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Measures of entanglement can be employed for the analysis of numerous quantum information protocols. Due
to computational convenience, logarithmic negativity is often the choice in the case of continuous-variable sys-
tems. In this work, we analyze a continuous-variable measurement-based entanglement distillation experiment
using a collection of entanglement measures. This includes logarithmic negativity, entanglement of formation,
distillable entanglement, relative entropy of entanglement, and squashed entanglement. By considering the
distilled entanglement as a function of the success probability of the distillation protocol, we show that the
logarithmic negativity surpasses the bound on deterministic entanglement distribution at a relatively large
probability of success. This is in contrast to the other measures which would only be able to do so at much lower
probabilities, hence demonstrating that logarithmic negativity alone is inadequate for assessing the performance
of the distillation protocol. In addition to this result, we also observed an increase in the distillable entanglement
by making use of upper and lower bounds to estimate this quantity. We thus demonstrate the utility of these
theoretical tools in an experimental setting.
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I. INTRODUCTION

On the one hand, quantum entanglement is a useful non-
classical resource. It can be used for the construction of
quantum gates [1] or for the distribution of cryptographic keys
in a secure manner [2]. On the other hand, implementations
of these tasks are usually limited in performance due to ex-
perimental imperfections. Utilizing a variety of methods such
as photon subtraction [3,4] and noiseless linear amplification
[5,6], entanglement distillation protocols seek a potential res-
olution to this problem by concentrating weakly entangled
states into subsets that are more entangled.

Here we address the problem of quantifying entanglement
distillation; this will, in general, depend on the kind of system
that one is working with. In the case of discrete variables, the
fidelity with respect to some maximally entangled state [7]
and nonlocality based on the Bell inequalities [8] are both use-
ful measures for observing quantum entanglement. However,
these methods are not particularly suitable in the case of con-
tinuous variables. Maximally entangled continuous-variable
states are unphysical, and a theorem from Bell precludes
the demonstration of nonlocality using Gaussian states and
Gaussian measurements (the standard tools for continuous
variable experiments) [9], unless one introduces additional
assumptions on one’s system [10,11]. Thus far, the analy-
ses of continuous-variable entanglement distillation have in-
stead centered around inseparability criteria [12,13] and, most
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notably, the logarithmic negativity [14] as one can calculate it
quite straightforwardly.

In this work, we analyze a continuous-variable
measurement-based entanglement distillation experiment
[5] using a collection of measures. We present two main
results. First, we show that the logarithmic negativity is
distinct from the other measures; it crosses the “deterministic
bound” before the other measures do, at a probability
of success (of the distillation protocol) that is orders of
magnitude greater. The deterministic bound is the maximum
entanglement that can be deterministically distributed across a
given quantum channel (usually imperfect), assuming that one
had an Einstein-Podolsky-Rosen (EPR) resource state with
infinite squeezing. For instance, when the entanglement of
formation crosses this bound, we can take it to indicate a form
of error correction [15], thus giving an example of how the
logarithmic negativity can fail to capture important properties
of distillation protocols. Our results can be regarded as an
experimental demonstration of such an example.

Our second result is the certification of an increase in
the distillable entanglement. Currently, there is no known
way to evaluate the distillable entanglement directly, which
means that one is only able to look at it through the use
of upper and lower bounds [16,17]. The upper bound puts a
limit on how much distillable entanglement we had prior to
distillation, while the lower bound guarantees at least how
much we have after performing distillation. By observing
a sufficient increase in the lower bound, we could certify
that the distillable entanglement has indeed increased. We
remark that the minimization of optical loss and the choice
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of a sharp upper bound turned out to be important factors in
order to observe the increase in the distillable entanglement.
In particular, there are many possible choices for the upper
bound, but the relative entropy of entanglement was found to
be the only one that was sufficiently stringent for this task.

We have organized this paper as follows. In Sec. II, we
provide some background in Gaussian quantum optics and
establish the notations and conventions that will be used
throughout this paper. In Sec. III, definitions of the various
entanglement measures are provided, discussing their basic
properties with an emphasis on operational interpretations. In
Sec. IV, the final section, we briefly describe the experiment
setup and present a discussion of the distillation results based
on the measures.

II. PRELIMINARIES

Gaussian states can be characterized by the first and second
moments of the quadrature operators [18]—also known re-
spectively as the mean fields and the covariance matrix. Since
measures of entanglement depend only on the covariance
matrix, we will assume vanishing mean fields without the
loss of generality. For two-mode Gaussian states, the covari-
ance matrix can be written in block form (using the xpxp
notation [19]):

σ =
[

M C
CT N

]
,

where M, N , and C are real 2 × 2 matrices. In general,
the entries of the covariance matrix depend on the value of
h̄; in this paper, we will normalize to the variance of the
vacuum field, which amounts to setting h̄ = 2. In order for
the covariance matrix to represent a physical state, it is also
required to satisfy the Heisenberg uncertainty principle.

The density matrix of closed quantum systems evolve
under unitaries: ρ̂ → Û ρ̂Û †. In general, representations of
these unitaries in the Fock basis require infinite-dimensional
matrices; if we restrict ourselves to Gaussian operations,
then this can be simplified to the evolution of covariance
matrices: σ → SσST . For two-mode states, each S is a 4 × 4
square matrix and is symplectic with respect to the following
symplectic form:

� =

⎡
⎢⎣

0 1 0 0
−1 0 0 0
0 0 0 1
0 0 −1 0

⎤
⎥⎦.

It satisfies the equation S�ST = �. Every Gaussian unitary
Û is associated with a symplectic matrix. We will find the
following unitary useful:

Ŝ2(r) = er(âb̂−â†b̂† )/2, (1)

which is known as the two-mode-squeezing operator. As
usual, â and b̂ denote the annihilation operators of the
two optical modes. The two-mode-squeezing operator is
parametrized by the squeezing parameter r, with r = 0 cor-
responding to no squeezing and r → ∞ to the limit of infinite
squeezing.

Any given covariance matrix σ can be put into the follow-
ing standard form:

σ =

⎡
⎢⎣

m 0 c1 0
0 m 0 c2

c1 0 n 0
0 c2 0 n

⎤
⎥⎦, (2)

and this can be done using only local Gaussian unitaries [13],
which does not change the entanglement of the state.

One can always diagonalize the covariance matrix using
only symplectic matrices, and the corresponding eigenval-
ues are called symplectic eigenvalues [20]. Of particular
importance are the symplectic eigenvalues of the partially
transposed state. For two-mode Gaussian states, the partial
transpose flips the sign of the phase quadrature, equivalent to
flipping the sign of the c2 entry in the standard form of the
covariance matrix [Eq. (2)]. The symplectic eigenvalues ν̃± of
the partially transposed state are given by

ν̃2
± = �̃ ±

√
�̃2 − 4 det σ

2
, (3)

where �̃ = det M + det N − 2 det C.
For convenience, covariance matrices of the form

σ =

⎡
⎢⎣

m 0 c 0
0 m 0 −c
c 0 m 0
0 −c 0 m

⎤
⎥⎦ (4)

will be called symmetric, while those of the form

σ =

⎡
⎢⎣

m 0 c 0
0 m 0 −c
c 0 n 0
0 −c 0 n

⎤
⎥⎦ (5)

will be called quadrature symmetric. These states form strict
subsets of general two-mode Gaussian states [Eq. (2)] by
imposing different kinds of symmetries.

III. ENTANGLEMENT MEASURES

We present some background on the theory of entangle-
ment measures, including definitions, properties, and formu-
las that will be useful. We note that the problem of computing
entanglement measures is NP-complete for many measures
[21], with analytical expressions available only in restricted
cases that will generally possess some degree of symmetry.
In the special case of the entanglement of formation, such a
restriction will give rise to a simple operational interpretation
in terms of quantum squeezing and thus a connection to the
logarithmic negativity which we briefly discuss.

A. Entanglement entropy

The entanglement entropy EV uniquely determines entan-
glement on the set of pure states. Given the von Neumann
entropy S, with

S(ρ̂ ) = −tr(ρ̂ ln ρ̂ ), (6)
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FIG. 1. An ordering of the measures. If a measure A sits above
B with a line connecting them, then A(ρ̂ ) � B(ρ̂) for all states ρ̂.
If one considers only pure states, then all measures shown in the
diagram (except the logarithmic negativity) reduce to the entangle-
ment entropy. When restricting to pure two-mode Gaussian states,
the logarithmic negativity and the entanglement entropy can also be
regarded as equivalent in the sense of Eq. (13). Citations in the figure
refer to proofs for each inequality.

the entanglement entropy EV is defined to be the von Neumann
entropy of the reduced states [22]:

EV (|ψ〉) = S(ρ̂A) = S(ρ̂B). (7)

The subscripts A and B denote the two subsystems of |ψ〉:
ρ̂A = trB(|ψ〉〈ψ |) and ρ̂B = trA(|ψ〉〈ψ |). For Gaussian states,
the von Neumann entropy depends only on the symplectic
eigenvalues of the covariance matrix.

B. Entanglement cost and distillable entanglement

The extension of the entanglement entropy to mixed states
is not unique. Two possible choices are the entanglement cost
and the distillable entanglement; they are quite fundamental,
since they represent, respectively, the average pure state en-
tanglement that is needed for or that can be extracted from
any given state (usually mixed). The precise definitions are
quite cumbersome to state and somewhat unnecessary for
this paper, but they can be found in, for instance, Horodecki
et al. [23]. The entanglement cost is an upper bound to the
distillable entanglement (Fig. 1), and they both reduce to
the entanglement entropy on the set of pure states. Neither
measure is straightforward to compute in general.

The entanglement cost is the asymptotic (regularized)
version of the entanglement of formation [24], the latter of
which can be computed for two-mode Gaussian states and is
discussed in the next subsection. It follows from this regu-
larization formula (and the subadditivity of the von Neumann
entropy) that the entanglement of formation bounds the entan-
glement cost from above [24,25]; in fact, recent work shows
that the two quantities coincide on a subset of states [26],
but the extent to which their equivalence holds is presently
unknown.

The distillable entanglement, on the other hand, does not
admit any closed expressions that we can evaluate straightfor-

wardly. It can be upper bounded by a number of quantities
(see Fig. 1): the entanglement of formation [27], the relative
entropy of entanglement [28], the squashed entanglement
[29], and the logarithmic negativity [14]; it also admits lower
bounds due to the coherent and reverse coherent information
[30]. We shall find such bounds useful for estimating the
distillable entanglement.

C. Entanglement of formation

The entanglement of formation measures the minimum
cost for producing a state starting from pure entanglement
resources [27]:

EF (ρ̂) = inf

⎧⎨
⎩

∑
j

p jEV
(∣∣ψ j

〉) | ρ̂ =
∑

j

p j

∣∣ψ j
〉〈
ψ j

∣∣
⎫⎬
⎭, (8)

where EV is the entanglement entropy. The infimum runs over
all physical decompositions, including those that involve non-
Gaussian states; however, the minimum is attained by Gaus-
sian states if ρ̂ is a two-mode Gaussian state [31,32]. This
result also implies the equivalence between the entanglement
of formation and the Gaussian entanglement of formation for
two-mode Gaussian states.

Unlike logarithmic negativity, the optimization required by
the entanglement of formation makes computation difficult
[33,34]. A simple operational interpretation of the entangle-
ment of formation manifests when one restricts attention to
quadrature-symmetric states [35], allowing one to interpret
it as the squeezing operations required to produce the state.
Concretely, if σ is a two-mode Gaussian state taking the form
of Eq. (5), then the entanglement of formation of σ is given
by the following analytic expression:

EF (σ ) = cosh2 r0 ln(cosh2 r0) − sinh2 r0 ln(sinh2 r0), (9)

where

r0 = 1

2
ln

√
κ −

√
κ2 − λ+λ−
λ−

, (10)

with κ = 2(det σ + 1) − (m − n)2 and λ± = det M +
det N − 2 det C + 2[(mn + c2) ± 2c(m + n)]. The meaning
of r0 is depicted in Fig. 2—it can be identified as the
minimum amount of two-mode squeezing that is needed to
produce the state σ , corresponding to an optimal choice of the
separable resource. For general two-mode Gaussian states,
the expression [Eqs. (9) and (10)] is a lower bound on the
entanglement of formation and lies relatively close to the
exact value [35].

The symmetry requirements of Eqs. (9) and (10) are,
fortunately, not too stringent; for instance, the standard proto-
cols of entanglement swapping [36] and entanglement-based
quantum key distribution [37] work with entangled resources
of this type. However, experimental implementations of these
protocols will necessarily be imperfect, which means that
quantum states produced in the laboratory are never perfectly
symmetrical. In such cases, numerical methods for calculating
the entanglement of formation of arbitrary two-mode Gaus-
sian states can be quite useful [34,38,39].
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FIG. 2. A comparison of the logarithmic negativity (equivalently, the PPT criterion) and the entanglement of formation. The operational
interpretations of the two measures can be illustrated in terms of quantum squeezing, and the picture above holds for two-mode Gaussian
states that are symmetric in quadratures [those represented by Eq. (5)]. The minimum two-mode squeezing required to produce the entangled
state corresponds to the entanglement of formation, while the maximum local squeezing that can be extracted from the entangled state can be
identified with the symplectic eigenvalue ν̃− and hence with the logarithmic negativity as well. The decomposition of two-mode squeezing into
single-mode squeezers and passive operations has been shown explicitly; in addition, the beam-splitting ratio T that achieves maximal local
squeezing will, in general, be state dependent. The separable resource need not be symmetric [i.e., of the form in Eq. (4)] if the entangled state
is not and can also support nonvanishing correlations across the two modes as long as it remains separable.

D. Logarithmic negativity

For arbitrary density matrices ρ̂, the logarithmic negativity
EN is defined to be [14]

EN (ρ̂ ) = ln ||ρ̂PT||1. (11)

The symbol || · ||1 denotes the trace norm, the notation PT is
shorthand for the partial transpose. For two-mode Gaussian
states σ , the logarithmic negativity is a simple function of the
symplectic eigenvalue of the partially transposed state ν̃−:

EN (σ ) =
{

0, if σ is separable
− ln ν̃−, otherwise . (12)

It is thus a good indicator of inseparability by virtue of
the positive partial transpose (PPT) criterion [40,41], which
states that a Gaussian state is separable if and only if ν̃− � 1
[12]. The logarithmic negativity coincides with the exact PPT-
entanglement cost [42].

While the symplectic diagonalization of two-mode Gaus-
sian states will lead to uncorrelated thermal states, the sym-
plectic diagonalization of its partial transpose will lead to
squeezing. It is easy to see that the maximum amount of
local squeezing one can obtain from a two-mode Gaussian
state is given by the symplectic eigenvalue of its partial
transpose ν̃− and that this can be achieved by interfering the
two modes on a beamsplitter (Fig. 2). Although it does not
hold in the most general case of Eq. (2), it does hold up
to states with the symmetries of Eq. (5). As a consequence
of this operational interpretation for ν̃−, it is related to the
entanglement of formation through the following inequality
[Ref. [39], Eq. (43)]:

ν̃− � e−2r0 , (13)

which essentially expresses the conservation of squeezing.
The equality is attained by symmetric states, but the two
measures are in general not equivalent. It has also been con-
jectured that e−2r0 is bounded from below by some nontrivial
function of ν̃− [39], and the gap between the upper and lower
bounds would imply that the two measures do not impose
the same ordering on quantum states. The disagreement of

measures on the ordering of states holds quite generally for
the other entanglement measures as well [43].

E. EPR steering

By performing measurements of different observables on
one party of an entangled state, it is possible to steer the
other party into different types of quantum states [44–46]. In
continuous-variable quantum optics, EPR steering can occur
when any of the following inequalities on the conditional
variances is violated [47]:

EA>B = VxB|xAVpB|pA � 1,

EB>A = VxA|xBVpA|pB � 1.

The symbol VxA|xB denotes the conditional variance of the
quadrature x̂A given x̂B, with the other quantities interpreted
in a similar fashion. The subscripts A and B denote two
parties sharing a bipartite entangled state. Two inequalities
instead of one is necessary for describing steering, because
it is a directional quantity. If we assume, without the loss
of generality, that entanglement is generated by the party A
and distributed to the party B, then we call EA>B forward
steering and EB>A reverse steering. The party that performs the
measurement is the party that performs steering; that would be
A in the case of EA>B and B in the case of EB>A. It is possible
for a quantum state to be steerable in one direction but not in
the other. In this case, only one of the inequalities above is
violated.

EPR steering is not a measure of entanglement, since
it does not characterize the separability of quantum states
[48–50]. It is a sufficient condition for inseparability but not a
necessary condition—there exists quantum states that are en-
tangled but not steerable in either direction. We note that EPR
steering has found applications in quantum key distribution—
in particular, one-sided device-independent quantum key dis-
tribution [51,52]—where the secure keyrate turned out to be a
simple function of EPR steering.
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F. Relative entropy of entanglement

The quantum relative entropy between any pair of density
operators ρ̂ and σ̂ is defined to be

S(ρ̂||σ̂ ) = trρ̂(ln ρ̂ − ln σ̂ ). (14)

The relative entropy of entanglement of ρ̂ is then defined by
minimizing the relative entropy over separable states [50]:

ER(ρ̂) = inf
σ̂ separable

S(ρ̂||σ̂ ). (15)

By construction, it is zero if and only if ρ̂ is separable. The
relative entropy of entanglement is an upper bound to the
distillable entanglement and a lower bound to the entangle-
ment of formation [28]. One can further specialize the domain
of optimization to Gaussian states, leading to the Gaussian
relative entropy of entanglement [53,54]:

EGR(ρ̂ ) = inf
σ̂ separable
σ̂ Gaussian

S(ρ̂||σ̂ ). (16)

The separable state which achieves the minimum of Eq. (15)
is called the closest separable state, and can be non-Gaussian
even if ρ̂ is Gaussian [55]; hence, the relative entropy of en-
tanglement and its Gaussian approximation are not equivalent.

One does not have closed expressions for the relative
entropy of entanglement in general [56]. Although there are
numerical methods based on semidefinite programming [57],
this technique is ill suited in terms of computational time and
memory requirements for continuous-variable systems; in this
paper, we will simply use the Gaussian relative entropy of
entanglement as an approximation. We show that the approx-
imation is good in the regime that we care about. Finally, we
note that the relative entropy of entanglement has been applied
to the study of quantum repeaters; it is an upper limit on the
channel capacity, when one does not have access to a quantum
repeater [58].

G. Squashed entanglement

Squashed entanglement is a measure based on the condi-
tional mutual information [29]:

Esq(ρ̂AB) = 1

2
inf
ρ̂ABE

I (A : B|E ), (17)

where one tries to minimize the conditional mutual informa-
tion I (A : B|E ) = S(ρ̂AE ) + S(ρ̂BE ) − S(ρ̂E ) − S(ρ̂ABE ) over
all purifications ρ̂ABE of the bipartite state ρ̂AB. The subscripts
A, B, and E denote the corresponding subsystems similar to
that in Eq. (7). The optimization is difficult to perform, but one
can exploit clever choices of the purification to obtain bounds
on the squashed entanglement [59]. Like the relative entropy
of entanglement, squashed entanglement is a bound on the
capacities of quantum communication channels; furthermore,
it satisfies many axioms of entanglement theory that other
measures do not [60].

H. Coherent information

The coherent [61] and reverse coherent information [62,63]
are defined as

IC (ρ̂) = S(trAρ̂ ) − S(ρ̂ ), (18)

IRC(ρ̂) = S(trBρ̂ ) − S(ρ̂ ), (19)

and, as usual, the A and B subscripts denote subsystems of the
bipartite state ρ̂. These two measures are not entanglement
measures in the axiomatic sense [50]; however, they satisfy
the hashing inequality [30,58]:

max(IC (ρ̂), IRC(ρ̂)) � ED(ρ̂), (20)

where ED denotes the distillable entanglement. By virtue of
the hashing inequality, the coherent and reverse coherent
information provide sufficient conditions for inseparability
and play the role of a lower bound in characterizing com-
munication channels [58]. This is in contrast to the relative
entropy of entanglement and squashed entanglement, which
would both correspond to upper bounds.

To conclude this section, we emphasize that we have
made a choice to work with one particular type of quantum
correlation—namely quantum entanglement. It is a suitable
choice for the analysis of entanglement distillation which we
present in the next section. Other interesting options include
discord measures [64], a measure of squeezing [65], and
coherence measures [66]; however, we will not attempt to
pursue these directions here.

IV. EXPERIMENT

A. Entanglement generation and processing

We study measurement-based distillation of quantum en-
tanglement using recent advances in entanglement theory. The
experiment setup (Fig. 3) consisted of a pair of bow-tie optical
parametric amplifiers driven at 532 nm, with bright squeezed
light generated at 1064 nm. The two beams were combined on
a balanced beamsplitter, with a relative phase of π/2 to give
Einstein-Podolsky-Rosen entanglement. One mode of this
EPR pair was sent through a communication channel. Under
the assumption that the quantum state is Gaussian, we can
describe the state using just the first and second moments; five
hundred sets of two million optical quadrature measurements
were collected from each homodyne detector, retaining the
3- to 4-MHz narrowband through digital high-pass and low-
pass filtering. Measurement-based entanglement distillation
was performed using an approach similar to Ref. [5], by
postprocessing the homodyne measurement data.

In practice, the communication channel through which we
distribute the entanglement will be lossy; here we will assume
that the loss is entirely passive and model it as a beamsplitter
with fixed transmissivity. This was implemented using a po-
larizing beamsplitter preceeded by a half-wave plate. As we
vary the loss, we can compare the logarithmic negativity and
the entanglement of formation using the effective squeezing,
which varied according to Fig. 4. We use the term “effective
squeezing” of the logarithmic negativity and the entanglement
of formation to refer to the quantities ν̃− and exp(−2r0),
respectively. These quantities characterize the respective
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FIG. 3. Schematic of the measurement-based noiseless linear amplification (MBNLA) experiment [5]. Squeezed states were generated
from a pair of bow-tie cavities using the optical χ (2) nonlinearity and combined on a balanced beamsplitter to generate Einstein-Podolsky-Rosen
entanglement. One of the beams from the EPR is sent through a communication channel that has optical loss, while the other is sent to a
homodyne for verification; the transmission of the channel was characterized by optical heterodyne detection. Postprocessing was applied on
the data collected from the homodynes to emulate noiseless linear amplification and thus the distillation of entanglement. H, half-wave plate;
Q, quarter-wave plate; PBS, polarizing beamsplitter; CW, continuous wave; PPKTP, periodically poled potassium titanyl phosphate.

measures and, at the same time, can be interpreted as quantum
squeezing (Secs. III C and III D.) At unity transmissivity (no
loss), the state is symmetric but mixed, due to decoherence
in the entanglement generation process. Despite the mixture,
the measures remain equivalent due to the symmetry. In the
presence of loss, the states are asymmetric and the measures
are no longer equal. This is with the exception of maximal
loss (zero transmissivity), where nothing is transmitted and
the state is separable. All measures register effectively no
squeezing in this case, which corresponds to unity when
expressed as a variance.

The effects of passive loss can be mitigated through the use
of noiseless linear amplification (NLA) [67,68]. This peculiar
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FIG. 4. Distribution of an entangled state through channels with
various amounts of optical loss. Circles and crosses are from experi-
ments, solid lines are theory, and the shaded region above the dashed
line correspond to separable states. We include a meter below the
figure, which gives the loss-equivalent distance assuming telecom
wavelength (i.e., 1550 nm), with the ticks distributed according to a
logarithmic scale.

amplifier can be described by an unbounded operator gn̂,
where g represents the amplitude gain. Acting the noiseless
linear amplifier on a coherent state will amplify the complex
amplitude without increasing the noise, while acting it on
a continuous-variable EPR state with loss would lead to a
state with increased squeezing and reduced loss [67]. Due to
the unbounded nature of the NLA operator, implementations
are necessarily approximate; in order to avoid violating the
Heisenberg uncertainty principle, they must also be nondeter-
ministic [69]. Experimental implementations of the NLA are
subject to additional limitations, such as restrictions on the
size of the input coherent amplitudes to small values [70].

In this paper, a virtual implementation of the noiseless
linear amplifier [5] has been chosen due to the ease of
implementation. An NLA followed by optical heterodyning
is equivalent to heterodyning followed by data processing;
thus one is able to implement the noiseless linear amplifier
in the form of data processing, provided that one performs a
heterodyne measurement. Concretely, one takes each outcome
α of the heterodyne and postselects it with an acceptance
probability given by [71]:

P(α) =
{

e(1−1/g2 )(|a|2−|αc|2 ), |α| � |αc|
1, |α| > |αc| , (21)

where g corresponds to the amplitude gain and αc is a con-
stant which specifies a cutoff. One then scales the successful
events by multiplication: α �→ α/g. The postselection and
rescaling make up the data-processing stage which emulates
the noiseless linear amplifier. The closeness by which this
measurement-based implementation approximates the true
NLA depends on the cutoff—a larger cutoff will improve
the approximation at the expense of a smaller probability of
success [72].

B. Experiment analysis

The results of the analysis is presented in Figs. 5, 6,
and 8. We considered three different settings of loss—90%
[Figs. 5(a), 5(b), and 8(a)], 50% [Fig. 8(b) and 8(c)], and
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FIG. 5. Entanglement measures as a function of the probability
of success. The optical loss was set to 90%. Circles correspond
to experiment data (from top: logarithmic negativity, entanglement
of formation, squashed entanglement, relative entropy of entan-
glement), solid lines to theory calculations, dashed lines to the
(measure-dependent) deterministic bound (from top: entanglement
of formation, logarithmic negativity, squashed entanglement, relative
entropy of entanglement and distillable entanglement superimposed),
and error bars represent 1.5 standard deviations over 100 repeated
runs of postselection. The theory line can be calculated straightfor-
wardly, assuming that the state is Gaussian (fitted to the measured
covariance matrix) and that the postselection filter is ideal (i.e.,
infinite cutoff). The data points show positive bias relative to the
theory model, which correspond to deviations from normality due to
experimental imperfections and to the nonideal filter implementation
[Eq. (21)]. (a) Both measures increase with decreasing probability of
success, but only logarithmic negativity surpassed the deterministic
bound. (b) All of the measures in this figure lie below their respective
deterministic bounds. The distillable entanglement is bounded from
above by the relative entropy of entanglement, and this is represented
by the orange region; in the case of the deterministic bound, the
two measures coincide (represented by the overlaying orange and
rose-colored dashed lines).

0% (Fig. 6). For each loss, the maximum gain g for the
postselection filter was set to 1.6, 1.4, and 1.28, respectively,

with unity gain corresponding to no postselection. We make
the Gaussian assumption and infer the effective quantum
state conditioned on successful postselection by calculating
the covariance matrix of the postprocessed data. The cutoff
for the filter was chosen to be large enough to justify the
Gaussian assumption to at least 95% using the Jarque-Bera
test of normality, which is based on skewness and kurtosis (the
third and fourth moments). The entanglement measures may
finally be evaluated on these effective states. We remark that
different values of loss played different roles—a large amount
of loss (90%) draws a clear distinction between logarithmic
negativity and the other entanglement measures, a moderate
amount of loss (50%) highlights the directionality of EPR
steering and of coherent information, and a minimal amount
of loss (0%) allows us to certify an increase in the distillable
entanglement.

In Figs. 5 and 8, all measures indicate increasing entangle-
ment with decreasing probability of success, as they should.
What is perhaps more interesting is a comparison with the
deterministic bound—that is, the maximum entanglement that
can be transmitted through the channel in a deterministic
fashion using an EPR resource with infinite squeezing. The
resulting state is known as the Choi state of the channel [73].
We note that the deterministic bound is measure dependent,
corresponding to the values of each measure evaluated on the
Choi state. In Fig. 5(a), we see that logarithmic negativity
crosses its deterministic bound at a relatively large proba-
bility of success, whereas the other measures will also cross
their respective bounds but at much lower probabilities. The
entanglement of formation was particularly far away from
the bound even at the small success probability of 10−6,
although it can in principle cross the bound at sufficiently low
probabilities of success [15]. We attribute this discrepancy to
the operational meanings of the measures. The entanglement
of formation measures the squeezing operations needed to
produce an entangled state, while the logarithmic negativity is
related to local squeezing that can be extracted from the state.
The deterministic bound corresponds to a state for which a
lot of squeezing is needed to produce it, but not much can
be extracted from it; thus possessing a large entanglement of
formation but a lower logarithmic negativity.

Results for the relative entropy of entanglement, for the
squashed entanglement, and for the distillable entanglement
are shown in Fig. 5(b). We approximate the relative entropy
of entanglement using its Gaussian version (as explained
in Sec. III F), numerically performing the minimization of
Eq. (16) over separable two-mode Gaussian states. This
approximation works relatively well when there is a large
amount of loss (Fig. 7). Finally, the deterministic bound can
be calculated analytically [58], and one finds that the relative
entropy of entanglement does not cross the deterministic
bound. We emphasize that the effects of noiseless linear
amplification—the increase in squeezing and the reduction of
loss [67]—guarantees that any measure must cross the bound
at sufficiently small probabilities of success. However, the
value of the probability of success might be too small to be
accessed in the experiment, which is the case here.

Another important point to note for Fig. 5(b) is that the
deterministic bound for the relative entropy of entanglement
coincides with the bound for the distillable entanglement [58].
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FIG. 6. Demonstrating an increase in the distillable entangle-
ment. The loss was set to 0%. The distillable entanglement is
bounded from above and from below by the relative entropy of
entanglement and the reverse coherent information, respectively. The
boundary of the blue shaded region is a horizontal line correspond-
ing to the relative entropy of entanglement at unity probability of
success, and values of the reverse coherent information lying above
this line imply an increase in the distillable entanglement. The theory
lines (given by the solid lines) in this figure assumes a finite cutoff,
with the case of infinite cutoff also calculated for the reverse coherent
information (dotted line), showing that its values are smaller but
remains outside the blue region at small probabilities of success.

This is a useful fact for showing that the distillable entangle-
ment does not cross the bound either. Although we cannot
calculate the distillable entanglement directly (for general
states other than the Choi state), we can bound it from above
using the relative entropy of entanglement, as illustrated by
the orange-shaded region in Fig. 5(b). This region lies below
the deterministic bound, thus demonstrating that the distillable
entanglement does not cross the bound.

We stress that the logarithmic negativity and the entan-
glement of formation are unable to provide evidence of this,
despite being upper bounds of the distillable entanglement
like the relative entropy of entanglement is. Both measures
cross the deterministic bound that is given by the distillable
entanglement, which one can read off Fig. 5(b) to be ap-
proximately 0.1 in value; thus these measures are unable to
rule out the possibility that the distillable entanglement could
have crossed the deterministic bound. As we have discussed
in the previous paragraph, this cannot be true because the dis-
tillable entanglement is always less than the relative entropy
of entanglement, which is in turn less than the deterministic
bound of the distillable entanglement. The conclusion that the
distillable entanglement did not cross the deterministic bound
can only be drawn using the relative entropy of entanglement
as the upper bound.

Figure 5(b) also shows results for squashed entanglement.
Squashed entanglement is one of the measures for which
there exist no convenient methods for calculating it; at best,
we have a handful of bounds. For the case of two-mode
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FIG. 7. A comparison of the relative entropy of entanglement
and its Gaussian approximation. Inset shows the convergence of the
numerical optimization for the relative entropy of entanglement as
a function of the photon number cutoff; the cutoff is necessary as
we are approximating a continuous-variable system using a finite-
dimensional density matrix. The loss was set to 90%, and in such a
case we find the two measures to be almost indistinguishable.

Gaussian states, one of the best-known bounds is given in
Ref. [59]; it can be evaluated for arbitrary phase-insensitive
Gaussian channels and hence for states of the form Eq. (5)
but not for those in the general form of Eq. (2). We note
that such a requirement can be addressed by simply averaging
the correlations of the amplitude and the phase quadratures,
which are sufficiently close for the two-mode squeezed state
generated in this experiment. As shown in Fig. 5(b), squashed
entanglement does not cross the bound; however, one should
keep in mind that the values for the squashed entanglement
are approximations in the form of an upper bound and not the
actual value of the measure itself.

We pause briefly to discuss the significance of the collec-
tive results in Fig. 5. The crossing of the deterministic bound
by the logarithmic negativity suggests that the distilled state
is better than the Choi state (i.e., an EPR state with infinite
squeezing transmitted through the same communication chan-
nel). The possibility of doing better than the Choi state is
certainly not forbidden by the laws of quantum mechanics
and can, for instance, be achieved by using the noiseless
linear amplifier with very large gains [67]. Nonetheless, we
found that the logarithmic negativity has apparently “jumped
the gun”—it suggests that this has already been achieved in
the present experiment when all the other measures indicate
otherwise. Thus, we have demonstrated a drawback for using
the logarithmic negativity as the figure of merit, which is
perhaps the price that one has to pay since it can be calculated
so trivially.

Returning to the analysis, we consider the distillable en-
tanglement in Fig. 6. It is similar to squashed entanglement in
the sense that neither can be evaluated using straightforward
means, but they differ because some of the bounds on the
distillable entanglement are rather stringent [58]. We employ
these stringent upper and lower bounds on the distillable
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entanglement to demonstrate an increase in this quantity in
the case of the lossless channel. We note that such a task
would have been trivial if we knew how to calculate the
measure—the need for using bounds in the case of the dis-
tillable entanglement is precisely because there is no method
for calculating it directly.

Similarly to Refs. [16,17], we use the reverse coherent
information to bound the distillable entanglement from be-
low; however, we use the relative entropy of entanglement
instead to bound it from above (as opposed to using the
logarithmic negativity in Refs. [16,17]). If, after performing
the entanglement distillation, the reverse coherent information
ends up greater than the relative entropy of entanglement that
we had started off with (indicated by the orange shading in
Fig. 6), one may conclude that the distillable entanglement has
increased. If the reverse coherent information remains smaller,
then no conclusion can be drawn (corresponding to the blue
shading). Figure 6 shows values of the reverse coherent in-
formation surpassing the bound given by the relative entropy
of entanglement at low probabilities of success and hence an
increase in the distillable entanglement. We remark that these
results are fundamentally limited by state preparation and
measurements—it cannot be improved simply by adjusting
the postselection settings, due to excess noise and to the
diminishing probability of success. In addition, the upper
bound and the channel transmissivity cannot be arbitrary.
There are other choices for the upper bound (Sec. III B), and
one can also consider other settings for the loss (anything
between 0% and 100%); however, no increase in the distillable
entanglement was observed in any of these cases using the
method presented above. In this sense, the results in Fig. 6 is
optimal.

Adding to the collection, we consider relatives of entangle-
ment measures. These are not proper entanglement measures
in the axiomatic sense. Figure 8(a) illustrates the inseparabil-
ity criteria for two-mode Gaussian states; the sum criterion
[13] displays similar behavior to the PPT criterion, as both
measures deal with the extraction of squeezing from entangled
states [74]. The sum criterion relies on an extraction protocol
that is suboptimal compared to the PPT criterion, and hence
its values are closer to the separable boundary. Both are, of
course, equally valid for certifying inseparability.

In Fig. 8(b) we show the results for EPR steering, a
directional quantity for which the properties depend on the
direction of interest. Reverse steering is particularly suscep-
tible to loss, where an entangled state transmitted through
50% of loss would not be steerable in the reverse direction.
It is interesting to note that, for this particular case, violation
of the EPR steering criterion is equivalent to surpassing the
deterministic bound. This is not true in general. By performing
noiseless linear amplification, one is able to recover reverse
steering beyond the deterministic bound at reasonable suc-
cess probabilities, and one may compare this with forward
steering—the deterministic bound is smaller to begin with and
is also much harder to beat. Reverse steering is sensitive to
loss because one is trying to steer using the lossy mode—most
of the information about the entangled state has already been
lost to the environment. In the case of direct steering, there is
an advantage since one is using the mode that does not suffer
from the loss of the channel.
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FIG. 8. Relatives of entanglement measures. The loss in (a) was
set to 90%, while that in (b) and (c) is 50%. The data points (from
top: sum criterion, PPT criterion, reverse steering, forward steering,
reverse coherent information, coherent information), theory lines,
deterministic bounds (from top: sum criterion and PPT criterion
superimposed, reverse steering, forward steering, reverse coherent
information, coherent information), and the error bars should be
interpreted in the same way as those for Fig. 5. Noiseless linear
amplification is useful for recovering forward steering and coherent
information but less so for the other direction which is more robust
to loss.
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Finally, we consider the coherent information and the re-
verse coherent information, which are related to entanglement
through the hashing inequality [Eq. (20)]. The reverse coher-
ent information is robust against loss for the same reason that
direct steering is; likewise, the coherent information is fragile
the same way reverse steering is susceptible to loss [Fig. 8(c)].
The reverse coherent information is always positive even
when no noiseless linear amplification was performed, while
the coherent information was not initially positive but could
be recovered at some small probability of success that is just
out of reach in this experiment. Due to the robustness of the
reverse coherent information, the deterministic bound is much
harder to surpass.

V. CONCLUSION

By analyzing a measurement-based entanglement distilla-
tion experiment using a collection of measures, we showed
that the logarithmic negativity exhibits behavior quite distinct

from the others. It would make us believe that more entan-
glement has been distilled than what is offered by the deter-
ministic bound, in stark contrast to what the other measures
suggest. In addition to this result, we were also able to certify
an increase in the distillable entanglement (in the case of the
lossless channel), relying primarily on a judicious choice of
the upper bound in order to estimate this quantity accurately.
The work we have presented is useful for analyzing entan-
glement distillation but can also be extended to more general
situations; this includes entanglement swapping, for instance,
and the analysis of quantum repeaters in general.
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