of the year. Thus set, a ray of light passing through the hole in the slide will indicate the hour of the day on thefnside of the equatorial ring.

Another interesting European type is the vertical altitude dial in theform of a cylinder (NO. 14), often referred to as a poke, cylinder, pillar, or shepherd dial. This type of dial
may be found in use today, in the Pyrenees. Vertical parallel
 year. Across these, curved lines represent the hours of the day, which result by plotting the altitude of the sun each hour of the day throughout the year. The gnomon extends out perpendicularly from the side of the oylinder, and it is attached to a cap which can be rotated about the axis of the cylinder. When the gnomon is set over the proper day of the year, the time may be observed by the position of the end of the shadow when the shadow is parallel to the date lines.

Among horizontal azimuth dials, perhaps the most curious and rare are those that tell time by the position of a magnetic needle. Fortunately there is one in the Ernst collection (No, , 40). At first glance one might mistake it for a compass, but on closer inspection, concentric circles crossed by curved lines, apparently radiating from the center, will be observed in the place of the usual rhumb card. The method of using the dial is to turn the block, in which it is mounted, until the east and west sides cast no shadow; then the time is indicated by the position of the magnetic needle corresponding to the proper ay. This is not a very accurate dial, but nevertheless effective and interesting. The signal gun (No. 21) cannot be passed by without a word. Above a small cannon is a double convex lens, which is adjustable to the declination of the sun throughout the year. When properly set, the lens focuses the sun's rays on the touch hole where a sma 1 amount of powder will be ignited at noon, thus setting off the charge in the cannon. Truly one of the most fiscinating sundials. Such dials, on a much larger scale, are still in use in various places throughout the world.

The foregoing brief descriptions of a few of the pieces in the Ernst collection can only be a palliative prior to an examination of the originals; and the catalog serve to beckon or recall an entertaining visit.

No other scientific instrument has so ancient a lineage as the sundial. It still serves as the principle timekeeper In many parts of the world. Of all sundials the portable dials are the most expressive. Kings and Queens have prized them; collectors have sought them; they have found their niche in our museums, as objects d'art; and their use extends oyer land and sea.

The collecting of portable dials need not be confined to a few. Anyone can collect them. There are many who find it impossible to collect anything in the usual way, but their passion is satisfied by making the things $\not \subset \phi \not \subset \not \subset \not \subset$ desired. Portable sundials are easily made. For the benefit off those who may wish to pursue the subject farther, a few books together with brief notes concerning their contents, are listed below.

SUNDIALS - How to Know, Use, and Make Them. By R. Newton SkupubCop Mayall and Margaret Le Mayall (Hale, Gush-

A recent book telling of the history of dials, the construction of all kinds of dials, a chapter on time, and interesting dials of the world. Written for the layman. Includes list of collections in the U.S.A. Profusely illustrated.

Sundials and Roses of Yesterday. By Alice Morse Earle. Macmillan, New York, 1922)
This book is out of print but can be found in almost any library. An interesting and romantic story, profusely illustrated.

SUNDIALS. By Mrs. Alfred Scott Gatty, Revised by Fden and Lloyd. (Iongmans, London, 1900)
This book is out of print, but can be found in most libraries. It is profusely illustrated and contains the largest collection of mottoes with notes concerning them.

EARLY SCIENCE IN OXFORD) BY R. T. Gunther. (University and
EARLY SCIENCE IN CAMBRIDGE)
Extensive treatment of old instruments in these two universities. To be founden most Iarge libraries. Profusely illustrated.

II

CLASSIFICATION
The acquisition of the Ernst collection and the subsequent work of arranging and listing the various items brought out the fact that there is a definite need for a simple, positive and consistent guide to the classifying, labeling, and f cataloging of sundials. No critical method exists, to which one can refer. The pat status quo is clearly seen by glancing through published catalogs of large collections. For example -- two dials that look alike, but made by different persons, may be listed thus: one as a "horizontal dial", the other as a "compass dial". Then again two dials offal together different types may be listed as "compass dials". But one glaring inconsistency comesto mind, where five dials all similar in appearance and identical in type are noted as being of 䐜 different kinds, thus: 1 , "horizontel dial"; 2, "compass dial"; 3, "tablet dial"; 4, "pocket dial"; 5, "octagonal dial" -- yet all are horizontal dials, all tell time by recording the hour angle of the sun, all are made for particular places, end/all have compasses.

The problem of classifying, labelling, and cataloging sundials is important to any depository, whether public or primvate. There are many types, a vast variety, and various methods of telling time by the sun, which may in part be the cause of the present haphazard entries and inconsistencies that lead only to confusion and doubt.

The system devised and finally adopted for use in cataloging the Ernst collection has proved to be simple, positive and consistent. It has been tested by the examination of thousands of dials botha stationary and portable to be found in this conn-
try and abroad. So far we have not found a sundial that cannot be placed in a definite class in accordance with the guide outlined below.

In the beginning it soon became apparent that classifying g χ labelling, and cataloging could be made to dovetail. That is, the act of either classifying, making labels, or entering the items in the catalog, supplied certain basic information that was common to each division. Therefore the catalog cards were so laid out that the necessary information for the labels appears on the first line of the card. The method is critical and based on the premise that all dials may be relegated to their proper categories by reference to a specific list of types, which inclues no "miscellany". We shall describe the system in detail so that it may be studied at leisure and that those institutions having expressed a desire to adopt it will be supplied with the necessary information for its proper application. In order to facilitate its use, a separate outline "Key" sheet has been inserted. The system may be applied to stationary dials as well as to portable dials.

CLASSIFYING
The classifying of individual pieces in any collection requires some knowledge of the subject concerned. In the case of sundials it is necessary to know the principle upon which the instrument works. The basic principle of the sundial is the assumption of /a sun that travels at a uniform rate along the celestial equator, thus markingpff equal intervals of timex; and that the style (shadow casting edge of gnomon) points to the celestial pole. With this principle in mind it is obvious that
the relation between certain parts of a dial (such as gnomon, style, substyle, and dial plate) are fixed for all dials, whether spherical, conical or plane; and whether shade of light is used as an indicator. Therefore it is possible to use the diel plate to determine the type. This is rigimly adhered to, except in a few instances where the form is such that a more descriptive term is used to identify a special type; for example, as the armillary, which has a very definite form, although the dial plate is"equatorial" (that is, lies parallel to the plane of the equator).

In order to determine the type of a sundial, it is only necessary to know theposition in which the dial plate lies when in use; and the form or appearance of special dials like the armillary. Basic type nomenclature, descriptive of the position or form, is used in the list below, wherein is giten the names of various types in which all dials may be placed. For convenience the list of types is divided into two groups -- ordinary and special.' The ordinary types are usually obvious, whereas the special group comprises those terms or dials which reqtire detailed explanation or specific definition. For this reason each type is briefly described, immediately following the list.
LISTOFTYPES

Ordinary
HORIZONTAL
VERTICAL
DECLINING
RECLINING
INCLINING
DECLINING-RECLINING

Special
HARIZONTAL-VERTICAL
ARMILLARY
ANALEMMATIC
SIGNAL GUN
CONCAVE
CONVEX

DECLINING-INCLINING
CONICAL
EQUATORIAL
POLAR
MULTIFACE.

Description of Types
HORIZONTAL - Most prevalent of all dials. May have multiple hour bands. Fixed or folding gnomon. Style, solid or thread. Usually fitted with compass (portable form). For universal use, fitted with fixed style, quadrant, and single hour band.

VERTICAL - These dials are upright and face the cardinal pointspf the compass. Usually single hour band with fixed style. On north and south dials the substyle lies in the plane of the meridian (12 o'clock line). The east and west dials have parallel hour lines and a fixed style elevated above and parallel to dial plate. Substyle is the six o'clock line.

DECLINING - Vertical dials that do not face the cardinal points of the compass. The substyle is not the $120^{\prime} c l o c k$ line (meridian).

RECLINING - Usually found on multiface dials and often used on sloping roofs, wall copings, and so forth. They face the cardinal points of the compass and lean from you as you look at them. The polar and equatorial dials are reclining dials, but they are separated and named in accordance with the plane in which they lie. The north and south recliners have the substyle on the 12 o'clock line. The east and west recliners
have the 12 o'clock line horizontal, and the substyle is not on the 12 o'clock line.

INCLINING - Usually found on mitiface dials. These are the
 larly identified. They lean toward you as you look at them. They face the cardinal points of the compass.

DECLINING-RECLINING - These are neither vertical nor do they face the cardinal points. The 12 olclock line is not perpendicular and the substile is not the l2 o'clock line. Usually on multiface dials, but also used on roofs, wall copings, and so forth.

DECLINING-INCLINING - These are the opposites of the decliningreclining dials and are similarly identified. Usually found on multiface dials.

EQUATORIAL - The hour lines are equally spaced except in certain forms such as those in the form of a star or cross. Other common forms include concave and convex half-cylindersy or bands, full and split rings, convex and concave hemispheres, and globes. For universal use, fitted with quadrent. May be inscribed on upper and lower surface of the plane variety. In the case of rings either a double needle gnomon is used or a single reversible needle, or a pinhole sight. Some (particularly standard time dials and heliochronometers) are fitted with an alidado. (See reclining)

POLAR - The hour lines are parallel. Fixed style elevated above and parallel to dial plate. For universal use, fitted With quadrent or scale of latitudes. Usually found on multiface dials. Dial plate lies parallel to axis of earth.

MOLTIFACE. - These dials comprise only those solids (or hollow solids) with two or more faces inscribed with hour lines. A common form is the cubed, which is also made for universal use (fitted with quadrant and plumb line). Combination dials such as horizontal-vertical-polar, or horizontal-vertical-equatorial, belong in this class and may be found among stationary dials.

HORIZONTAI-VERTICAL - A definite type of portable dial, usually in the form of two hinged tablets. The horizontal dial plate often has multiple bands. Solid or thread gnomon. For universal use, fitted with quadrant and single hour band. The universal type is rare and recently brought into use in exploration. Stationany dials of this type are few.

ARMILLARY - A definite form comprising a system of rings (from 2 to 10) corresponding to the major circles of the terrestrial and celestial spheres. The axis of the sphere is the style. Hour lines are equally spaced on the equatorial band pr ring. For universal use, the meridian ring is graduated in degrees. Often a ray of light serves as an indicator, which passes through a pierced slide that may be adjusted to the proper day of the year.

ANALEMMATIC - A specific type of horizontal dial comprising a combination of HORIZONTAL and HORIZONTAL (AzImuth). Easily distinguished by the elliptical form of the hour band and the perpendicular style which moves
ina in a north-south direction on the mbridian or minor axis of the ellipse. The gnomon is set to the corresponding day of the jear. NOTE - If the elliptical band is separate or alone, tio class is then, HORIZONTAL (Azimuth).

SIGNAL GUN - Often combined with a horizontal dial. A lens is used to focus the sun's rays on the touch hole of a cannon whid is so placed that the charge Is set off at noon, apparent time. The lens is adjustable to the decilnation of the sun.

CONCAVE - This type includes those dials inscribed on concave surfaces that cannot be relegated to one of the foregoing types. Many equatorial dials are concave but the position of the dial plate determines the type. The hemisphere is typical of the concave type, as are many of the "sunk" dials of the Renaissance. CONVEX - Includes dials on convex surfaces that cannot be placed in one of the above types. Many equatorial dials are convex.

CONICAI - Comprises all dials in the form of a cone, either partial or full. The so-called goblet or chalice dials are conical dials. They tell time by recording the altitude of the sun and they are easily distinguished. A vertical pin in the center, or the edge of the rim may be used to cast the shadow.

IABELIING
The educational value of any collection is enhanced by the labels. Labels are used to tell a story and hf as is so often
the case, that story must be told as completely as possible in a minimum of space which allows for no superfluous words. In the case of sundials, what story should the label tell and how can it best bet told?

The story can be told by the use of six words descriptive of the information required to be placed on the label, The necessary information should answer the following questions.

1 - What kind of a dial is it?
2 - Where is the dial used?
3 - How does it tell time?
4 - What is used to indicate the time?
5 - Where was it made?
6 - When was it made?
Note - If space permits, the makers name and other in-
formation of particular interest may be added.
These questions in the order in which they appear on the label may be summed up as follows.

1 - Type. (Concordant with foregoing list of types)
2 - Use. (Whether for a particular place or places; uniVersal use; or specific, as a noon mark.)

3 - Method. (How does it tell time -- by hour angle, altitude, or azimuth).

4 - Indicator.- (Shadow, light, magnetic needle).
5 - Country. (Origin of dial)
6 - Date. (Specific or period).
How does this work th out in practice? Examine a label made out in accordance with the above outline --

42 - Equatorial, Universal - France - 1750

The label tells this story--
Item No. 42. The dial is an equatorial dial, with the dial patt/ plate lying parallel to the dapatff plane of the equator. It may be used anywhere (Universal) by adjusting the dial plate. The time is told by recording the hour angle of the sun, by means of a shadow. It was made in France in 1750,

In this case, three words and a date are all that is necessary to tell a complete story. The makers $\mathrm{h} / \mathrm{f} / \mathrm{f}$ name and other interesting information may be added if space allows.

Another example of a different character will give a better insight into the system of labelling, described in detail X a Iittle farther on.

HORIZONTAL (Azimuth) Magnetic - England - 1800
The above label indicates that the dial plate lies in a level position and is for use in a particular place. The method of telling time is by recording the position of the sun in azimuth, which is indicated by a magnetic needie. The dial was made in England in 1800.

From the foregoing examples the system becomes apparent. IKh/ids That is, The type of dial is given first (capital letters); then the use of the dial separated from the type by a comma; Following the use, the method by which the dial tells time is given in parentheses; then follows the meens by which time is recorded. ${\underset{j}{f}}_{f}$ arated by a wider space or dash, the country of origin is noted; and the date is separated by a wider space or dash.

In the first example, the "method" and "indicator" do not
appear on the label. In the second example the "use" is omitted from the label. This is done in accordance $e_{\text {with }}^{\text {rules devised to }}$ tell a complete story with as few words as possible. Seldom is it necessary to include all the items. The omission of any item is accomplished by adherence to thee following rules. 1-Type - Never omitted. Always in capital letters. Should conform to "list of types".

2 - Use - Separated from "type" by a comma. Dials are made for a particular place or places; for universal use; or for specific purposes. If the dial is made for a particular place or places, this fact is not noted on the label or in the catalog. Its omission implies that. All other uses are noted, such as "ARMILLARY, Universal", which indicates an armillary so constructed that it may be used anywhere. "HORIZONTAL, Noon Marr" indicates that it is a horizontal dial that records only the noon hour.

3-Method - Always in parentheses. If the method of telling time is by means of recording the hour angle of the sun, this fact is omitted on the label and in the catalog. All other methods are noted, such as"HORIZONTAL (Azimuth)", which indicates the recording of the hours by the position of the sun in azimuth. Similariy" VERTICAL (Altitude)" indicates that the time is noted by recording the position of the sun in altitude.

4 - Indicator - Various methods are usedfo indicated the hour. If a shadow is used, this fact is omitted from the label andthe catalogs its omission implies shade. All other indicators are noted, such as Light, which may be a ray, beam, or focised by meanspf a lens. The time may also be indicated by the position of a magnetic needle among the hour lines, as referred to in the second example above.

5 - Country - This \mathcal{f} dof refers to the country in which the dial was made, not bought. If not definitely known, it is better omitted, or if doubtful followed by a question mark.

6 - Date - This refers to a specific date or period in which the dial was made. If not known, omit. If doubtful follow by question mark.

Assignation of a number for each instrument is often made but it does not have to appear on the label unless some definite purpose is served. Institutions invariably number individual pieces and it is good practice for the private collection. When the number is used on the label it precedes all other information.

Thus it can be readily seen that a combination of entries 1 to 4 inclusive gives not only the basic type of a dial but further classifies it into varieties in a simple, positive, and consistent manner requiring little effort.

CATALOGING
The labels are the outward expression of that vital part of all collections -- the catalog, which is a complete and accurate record of individual pieces; that part of the collection that may be used for reference and study. Today many catalogs are composed of two parts, the written and the photographic, each serving its specific purpose. The basic catalog of the Frnst collection is composed of photographs and a written record of each piece. This is क్ne on stendard $3^{\prime \prime} x 5^{\prime \prime}$ IIbrary index cards, ruled to comply with the system of classifying. The record is written in telegraphic form λ° A completed/card is shown below.
(Insert Figure .2.)
A glance will show the advantage of this form for reference and study, and for making labels. All the salient facts about the instrument are given in the first three lines. Then follows a complete description, which in turn is followed by any pertinent notes concerning acquisition and so forth. Note that the first line contains all the information needed for the label.

The second line contains the material on which the hour lines are inscribed -- that is, the dial plate. At the right, on the same line, the overall dimensions of the instrument are given. The third line is reserved for the maker's name. A sample card in outline form is given below。
(Insert Fig. 3)
In this way the work of classifying, labelling and cataloging dovetail. There is no hunting for information or wondering what information should appear on the labels, or where it ought to appear on the cards.

15-VERTICAL (Altitude) France $\quad 1830$
Paper $\quad 32 \mathrm{~mm}$ diam. $\times 127 \mathrm{~mm}$.high
HenryRobert, Paris, France
Dial plate printed on paper, pasted on wood
cylinder. Hinged tin gnomon attaclzed to
removable cap. Computed for latitude 49
lnscribed: "Henry Robert, au Palais Royall 164,
a'Paris-1830".
Boughtin Paris, 1902.

FIGURE 2

FIGURE 3

FURNITURE
European dials, both portable and stationary, frequently contain additional lines, scales, calendars, symbols, and other parts which are not directly connected with the primary function of the dial. All such parts or lines are considered as"furniture". Iines of declination, signs of the zodiac, analemma, and Iines of altitude and azimuth comprise the furniture commonly found on stationary dials; but on portable dials the common furniture includes all of the foregoing toget with
and vane, lunar calculator (two types), nocturnal, Babylonian hours, Italian hours, Jewish hours, and perpetual calendars of various sorts.

The compass angfindrose are obvious. The windvane, however, is usually missing.

The lines of declination show the position of the sun north or south of the frydft $\phi \neq$ celestial equator and, if so mariced, the day of the year. The signs of the zodiac are generally indicated by symbols at the extremities of the lines of declination. The
 the sun is located and also refer to the date upon which the sun enters the sign. Therefore the lines of declination generally represent the date of the sun's entrance into the Signs. The symbols, Signs, and date of the sun's entrance into each sign is given in the following table.

Symbol Name

The analemma is a device used to make a sundial record local mean time, or standard time. It usually appears in one of two forms -- a figure 8, or Innear (in the form of a scale). Sometimes a two dimentional chart or a table is appended to the ordinary dial. Sometimes the analemma is incorporated in the hour lines, causing a deformation, in which case it is not classed as furniture.

The lines of altitude and azimuth are used to show the height of the sun above adt the horizon andfte angular position of the sun from the meridian as measured on the horizon. The former is generally noted by degrees, the latter by the points of the compass.

Lunar celculators are of two kinds -- those that require a previous knowledge of the age of the moon; and those by which the age of the moon can be determined (often called lunar phase dials). The calculator is used to determine the time of day (without mental calculation) by observing the shadow cast by moonlight on the ordinary $d \not A \not \subset \chi / \alpha$ sundial.

The nocturnal/is not a sundial. It is a portable dial used to tell time at night by means of the stars, and it consists of a base plate or disk bearing the days of the year, on which lfotattok a rotating hour disk and an alidade are mounted. A hole is made in the center. The nocturnal is usually calculated for use with the pole stas and the bright star at the end of the Little Dipper, or the Pole star and one or both of the "pointers" in the Big Dipper. The hour disk is often notched to permit reading the dial in the dark by counting the number of notches between the reference point of 12 and the sighting edge of the alidade. This instrument is frequently incorporated in A portable sundials.

The Babylonian, Italian, and Jewish hours may be recognized by their appearance and the accompanying numerals. The Babylonians counted their hours continuously from 1 to 24 from sunrise to sunrise; the Italians counted theirs $f(\phi) d /$ continuously from 1 to 24 from sunset to sunset. Thus the Babylonian hours are noted from 24 to 12, whereas the Italians are noted from 12 to 24. The Jewish hours are frequently referred to as the "old unequal planetary hours" or the "temporary" hours. This arises from the division of the day from sunnise to sunset, into 12 equal parts. Because this period varies in length throughout the year the summer hours will be of longer duration than the winter hours. Similarly the hours of night will be ϕt If just the reverse -- longer in winter than in summer.

Calendars are of many different kinds serving as many different purposes -- from fixed annual calendars to perpetual, and from the simple to the complex. Some enable one to determine
for any given year the golden number, dominical letter, epact, cycle of the sun, the time of new moon, and so forth.

Oriental dials seldom have furniture, except for the compass. However, lunar calculators and calendars will occasionally be found on some dials.

Key to Mayall System of Classifying, Labelling, and Cataloging Sundials

OUTLINE CATALOG CARD

OUTLINE FOR LABEL (NUMBERS KEY TO DIVISIONS LISTED BELOW)
NO. TYPE, USE (METHOD) INDICATOR-COUNTRY-DATE

(1) LIST OF TYPES

Ordinary

HORIZONTAL
VERTICAL
DECLINING
RECLINING INCLINING
declining -RECLINING declining-Inclining EQUATORIAL
POLAR
MULTIFACE
(2) USE
(Preceded by comma)
a- Particular place or places (omit)
b-Universal
c - Specific (suck as Noon Mark)
(3) METHOD
(Always in parentheses)
a-Hour angle (omit)
b-Altitude
c-Azimuth

HORIZONTAL-VERTICAL
ARMILLARY
ANALEMMATIC
SIGNAL GUN
CONCAVE
convex
CONICAL

FOR LABELS Use information given on first line of catalog card. See also outline below keyed to divisions. If space permits, maker's name and other interesting features may be added.

COMMON
FURNITURE
Compass
Windrose and Vane Lines of Declination Lines of Altitude Lines of Azimuth Signs of Zodiac Lunar Calculator (two types). Nocturnal
Babylonian Hours (1-24 sunrise to sunrise Italian Hours ($1-24$ sunset to sunset)
Jewish Hours ("unequal"1-12 surrise to sunset and sunset to sur rise Calendars - Analemma

(4) INDICATOR

a- Shade (omit)
b-Light
c-Magnetic

IV

ORIENTALDIALS
Because of the great number of oriental dials in the Ernst collection, a few words must be written about them. No less interesting than the dials themselves are the characters and the old method of reckoning time before the adoption of the 24 equal hours day, which has been used by the western world for many centuries. Furthermore one's appreciation fol of any instrument is much greater if the notations on it can be interpreted. German, French, Spanish and other modern languages can be translated easily by anyone with the proper dictionary. On the other hand the language of China and Japan is not so easily deciphered, and very few even attempt it. Therefore we shall give here the characters usually found on orientel dials, together with the corresponding English meaning.

Lack of understanding of the characters has led to a misunderstanding of the purpose of some dials and of their construction. One example is the portable equatorial dial, quite common in China. This dial is inscribed on the upper surface of the dial plate, which is hinged to the base and may be held in position by a leg that can be set in notches cut in the base. All references that have come to our attention refer to thist type of dial as one that can be"adjusted to latitude"; but a translation of the characters, beside the notches in the base, show the dial plate is adjusted to seasons rather than to latitude. This becomes obvious once the meaning of the characters is known, for if the dial is to be used all year round the plate would have to be inscribed on both the upper and under sides, unless it is fitted with an alidade. There is no alidade, there-
fore the notches are so placed that the dial plate may be raised and lowered as the sun travels north and south $6 \mathbf{f}$ of the celestial equator, thus always allowing the shadow of the needle gnomon to fall on the upper face.

Other characters also have a different meaning from what one might judge by a casual inspection of a dial. Therefore it is necessary to make a carefful examination of an oriental dial before deciding how it is used. A brief summary of the meaning of the various characters frequently encountered will aid in a better understending of the construction and use of Chinese and Japanese sundials.

Although the western method of timekeeping and the western calendar were adopted by Japan in 1873, there are still many parts of Ohina that cling to the old. So complete has been the change in Japan that many weil educated young Japanese are not familiar with the old system, and they express great curiosity and interest in instruments reminiscent of the past.

There are several differences between our system of timekeeping and that of the east prior to westernization. Where we say 6 o'clock, the oriental would refer to the middle of the 6th hour. To us, 6 oiclock refers to a specific instant or the beginning of a certain interval of time, whereas the oriental thinks in terms of a full interval and refers to it as such. We divide our day into 24 equal parts either continuously or into two series of 12; the orient divides the day into 12 parts in two series of 6 equal parts, from sunrise to sunset, and from sunset to sunrise, which results in equal intervals of constantly varying length, like the Jewish or unequal hours of the west, the difference being in the number of parts into
which each period is divided.
There is also a difference in the notation of the hours. We number the hours either continuously from 1 to 24 , or from 1 to 12 in two series. The oriental hour is a much longer interval corresponding to two offor hours, and they are numbered In a descending order beginning with 9 to 4 inclusive。 The table below shows the western notation in the upper line with the eastern notation in the lower line, together with the corresponding characters.

(NOTE TO PRINTER - Characters in keyed galleys will be loaned by Harvard-Yenching Institute)

This table will, at/a glance, decipher the characters on most dial plates. However, the Chinese and Japanese made use of a system of callation called the "Sexagenary Cycle", which comprises 60 pairs of characters, so arranged that no repetition occurs. This is accomplished by associating symbols for the signs of the zodiex with the five elements (wood, fire, earth, metal, and waterd. The 12 sign symbols are called the Horary or Teriestrial Branches and they bear the names given the signs. The five elements are considered as having a primary and a secondaly state (called Elder and Yodnger Brother) thus giving ten characters referred to as the Celestial Stems.

The sign symbols are associated with the hours and the
oriental is more apt to speak of the Tiger Hour, or Horse Hour, etc. Therefore the characters representing the signs often appear on the dial plate instead of the hour numeral characters, or both may be found on the same dial. The sign represents the middle of the hour or interval to which it ifs alloted. Furthermore the characters for the signs are also associated with the points of the compas§/and the sexagenary system was applied to daily, weekly, monthly, and yearly calendars. the following table shows the correlation between the signs of the zodiac as we know them; the characters for the signs with the corresponding English equivalent; the month and hour assooiated with each, together with the corresponding western hour; and the associated points of the compass.

INSERT TABLE I - without title
(NOTE TO PRINTER - Characters in keyed galleys will be loaned by the Harvard-Yenching Institute.)

For a detailed account of the sexagenary $\beta t \beta t \phi \phi h^{c y c l e}$ we must ask you to refer to other books on the subjectø. Briefly stated, the characters representing the signs are placed in a column. Beside these characters are placed those of the ten celestial stems, beginning by pairing wood-rat (see table above), wood-bull, fire-tiger, and so forth. It is obvious that/each combination represents a year, the system will not repeat itself for 60 years.
 to the seasons of the year. These are 24 in number, derived by dividing the solar year into 24 parts or seasons, which were given names descriptive of agricultural activities or of expected

$$
\begin{array}{llllll}
T & A & B & \mathrm{~L} & \mathrm{E} & \mathrm{I}
\end{array}
$$

Occidental Name	Charac－ ter	Oriental Name	Month	Oriental Hour	Occidental Hour	Pointbe Compass
Aries Ram	Z	Rat	March	$\stackrel{9}{(m 1 a n i g h t)}$	12	N
Taurus Bull	\nexists	Bulı	April	8	2	NNE
Gemini Twins	$\frac{\pi}{\pi}$	Tiger	May	7		ENE
Cancer Crab	侣	Hare	June	$\begin{gathered} 6 \\ \text { (sunrise) } \end{gathered}$	6	E
Leo Lion	辰	Dragon	July	5	8	ESE
$\begin{aligned} & \text { Virgo } \\ & \text { Virgin } \end{aligned}$	E	Serpent	August	4	10	SSE
Libra Balance	F	Horse	September	$\begin{gathered} 9 \\ \text { (noon) } \end{gathered}$	12	S
Scorpius Scorpion	末	Goat	october	8	2	SSW
Sagittarius Archer	审	Ape	November	7		WSW
Capricornus Goat	西	Cock	December	$\begin{gathered} 6 \\ \text { (sunset) } \end{gathered}$	6	W
Aquarius Water－Bea	开	Dog	January	5	8	WNW
Pisces Fishes	商	Boar	February	4	10	NNW

weather．Below are listed the season characters with their English meaning and the corresponding approximate date．

Season	English	Approximate
Character	Meaning	Date

春 分	Mid－spring	March 21	
清明	Bright	April 5	
䊗問	Seed rain	April 20	
立夏	$\underset{\text { summer }}{\text { Beginning }}$ of	May 5	
小渵	Little overflow	May 20	
去䅜	Planting of rice	June 5	（NOTE TO PRINTER Characters in
夏 至	M1d－summer	June 21	keyed galleys will be loaned
	Little heat	July 7	by Harvard－ Yenching Institute）
大暑	Great heat	July 23	
谷乐大	Beginning of autumn	August 7	
虏暑	Local heat	August 23	
白需	White dew	September 8	
恋大分	M1d－autumn	September 23	
	Cold dew	October 8	
霜 ${ }^{\text {星 }}$	Hoar frost	October 23	
$\frac{1}{y}$ 冬	Beginning of winter	November 7	
小，这	Little snow	November 22	
大联	Great snow	December 7	
冬菏	M1d－winter	December 22	
，小 县	Little frost	January 6	
大寒	Great frost	January 20	
$\frac{y}{\sum}$	$\underset{\text { spring }}{\text { Beginning of }}$	February 4	
	Rain－water	February 19	
儆朝	Awakening／of insect	ts March 5	\％

An examination of the names of the seasons recalls the fact that we of the west are the ones who erroneously call the beginning of summer June 21, and similarly refer to the other seasons. Summer is that period of about three months when the sun is highest in the heavens or farthest north of the celestial equation as seen in the northern henisphere. June 21 really is not the beginning of summer but rather the middle of summer.

In order to complete the reference list of characters u usually found on Chinese and Japanese dials, we must list the points of the compass, for practically every oriental dial has a compass whether it is needed or not.
(Insert Figure 4)

Timekeeping and callation in China and Japan are engrossing subjects for study. We regret the necessity for treating $t(t / y(x)$ them in this brief manner.

POINTS OF THE COMPASS

FIGURE 4

V

DESGRIPTIVE CATALOG

The Harold C. Ernst Collection of Portable Sundials is located in the transparency room of the Farvard College Obserm vatory in Cambridge, Mass. Dr. Ernst was an eminent Boston physician with many interests. He had only started collecting watches when one day in a Paris shop he noticed a smell ivory sundial. This small sundial was fatal to his watch collecting which soon gave way to what he thought was a more fascinating hobby -- that of collecting portable sundials. He sought and bought dials wherever he happened to be. His endeavors resulted In the present collection of about 150 pieces -- all portable -- covering the period from the l6th century to 1921, and rem presentative of the development of the sundial over a period of 2000 years.

The collection may be subdivided into two sections- the occidental and the oriental. So far as is known Dr. Ernst's collection comprises the greatestaggregationfof oriental dials, in one place, in the world

The collection presents a wide distribution of country ∞ f origin, a great variety of types, forms, and materials, as well as a generous assortment of pieces signed by mastercraftemen of the periods represented. For this reason a brief summary of the contents will facilitate reference and be an aid to visitors, collectors, and others interested in sundials.

Countries Represented
Total number of dials fromf each country of origin.

China . . . 6	Italy 1
France . . 25	Japan . . . 84
Germany . . 14	Portugal . . 1
Great Britain . 7	U. S. A. . . 3
Holland . . 1	Doubtful . . 2

Of Particular Interest
In any collection there are always a few pieces that ϕf are of particular interest. It may be because of their bauty, intifcacy, craftsmanship, or for many other reasens. The catalog nymbers of those pieces worthy of special attention are as follows : - $1,7,9,12,21,30,35,40,42,45,50,59,60$, $62,64,68,70,74,76,78,79,81,82,97,99,100,213,215$, 225, 241, 242. This selection should not be construed as comprising those dials of superior quality.

Types
Although there are relatively few types of dials, there is however an infinite variety in each type. Therefore, because dozens of horizontal dials are listed together it does not mean they are identical or similar in either appearance or function The following list of types, together with the catalog numbers of the dials th of each type, is consistent with the classification given in Chapter

HORIZONTAL - 17, 21, 29, 30, 34, 36, 40, 41, 43, 45, 52, $55,58,59,72,73,82,84,86,89,90,91$, 92, 93, 94, 97, 100, 202, 204, 205, 206, 207, 220, 224, 229, 232, 237, 241, 243, 244.

HORIZONTAL, Noon Mark - 6, 11, 19, 42, 44, 47, 49, 79, 203, 209, 226.

VERTICAL - 14, 15, 16, 69, 70.
EQUATORIAL - 1, 12, 13, 20, 22, 24, 25, 48, 50, 80, 214, 216, 225, 234.

MULTIFACE - 2, 3, 85.
HORIZONTALMVERIICAL - 37, 38, 39, 87, 88, 238, 239, 240.

$$
\begin{aligned}
& \text { ARMILLAEY } £ 56,57,60,71 . \\
& \text { SIGNAL GUN - } 21 \\
& \text { CONCAVE - } 4,7,8,9,18,23,26,31,32,33,35,51,53, \\
& \quad 54,61,68,63,64,65,66,67,68,74,75,76, \\
& 77,78,81,83,95,96,99,201,208,211,213, \\
& \\
& 215,217,218,219,221,222,223,227,230,231, \\
& \\
& 233,236,242,
\end{aligned}
$$

Forms

Below are listed the forms, other than the usual, together with the corresponding catalog number of each piece.

Block - 2
Cube - 3, 85.
Cylindrical - 14, 15, 16.
Floating (or Magnetic) - 91, 202, 204, 206, 229, 243.
Ring (not Armillary) - 70
Spherical - 28, 56, 57, 60, 71.
Tablet - 30, 37, 38, 39, 40, 41, 87, 88, 94, 97, 237, 238, 239, 240.

Watch case - 8, 9, 10, 18, 23, 26, 29, 31, 32, 33, 43, 61, 63, 67, 74, 75, 76, 77, 95, 231. Method (other than hour angle) and Indicator (other than shade)

The ordinary dial tells time by recording the hour angle or distanced of the sun from the meridian, in time. Portable dials make use of other methods such as recording the altitude of the sun (angular distance abote the horizon); and by recording the position of the sun in azimuth (angular distance on horizon between south point and the foot of the perpendicular fram
the sun to the horizon). Also the ordinary dial generally indicates the time by the position of a shadow. Again, portable dials make use of other indicators such as light (spot, ray, or beam) and the magnetic needle. Still others are provided with a calculator so that time may be observed at night by the light of the moon. Such dials are listed below, with the corresponding catalog number.

Altitude - 14, 15, 16, 70.
Azimuth - 40, 97, 224.
Light - 21, 56, 57, 60, 71.
Magnetic - 40
Iunar - 10, 30, 97, 238.
Miscellany
Few collections are without a few miscellaneous items α (and the Ernst collection is not unusual in this respect. However, it is interesting to note that with the exception of three pieces and two that are missing (212 and 228, given to friends), the remainder in this group are attached/ta a chord or chain to a sundial. Therefore their inclusion was more from necessity than preference, but nevertheless of interest. The miscellaneous items are Nos. 5, 10, 27, 28, 46, 98, 210, 212, 228, and 235.

Materials.
A variety of materials will be found in the collection. The materials listed apply only to those of which the dial plate is made.

$$
\begin{array}{r}
\text { Brass }-1,4,6,7,9,19,20,21,24,28,29,31,32, \\
\\
34,36,42,43,45,48,49,50453,55,56,57,
\end{array}
$$

$58,61,64,66,69,70,71,76,77,80,93,95$, 96, 100, 203, 205, 211, 218, 219, 233, 236.

Bronze - 10, 27.
Clay - 98
Copper - 18, 23, 26, 51, 63, 75, 99, 208, 213, 231.
Germen-Silver - 12, 13,
Gold - 79
Ivory - 25, 30, 35, 41, 54, 78, 81, 84, 87, 88, 94, 97, 214, 221, 222, 223, 226.

Lead - 72, 215
Paper - 3, 15, 37, 38, 40, 52, 85, 86, 89, 90, 91, 92, 202, 204, 206, 207, 229, 232, 243, 244.

Pewter - 73
Porcelain - 17, 59
Silver - 5, 10, 22, 60, 62, 67, 68, 74, 82, 83, 220, 225, 241.
Silver-bronze - 33
Silver-plated - 26, 31, 61, 63, 75, 76, 77, 99, 213, 231.
Steel - 216
Wood - 2, 8, 14, 16, 39, 44, 47, 65, 801, 209, 210, 217, 224, 227, 230, 234, 235, 237, 238, 239, 240, 242. (Bamboo - 234; Boxwood - 14, 16 ; Olivewood - 201, 242).

- Makers -

No less important are the names of the makers given below, together with the catalog number of the instruments bearing their signatures.
(charg touliphabetical order)

David Beringer - 3, 85
Henry Robert - 15
Johann Martin - 22
Hans Tucher - 30
Andreas Vogel - 48
Jacques Baradelle - 58 T. Harris \& Son-7l Tsurugi - 78 Andreas Vogler - 80 Nicholas Bion - 82 J.L.D.Sullivan \& Son - 89 Charles Bloud - 97 Ansonia ClockCo. - 100 PEpys - 46
(NOTE - Several instruments were given by Dr. Ernst to his friends -- namely, numbers 11, 212, 228, and 236. These are listed in the catalog as'Missing", together with whatever information can be obtained from Dr. Ernst's own catalog, which was started just before his death. We hope that the missing dials will some ZZZp day find their place once more in the collection. The numbering of the pieces was done by Dr. Ernst and there seems to be no reason for change.)

1 - EQUATORIAL Japan ca. 1700. Brass. 90 mm diameter. Circular brass dial plate inscribed with unequal hours on upper surface, and fitted with pdd pointer adjustable to the seasons. The gnomon is a semicircular arch mounted on the polar axis. The use of the unequal hours causes a deformation of the hour lines. Time is obtained by setting the pointer to the corresponding day of the year and observing the position of the pointer among the deformed lines when the shadow of the arch falls along the centerline of the polar axis.

2 - MULTIFACE France. Wood. $125 \mathrm{~mm} \times 152 \mathrm{~mm} \times 82 \mathrm{~mm}$.
Wood block with nine dials. Fashioned in the general form of the famous Kratzer dial. Mounted on wood base supplied by Dr. Ernst.

Germany

Made by David Beringer (Augsburg). Five hand-colored dial plates printed on paper pasted on sides of wood cube, which is attached to a hinged support. Brass triangular gnomons. East face has quadrant fitted with plumb line for adjusting cube to latitude. North face signed "D. Beringer". Compass in base. Handcolored ornament on paper base plate.

4 - CONCAVE Japan. Brass, silver-plated. 48mm diameter. Dial and compass in watch case form. Compass needle painted with luminous paint on north end. Unequal hours. Attached to No. 5. England ca 1730
5 - WATCH Japan. Silver. 50 mm diameter. Made by J. B. James, London. An English watch to which movable Japanese hours have been added. Outer case, brass. From Negoya, attached to No, 4. 6 - HORIZONTAL, Noon Mark Japan. Brass. $60 \mathrm{~mm} \times 30 \mathrm{~mm}$. Hinged perpendicular style, held in place by baass bar on east side. Thread gnomon. Compass in dial plate. Metal plumb bar set in perpendicular style. Dial plate fitted with two brass levelling screws.

7 - CONCAVE Japan. Brass. $D \not \subset A \beta \beta 33 \mathrm{~mm}$ diameter (attached to case l40xl2xlomm). This instrument contains dial, compass, muler, lunar calculator, ink well, and writing brush. Case lead. Ruler, compass and dial, brass. Unequall hours.

8 - CONCAVE Japan. Wood. $38 \mathrm{~mm} \times 40 \mathrm{~mm}$. Dial and compass in form of watch case. Unequal hours. Cloisonne on outside. From Kyoto.

9 - CONCAVE Japan. Brass. 48mm diameter. Dial and compass in form of watch case. Unequal hours. Case simply engraved. Attached to No. 10

10 - LUHAR CALCULATOR and COMPASS. Japan. Bronze and silver. 37 mm diameter. Lunar calculator for use with sundial, to tell time at night by the light of the moon. Cloisonne on outside. Watch case form. Attached to fhbudpdr No. 9.

> 11 - Missing. This is a small HORIZONTAL, Noon Mark, with MadeinJapan.
> elaborate ornamentation. Hinged perpendicular style, fitted with suspended plumb. Thread gnomon. Compass in center of dial plate.

12 - EQUATORIAL, Universal France Early 20th Century. Germansilver. 88 mm square. Made by Society Lumietieres (Paris). Fitted with german-zilver quadrant to adjust split ring hour circle to latitude. Dial and quadrant mounted on wood base fitted with hinged cover. Single, reversible, brass needle gnomon. Compass in base. Latitude of 30 cities, throughout the world, printed on paper attached to inside of cover. This type of instrument was being issued to French army officers at the time it was purchased.

13 - EQUATORIAL, Universal France Early 19th Century. Germansilver. l20mm square. German silver quadrant enables ring hour circle to be adjusted to latitude. Dial and quadrant mounted on wood basef fitted with hinged cover. Compass in base. पффn巾ad\& Single, reversible, brass needle gnomon.

14 - VERTICAL, (Altitude) France Barly 18th Century. Boxwood. 13 mm diameter $\times 79 \mathrm{~mm}$ high. Ines and figures incised on wood cylinder, filled black. Hinged brass gnomon attached to removable cap. Typical of the so-called "shepherd," "poke", or "pillar"dials.

15 - VERTICAL, (Altitude) France 1830. Paper. 32 mm diameter x 127 mm high. Made by Henry Robert (Paris). Dial plate printed on paper, pasted on wood cylinder. Hinged tin gnomon attached to removable cap. Computed for latitude 49°.

16 - VERTICAL, (Altitude) France Late 19th Century. Boxwood. 2lmm diameter x 97 mm high. Lines, letters, and figures, incised in wood cylinder. The numerals and letters are filled red. Hinged tin gnomon attached to removable cap. Typical of so-called "shepherd", "poke", or "pillar" dials.

17 - HORIZONTAL China Late 19th Century. Porcelain. 85 mm x 130 mm . The dial plate has black lines and numerals, with red characters, on a band of porcelain 10mm wide, shaped in the form of a horseshoe and set in a brass base. Thread gnomon passes through hole in hinged perpendicular style, to plumb bob. Compass in engraved base plate. Base is fitted with three levelling screws studded with red glass ornament t_{0}^{S} cabachon cut. Fout blue cabachon cut glass ornaments, with gold character, set in base. Spirit level let into base plate。

18 - CONCAVE Japan. Copper, silver-plated. 38mm diameter. Dial and compass in form of watch case. Unequal hours. Dial and compass, silvermplated.

19 - HORIZONTAL, Noon Mark Japan. Brass. $56 \mathrm{~mm} \times 30 \mathrm{~mm}$. Thread gnomon. Hinged perpendicular style held in place by brass bar on east side. Compass/in dial plate, with red characters noting the cardinal points. Metal plumb bar set into perpendicular style. Dial plate fitted with two brass levelling screws.

20 - EquatoriaL, Universal Germany ca.1740-1750.
Brass. 50 mm diameter. Made by Johann Schretteger (Augsburg). Quadrant allows adjustment of ring hour circle to latitude. Dial and quadrant mounted on octagonal, engraved brass base.

Compass in base. Bottom of compass case inscribed: "Johann. Schretteger in Augsbu". Complete with leather carrying case. Single, reversible, needle gnomon.

21-SIGNAL GUN, (Altitude) Light France(?) Late $19 t h$ Century. Brasso 90 mm diameter. Made by Mr . Magot. A double convex lens, mounted in brass cell, focuses the rays of the sun on touch hole of cannon. At noon, apparent time, a small quantity of powder placed in the touch hole of the cannon, is ignited, thus setting off the charge. The brass cannon is painted black, and mounted on a brass carriage. The lens is supported by two brass arms attached to brass quadrants mounted on a nickel-plated brass base. The lens may be adjusted in accordance with\& the declination of the sun eash day in the year. A horizontal dial is inscribed on the base, south of the cannon. Two spirit levels set at right angles to each other are let into the base. Beneath the cannon is inscribed: "Mr. MAGOT".

22-EQUATORIAL, Universal Germany ca. 1700. Silver. 47 mm diemeter. Made by Johann Martin (Augsburg), Quadrant allows adjustment of split ring dial plate to latitude. Dial plate and silver quadrant mounted on octagonal brass base. needle Single, reversible, silver, gnomon. The latitudesfof various cities ire inscribed on the bottom of the compass box, which is set in the base. Base is inscribed: "Johann Martin Augsburg"

23 - CONCAVE Japan. Copper, silver-plated. 48mm diameter. Dial and compass in form of watch case. Unequal hours. Compass needle painted with luminous paint on the north end. From Kyoto.

24 - EQUATORIAL, Universal Germany ca. 1730-1740. Brass. 50mm diameter. Made by Lorenz Grassel (Augsburg). Quadrant allows adjustment of ring hour circle to latitude. Dial and quadrant mounted on octagonal, engraved brass base, with compass. Bottom of compass case inscribed: "ETEV POLI FRANKFORT AM MAYN 50 ZURICK L. Grasl" Single, reversible, brass needie gnomon.

25 - EQUATORIAL Japan ca.1800. Ivory. $72 \mathrm{~mm} \times 34 \mathrm{~mm}$. Made by "Kokusai". Contains dial, compass, and lunar calculator. Dial adjustable to seasons by means of ivory support attached to under side of dial plate, and notches cut in base. All Ines fncised -- hour and cardinal characters filled black; all other characters filled red. Complete with black bone carrying case.

26 - CONCAVE Japan. Copper, silver-plated. 40 mm diameter. Dial and compass/in form of watch case. Unequal hours. Copper case with brass rim. Compass needle painted with liminous paint on north end. From Mijanoshita. Attached to No, 27. 27 - BoX Japan. Bronze. Attached to No. 26. 28 - SIGHTING INSTRUMENT Japan. Brass. IOmm diameter. Spherical form. Separable hollow hemispheres are connected by woven brass wire chain. Contains compass, folding style and plano-convex lens.

29 - HORIZONTAL Japan. Brass. 39mm diameter.
Dial and compass in form of watch case. Separator ring between halves. Folding brass gnomon. Small compass in center of dial plate.

30-HORIZONTAL Germany ca. 1575. Ivory. Oval, $70 \mathrm{~mm} \times 55 \mathrm{~mm}$. Made by Hans Thcher (Nurnberg). Tablet form. Thread gnomon. Dial plate delineated with five hour circles computed for latitudes $42^{\circ}, 45^{\circ}, 48^{\circ}, 51^{\circ}$, and $54^{\circ} \mathrm{N}$. Compass in center of dial plate. South part of dial plate bears the work mark of Hans Thucher -- an H and T separated by a coiled snake. Top of cover fitted with lunar calculator with brass indicator. On bottom of dial tablet, a brass hand indicates the day's length and the various signs of the zodiac. All lines, letters, and figures are incised - filled black, blue, and red.

31 - CONCAVE Japan. Brass, silver-plated. 2lmm diameter. Dial and compass in form of watch case. Unequal hours. Silver-bronze case. Simple engraving on case and around dial.

32-CONCAVE Japan. Brass. 47 mm diameter. Dial and compass in form of watch case. Unequal hours. Dragon engraved on case. Medallion attached to case.

33 - CONCAVE Japan. Brass, silver-plated. 47 mm .diam. Dial and compass in form of watch case. Unequal hours. Charm attached to case. From Nara.

34-HORIZONTAL Fingland 18th Century. Brass. 40mm diameter. Folding brass gnomon. Hand-colored paper rhumb card pasted in bottom of case. Cover screws on case. Top of cover, under side of dial, and bottom of case bear the Romen numerals XIV.

35 - CONCAVE Japan. IVory. $57 \mathrm{~mm} \times 75 \mathrm{~mm}$. In form of physician's medicine case. Hollow spaces in both halves of case fitted with ivory lids. Unequal hour lines in gold. Gold (painted) floral
decorations. Exteriob ornamented with mice painted in gold and silver. Carved ivory medallion attached.

36 - HORIZONTAL France. Brass. 80mm square. Dial plate is mounted on wood base. Compass in base. Hand-colored rhumb card. Folding gnomon. Computed for latitude $49^{\circ} 47^{\prime N}$.

37 - HORIZONTAL-VERTICAL Germany Early 19th Century. Paper, $46 \mathrm{~mm} \times 79 \mathrm{~mm}$. Made by E. C. Stockert (Bavaria) Dial plates printed on paper pasted on two wood tablets. The horizontal dial has three hour circles for use in latitudes $45^{\circ}, 50^{\circ}$, and $55^{\circ} \mathrm{N}$. Vertical dial computed for $50^{\circ} \mathrm{N}$ latitude. Compass in center of horizontal dial plate. Hend-colored rhumb card. Thread gnomon. Latitude scale on vertical dial marked every tokt two degrees from $34^{\circ}-56^{\circ}$. Various cities in America, England, Spain, France, Italy, and Germanyfrith their latitudes, printed on card pasted on reverse of vertical tablet. Vertical dial plate signed: "STOCKERT a Bavaria". 38 - HORIZONTAL-VERTICAL Germany Early 19th Century. Paper. $110 \mathrm{~mm} \times 72 \mathrm{~mm}$. Hand-colored dial plates printed on paper, pasted on two wood tablets. Horizontal dial has four hour circles for use in latitudes $58^{\circ}, 50^{\circ}, 45^{\circ}$, and $40^{\circ} \mathrm{N}$. Vertical dial computed for 50°, with latitude scale marked every two degrees from $36^{\circ}-56^{\circ}$. Thread gnomon. Compass in center of horizontal dial. Various cities and their latitudes printed on card pasted on reverse of vertical tablet. Probably the work of Stockert.

39 - HORIZONTAL-VERTICAL France Early 17th Century (?). Wood. $110 \mathrm{~mm} \times 64 \mathrm{~mm}$. Hour lines and numerals incised bx in two wood tablets. Hour lines alternating red and green; numerals filled black. Thread gnomon, and $\not p l$ phip plumb. Compass in center of horizontel dial.

40 - HoRIZONTAL, (Azimuth) Magnetic France 1629.
Paper. $120 \times 114 \mathrm{~mm}$ Two wood tablets with horizontal (azimuth) dial mounted in the lower tablet. The time is observed by noting the position of the magnetic compass needle among the hours when the east and west sides of the tablet cast no shadow. Hour lines (deformed) printed on paper plate pasted in metal cell. Outer circle marked in degrees numbered consecutively in a counterclockwise direction, beginning with the 12 o'clock line. Computed for latitude of Dijon, or 47°. Dated, 1629. The tablets bear hour lines traced in ink. These were undoubtedly added at a later date.

41 - HORIZONTAL Italy 1624,5. Ivory. $62 \times 66 \times 25 \mathrm{~mm}$. Eight-sided tablets. Compass set in center of diel. Hendcolored rhumb card marked with English directions. 1624 incised on inside of upper tablet; and 1625 incisedpn bottom of dial. Thread gnomon. Lunar calculator (without indicator) inscribed on outside offertical tablet. Formerly the property of an old Italian monastery.

42 - HORIZONTAL, Noon Mark Japan. Brass. $162 \mathrm{~mm} \times 118 \mathrm{~mm} \times 100 \mathrm{~mm}$ high Dial plate mounted on gimbals, for use at sea. Thread gnomon. Folding perpendicular style fitted with plumb bar. Thread gnomon held taut by means of adjustment screw on underside of

Ernst Col. - Cat.
dial plate. Brass welght hangs by four point suspension bow neath dial plate. Instrument may be dismantled and packed In wood box, which serves as a base when in use.

43 - HORIZONTAL Japan. Brass. 39mm diameter. Dial and compass in ffatch form of watch case. Separator ring between halves. Folding brass gnomon. Small compass in center of aial plate.

44 - HORIZONTAL, Noon Maris Japan. Wood. $131 \mathrm{~mm} \times 43 \mathrm{~mm}$. Dial plate fitted with two brass leveling screws. Fixed perpendicular style fitted with plumb bar. Thread gnomon. Compass in base. This instrument was used in the Imperial Post Office at Kyoto. The postmaster, from whom the instrument was purchased, states in a letter that "it fok is more punctual than cheap watches."

45 - HORIZONTAL France ca. 1650. Brass. $90 \mathrm{~mm} \times 58 \mathrm{~mm}$. Made by Pierre LeMaire (Paris). Dial plate has three hour circles for use in latitudes $43^{\circ}, 47^{\circ}$, and $49^{\circ} \mathrm{N}$. Folding per pendicular style graduated from 40° to 55°, and fitted with a
 through slide to plumb bob. Dial plate is fitted with four levelling screws. Compass attached to bottom of dial plate. Compass arranged for adjustment to magnetic variation of neodle for use in setting dial on true meridian. Magnetic setting scale reads to 30° either side of the meridian. Bottom of compass box engraved with cities and their latitude. Signed: "Pre Le Maire Paris". Complete with leather case, lined with green velvet. Height of plumet and tautness of gnomon may be adjusted by screw affired to bottom of dial plate.

England made
46 - WATCH Beaghtinfermany. MadoAn mondon, by pepys, London This, together with item No. 5 afford an interesting comparison with the pocket sundials of the same period. The pocket sundials fit the pocket as easily and were much lighter and more beautiful in appearance than the jumbo watches of the day.

47 - HORIZONTAL, Noon Mark. Japan . Wood. $43 \mathrm{~mm} \times 131 \mathrm{~mm}$. Dial plate fitted with two brass levelling screws. Fixed perm pendicular style fitted with plumb bar. Compass set in base. Thread gnomon.

48 - EQUATORIAL, Universal Germany ca. 1730. Brass. 65 mm diameter. Made by Andreas Vogel (Augsburg). Quadrant and ring dial plate mounted on octagonal brass base. With compass. Base fitted with three levelling screws. Latitude of various cities inscribed on bottom ofkompass case. Single, reversible, brass needle gnomon. Signed: "Andreas Vogel". Complete with leather carrying case, and instructions for use printed in both German and French.

49 - HORIZONTAL, Noon Mark Japan. Brass. 51mm x 26mm. Dial plate fitted with two brass levelling screws. Thread gnomon. Folding perpendicular style fitted with plumb barz held In position by brass bar on east side. Compass fitted with bevel edged glass cover. Complete, with leather carrying case.

50 - Equatorial Japan. Brass. lomm diameter. Dial and compass mounted on finger ring (25 mm diam.) . The dial plate folds down over compass, both being protected by a hinged cover, on top of which is engraved a crest. Hours engraved on both sides of dial $6, A \not A \phi / / D$ plate. Under side of dial..
plate has scale for adjustment to seasons. Double brass needle gnomon.

51 - CONCAVE Japan. Copper. 50mm x 22mm. Dial and compass in form of pair of spectacles. Unequal hours. Brass ornament attached to top of copper case.

52- HORIZONTAL Japan. Paper. $68 \mathrm{~mm} \times 34 \mathrm{~mm}$. Dial plate printed on paper pasted on brass base. Base fitted with two brass levelling screws, and compass. Hinged perpendicular style fitted with loop through which thread gnomon passes to plumb bob in weil, in base.

53 - INKWELL Japan. Brass. $175 \mathrm{~mm} \times 8 \mathrm{~mm} \times 8 \mathrm{~mm}$. Typical Itter writer's instrument with inkwell, wading, and brush. Attached to No. 54.

54 - CONCAVE Japan. Ivory. 25mm diameter x 40 mm high. phat Drum-shaped. Dial and compass in heads. Unequal hours. Side has four cut-outsprith inset seed pearls. Heads bound with brass wire. \&hitopatk Cut-outs and other incisions, red. hour lines incised, filled gold. Attached to No. 53.

55 - HORIZONTAL France 77 th Century. Brass. $64 \mathrm{~mm} \times 71 \mathrm{~mm}$. Made by P. Debombourg (Lyon). Dial plate engraved in corners. Sides of folding gnomon engraved, Compass in center of dial plate with gnomon mounted over compass window. Complete with Ieather case, lined with green velvet. Inscribed: "P. Debombourg, ALyon".

56 - ARMILLARY, Universal Germany ca. 1720. Brass. 85mm diameter. Made by Johann Willebrand (Augsburg). Meridional and equatorial ring engraved with names of cities and their latitudeS. Keridional ring divided in degrees in one quadrant only. Collapsible. Meridional ring inscribed: "Johann Willebrand in Augsburg." 57 -ARMILLARY, Universal Portugal. Brass. 73 mm diameter. Various cities and towns and their latitude engraved on meridional ring. Collapsible. Meridional ring inscribed with degrees in two opposite quadrants. Complete with leather carrying case.

58 - HORIZONTAL France ca. 1750. Brass. 70 mm x 65 mm . Made by Jacques Baradelle (Paris). Eight-sided dial plate with compass and folding gnomon. Dial has four hour bands for use In latitudes $52^{\circ}, 49^{\circ}, 45^{\circ}$, and $40^{\circ} \mathrm{N}$. The gnomon is adjustable, the indicator cut and engraved in the form of a bird. The latitude of various cities is engraved on bottom of the compass box. Dial plate inscribed: "Baradelle Paris".

59 - HORIZONTAL China Late lith century. Porcelain. $175 \mathrm{~mm} \times 115 \mathrm{~mm}$. The dial plate has black lines and numerals, and red characters, on a band of white porcelain, 10 mm wide, had which is in the form of a horseshoe set into a brass base. Thread gnomon passes through hole in hinged perpendicular style to plumb bob. Base plate engraved. Compass let into base. Spirit level in center of horseshoe, fat right angles to meridian. Levelling accomplished by means of rack and screws. Adjustment screws studded with red, cut glass. Four blue glass ornaments, cabochon cut, with gold characters, set in base.

60 - ARMILIARY, Universal Germany Early l7th Century. Silver. 72mm diameter. Cities and their latitude inscribed on meridional ring. Equatorial ring bears hall mark - a G circumscribed by two concentric diamonds. Collapsible. Meridional ring divided in degrees in two opposite quadrants.

61 - CONCAVE Japan . Brass, silver-plated. 48mm diameter. Dial and compass in form of watch case. Unequal hours. Silverbronze case, $h \neq \nmid \neq$ heavily ornamented with dragon, on one side.

62 - CONCAVE Japen. Silver. $20 \mathrm{~mm} \times 24 \mathrm{~mm}$, $\times 30 \mathrm{~mm}$ high. Four lozenge-shape pieces, stacked on on the other, add held together and hinged by a post at either end of the major axis. Engraved brass end plates and plain separators. Contains dial, compass, magnifying glasshand smoked glass; each mounted in brass cell. Unequal hours.

63 - CONCAVE Japan. Copper, silver-plated. 35 mm square. Dial and compass in form of watch case. Unequal hours. Brass case engraved with row of stars or asterisks around edge of cover.

64 - CONCAVE Japan. Brass. 22mm diameter. Dial,compass, and two magnifying glasses in form of pair of spectacles. Two tiers -- compass and magnifying glass in one half; dial and magnifying glass in the other half. Unequal hours. Case engraved.

65 - CONCAVE - Japan. Wood. 6Omm diameter. Dial and compass in lacquered case. Unequal hours. Dial painted gold with black hour lines.

66 - CONCAVE Japan. Brass. Elliptical, $37 \mathrm{~mm} \times 52 \mathrm{~mm}$. Dial and compass set in wood base. Unequal hours. Base painted silver, and cut to fit elliptical brass box fitted with hinged lid. From an old country house near Laice Biwa.

67 - CONCAVE Japan. Silver. 32 mm diameter. Dial and compass in form of watch case. Unequal hours. Brass case with heavily worked dragon.

68 - CONCAVE Japan. Silver. 70mm x 35 mm . Three parts hinged together. Each part consists of two circular pieces tangent to one another. First part contains four segmental silver ink wells with covers a folding writing brush fits in slot between ink wells. The second part contains two ink wells, one for bla ck ink, the other for red ink; two small knives are attached to the back of this part -- one has a brass blade, the other, steel. The third part contains a silver dial with unequal hours, and a silver compass. When closed, the instrument resembles a pair of goggles.

69- VERTICAL England 1751. Brass. 78mm x 49mm. Leaf-shaped, with folding gnomon. Dated 1751.

70 - VERTICAL, (Altitude) England l6th century (?). Erass. 40 mm diameter. Hour lines inscribed on elliptical arc fitted inside of ring, which is fitted with a pierced slip ring adjustable to daily declination of sun inscribed on outside of ring.

71 - ARMILLARY, Universal England - Brass. 156 mm diameter. Made by T. Harris and Son (Lgndon). Degrees mariked on meridional ring, in two adjoingng quadrants. Axial bar engraved on both sides for direct use in southern latitudes. Collapsible. Inscribed: "T. Harris and Son, 52 Great Russell St. Bloomsbury, London".

72 - HORIZONTAL England. Lead 115 mm diameter. Computed for $42^{\circ} \mathrm{N}$ latatude. Dial plate stamped.

73 - HORIZONTAL England. Pewter. 77 mm diameter. Computed for $42^{\circ} \mathrm{N}$ latitude. Dial plate stamped. Bears initials ${ }^{\mathrm{N}} \mathrm{N} \mathrm{M}^{\mathrm{H}}$. 74 - CONCAVE. Japan Early 19th Century. Silver. 34mm diemeter. Dial and compass in form of watch case. Unequal hours. Both halves simply engraved. Leaf motif engraved around dial. Silver chain with old tear bottle attached.

75 - CONCAVE Japan. Copper, silvermplated. 36mm diameter. Dial and compass in form of watch case. Unequal hours. Case bronze. Inlaide enamel on one side(green and red).

76 - CONCAVE Japan. Brass, silver-plated. 37 mm diameter. Dial and compass in form of watch case. Unequal hours. Brass tinder box with flint and steel, attached.

77 - CONCAVE Japan. Brass, silver-plated. Elliptical, $47 \mathrm{~mm} \times$ 38 mm . Dial and compass/an form of watch case. Inequal hours. Dragon carved on copper case. Simple engraving around dial.

78 - CONCAVE Japan ca. 1600. Ivory. $180 \mathrm{~mm} \times 30 \mathrm{~mm}$. Made by "Tsurugi". Carved wood fish. Dial and compass set in position of gills. Unequal hours. Small compass is fitted with magnifying lens window. The eyes of the fish are pearl inlay. From a country house in the region of Lake Biwa.

79 - HORIZONTAL, Noon Mark / Japan. Gold. $12 \mathrm{~mm} \times 22 \mathrm{~mm}$. Silver case with hinged cover. Slit in cover allows passage of light, Fitted with small compass. Taken from Japanese officer killed at Port Arthur.

Universal
80 - EqUATORIAL, / Germany ca. 1730. Brass. 70mm diameter. Made by Andreas Vogler (Augsburg). Quadrant and ring dial plate mounted on octagonal base with scalloped odges. Base engraved and fitted with plumb bob and compass. Cities and their latitude on bottom of compass case. Signed: "And. Vogler". Complete, with leather carrying case.

81 - CONCAVE Japan. Ivory. 43 mm long. Violin shape. Dial painted gold with black hour lines. Unequal hours. Fitted with compass and ivory cover.

82-HORIZONTAL France ca. 1700. Silver. $52 \mathrm{~mm} \times 62 \mathrm{~mm}$.
Made by Nicholas Bion (Paris). Eight-sided dial plate, fitted with folding gnomon adjustable to latitude. The beak of an engraved bird serves as an indicator. Dial engraved with landscape and three hour bands for use in latitudes $49^{\circ}, 45^{\circ}$, and $40^{\circ} \mathrm{N}$. Compass let into dial plate. Bottom of compass bears/engraved landscape with winged boy and the word "sans eclat et sans bruict". Latitudespf various cities inscribed, and the letters F P scratched on bottom $0 f$ dial plate. Numerals and space between hour bands
filled black in the manner of Champleve'. Signed: "N. BION A - PARIS"。

83 - CONCAVE Japan ca. 1800. Silver. 33 mm diameter. Dial and compass in bronze case in form of teapot. Unequal hours. Animals embossed on case.

84 - HORIZONTAL Japan. Ivory. $52 \mathrm{~mm} \times 56 \mathrm{~mm}$. Two eight-sided hinged tablets. Common needle compass on one side and flopping rhumb card on the other side. Folding gnomon missing. All lines and characters incised, and filled black. Rhumb cards handcolored.

85 - MULTIFACE, Universal Germany cade ca. 1775. Paper. Cube, 68 mm . Made by David Beringer (Augsburg). Five paper dial plates pasted on sides of wood cube mounted on hinged support. East dial fitted with plumb line and scale of degrees for adjustment to latitude. Hand-colored ornament on dial plates. North dial signed: "D. Beringer". Compass in base.

86 - HORIZONYAL Japan Late 19th Century. Paper. 60 mm diameter. Paper did plate pasted on wood base. Compass in base. Folding brass gnomon held in position by string. Hours in Roman numerals. Fitted with separable wood cover.

87-HORIZONTAI-VERTICAI France ca. 1650. IVOry. $34 \mathrm{~mm} \times 45 \mathrm{~mm}$.
Tablet form. Wood separator between two thin ivory plaques compose horizontal tablet. Thread gnomon. Incised lines and numerals. Horizontal dial has compass with double convex lens window, blue lines, and black arabic numerals. Vertical dial
has blue hour lines and black Roman numerals. Incised ornamentation on both dial plates, filled red. Outside of vertical tablet has lunar calculator with brass indicator, black and red incisions.

88 - HORIZONTAL-VERTICAL France. ca. 1650. Ivory. $45 \mathrm{~mm} \times 58 \mathrm{~mm}$. Tablet form. Wood separator between two thin ivory plaques, compose horizontal tablet. Compass in center of horizontal dial plate. All lines and numerals incised. Horizontal dialblue lines, black Arabic numerals. Ornamented with phases of moon (quarters yellow, full and new moon red). Vertical dial -blue lines, black Roman numerals; lines emanate from red half sun emitting red and yellow fingers on semicircular blue field. Half hour positions marked by red asterisks on both dials. Outside of vertical dial fitted with lunar calculator with brass indicator,

89 - HORIZONTAL U.S.A. 1878. Papker. 45 mm diameter. Made by J.L.D. Sullivan (Boston, Mass.). Dial plate printed on paper pasted on wood base. Fitted with separable wood cover, compass, and fixed triangular brass gnomon. Monogram of superimposed D, L, and S, on dial plate west of gnomon; the date 1878 east of gnomon. Instructions for use printed on paper pasted on top of cover. Called "Pocket Solargraph". Signed: J. L. D. Sullivan and Son, 26 School $\$ t \not y \notin \phi t$ St. Boston, Mass.

90 - HORIZONTAL Germany Early l9th Century. Paper. 53 mm diameter. Made by E. C. Stockert (Bavaria). Hand-colored, floating, paper dial plate mounted on magnetic needle. Smell
brass gnomon. Ornamental hand-colored paper rhumb ring. Compass and dial mounted in wood case, fitted with convex-concave glass window. All notations in English. Signed: "Stockert", on south edge of dial plate.

91 - HORIZONTAL France. Paper. 52mm diameter. Hand-colored, floating, paper dial plate, mounted on magnetic needle. Small brass gnomon. In wood case fitted with convex-concave glass window and separable cover. Ornamental hand-colored paper rhumb ring.

92 - HORIZONTAL Japan. Papáer. 55 mm diameter. Diel plate printed on paper pasted on wood base. Lacquered brass folding gnomon, held in position by notched segmental ring. Compass in base marked in English, compass points marked with Japanese cheracters on the dial plate, hours marked in Romen numerals. In the northeast part of the plate the letter M is inscribed within a circle. Wood base fits nickel case fitted with separable nickel cover. Colored landscape pasted inside cover. 93 - HORIZONTAL Holland (?) Brass. 40mm diameter. Cut-out brass dial plate with folding gnomon fits friction tight in compass box, and rests on green gless window. Hend-colored interior scene on paper pasted inside of separable brass cover, inscribed: "Bij Ian Tra...." Letters IT incised on south edge of dial plate. Hand-colored floating rhumb card.

94 - HORIZONTAL IVOry. $45 \mathrm{~mm} \times 27 \mathrm{~mm}$. Tablet form. Thread gnomon. Incised hour lines and Arabic numerals, filled red. Incised, colored, floral design on both sides of vertical tablet.

95 - CONCAVE Japan. Brass. 43 mm diameter. Watch case form. Unequal hours. Compass in top of case adjacent to small square ink well, both protected by hinged cover. Case engraved.

96 - CONCAVE Japan. Brass. 30 mm diameter x 70 mm high. Wood cylinder composed of four separable sections, carved. Lower section contains ivory calendar; second section contains brass compass with glass window; third section contains a brass dial with unequal hours; the fourth or top section serves as a cover, painted gold inside. Sections held togehher by a chord. Analemmatic
97- France ca. 1675. IVory. $70 \mathrm{~mm} \times 75 \mathrm{~mm}$. Made by Charles Bloud (Dieppe) Tablet form. Equatorial vertical and polar dials on outside of pppet tablet. Well in edge of tablet to receive removable gnomon, fitted with silver hook cover. A scale of $\not \subset \neq d e g r e e s$ on the underside of vertical tablet allows adjustment to latitude. Three pewter disks are also attached to the inside of the vertical tablet, by means of which lunar calculations can be made, thus enabling the diel to be used at night by the light of the moon. The base or lower tablet contains a horizontal dial and a large compass in the center. Beneath the magnetic needle is a silver elliptical hour band that may be adjusted for the time of year by turning a silver plate on the under side of the base. In use, the time is shown by the position of the compass needle among the hours on the elliptical bend. All parts beautifully ornamented. All incisions filled black. Adjustment plate on underside of base inscribed: "Fait Par Chazzes Bloud, Aleppe".

98 - ASTROLOGICAL INSTRUNENT Japan ca. 1500. Clay. 118 mm diameter. Also known as a geomancer's compass. Characters written in black on painted surface. Compass in center. Cover missing. Similar to frantop/ No. 210

99 - CONCAVE Japan. Copper, silver-plated. $70 \mathrm{~mm} \times 80 \mathrm{~mm}$. In form of clam shell on rock. One half of inside of shell contains a compass, the other half a dial/ with unequal hours. When closed the clam shell is surmaounted by a small crab.

100 - HORIZONTAL U.S.A. 1921. Brass. $50 \mathrm{~mm} \times 75 \mathrm{~mm}$. Made by Ansonia Elock Co. (). Aluminum plate attached to inside of cover gives latitude, longitude, and variation of the magnetic needle for 30 of the principle cities in the U.S., together with the equation of time. Dial plate has three hour bands for use in latitudes $35^{\circ}, 40^{\circ}$, and $45^{\circ} \mathrm{N}$. Compass let into dial plate. Adjustable gnomon. Scale of degrees at north end of compass extends 40° either side of the meridian. Called "Sunwatch". Complete with cardboard case and pamphlet of instructions for use. Standard time may be obtained.

101-200 incl. - Not Assigned.

201-CONCAVE Japan. Olivewood. 205mm diameter. Marine 35 mm diam. compass with diah. Dial painted black with gold hour lines. Unequal hours. Periphery scalloped.

202-HORIZONTAL Germany. PapAer. 90 mm diameter.
Floating paper dial plate with brass gnomon, mounted on magnetic needle. Wood case fitted with separable hemispherical cover. Convex-concave glass $\not \subset \phi \not \subset 反 \not \equiv \beta$ window missing. Paper rhumb ring,

203 - HORIZONTAL, Noon Mark Japan. Brass. $56 \mathrm{~mm} \times 30 \mathrm{~mm}$. Base fitted with two levelling screws. Hinged perpendicular style heldin position by hinged prop. Thread gnomon. Compass let into base. Perpendicular style fitted with plumb bar.

204 - HORIZONTAL Prance Early 17th Century. Paper. 50mm diameter. Floating, hand-colored, paper dial plate mounted on magnetic needle. Hand-colored rhumb ring. Wood case fitted with separable cover. Convex-concave glass window missing.

205 - HORIZONTAL France 17 th Century. Brass. 44mm diameter. In wood case with cover. Folding brass gnomon, and compass with mariners markings. Scale marked 20° either side of meridian for adjustment to magnetic declination. Initials ITH scratched on cover. Dial plate fits case friction tight and rests on compass window.

206 - HORIZONTAL France Early 17th century. Papher. 50 mm diameter. Floating, hand-colored, paper dial platef mounted on magnetic needle. Fitted with separable cover and convex-concave glass window. Hand-colored rhumb ring.

207-HORIZONTAL Japan. Paper. 55mm diameter. Dial plate pasted on wood base. Fitted with compass and separable wood cover. Folding brass gnomon held in place by notched semicircular brass ring. Plumb line, attached to perpendicular style, passes th $\neq \neq$ through hole in base. Equation of time, in Japanese, pasted on inside of cover.

208-CONCAVE Japan. Copper. 38mm diameter. Brass case fitted with separable cover. Brass compass rim encroaches on copper dial rim. Unequal hours. Attractive metal combination. 209 - HORIZONTAL, Noon Mark Japan. Wood. 82mm diameter. Wire gnomon mounted over compass in wood box fitted with separable cover. Compass rim reversible, with 12 divisions on one side, and 24 on the other. Top of cover has inlaid mother-of-pearl
210.- ASTROLOGICAL INSTRUMENT Japan. ca. 1500. Wood. 86mm diameter. Also know as a Geomancer's Compass. Compass in center. Fitted with separable cover. Characters around compass, gold; those inside cover, black. Mica compass window.

211-CeNCAVE Japan. Brass. 115mm diameter. Dial plate set in wood base fitted with separable cover. Unequal hours. Rim carved with signs of the zodiac, filled red. Motal and wood ornament on cover. Small compass in base.

212-Miasing. A small clock made in Japan. Movable hours. 213 - CONCAVE Japan. Copper, silverplated. 90mm diameter. Dial and compass in wood case, fitted with separable cover, Pearl inlay floral design on lacquered cover. Unequal hours. Complete with gold brocade bag. From Kyoto. Once the property ofthe temple of Higashi-Hogwangi.

214-EQUATORIAL Japan. Ivory. $33 \mathrm{~mm} \times 73 \mathrm{~mm}$. Dial plate inscribed on upper side and adjustable to seasons. Compass in base. All

Iines incised -- hours and compass characters filled black, all others filled red. From the region of Lake Biwa. Signature undeciphered.

215 - CONCAVE Japan. Lead. 200mm long. An old pistol with dial mounted in back of hamer. Unequal hours. Trigger missing. Hanmer and dial protected by a cover.

216 - EQUATORIAL Japan. Steel. 22mm x 63 mm . Dial plate is a quarter cosrcle, adjustable to declination of the sun. Dial plate held in position by hinged prop.

217 - CONCAVE Japan. JApap Wood. $48 \mathrm{~mm} \times 24 \mathrm{~mm}$. Dial painted gold with black hour lines. Unequal hours. Gold characters around compass. Separable wood cover.

218 - CONCAVE Japan. Brass. $105 \mathrm{~mm} \times 38 \mathrm{~mm}$. Dial, compass, and ivory calendar in wood base. Carved ivory and wood ornament on separable cover. Unequal hours.

219-CONCAVE Japan. Brass. $74 \mathrm{~mm} \times 35 \mathrm{~mm}$. Dial and compass in wood base. Unequal hours. Ivory rhimb ring with incised Cardinal characters filled red, other characters filled black. Carved silver and jade ornament on top of separable cover. From country house near Nagoya.

220-HORIZONTAL France 19th Century. Silver. 48 mm diameter. Dial plate cut-out, mounted on compass window. There are four hour bands for use in latitudes $52^{\circ}, 49^{\circ}, 46^{\circ}$, and $43^{\circ} \mathrm{N}$. Folding gnomon adjustable to latitude and supported by figure of a bird. Brass case fitted with separable chased cover.

221-CONCAVE Japan. Ivory. $42 \mathrm{~mm} \times 19 \mathrm{~mm}$. Dial and compass in ivory block with surface painted gold. Unequal hours. All lines incised -- hours filled red, letters filled black. Fitted with separable ivory cover.

222-CONCAVE Japan. Ivory. 23mm x 48mm. Dial painted gold with red hour lines. Unequal hours. Brass compass. Fitted with deparable ivory cover.

223 - CONCAVE Japan. Ivory. $36 \mathrm{~mm} \times 27 \mathrm{~mm}$. Dial and compass in ivory block with surface painted red and gold. Unequal hours. Hour lines gold, character black.

224 - HORIZONTAL, (Azimuth) Japan. Wood. $39 \mathrm{~mm} \times 78 \mathrm{~mm}$. Wood block fitted with separable cover. Base plate contains two dials and a compass. Inside of cover contains four dials.. Each dial has two holes to receive perpendicular brass pin gnomons at different seasons. Groove in base for storage of gnomons when instrument fis in transit.

225 - EQUATORIAL Japan. Silver. 25 mm diameter. Dial mounted on compass cell. Dial is hinged and folds down on compass, the whole protected by a hinged lid or cover. Top of lid bears the crest of the Tokugawa family.

226 - HORIZONTAL, Noon Mark. Japan. Ivory. 44 mm diameter. Ivory box with compass. Wire gnomon mounted on the edge. Incisions filled green, red, and black. Separable ivory cover has removable disk.

227 - CONCAVE Japan. Wood. $34 \mathrm{~mm} \times 50 \mathrm{~mm}$. Dial and compass in wood base. Unequal hours. Dial painted black qith gold lines. Carved separable cover embellished with copper and enamel inlay. 228 - Missing. Identical with No. 216.

229 - HORIZONTAL England. Paper. 38 mm digmeter. Floating paper dial plate mounted on compass needle. Small brass gnomon. Brass case with convex-concave glass window, and separable hemispherical cover. Equation of time printed on card pated inside of cover.

230 - CONCAVE Japan. Wood. 40 mm diameter. Dial, compass, and calendar in wood base. Dial painted gold with black lines and characters. Unequal hours. Separable cover. Magnifying lens compass window.

231 - CONCAVE Japan. Copper, silver-plated. 34 mm square. Dial and compass in form of watch case. Unequal hours. Brass case。

232-HORIZONTAL France ca. 1860. Paper. 100mm diameter. Computed for $41^{\circ} 15^{\prime}$. Brass gnomon may be folded into base. Labelled : "Cadran Solaire C. de'pose' R." The words "SOIR MATIN" on dial plate. Instructions for use printed inside cover, in both English and French.

233 - CONCAVE Japan. Brass. 35 mm x 21 mm . Dial, compass, and calendar in wood case. Unequal hours. Ivory calendar set in separable cover.

234 - EQUATORIAL Japan. Bamboo. $145 \mathrm{~mm} \times 45 \mathrm{~mm}$. Compass in base, fitted with protective sliding cover. Dial adjustable to declination of sun at different seasons. All lines incised and filled black. White characters on black rhumb ring.

235 - COMPASS Japan. Wood. 35 mm diameter. Fitted with separable cover. Directions and characters on rim of compass marked in white; north point,red.

236 - Missing. A silver dial from Kyoto. Also formerly the property of the temple of Hegashi-Hogwangi.

237-HORIZONTAL China 1916. Wood. $58 \mathrm{~mm} \times 42 \mathrm{~mm}$. Tablet dial with compass. Thread gnomon. Black lines, Black and red characters.

238 - HORIZONTAL-VERTICAL China 1916. Wood. $82 \mathrm{~mm} \times 57 \mathrm{~mm}$. Tablet dial with compass and lunar calculator. Thread gnomon. 239 - HORIZONTAL-VERTICAL China 1916. Wood. $81 \mathrm{~mm} \times 56 \mathrm{~mm}$. Tablet dial with compass and thread gnomon.

240-HORIZONTAL-VERTICAL China 1916. WOod. $104 \mathrm{~mm} \times 70 \mathrm{~mm}$. Tablet dial with compass. Thread gnomon. Outside of vertical tablet decorated with two black swastikas and hand-colored floral design. Complete with paper box.

241 - HORIZONTAL France. ca. 1650. Silver. $70 \mathrm{~mm} \times 60 \mathrm{~mm}$. Made by Pierre LeMaire (Paris). Eight-sided dial plate with compass. Four hour bands for use in latitudes $52^{\circ}, 49^{\circ}, 46^{\circ}$, and $43^{\circ} \mathrm{N}$. Bottom of dial plate and compass box inscribed with the latitude of various cities. Inscribed: "P. LeMaire Aaris".

242 -CONCAVE Japan. Olivewood. 192 mm x $58 \mathrm{~mm} \times 24 \mathrm{~mm}$. This instrument contains and inkwell, writing brushes, dial, compass, and counting apparatus (abacus). Brass dial set into base. Unequal hours. Wood cover protects dial and compass. Steel knife with wood handle fits slot in side. Steel scissors, Ivory handled awl and stylus, and a brush are stored in well beneath abacus.

243 - HORIZONTAL - France, Paper. 53mm diameter. Floating paper dial plate mounteqon magnetic needle. small brass gnomon. Brass case fitted with convex-concave glass window. Equation of time given. Letter C.R. in hour band at center of dial.

244 - HORIZONTAL U.S.A. Late 19th Century. Paper. 45 mm diameter. Dial plate pasted on wood base. Compass in base. Cardboard gnomon. Fitted with separable cover.

245 - CONCAVE Japan. Brass. 65mm x l25mm x 80 mm . Dial and compass set in wood knot or knurl, fitted with separable cover. The whole tapers to a peak. Unequal hours. From the temple of Higashi-Hogwangi.

V I
COLIECTIONS
THE
I N \wedge U. S. A.

We have received many requests for information concernin the location of other sundial collections in the United States. Therefore we take this opportunity to present a Iist of those collections that have come to our attention as of June 1940. Since the publication of our previous list (as of June 1938) several private collections have come to hand. They are Included here as a matter of record, for they show a widespread interest in sundials as a hobby -- an interest that is increasing steadily. We are indebted to the curators and owners of the various collections, for the information contained in the following list.

COLLECTIONS OPEN TO THE PUBLIC

CONNECTICUT

F. RICHARD BOLSTER COLLECTION - An excellent collection of copies of historic and interesting dundials, together with a few nocturnals and astrolabes. All instruments (about 60) were made by the owner. They may be seen in the museum on the top floor of the Bristol Connecticut Public Library. The museum is open on request only. An inquiry at the delivery desk will Wi admit visitors to the collection, without $f \theta e$, at any time during libreary hours. DISTRICT OF COLUMBIA

UNITED STATES NATIONAL MUSEUM, Washington, D. C. -- A collection of sundials (26 portable, 30 stationary), covering the period from the 17 th century to 1917, is houded in the Arts and Industries Building, which is open to the public, without fee, from 9 a.m. to $4: 30 \mathrm{p} . \mathrm{m}$. daily; and from 1:30 p.m. to $4: 30 \mathrm{p} . \mathrm{m}$. on Sundays.

ILLINOIS

MENSING COLLECTION - One of the finest collections of astronomical instruments in the world. Located in the Adar Planetarium, Chicago, Illinois. More than 400 instruments are on display, of which about 175 are sundials of all sorts. Many of them are intricate devices containing gears, lenses, and so forth. It is representative of the finest work done in the period from 1479 to 1800. Open to the public. Entrance fee charged.
adler planetanion
JOHN C. TOMLINSON COLLECIION - Located in the Museum of Setence and Industry, Chicago, Illinois. A small collection The outstanding instruments are thin by of 17 th to 19 th century instruments. 1 Open to the public. Schirsler We regret that it is impossible to give more specific in christopherwinen formation at the time of writing.

MASSACHUSETTS

NATHANIEL BOWDITCH COLLECTION - This collection is divided into two parts. PART I is located in the Peabody Museum, Salem, Mass. Nathaniel Bowditch is particularly well known for his "American Practical Navigator" which is, even today, a standard reference work on navigation. Many of the Bowditch manuscripts and marine instruments together with a few sundials are on display. Open to the public, without fee, each weekday from 9 abm. to 5 pom. PART II is located Wolbach Liboparey
in the Observatory, in Cambridge, Mass. Several instruments made by Bowditch are on display together with a gunter's quadrant (sundial), astrolabe, nocturnal, and other instruments used by

HAROLD C. ERNST COLLECTION - Located in the
at the Harvard College Astronomical Observatory in Cambridge, Mass. A fine collection of about 150 portable sundials covering the period from the 16th century to 1921. This collection is particularly notable for its oriental dials, the margest group of such dials, in the world.
INSERT@'A'

ESSEX INSTITUTE, Salem, Mass. - Here is preserved what is considered to be the first sundial in America. This small hexagonal dial, about $5^{\prime \prime}$ across, was made by William Bowyer in London in 1630, for John Endicott, who lived in Salem at that time.
insert @"B"

Bowditch. There is also a korizontal dial made by his son Ingersoll at the age of $16 . \quad /$

HARVARD COLLEGE ASTRONOMICAL OBSERVATORY, Cambridge, Mass. Several collections are exhibited in the transparency room. Permanent exhibitions include the Harold C. Ernst collectiond of portable sundials (about 150 pieces), a specially selected group of astronomical photographs, various types of astronomical instruments of historic interest, and the Wheeler Willson collection of instruments. Loan collections include the Yalden collection, a portion of the Mayall collection, and a portion of the Bowditch collection. A small case is devoted to temporary exhibits. In this case have been displayed the Walker colletion, a portion of the Bolster collection, fid/a portion of the Lester T. Forbes collection, and other instruments of an astronomical character.

PEABODY MUSEUM , Solem, Mass - A small but interesting collection of 8 sundials, 8 sand glasses (including a 24 second and a 88 second \log glass), 1 astrolabe, 4 nocturnals, and 1 lunar calculator, representing the period from about 1650 to 1800. The instruments are displayed in the Cabinet Hall Corridor. A portion of the Nathaniel Bowditch collection is also located in this building. Open to the public, without fee, each weekday from 9 a.m. to 5 p.m.
J. ERNESTI G. YALDEN COLLECTION - Locat ed in the transparency room at the Harvard College Astronomical Observatory in Cambridge, Mass. The collection contains about a dozen
replicas of larger dials designed by the late J. Ernest G. Yalden of East Orange, New Jersey.

NEW YORK
JAMES ARTHUR COLLECTION of CLOCKS and WATCHES, and the
JAMES ABBOT COLLECTION of WATCHES -- These famous collections becane the property of New York University in 1926, where they are now exhibited in the Library situated on the Campus at University Heights, New York City. Here will be found 180 clocks, 1400 watches (including 200 from the Abbot collection), and two sundials. This is the largest collection of its kind in this country and one of the finest in the world. It includes clocks and watches of every description gathered from all parts of the world. Due to the present temporary cromped condition of the exhibition room, the Curator suggests that visitors seek and appointment. The collection is open to the public, without fee, afternoons only, each day except Sundays and holidays.

HAYDEN PLANETARIUM, 8lst Street at Central Park West, New York City. A loan collection of about 50 sundials, mostly portahle, may be seen in the wall cases in the corridor around the theater. Open to the public. Admission fee 25 cents. Hours - from to

METROPDLITAN MUSEUM OF ART, 5th Avenue, New York City Only about 14 of the 65 dials owned by the museum are on exhibition in Gallery K 26. The character of the collection is similar to that of the Mensing and Ernst. There are in all 59 portable dials, 6 stationary dials, 83 clocks, 451 watches, 1 astrolabe,

5 calendar dials, a graphometer, and a few nautical instruments, covering the period from about 1560 to about 1890. There is also a sundial represented in the Boscoreale Fresco in Room VIII. The museum is open to the public, without fee, daily from to pom., except on and when a fee of cents is in effect.

DAVID EUGENE SMITH COLLECTION - Located in Room 210, Low Memorial Library, Columbia University, ll6th Street, New York City. A diversified group of instruments including astronomical, surveying, drawing, numbers games, and many odd pieces such as lucky charms and "knotted cords". There are 278 pieces of which 54 are sundials of various kinds, covering the period from 1450 to 1900. Open to the public, without fee, from Monday through Friday from $9 \mathrm{a.m}$. to $5 \mathrm{p.m.}$, and on Saturdays from 9 atm. to 12m.
PENNSyLVANIA

$$
\frac{\text { Frost }}{\text { Frankendentaty.t. }}
$$

HAMILTON WATCH COMPANY, Lancaster, Pennsylvania - A replicas of selected group of ${ }^{\text {old }}$ timepieces including time lamp, signal gun, time candle, water clock, and several sundials. This is a travelling exhibit designed for educational purposes and to show the various methods used to tell time before the advent of the watch and clock.

PRIVATE COLLECTIONS

IOWA
CHARLES F. NOE COLLECTION - A small but fine collection of a few selected signed instruments (portable) of exceptional workmanship representative of the period 1600 to 1800.

MASSACHUSETTS

LESTER T. FORBES COLLECTIONS - Asmall collection of portable and stationary dials representing the fine workmanship $6 f$ the period from 1631 to 1800.

MAYALL COLLECTION - A smell collection of portable dinls including replicas of historic dials, and other instruments used for timekeeping. A portion of the collection was made by the owner, who has loaned some instruments to the Harvard College Observatory in Cambridge, Mass., where they are on display.

FREDERICK A. STEBBINS COLLECTION - The main portion of this collection comprises stationary and portable dials made by the owher, who displays ingenuity in the application of various methods of telling time.

RICHARD D. WALKER COLLECTION - A few selected signed portable sundials representing the $\not \subset h \phi$ work of the period 1592 to 1700.

JERSEY
LAURITS CHRISTIAN EICHNER COLLECTION - The owner, a craftsman, has made many fine replicas of famous instruments, including water clocks, sinking bowls, sand glasses, time lamps, time candes, and many sundials.

ALBERT E. McVITTY COLLECTION - A fine collection of 46 potable sundials, mostly of the l8th century. Representative of the finest craftsmanship of the period.

NEN YORK
L. PRESCOTT BROWN COLLECTION - Contains many/portable ing and stationary dials made by the owner.

LESTER F. HOYT COLLECTION - A group of stationary dials the
of various types made by the owner. All/dials are etched with acids.

HENRY RUSSELL WRAY COLLECTION - An excellent collection of about 200 portable sundials, covering the period from 1460 to 1926. Also includes astrolabes, perpetual calendars, and sand glasses.

PENNSYLVANIA
HARROLD E. GILLINGHAM COLLECTION - One of the finest collections of portable sundials comprising about 250 pieces. Also sand glasses, astrolabes, orrery, time lamps, and mathematical instruments. Representative of the period, 1548 to 1930
J. R. LAMBERT COLLECTION - Many interesting portable and stationary dials made by the owner, who shows ingenuity in the application of various methods of telling time.

$$
\mathrm{VII}
$$

ILLUSTRATIONS
Suमt?

July 23, 1964.

There are on a case in the fecture Room on Liveng of the Olievatoing 6/1179-Cquas quan Whentean selegile a y your

78 CONCAVE. JAPAN. CA. 1600

88 HORIZONTALVERTICAL. FRANCE. CA. 1650 .

93 HORIZONTAL

```
209 NOONMARK.
```

 JAPAN
 $$
\begin{gathered}
214 \text { EQUATORIAL } \\
\text { JAPAN }
\end{gathered}
$$

229 HORIZONTAL ENGLAND

12 EQUATORIAL
FRANCE. E. 20TH CENT.

```
21 SIGNAL GUN
U.S.A. L. 19 TH CENT.
```

24 EQUATORIAL
GERMANY 1730-1740

33 CONCAVE. JAPAN

59 HORIZONTAL. CHINA

50 EQUATORIAL
JAPAN

HARVARD COLISCTION OR

FOCKET SUMDLALS (ERNST)

Material that of dial plate.

Proportions approximate.

No. 11, 212, 228, 236 given
by Dr. Ernst to a friend 1937.

No. $17,26,27,35,47,85,86$,
203, 205, 222, 231, 235, 244,
missing Jamary 4, 1954.
4W5:

```
1. EQUATORIAL Japan, c. }170
    Brass disc & supports 1", wood.base 7'0}\times\mp@subsup{4}{}{\prime\prime
2. MULTTFACE France, c.1900
    Wood cube 5' }\times\mp@subsup{5}{}{\prime\prime}\mathrm{ , pedestal, base 5"}\times\mp@subsup{4}{}{\prime\prime}-\mp@subsup{8}{}{\prime\prime}h
3. MULTIFACS Germany, 18th century "D. Beringer"
    Wood cube 3*, pedestal & base 4' x 3'-6 hi
4. CONCAVE Japan
    Brass, silver plated oblate pendant 2" dia - - '" hi
5. WATCH England 1730 ME. James, London"
    Brass oblate pendant, silver watch, Japanese hrs.2"dia -1" hi
6. NOON MARK Japan
    Brass rectangle 2'}\times\mp@subsup{3}{}{\prime\prime}-\mp@subsup{2}{}{\prime\prime}h
7. CONGAVE Japan
    Brass oblate 2" dia 1' hi, handle 6"
    Z, CONCAVE Japan, Kyoto
    Hood pendant 2" }\times\mp@subsup{2}{}{\prime\prime}-1n h
    9. CONCAVE Japan
    Brass oblate pendant 2" dia - In hi
10. COMCAVE Japan
    Bronze & silvar oblate 2" dia - IMi
11. NOON MARK
Given by Dr. Ernst to a friend 1937
12. EQUATORIAL France; c. 1910
Germansilver ring in wood case \(4^{4 \prime}\) sq.
13. EQUATORILL France, c 1900
German silyer ring in wood case \(5^{n} \mathrm{sq}\). - \(1^{11} \mathrm{ht}\)
14. PHLAR France c. 1890
Box wood \(1^{4 *}\) dia, \(3^{31}\) hi.
15. PHEAR France, c. 1890 "Henit Robert, Paris"
Hood paper covered 1 IH dia - \(5^{n}\) hi
16. PMLLAR France, \(\mathbf{c} 1920\)
Box wood \(1^{n}\) dia - \(4^{\text {E }}\) hi
```

17. HORIZONTAL China, late 19 th cen.

Missine Tan. 4,1954

```
18. CONCAVE Japan
        Copper silver plated oblate pendant 2" dia.- 2" hi
19. NOON M4RX Japan
        Brass folding rectangle 1' }\times\mp@subsup{3}{}{\prime\prime}-\mp@subsup{2}{}{\prime\prime}h
20. EQUATORIAL Germany, 1740-1750 ("J. Schretteger")
        Brass octagomal base 2" - 2" hi
21. NOON SIGNAL CANNOY, U.S.A., c.1800
        Brass dial, compass, levels, 4" dia
22. EQUATORINL Germany, 1705 "J. Martin, Augsburg"
        Silver octagomal 2" x 2"}-\mp@subsup{2}{}{\prime\prime}h
23. CONCAVE Japan, clgoo "Kyoto"
        Copper silver plated oblate pendant 2" dia. - 1" hi
24. EQUATORIAL Germany, c.1730 "L. Gresiel"
        Brass octagonal 2"
    25. EquatorinL Japan, c.1300 "Kokusai"
        Ivory rectanzla 3'1 x 2'N - 2" thick
26. CONCAVE Japan MMianoshita"
        Missing Jan., , 1954
    27. BOX Japan
        Missing Jan. 4, 1954
    28. CONCAVE Japan
        Brass sphericel pendant 2" dia - I' ni
    29. concave Japan
        Brass oblate mendant. 24}\mathrm{ dia - 1' hi
    30. DIPTICH Germany, c, 1605 "Hens Troschel"
        Ivory oval 3'% 2m}-\mp@subsup{1}{}{\prime\prime}\textrm{hi
    31. COMCAVE Japan
        Brass silver lated oblate I' dia - It hi
    32. CONCAVE Japar
    Wryutw|yrass oblete yendant 2" dia - 1' hi
33. CONCAVE Japan, 18. "Nara"
```



```
    34. COMPASS Englana, a.1750
    #. Brass cylindr: l box 1" dia - 1' hi
35. CONCAVE Japan
    Itory, Missim, Jan. 1954 - Stolen 1938
```

36. HORIZONTAL Japan Brass tablet $3^{\prime \prime}$ sq
37. TABLET Bavaria, c. 1890 "Stockert" Wood, paper scale $3^{\prime \prime} \times 2^{\prime \prime}$
38. TABLPT Germany, c .1870 " P . B^{M} (Beringer ?) Wood, paper covered $4^{7 \prime} \times 3^{n}-1^{\prime \prime}$ hi
39. DIPNICH France, c. 1810

Hooden rectangle $4^{n \prime} \times 2^{n}-1^{\prime \prime}$ hi
40. DIPTICH France, 1629

Wood \& paper $4^{\prime \prime} \times 5^{\prime \prime}$ Compass $4^{\prime \prime}$ dia
41. DIPTICH Italy, 1624

Ivory octagonal $3^{\prime \prime} \times 3^{\prime \prime}-1^{\prime \prime}$ hi
42. NOON MARX Japan (Navigation) Brass $5^{\prime \prime}$ sq, 2 brass uprights $5^{\prime \prime} \times 1^{\prime \prime}$, base $6^{\prime \prime} \times 5^{\prime \prime}$
43. Concave Japan Brass oblate pendant $2^{\prime \prime}$ dia 1" hi $^{\prime \prime}$
44. NOON MARK Japan, c. 1890 "From P.O. Kyoto" Wood $5^{51} \times 2^{\text {i }}$
45. NETAL FOLDING France, c. 1745 Le Maire, Paris" Brass rectangle $4^{n} \times 3^{n}$
46. WATCH England, c. 1850 "Paul Chotard" Stlver 2^{n} dia. -1^{n} thick
27. NOON MARK Japan

Wood missing Jan.4,1954
48. EqUanoctial, Germany c. 1730 घa. Vogeln

Erass octagonlel $3^{n} \times 3^{\text {n }}$ h1
49. NOON MARK Japan

Brass folding $1^{n} \times 2^{n}-2^{18} \mathrm{~h}$
50. FQuATORIAL Japan, c. 1820

Brass finger ring, $1^{14}-1^{17} 0 . a$.
51. COMCAVE Japan

Brass, copper "dumbel1" shape $2^{n} \times 2^{n}-1^{\text {n }}$ h1
52. METML FOLDING Japan

Brass rectangle $\quad 3^{n} \times 1^{n}$
53. IMKMELL Japan

Brass 71 long
54. CONCAVE Japan

Ivory cylinder $1^{\prime \prime}$ dia- - 2^{n} hi
55. HORIZONTAL France, 18 cen. (Debombourg) (bupes Brass $3^{3 *} \times 3^{\prime \prime}$
56. UNIVERSAL RING Germany, c. 1748 (Willebranai) Brass 4" dia
57. UNIVERSAL RING Portugal, c. 1750

Erass $3^{3 \prime}$ dia
58. BIRD France, c. 1750 (Baradalle) Brass $3^{n} \times 3^{n}$
59. NETAL FOLDING China, c. 1890 Brass gilded enamel $8^{\prime \prime} \times 5^{\prime \prime}-4^{\prime \prime}$ hi o.a.
60. UNIVERSAL RING Germany, 17 th cen.

Silver $3^{\text {n }}$ dia.
61. CONCAVE Japan

Brass oblate pendant 2^{n} dia $\times 1^{n}$ hi
62. CONCAVE Japan, c. 1790

Silver 1^{n} dia $-1^{n} \mathrm{hi}$
63. CONCAVE Japan

Copper silver plated $2^{n} \mathrm{sq} .-1^{11} \mathrm{hi}$
64. CONGAVE Japan

Brass pendant $2^{n} \times 1^{n}-1^{\prime \prime}$ hi

65. Concave Japan

Lacquered oblate $2^{\prime \prime}$ dia - $1^{n} \mathrm{hi}$
66. CONCAVE Japan (from Lake BIWA)

Brass pendant $2^{\prime \prime} x, 1^{14}-1^{14} \mathrm{hi}$
67. GONGAVE Japan, 2.1840

Silver oblato pendant $1^{n} \times 1^{14}$ hi
68. LCONCAVE Japan

$$
\text { Two silver discs } \left.2^{\text {n }} x 3^{n}\right)^{-1 "} \text { hi }
$$

69. WERTICAL England, 1751

Brass $3^{1 t} \times 3^{31}$
70. RTAG England 16 th cen. Brass $2^{\prime \prime}$ aia.
71. UNIVITSAL RIMG England, $c .1850$ (T. Harris \& Son) Brass 64 dia.


```
90. FLOATING Germany, c.1850 (Stockert)
        Wood & paper 2" dia 1" hi
91. FLOATING France, c.1850
        Wood & paper 2'm
92. HORIZONTAL Japan, c.1910
        Metal box paper circle 2" dia 1" hi
93. COMPASS Holland (?)
        Brass 2" dia 2" hi
94. DIPTICH Italy, c.1810
        Ivory rectangle 2" }\times\mp@subsup{2}{}{\prime\prime
    95. CONCAVE Japan
        Brass oblate pendant 2" - I" hi
    96. CONCAVE Japan
        Wooden cylindrical pendant (" dia - 3' hi
    97. DIEPPE Erance, c.1670 (Chas Bloud)
        Ivory 3'1 }\times\mp@subsup{3}{}{\prime\prime}-\mp@subsup{1}{}{\prime\prime}\textrm{hi
    98. ASTROLOGICAL INSTRUMENT Japan, c. }150
        Wooden oblate 5" }\times\mp@subsup{1}{}{\prime\prime}\mathrm{ hi
    99. CONCAVE Japan
        Silver plated shell }\mp@subsup{3}{}{\prime\prime}\times\mp@subsup{3}{}{\prime\prime}-\mp@subsup{2}{}{\prime\prime}h
100. BOY SCCUT SUNWATCH U.S.A.,1921 (made by Ansonia Clock Co.)
        Brass rectangular 2" }\times\mp@subsup{3}{}{\prime\prime
101-200 inclusive - not assigned
201. CONGAVE Japan
    Olive nood aisc 12m dia - 3n/h1
202. ELOLTING Germany, c. }182
    Paper covered wood circle 3' diar- 3' hi
203. NOON, MARK,J_pan
    W, Brass. Missing Jan. 1954
204-HLOMInNG France; c.1850
```



```
205.%HORIZONTAL, France, 17 cen.
    Brass.Missing Jan. 1954
206. FLOATING France,0.1850
    Cylindrical wood box,paper dial 2n dia -2" hi
```

```
207. HORIZONTAL Japan, c. }190
    Wooden cylindrical disc. Paper circle 2" dia - (")}\mathrm{ hi
208. Concave Japan
    Copper cylindrical box 2" dia X 2" hi
209. NOON MARK Japan, 1870
    Wood case 4" dia - 2" hi
210. ASTPOLOGICAL INSTRUNENT Japan; c.1500
    Wood oblate }\mp@subsup{3}{}{\prime\prime}\times\mp@subsup{1}{}{\prime\prime}\mathrm{ thick
217. CONGNVE Japan,c.1900
    Cylindrical wood box 5" dia - I' hi
212. SMALL CLOCK, Japan
    Given to a friend by Dr. Ernst }193
213. CONCAVE Japan
    Lacquered box, silver plated dial 4" dia - 1" hi
214. EQUATORIAL Japan (From Lake Biwa).
        Ivory }\mp@subsup{3}{}{\prime\prime}\times\mp@subsup{1}{}{\prime\prime
215. CONCAVE Japan, C. 1840
        Brass pistol lead dial mounted on back of hammer 8' long
216. MOCK EqUATORIAL Japan
        Silvered brass 2' }\mp@subsup{2}{}{\prime\prime}\times\mp@subsup{1}{}{\prime\prime}-\mp@subsup{2}{}{\prime\prime}h
217. CONCAVE Japan, c.1910
    Horizontal wood box 2H }\times\mp@subsup{2}{}{\prime\prime}\times-\mp@subsup{I}{}{n}\mathrm{ hi
```

218. COMCAVE Japan
Brass dial, wood box $4^{n} \times 2^{n}-1^{n}$ hi
219. Concave Japan
Wooden rectangular box $3^{\prime \prime} \times 21 "^{\prime \prime}-1^{\prime \prime}$ hi brass dial
220. COMPASS Frances 19 th cen
Stlver dial 2^{11} dia $1^{\prime \prime}$ hi
220. GONCAVE Japan
Ivory rectang1e $2^{11} x 1^{14}=1^{17} \mathrm{hi}$
222. CONCAVE Japan
Missing Jan, 1954
221. CONCAVE Japan, c. 1900
Ivory rectangle $2^{11} \times 1^{17}-1^{11}$ hi
222. PIN Japan, c. 1900
W00d rectangle $4^{\prime \prime} \times 2^{n}-1^{\prime \prime}$ hi
223. EQUATORIAL Japan (Bears crest of Tokugawa family) Silver 1" $^{\prime \prime}$ dia - 1^{11} hi
224. NOON MARK Japan

Cylindircal ivory box and cover $2^{\text {tI }}$ dia - $1^{\text {It }} \mathrm{hi}$
227. CONCAVE Japan Wooden rectangular $2^{\prime \prime} \times 1^{\prime \prime}-1^{\prime \prime}$ hi
228. Equatorial Japan Given to a friend by Dr. Ernst 1937
229. FLOATING England, c. 1890

Cylindrical brass box $2^{\prime \prime}$ dia - $1^{\prime \prime}$ hi
230. CONCAVE Japan, c. 1900

Wooden oblate $2^{\prime \prime}$ dia - $2^{\prime \prime} \mathrm{hi}$
231. CONCAVE Japan

Copper silver plated 34 m.m. sq. Missing Jan. 1954
232. HCRIZONTAL France , c. 1860

Folding cardboard circle with paper case 4^{n} dia
233. CONCAVE Japan

Wooden oval box $I^{\prime \prime} \times 1^{\prime \prime}-1^{\prime \prime}$ hi brass compass, dial \& calendar
234. EQUATORIAL Japan,, 1700

Bamboo rectangle $6^{n} \times 2^{\mathrm{n}}$
235. COMPASS Japan

Wood 35 m.m. dia. Missing Jan. 1954
236. conceve Japan

Given to a Iriend by Dr. Ernst
237. TABLET China, 1916
W) Wooder rectangle $2^{2 \prime} \times 2 n \times 1{ }^{n}$ hi
238. TABLET China, 1916

Wooden rectang $103 \prime 2 \times 2^{\prime \prime}-1^{11}$ hi
239. TABEFT Chins, 1916

Wooden rectangle $3^{n} \times 2^{\text {m }}-1^{1 t}$ hit
240. TABLST Chima, 1916
W. Wh Woden rectangle $3^{11} \times 4^{\text {n }}-$ In 10 hi
241. BTRD France, 0.1745 (made by P . Lemaire) Silver octagonal $3^{\prime \prime} \times 3^{n}$
242. concave Japan Olive rood rectangle $8^{\prime \prime} \times 2^{n}-2^{n}$ hi

243. FLOATME
 Card board dial in brass container $2^{n \prime}$ dia - $1^{\prime \prime}$ hi

244. HORIZONTAL U.S.A., late 19th cen Paper Missing Jan. 1954

245. CONCaVE Japan (From Temple of Higashi Hogwangi) Brass compass and dial $3^{\prime \prime} \times 5^{\prime \prime}-3^{\prime \prime}$ hi

[^0]: Harvard College Observatory
 August 1, 1940

