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Doubly periodic solutions of the class-I infinitely extended nonlinear Schrödinger equation
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We present doubly periodic solutions of the infinitely extended nonlinear Schrödinger equation with an
arbitrary number of higher-order terms and corresponding free real parameters. Solutions have one additional
free variable parameter that allows one to vary periods along the two axes. The presence of infinitely many free
parameters provides many possibilities in applying the solutions to nonlinear wave evolution. Being general, this
solution admits several particular cases which are also given in this article.
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I. INTRODUCTION

Evolution equations are a powerful tool for describing a
great variety of physical effects. These include pulse propaga-
tion in optical fibers [1,2], nonlinear ocean wave phenomena
[3,4], plasma [5,6] and atmospheric [7,8] waves, and the
dynamics of Bose-Einstein condensates [9–11] to mention
only a few. Using evolution equations, one can explain phe-
nomena that would otherwise be difficult to interpret. Exam-
ples of such phenomena include solitons [12,13], modulation
instability [14–16], supercontinuum generation [17], Fermi-
Pasta-Ulam recurrence [18], rogue waves [19–23], etc. It is
especially helpful when the evolution equations under study
are integrable [24]. Unfortunately, this is not always the case.
Not all evolution equations are integrable [25–27]. Finding
new integrable equations [28–30], and extending the existing
ones to allow for incorporating new, physically relevant terms
[31–35], is therefore an important direction of research in
nonlinear dynamics.

The nonlinear Schrödinger equation (NLSE) is one of the
fundamental examples of a completely integrable equation
[36,37] which finds application in the description of water
waves [38], pulses in optical fibers [39], among other areas
of physics. In neither of these fields is the NLSE absolutely
accurate. Extensions of the NLSE that have physical relevance
are therefore essential, and these have been considered in a
number of works that include both optical applications and
water waves [26,27].

In general, these extensions lift the integrability for most
particular physical problems. However, in special cases, we
can obtain extensions which remain integrable, and, in ad-
dition, we can add infinitely many higher-order terms with
variable coefficients representing the strength of these effects,
adding substantial flexibility to the evolution equation.

There are two types of extensions of the NLSE [40–44].
For clarity, we call them here the class-I and class-II exten-
sions. The next higher-order terms in the class-I extension
correspond to the Hirota equation [40–42], while the next
higher-order terms in the class-II extension correspond to the
Sasa-Satsuma equation [43,44].

Both of these extensions take into account higher-order
dispersive effects, without any restriction on the magnitude

of these effects, i.e., without requiring them to be small
perturbations. In practice, waves are affected by more than just
second-order dispersion, so solutions to the infinite equations
are an important development in that they allow a generaliza-
tion of the fundamental structures which appear in the “basic”
nonlinear Schrödinger equation to account for these effects.
When the number of higher-order terms is limited to the third
order, integrability can be achieved with the variation of two
free parameters [45]. For infinitely extended equations, the
number of free parameters is also infinite.

The presence of two classes of integrable extensions thus
widens the range of problems that can be solved analytically.
Remarkably, solutions to both classes can be found in general
form, even for the case of an infinite number of terms, and
an infinite number of corresponding parameters. In order to
find these solutions, we can start with the known solutions of
the NLSE and extend them, recalculating the parameters of
the solution. This can be done for soliton, breather, and rogue
wave solutions [41,42]. In the present work, we further expand
this approach to doubly periodic solutions. They include as
particular cases solitons and breathers.

To be specific, we start with the standard focusing NLSE,

i
∂ψ

∂x
+ α2

(
∂2ψ

∂t2
+ 2|ψ |2ψ

)
= 0, (1)

where ψ = ψ (x, t ) is the wave envelope, x is the distance
along the fiber or along the water surface, while t is the
retarded time in the frame moving with the group velocity
of wave packets. The coefficient α2 scales the dispersion and
nonlinear terms in a way convenient for the extensions. The
infinite extension of Eq. (1) can be written in the form

i
∂ψ

∂x
+

∞∑
n=1

(α2nK2n[ψ] − iα2n+1K2n+1[ψ]) = 0, (2)

where the Kn[ψ] are nth-order differential operators, and the
coefficients αn are arbitrary real numbers.

Here, we deal with the class-I extension, and exact forms
for the class-I form of the operators Kn[ψ] are given in
Ref. [41]. The four lowest-order operators Kn are presented
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below:

K2[ψ] = ψtt + 2|ψ |2ψ,

K3[ψ] = ψttt + 6|ψ |2ψt ,

K4[ψ] = ψtttt + 8|ψ |2ψtt + 6ψ |ψ |4 + 4ψ |ψt |2 + 6ψ2
t ψ∗

+ 2ψ2ψ∗
tt .

K5[ψ] = ψttttt + 10|ψ |2ψttt + 10(ψ |ψt |2)t + 20ψ∗ψtψtt

+ 30|ψ |4ψt . (3)

The coefficients αn determine the strength of the dispersive
effects of order n, as well as higher-order nonlinear effects.
The whole infinite equation (2) is integrable for arbitrary
values of αn. For example, the equation with the terms up to
the third order is the Hirota equation,

i
∂ψ

∂x
+ α2

(
∂2ψ

∂t2
+ |ψ |2ψ

)
− iα3

(
∂3ψ

∂t3
+ 6|ψ |2 ∂ψ

∂t

)
= 0,

(4)

while including up to fourth-order terms gives the
Lakshmanan-Porsezian-Daniel (LPD) equation [31], and so
on. Particular solutions of the first order to Eq. (2) have been
given in Refs. [41,42]. Solutions of the modified Korteweg–de
Vries (mKdV) equation, which is a particular case of (2), are
provided in Ref. [46]. Thus, any of the extensions of (2) with
only a few nonzero terms can be considered individually.

Among the more general families of solutions to the non-
linear Schrödinger equation (1) are the doubly periodic solu-
tions [47]. The two periods of this family can be varied, thus
providing particular cases in the form of solitons, breathers,
cnoidal, dnoidal, and Peregrine waves when one or two of
these periods tend to infinity or zero [47]. Unlike breather
solutions, however, these doubly periodic solutions do not
decay in either space or time, and instead have the special
property of being periodic in both the x and t variables.

In this article, we show that doubly periodic solutions
can be found for the class-I equation. This solution includes
infinitely many parameters αn in full generality. We also
show that particular limiting cases of this family include the
Akhmediev breather and soliton solutions.

II. DOUBLY PERIODIC SOLUTIONS

There are two types of doubly periodic solutions to the non-
linear Schrödinger equation, which can be classified as type-A
and type-B [48]. Each of them is expressed in terms of Jacobi
elliptic functions, with the modulus k as the free parameter of
the family. First, we consider the type-A solutions.

A. Type-A solutions

Type-A solutions of Eq. (2) are of the form

ψ (x, t ) = k sn(Bx/k, k) − iC(t + vx) dn(Bx/k, k)

k − kC(t + vx) cn(Bx/k, k)
eiφx, (5)

where

C(t ) =
√

k

1 + k
cn

(√
2

k
t,

√
1 − k

2

)
.

The constants B, v, and φ in the solution (5) are given in
terms of the coefficients αn of Eq. (2). Taking into account
the lowest-order terms, step by step, we find

B = 2α2 + 8α4 +
(

32 − 4

k2

)
α6

+
(

128 − 32

k2

)
α8 +

(
512 − 192

k2
+ 12

k4

)
α10

+
(

2048 − 1024

k2
+ 144

k4

)
α12 + · · ·, (6)

φ = 2α2 +
(

8 − 2

k2

)
α4 +

(
32 − 12

k2

)
α6

+
(

128 − 64

k2
+ 6

k4

)
α8 +

(
512 − 320

k2
+ 60

k4

)
α10

+
(

2048 − 1536

k2
+ 432

k4
− 20

k6

)
α12 + · · ·, (7)

v = 4α3 +
(

16 − 2

k2

)
α5 +

(
64 − 16

k2

)
α7

+
(

256 − 96

k2
+ 6

k4

)
α9 +

(
1024 − 512

k2
+ 72

k4

)
α11

+
(

4096 − 2560

k2
+ 576

k4
− 20

k6

)
α13 + · · · . (8)

An important observation here is that the expression for v

which is responsible for the “tilt” in the (x, t ) plane discussed
below includes only odd-order coefficients αn. If these are
zero, v is also zero.

In order to determine the general forms, with all αn in-
cluded, we note that only one of these sets of polynomial
coefficients is algebraically independent. The coefficient of
α2n+1 in v is half the coefficient of α2n in B, and is also the sum
of the coefficients of α2n in B and φ. It is therefore sufficient
to determine the coefficients of B, since, if we let

B =
∞∑

n=1

Bnα2n,

then

v =
∞∑

n=1

1
2 Bn+1α2n+1, φ =

∞∑
n=1

(
1
2 Bn+1 − Bn

)
α2n.

Calculating further the other terms of Bn, we find that they are
the polynomials

Bn = 22n−1

⌊ 1
2 n

⌋∑
r=0

(−1)r (2r)!(n − r − 1)!

24r (r!)3(n − 2r − 1)!

1

k2r
,

where the summation ends at � 1
2 n� terms, �·� being the floor

function, i.e., �m� is the largest integer which is not greater
than m. Now the full expression for B is given explicitly by
the series formula

B =
∞∑

n=1

22n−1

⌊ 1
2 n

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r − 1

r

)
1

k2r
α2n. (9)
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FIG. 1. Type-A solution for Eq. (2), with k = 0.7, αn = 1/n! up
to n = 10 and all other αn = 0. Notice that v is nonzero.

It also follows that

v =
∞∑

n=1

22n

⌊ 1
2 (n+1)

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r

r

)
1

k2r
α2n+1, (10)

and the phase factor φ is

φ =
∞∑

n=1

22n−1

⎧⎪⎪⎨
⎪⎪⎩2

⌊ 1
2 (n+1)

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r

r

)
1

k2r

−

⌊ 1
2 n

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r − 1

r

)
1

k2r

⎫⎪⎪⎬
⎪⎪⎭α2n. (11)

We plot an example of the type-A solution for Eq. (2) in
Fig. 1. For this example, we take the modulus k = 0.7, and
the coefficients αn = 1/n! up to n = 10, restricting ourselves
with the case when all terms higher than n = 10 are zero. We
can see from Fig. 1 that v introduces a tilt to the solutions and
appears to operate similarly to a velocity parameter in a boost
transformation. However, note that v cannot be interpreted
exactly as a velocity, as there is no function f such that
we could write ψ (x, t ) = f (t + vx) as we could do with a
traveling wave, except in the case that φ = B = 0.

From Eq. (5), we can see that the parameter B/k can be
associated with a frequency of the modulation along the x axis
when v = 0. On the other hand, the real quarter period along
the t axis is √

k

2
K

(√
1 − k

2

)
,

where K (k) denotes the complete elliptic integral of the first
kind with modulus k. However, just as v cannot be precisely
interpreted as a velocity, neither can B/k be thought of as
a modulation frequency exactly, except when v = 0 and the
solution is periodic along the x axis.

FIG. 2. The limiting case k → 1 of the type-A solutions, with
αn = (n!)2/(2n)! up to n = 12, all other αn = 0. This is the Akhme-
diev breather solution of Eq. (2), periodic in t , and with the growth-
decay cycle in x.

B. The Akhmediev breather limit

In the limit as the modulus k → 1, we have

lim
k→1

B =
∞∑

n=1

(
2n

n

)
nF

(
1 − n, 1; 3

2 ; 1
2

)
α2n, (12)

lim
k→1

φ =
∞∑

n=1

(
2n

n

)
α2n, (13)

lim
k→1

v =
∞∑

n=1

(
2n

n

)
(2n + 1)F

(−n, 1; 3
2 ; 1

2

)
α2n+1, (14)

where F (a, b; c; z) is Gauss’ hypergeometric function. The
type-A solution then reduces to the Akhmediev breather with
modulation parameter

√
2 [41]; i.e., the solution becomes

lim
k→1

ψ (x, t ) =
√

2 sinh Bx − i cos
√

2(t + vx)√
2 cosh Bx − cos

√
2(t + vx)

eiφx, (15)

with B, φ, and v given by (12)–(14), respectively. An example
of this limiting case is plotted in Fig. 2.

C. Type-B solutions

Type-B solutions can be considered as the analytic con-
tinuation of the type-A solutions for values of the modulus
k > 1. Using the corresponding transformations of the elliptic
functions [49] with modulus κ = 1/k, these solutions take
the form

ψ (x, t ) = κeiφx

√
1 + κ sn(Bx, κ ) − iA(t + vx) cn(Bx, κ )√

1 + κ − A(t + vx) dn(Bx, κ )
,

(16)

where the function A(t ) is given by

A(t ) = cd

(√
1 + κt,

√
1 − κ

1 + κ

)
,
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and κ is in the range 0 < κ < 1. In this case, we find

B =
∞∑

n=1

22n−1

⌊ 1
2 n

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r − 1

r

)
κ2rα2n, (17)

φ =
∞∑

n=1

22n−1

⎧⎪⎪⎨
⎪⎪⎩2

⌊ 1
2 (n+1)

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r

r

)
κ2r

−

⌊ 1
2 n

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r − 1

r

)
κ2r

⎫⎪⎪⎬
⎪⎪⎭α2n, (18)

v =
∞∑

n=1

22n

⌊ 1
2 (n+1)

⌋∑
r=0

(−1)r

24r

(
2r

r

)(
n − r

r

)
κ2rα2n+1. (19)

These are just the same polynomials as previously given
for the type-A solutions, but with the reciprocal argument
κ = 1/k.

We plot an example of type-B solutions in Fig. 3. The
solution is qualitatively different from the type-A solution as
the locations of the maxima are now different.

The limit as κ → 1 is identical to the limit as k → 1 for
the reasons just stated previously, and we again recover the
separatrix breather solution (15). However, by changing the
parameter κ , we can vary the periods of the type-B solutions
while always keeping the functions analytic, so that in the
limit κ → 0 we recover the soliton solution

lim
κ→0

ψ (x, t ) = 2eiφx sech(2t + vx), (20)

with

v =
∞∑

n=1

22n−1α2n+1

and

φ =
∞∑

n=1

22nα2n,

FIG. 3. The type-B solution (16), where κ = 0.7, αn = 1/n! up
to n = 8, with all other αn = 0. The peaks of this solution are aligned
along lines of constant τ = t + vx.

which is the general soliton solution for Eq. (2), up to
scaling [41].

III. PHASE PORTRAIT OF SOLUTIONS

The transformation of the two periodic solutions into the
Akhmediev breather (AB) when k → 1 and κ → 1 can be
illustrated by the phase portrait of these solutions which is
shown in Fig. 4. Although the dynamical system that we are
dealing with is infinite dimensional, the dynamics of the solu-
tions still can be presented on a two-dimensional plane which
can be considered as a projection of the infinite-dimensional
phase space onto a plane. The Akhmediev breather solution
(15) on this plane is represented by the heteroclinic orbits
connecting two saddle points. It is a separatrix between the
type-A and type-B solutions, represented respectively by the
periodic orbits A and B.

The projection of infinite-dimensional phase space onto a
plane requires certain tricks, as the solutions involve drift. In
order to avoid the corresponding shifts, we make the change
of variable ξ = Bx, τ = t + vx, and define the new function

u(ξ, τ ) = ψ (x, t )e−iφx. (21)

The counterbalancing exponential factor allows us to stop the
rotation of ψ around the origin in the complex plane. Then
it is easy to see that the trajectory corresponding to the AB

FIG. 4. The phase portrait of the periodic dynamics around the
Akhmediev breather shown by the black curves. The type-A solution
is shown by the red (inner) curve while the type-B solution is shown
by the blue (outer) curve. Here, u is defined by (21), and the two
saddle points are at u = ±1. The trajectories are drawn along the
lines ξ = Bx and τ = t + vx. Thus, evolution is in ξ along lines of
constant τ .
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solution satisfies the equation

{Re u(ξ, T )}2 + {Im u(ξ, T ) − 1}2 = 2, T = nπ√
2
, (22)

where Re u and Im u are the real and imaginary parts of u,
respectively, and n is any integer. The trajectories defined by
Eq. (22) are circular so long as we trace the evolution in
ξ along these lines of constant τ . They are shown as black
curves in Fig. 4. Similar precautions should be taken for the
doubly periodic orbits.

The difference between the type-A and type-B solutions
can be seen clearly from Fig. 4. Trajectories for the type-A
solutions never cross the real axis, whereas trajectories for
the type-B solutions do. Therefore, each time they complete
one full path, the phase change is either zero or 2π . The
periodicity of solutions along the x axis depends on the
strength of the dispersion, or the values of the coefficients αn,
through φ, B, and v.

IV. THE CASE WITH ZERO EVEN-ORDER TERMS

In the absence of any even-order terms in Eq. (2), it
becomes real,

∂ψ

∂x
−

∞∑
n=1

α2n+1K2n+1[ψ] = 0. (23)

Then we have φ = 0 and B = 0, and the type-B solution takes
the real-valued form

ψ (x, t ) = u(τ ) = κA(τ )√
1 + κ − A(τ )

, (24)

where τ = t + vx. Note that here v can be interpreted as a
velocity since u has the form of a traveling wave.

The real quarter period in τ is equal to the real quarter
period in t of the usual type-B solutions, which is

1√
1 + κ

K

(√
1 − κ

1 + κ

)
.

The real quarter period in x, for fixed t , is
√

κK (κ )/v since
φ = B = 0.

In particular, with the normalization α3 = −1 and all other
αn = 0, this becomes the periodic solution to the mKdV
equation

ψx + ψttt + 6ψ2ψt = 0,

given by

ψ (x, t ) =
κ cd

[√
1 + κ (t − 4x),

√
1−κ
1+κ

]
√

1 + κ − cd
[√

1 + κ (t − 4x),
√

1−κ
1+κ

] . (25)

We plot an example of this solution in Fig. 5.

FIG. 5. Plot of real-valued mKdV equation solution ψ given
by (25), where k = 1

2 . Here, the type-B solution (16) reduces to a
periodic solution propagating with speed v = 4.

The degree of generality of our solutions allows one to
consider many other particular cases. For example, some of
the polynomial coefficients have real zeros for certain values
of n. Taking k2 = 1

4 causes the influence of fourth-order
dispersion on φ to vanish, as well as the effect of the sixth-
order dispersion on the modulation frequency B, and similar
for eighth-order dispersion in φ when k2 = 1

2 . Considering
all these cases can be useful for practical application of these
solutions.

V. CONCLUSION

We have presented doubly periodic solutions of type-
A and type-B for the class-I infinitely extended nonlinear
Schrödinger equation. These solutions are expressed in terms
of Jacobi elliptic functions, and have two variable periods
along the two axes of the system. Being rather general,
they include important cases of solutions: Among them, the
Akhmediev breather and the soliton solution are the limiting
cases when the modulus of the elliptic functions is one or zero.
As another particular case, we give a periodic solution of the
mKdV equation.

As the equation under consideration has an infinite number
of free parameters, this can be useful in modeling various
physical problems of nonlinear wave evolution with a large
degree of flexibility in choosing the parameters. The inte-
grability of this equation allows one to write all solutions
in explicit form, adding significantly more power into the
analysis.
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