
Multitechnique Assessment of the Interannual to Multidecadal Variability in
Steric Sea Levels: A Comparative Analysis of Climate Mode Fingerprints

JULIA PFEFFER, PAUL TREGONING, ANTHONY PURCELL, AND MALCOLM SAMBRIDGE

Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia

(Manuscript received 15 October 2017, in final form 18 June 2018)

ABSTRACT

Because of increased emissions of greenhouse gases oceans are warming, causing sea level to rise as the

density of seawater falls. Predicting the rates of steric expansion is challenging because of the natural vari-

ability of the ocean and because observations are insufficient to adequately cover the ocean basins. Here,

we investigate the ability of one ocean reanalysis, two objective analyses, and one combination of satellite

geodetic measurements to accommodate data gaps and to reconstruct typical patterns of the steric sea level

variability at interannual andmultidecadal time scales. Six climate indices are used to identify robust features

of the internal variability, using a Least Absolute Shrinkage and Selection Operator (LASSO) regression to

select significant predictors of the steric variability. Spatially consistent fingerprints are revealed for all cli-

mate indices in the ocean reanalysis dataset, allowing the recovery of most of the steric variability observed in

the tropical and North Pacific, as well as large fractions of the Atlantic and Indian Ocean signals. Robust

climate mode fingerprints are also identified with high spatial resolution but limited temporal coverage in the

geodetic observations. The objective analyses fail to detect many of the patterns expected from climate

modes, especially before the Argo era. Climate indices constitute valuable yet underexploited tools to assess

the performance of different techniques to reconstruct steric sea levels at interannual andmultidecadal scales.

Such progress will increase confidence in the historical reconstructions of steric sea levels, which is nec-

essary to improve the closure of regional and global sea level budgets and to validate the predictions of

climate models.

1. Introduction

Steric sea level changes are associated with ocean

temperature and salinity changes, causing seawater to

expand or contract as the density changes. According

to the Intergovernmental Panel on Climate Change

(IPCC) Fifth Assessment Report (e.g., Church et al.

2013a), ocean thermal expansion contributed about

40% of the global mean sea level rise observed from

1971 to 2010. On regional scales, steric sea levels can

differ significantly from the global mean because of the

combined effects of ocean circulation and wind stress

transporting heat and salt across the ocean basins (e.g.,

Stammer et al. 2013). Comparisons of in situ measure-

ments with satellite altimetry measurements revealed

that most of the regional variability in sea surface

heights has a steric origin (e.g., Cazenave and Llovel

2010; Piecuch and Ponte 2011; Meyssignac and

Cazenave 2012). The regional sea level trends observed

today are influenced by the natural variability of the

ocean and climate and could have been very different in

the past decades.

Unfortunately, the regional variability of steric sea

level changes is extremely difficult to assess, especially

during the twentieth century. Indeed, before the de-

ployment of Argo floats in the 2000s (e.g., Roemmich

et al. 2009), temperature and salinity measurements

were mainly collected frommerchant ships and research

vessels, leaving large regions of the oceans unsampled

(Fig. 1 in Abraham et al. 2013). Deep layers of the

oceans were particularly poorly observed (e.g., Church

et al. 2010) and salinity measurements were consider-

ably less abundant than those of temperature (e.g.,

Levitus et al. 2005b).

To accommodate data gaps, objective analyses use

statistical techniques to reconstruct of temperature and

salinity changes in space and time (e.g., Boyer et al.
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2005; Cabanes et al. 2013; Good et al. 2013). Such ana-

lyses are generally limited in scope (few data before the

1990s and often restricted to depths above 700m) or

resolution (data averaged over 3–5 years) to achieve

statistically significant sampling, but constitute the most

common practice for analyzing steric sea level changes

(e.g., Ishii et al. 2006; Levitus et al. 2012).

Alternatively, ocean reanalyses rely on assimilation

techniques to predict temperature and salinity changes

across the world’s ocean (e.g., Carton and Giese 2008;

Balmaseda et al. 2013). The combination of in situ

(and eventually satellite) measurements with ocean

general circulation models (OGCM) allows recon-

struction of historical observations with global cover-

age and monthly resolution since the beginning of

the twentieth century (e.g., Yang et al. 2017). The ab-

sence of independent observations, however, makes

reanalyzed signals difficult to assess, leaving inter-

comparisons as the main tools of quality control (e.g.,

Balmaseda et al. 2015).

Finally, since the launch of the Gravity Recovery and

Climate Experiment (GRACE) satellite gravity mission

in 2002, steric sea level changes can also be evaluated

from sea level anomalies measured with satellite altim-

etry corrected for ocean mass changes (e.g., Chambers

2006). While only available for 15 years at present, sat-

ellite geodesy can be used to determine global (e.g.,

Llovel et al. 2014; Purkey et al. 2014) and regional (e.g.,

Volkov et al. 2017) changes in steric sea levels over the

full ocean depth.

Evaluating the rates of ocean thermal expansion re-

mains uncertain, as a large range of methods leads to a

large range of values (Table 13.1 in Church et al. 2013a).

While much attention has been paid to the reconstruc-

tion of the global mean (e.g., Ishii et al. 2006; Domingues

et al. 2008; Levitus et al. 2012), discussing potential

model biases (e.g., Gregory et al. 2013a; Church et al.

2013b), and imbalances in global mean sea level budgets

(e.g., Gregory et al. 2013b; Hay et al. 2015), few studies

have attempted to appraise the regional variability in

steric sea levels. In a recent assessment report (Storto

et al. 2017), ocean reanalyses were shown to display

higher ensemble consistency than objective analyses,

both at global and regional scales, especially in data-

sparse regions such as the Southern Ocean. Ocean

reanalyses were also shown to be closer to geodetic es-

timates than objective analyses between 2003 and 2010

(Storto et al. 2017). These results remain limited by the

small number of criteria (a seasonal cycle and a linear

trend) and the relatively short time span (1993–2010)

considered in the study. The assessment of the in-

terannual to multidecadal variability in a representative

ensemble of datasets would be particularly useful to

understand the causes of regional variability in steric sea

levels and to weigh the impact of the ocean and climate

natural variability in global and regional sea level bud-

gets (Church et al. 2013a).

Climate modes define typical patterns of the internal

variability of the coupled atmosphere–ocean system

shown to influence sea levels at interannual to multi-

decadal time scales for the Pacific, Indian, Atlantic,

Arctic, and Southern Oceans (e.g., Han et al. 2017).

Climate mode signals have been analyzed in various

types of sea level observations, including satellite radar

altimetry measurements (e.g., Zhang and Church 2012;

Frankcombe et al. 2015), sea surface temperature mea-

surements (e.g., Hamlington et al. 2012), climate model

predictions (e.g., Roberts et al. 2016; Cheung et al.

2017), and tide gauge measurements (e.g., White et al.

2014). The earliest analysis suggesting that histori-

cal observations of steric sea levels were closely re-

lated to climate modes goes back to the late twentieth

century (e.g., Stammer 1997). Since then, statistical

decomposition of steric datasets with empirical orthog-

onal functions (EOF) has shown that the principal

components (PC) of steric sea level variability are

highly correlated with the El Niño–Southern Oscillation

(ENSO), Pacific decadal oscillation (PDO; e.g., Levitus

et al. 2005a), and North Atlantic Oscillation (NAO; e.g.,

Lombard et al. 2005). Regional analyses performed over

the tropical (e.g., Meyssignac et al. 2012; Palanisamy

et al. 2015) and Indo- (e.g., Nidheesh et al. 2013) Pacific

confirmed that ENSO, PDO, and the Indian Ocean di-

pole (IOD) are major contributors to steric sea level

variability.

This study proposes a new way to assess the perfor-

mance of objective analyses, ocean reanalyses, and sat-

ellite geodesy at interannual and multidecadal time

scales based on the analysis of six climate indices. Our

objective is to isolate robust features of the internal

variability in very different datasets and, based on that

information, gauge the ability of different techniques to

accommodate data gaps and reconstruct historical steric

sea level changes. To this end, we analyzed the response

of four steric datasets to six climate indices, using a Least

Absolute Shrinkage and Selection Operator (LASSO)

regression (e.g., Hastie et al. 2015) to perform vari-

able selection. Ordinary least squares (OLS) regres-

sions performed on observed (satellite altimetry) and

predicted (climate models) sea level changes indeed

showed strong aliasing between climate mode signals

(e.g., Frankcombe et al. 2015), which can be mitigated

with the application of bandpass filters aiming at sepa-

rating high- and low-frequency contents of climate in-

dices (e.g., Zhang and Church 2012). The LASSO is a

regularization technique that performs variable selection
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through the penalization of the magnitude of the co-

efficients (e.g., Tibshirani 1996). In this study, we will

investigate the potential of LASSO regressions to select

the minimum set of appropriate climate indices for each

geographical location within an ensemble of indices

defined for different ocean basins.

First, the historical reconstructions of steric sea level

changes derived from two objective analyses, one ocean

reanalysis, and one combination of two geodetic data-

sets are presented. After the description of our climate

mode analysis (based on a LASSO regression), we dis-

cuss the evolution of regional trends over three differ-

ent time periods (1958–2015, 1990–2015, and 2003–15)

characteristic of the four datasets considered. Finally,

we show the fingerprints associated with the climate

modes in each dataset, discuss their contribution to the

total steric signal, and use that information to assess

the ability of each technique to recover interannual and

multidecadal signals. We found that climate indices are

particularly useful to predict the steric signals over the

tropical and North Pacific and that climate mode fin-

gerprints are better recovered with the ocean reanalysis

and geodetic datasets than with objective analyses.

2. Steric datasets

a. Objective analyses

Steric sea level anomalies hS are expressed as a

function of density r (e.g., Stammer 1997), which can be

assumed to only depend on temperature T and salinity S

(e.g., Antonov et al. 2002):
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where H is the ocean depth, r0 is a reference density
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is the salinity anomaly relative to a reference salinity

profile S0. In practice, hS is computed as the sum of

thermosteric anomalies hTS due to temperature changes

and halosteric anomalies hHS due to salinity changes,

over n ocean layers of width hi:

h
S
5h

TS
1h

HS
5 �

n

i50

a
i
T 0
i hi

1 �
n

i50

2b
i
Ss
i hi

, (2)

where ai 5 (21/r0)›r/›T and bi 5 (1/r0)›r/›S are the

thermal expansion and saline contraction coefficients of

the layer i (McDougall and Barker 2011).

In situ temperature T and salinity S values come from

two objective analyses: EN4 (Good et al. 2013) and

Coriolis OceanDataset for Reanalysis (CORA5; Cabanes

et al. 2013). These two products are based on the statis-

tical analysis of temperature and salinity measurements

from various sensors, including Argo floats, mechanical

bathythermograph (MBT), expendable bathythermo-

graph (XBT), conductivity–temperature–depth (CTD),

and XCTD (expendable CTD) profilers, moorings, sea

mammal data, and some drifting buoys. The EN4 ana-

lyses include a larger number of profiles during a longer

time span (data updated each month since 1900) than

CORA5 (data updated each year since 1990). The

processing, corrections, quality control, and interpola-

tion techniques applied to temperature and salinity data

differ for the two products (Good et al. 2013; Cabanes

et al. 2013). For example, the EN4 analyses give several

choices of bias corrections for MBT and XBT profiles

[here Gouretski and Reseghetti (2010) is used], while

the bias correction in CORA5 is based on Hamon et al.

(2012). The EN4 analyses are interpolated on 42 depth

levels for the first 5500m of the ocean with 18 resolution,
while CORA5 is interpolated on 152 depth levels for the

first 2000m of the ocean with 0.58 resolution. In this

study, EN4 data were extracted for the first 2000m of

the ocean, to avoid the interpretation of spurious signals

at depth, and from January 1958 to December 2015 to

match the Ocean Reanalysis System 4 (ORAS4) cov-

erage. The CORA5 data, spanning from January 1990

to December 2015, are used in full and are linearly in-

terpolated onto a regular 18 3 18 grid to be compared

with other datasets (Table 1).

Reference temperature T0 and salinity S0 profiles,

used to compute temperature anomalies T 0 and salinity

anomalies S 0 [Eqs. (1) and (2)], are the monthly cli-

matological values taken from the World Ocean Atlas

(WOA13V2; Locarnini et al. 2013; Zweng et al. 2013).

Thermal expansion a and saline contraction b coeffi-

cients are computed using Thermodynamic Equation Of

TABLE 1. List of steric datasets used in this study.

Type Source Time coverage Depth coverage Geographical coverage

Objective analysis EN4 1958–2015 Down to 2000m Global

Objective analysis CORA5 1990–2015 Down to 2000m Global

Ocean reanalysis ORAS4 1958–2015 Down to 5500m Global

Satellite geodesy CMEMS–GSFC 2003–15 Full ocean depth Nearly global
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Seawater—2010 (TEOS-10; Millero 2010; McDougall

and Barker 2011).

b. Ocean reanalysis

ORAS4 providesmonthly estimates of the ocean state

variables (including temperature and salinity) with a

global coverage and a resolution of 18 from 1958 to 2015.

Historical observations of the ocean and atmospheric

fluxes are combined with NEMO (Madec 2008) pre-

dictions in the NEMO variational data assimilation

system (NEMOVAR; Balmaseda et al. 2013). Forcing

fields and observational datasets include temperature

and salinity profiles from EN4 (Good et al. 2013), sea

level anomalies from AVISO satellite altimetry distri-

bution, as well as sea surface temperature and sea ice

cover fromERA-40 (Uppala et al. 2005). Steric sea level

anomalies are computed with the same method, the

same climatological reference (WOA13V2) and the

same equation of state (TEOS-10) as used in the ob-

jective analyses.

c. Satellite geodesy

Steric sea level changes can be expressed as the dif-

ference between total sea level anomalies and ocean

mass changes and can therefore be estimated as the

difference between satellite altimetry and GRACE

measurements (e.g., Chambers 2006).

Here, sea level anomalies are estimated with the

gridded multimission altimeter product, previously dis-

tributed by AVISO (Ssalto/Duacs sea level anoma-

lies: DT-MSLA-H), now provided by the Copernicus

Marine Environment Monitoring Service (CMEMS:

SEALEVEL_GLO_PHY_L4_REP_OBSERVATIONS_

008_047). Daily sea level anomalies are given from

January 1993 to December 2015, with respect to a 20-yr

mean, on a regular 0.258 3 0.258 grid. To be consistent

with GRACE data, sea level anomalies are averaged

monthly, linearly interpolated to a 18 3 18 grid, and cor-

rected for glacial isostatic adjustment (GIA) using the

ICE-5G (VM2) geoid correction computed by A et al.

(2013). We use the same GIAmodel for altimetry (geoid

correction) as for GRACE solutions (mass correction).

Ocean mass changes are estimated with the GRACE

sea level anomaly (SLA) mascon solution (Luthcke

et al. 2013) provided by the Goddard Space Flight

Center (GSFC) from January 2003 to March 2016. The

GSFC SLA mascon solution takes into account all

necessary corrections to be consistent with satellite al-

timetry, including the global mean sea level pressure,

GIA (A et al. 2013), and pole tides (Wahr et al. 2015).

The GSFC SLA mascon solution, provided on a geo-

desic grid (respecting equal areas of approximately 1

square degree), is linearly interpolated onto a regular

18 3 18 grid for each calendar month.

The geodetic steric anomalies, representative of the

entire ocean width, are computed from January 2003 to

December 2015 on a monthly basis and a regular 18 3
18 grid (Table 1). The geographical coverage is nearly

global, but altimetry values are missing at high lati-

tudes because of ice coverage and the inclination of the

satellite orbits.

3. Description of the climate mode analysis

a. Choice of climate indices

Climate indices have been developed to identify typ-

ical patterns of ocean and climate variability in all major

ocean basins (e.g., Deser et al. 2010; Han et al. 2017).

Here, six climate indices (Fig. 1) are used to repre-

sent the PDO, ENSO, North Pacific Gyre Oscillation

(NPGO), Atlantic multidecadal oscillation (AMO),

IOD, and Indian Ocean basin-wide mode (IOBM). The

PDO expresses a decadal to multidecadal oscillation of

the temperature in the North Pacific Ocean, along a

FIG. 1. Climate indices over the 1958–2015 period.
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typical northwest–southeast dipole (e.g., Mantua and

Hare 2002). ENSO, strongly correlated with PDO, is a

coupled atmosphere–ocean mode of interannual vari-

ability, expressed by periodic fluctuations of sea surface

temperature (El Niño) and air pressure (Southern Os-

cillation), characterized by a west–east dipole across the

tropical Pacific (e.g., Rasmusson andWallace 1983). The

NPGO reflects changes in the intensity of the central

and eastern branches of the North Pacific Gyre circu-

lations, forming a double gyre along the west coast of

North America (e.g., Di Lorenzo et al. 2008). The AMO

describes basin-wide changes in sea surface tempera-

tures across the North Atlantic Ocean, with cool and

warm phases that may last 20 to 40 years each (e.g.,

Enfield et al. 2001). The IOD is an oscillation of sea

surface temperature in which the western Indian Ocean

becomes alternately warmer and colder than the eastern

part of the ocean (e.g., Saji et al. 1999). Finally, the

IOBM is a periodic cooling and warming of the whole

Indian Ocean, which is strongly related to ENSO events

(e.g., Yang et al. 2007). Each climate mode is defined

with a characteristic time series (or index) that is, in

most cases, based on the analysis of sea surface tem-

perature data (Table 2), except for the multivariate

ENSO index (MEI), which merges six climate fields

(Wolter 1987; Wolter and Timlin 1993).

b. Removal of linear trends, annual cycles, and
semiannual cycles

The focus of this study is the interannual to multi-

decadal signals associated with climate modes. To iso-

late such variations, steric anomalies are first detrended

and deseasoned. A linear trend, annual sinusoid, and

semiannual sinusoid are simultaneously calculated by

ordinary least squares adjustments and removed from

each dataset. When the residuals of the regression ex-

hibit significant serial correlation [tested with Ljung and

Box (1978)], uncertainty values (given within one stan-

dard deviation) are adjusted for an effective sample size,

accounting for a first-order autoregressive noise model

(e.g., Santer et al. 2000; Pfeffer and Allemand 2016).

More complex models might have to be considered to

fully account for serial correlation, allowingmore robust

estimation of the uncertainties (e.g., Bos et al. 2014).

This is unlikely to affect the first-order estimation

of trends, annual cycles, and semiannual cycles and,

therefore, would have little impact on the climate mode

analyses performed on the residuals of the regression.

Regional trends and uncertainty values are presented in

Figs. 2 and 3. In the following, the detrended and de-

seasoned steric anomalies are referred as steric*.

c. Regression of six climate indices with a LASSO
constraint

Our approach is based on a suite of time-series ana-

lyses, in which each singular grid element (a square de-

gree) is treated independently. The steric* anomalies

are inverted simultaneously for six climate indices

(Table 2) in a LASSO regression (e.g., Tibshirani 1996;

Hastie et al. 2015). The LASSO is a regularization

technique, involving the addition of a constraint on the l1
norm of the coefficients of the regression ci, estimated

by solving the minimization problem,
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where yt are the steric* anomalies, CMi,t are the six

climate indices, c0 is a constant, and l is the penalty

controlling the weight of the regularization. Because of

the l1 regularization, the coefficients ci shrink toward

zero when they do not help to significantly reduce the

residuals of the regression. The degree of shrinkage is

controlled by the penalty l, calculated so that it mini-

mizes the prediction error plus one standard deviation

of a fivefold cross validation (e.g., Arlot and Celisse

2010). Because the l1 constraint will favor low-amplitude

parameters, all indices are standardized (mean 5 0,

TABLE 2. List of climate indices.

Mode Index definition Reference

PDOa First PC of SST anomalies over the North Pacific (.208N) Mantua et al. (1997)

ENSOa,b First PC of six combined fields over the tropical Pacific (308S–308N) Wolter and Timlin (1993), (2011)

NPGOc Second PC of SST anomalies over northeast Pacific (1808–1108W, 258–628N) Di Lorenzo et al. (2008)

AMOa Detrended SST average over North Atlantic (08–808N) Enfield et al. (2001)

IODa Difference of SST averages between west (608–808E) and east (908–1108E)
Indian Ocean

Saji and Yamagata (2003)

IOBMd First PC of SST anomalies over the Indian Ocean (208S–208N, 408–1108E) Yang et al. (2007)

a Data available on www.esrl.noaa.gov.
b The six combined fields are sea level pressure, zonal wind, meridional wind, SST, air temperature, cloud fraction.
c Data available on www.ocean3d.org.
d Computed with the HadSST3 (www.metoffice.gov.uk) dataset (Kennedy et al. 2011a,b).

15 SEPTEMBER 2018 P F E F FER ET AL . 7587

http://www.esrl.noaa.gov
http://www.ocean3d.org
http://www.metoffice.gov.uk


standard deviation5 1) over the time period considered

in the analysis. Climate indices are not detrended or

deseasoned.

Ideally, the LASSO will select relevant climate in-

dices at each geographical location and lead to the

generation of a simple, easily interpretable model with a

minimal number of nonzero coefficients. However, the

LASSO will only be appropriate if the problem is sparse

(i.e., steric* anomalies can be described with a minimal

number of climate indices at each location). In our for-

mulation, model sparseness has been encouraged by the

simultaneous inversion of six climate indices, indepen-

dently, at each geographical location. It is indeed highly

unlikely for steric sea level changes to be influenced by

FIG. 2. (a)–(i) Linear trends and (j)–(r) trend uncertainties of steric anomalies evaluatedwith one ocean reanalysis (ORAS4: 1958–2015,

1990–2015, 2003–15), two objective analyses (EN4: 1958–2015, 1990–2015, 2003–15 and CORA5: 1990–2015, 2003–15), and one combi-

nation of geodetic measurements (CMEMS–GSFC: 2003–15).
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all six climate indices at the same place. Climate indices

that are not significant will tend to have their coefficients

reduced to zero by the LASSO. In the case of highly

correlated variables (i.e., predictors), the solution might

be unstable and the value of the coefficients will strongly

depend on l (Hebiri and Lederer 2013). In this case, the

value of the penalty should be adjusted according to a

cross-validation process (Hebiri and Lederer 2013). The

LASSO tends to generate regularized and parsimonious

solutions that may not fully account for the complex

interactions between climate indices. However, for many

applications, the degree of complexity allowed in the

regression model was appropriately tuned with cross-

validation procedures, even in the case of highly cor-

related predictors (e.g., Usai et al. 2009; Hammami

et al. 2012; Toiviainen et al. 2014).

4. Comparison of regional trends

Regional trends in steric sea levels are strongly non-

uniform (Fig. 2). The global average of steric trends

ranges from 0.4 to 1.2mmyr21 (Fig. 3) depending on the

dataset and time period considered. The highest trends

(from 5 to 15mmyr21) are observed in the Arctic,

Southern Ocean, southeast Indian Ocean, and tropical

Pacific (Fig. 2). Strong local to regional variability is

observed in complex ocean circulation regions, which

leads to significant differences between the datasets

across the northeast Atlantic and the Southern Ocean

(Fig. 2). Significant decadal sea level variability (e.g.,

Calafat et al. 2012) and poor instrumental cover-

age (e.g., Abraham et al. 2013) may also explain the

differences observed in the trend values for various

historical reconstructions. Overall, the three datasets

agree reasonably well when trends are compared over

the same time period (Figs. 2 and 3). Major differences

between the datasets are strongly dependent on their

spatial resolution: Smaller-scale features can be de-

tected with satellite geodesy; regional features are rel-

atively patchy in objective analyses and more continuous

in ocean reanalysis (Fig. 2).

The statistical distribution of regional trend values

varies strongly with the time period considered, but is

consistent from one dataset to another (Fig. 3). Over

long time periods (1958–2015), steric sea level trends are

relatively uniform (Fig. 2) and display and smaller range

of variability (Fig. 3) and, by mathematical construction

(e.g., Santer et al. 2000), a smaller uncertainty (Fig. 2)

than those evaluated over shorter time periods. Higher

extreme values (Fig. 3) and uncertainties (Fig. 2) are

therefore found in steric trends when only considering

13 or 25 years of observation. The variability of steric sea

levels is indeed impacted by natural oscillations acting

on interannual to multidecadal time scales, which pre-

vents the extrapolation of linear trends from short (one

to several decades) to long (one century) time periods.

The part of this variability associated with climate

modes is assessed in the next section.

5. Climate mode fingerprints

Climate mode fingerprints are the solution coeffi-

cients ci of the LASSO regression presented in Eq. (3).

There is no spatial constraint imposed in the analysis:

Each time series of each grid point is treated indepen-

dently. In spite of this, consistent spatial patterns are

retrieved for each climate mode in steric sea level

anomalies (Fig. 4). Before any detailed description of

the results, it should be mentioned that the solutions

are parsimonious (ci 5 0 in gray areas), revealing the

ability of the LASSO to select one climate index over

another, despite the relatively small number of pre-

dictors considered (only 6 climate indices) and their

correlations (e.g., Deser et al. 2010; Han et al. 2017). The

same analysis, performed with ordinary least squares

regressions, provides noisier solutions that are much

more difficult to interpret (see online supplementary

material).

The steric* response to ENSO is clear and strong (up

to 660mm), with the expected tropical Pacific dipole

recovered in all datasets at all time scales (Figs. 4e–h).

The influence of ENSO extends to the Indian Ocean

(Figs. 4e–h), the South Pacific (Figs. 4e,f), and the

Southern Ocean (Fig. 4e). Small-scale features, likely

associated with turbulent eddies, are observed across the

FIG. 3. Statistical distribution of regional trends in steric anom-

alies. Dots represent the mean, thick lines represent the first and

third quartiles, and thin lines represent the 1st and 99th percentiles.

15 SEPTEMBER 2018 P F E F FER ET AL . 7589



Southern Ocean, Kuroshio region, and northeast At-

lantic for all geodetic fingerprints (Fig. 4, last column),

including ENSO.

Clear steric* responses to PDO (northwest–southeast

dipole in the North Pacific) and NPGO (double gyre in

the northeast Pacific) are observed in the ocean re-

analysis (Figs. 4a,i) and geodetic (Figs. 4d,l) datasets, as

well as in the EN4 objective analysis (Figs. 4b,j). The

influences of PDO and NPGO on steric* sea levels

seem to extend to the tropical and Southern Pacific in

ORAS4, EN4, and CMEMS–GSFC fingerprints. In the

CORA5 objective analysis, PDO (Fig. 4c) and NPGO

(Fig. 4k) patterns are observed with attenuated ampli-

tudes and restricted extents.

A distinct response to AMO appears in the ocean

reanalysis dataset (Fig. 4m), which benefits from a suf-

ficient time coverage (1958–2015) to detect multi-

decadal oscillations. The AMO fingerprint consists of a

positive anomaly over the Atlantic, extending from the

Arctic to the southern tropics, with a notable absence of

signal along the east coast of North America, probably

masked by circulation processes. Some connections with

FIG. 4. Climate mode fingerprints in steric* anomalies evaluated with ocean reanalysis (ORAS4: 1958–2015), objective analyses (EN4:

1958–2015 and CORA5: 1990–2015), and geodesy (CMEMS–GSFC: 2003–15). The ENSO signal (about 660mm) extends beyond the

color scale, chosen to represent all climate modes, including those with smaller amplitudes. Coefficients [ci in Eq. (3)] equal to zero have

been masked (in gray), as they do not contribute to the regression model.
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AMO seem to be detected in the Arctic, Pacific, and

Southern Ocean, which may potentially be artifacts of

the regression (more details in the discussion). The

AMO signal is not identified by any other dataset, in-

cluding the objective analysis EN4 (Fig. 4n) spanning

over the same time period as ORAS4 (1958–2015).

Negative amplitudes (225mm for EN4) are detected

along the Gulf Stream that might be related to AMO,

but do not strongly emerge from the solution noise

(Figs. 4n–p).

The steric* responses to IOD and IOBM have less

amplitude in all datasets (Figs. 4q–x). A west–east di-

pole can be observed across the Indian Ocean in rean-

alyzed (Fig. 4q) and geodetic (Fig. 4t) fingerprints. The

dipole is, however, smaller than typical IOD patterns

(e.g., Saji et al. 1999) observed in sea surface temperature

(SST) anomalies (Table 2), and is confined to the east of

the basin. For the IOBM, positive anomalies (Figs. 4u,x)

are observed in the west of the Indian Ocean, which are

also smaller than typical IOBM fingerprints (e.g., Yang

et al. 2007) observed in SST (Table 2) data. Connections

with the tropical and South Pacific are observed for both

modes in ocean reanalysis (Figs. 4m,p) and geodetic

(Figs. 4o,r) datasets. There is no evident response to IOD

or IOBM in the objective analyses (Figs. 4r,s,v,w) data.

Though the positive part of the Indian dipole lies un-

detected in both datasets, the negative pole is larger in

EN4 (Fig. 4r) than CORA5 (Fig. 4s). A positive anomaly

of low amplitude (less than 10mm) and small geo-

graphical coverage (Figs. 4v,w) is detected in the west of

the Indian Ocean for the IOBM, but it is not significantly

different from the solution noise.

6. Discussion

A large part of the steric* variability observed with

ocean reanalysis, objective analyses, and satellite geod-

esy can be predicted by the combination of six climate

indices presented in Fig. 1 and Table 2. We evaluate the

contribution of climate modes to the observed steric*

signal with the coefficient of determination R2, in-

terpreted as the ratio of predicted to observed variance

(Fig. 5, first column). In the tropical Pacific (;208S–
208N), themajor part (up to 80% in the geodetic dataset)

of the steric* variance can be predicted by a combina-

tion of climate modes, including, in particular, ENSO.

Along the North American Pacific coastline, up to 60%

of the steric* variance can be predicted by a combina-

tion of PDO and NPGO indices in the geodetic and

ocean reanalysis datasets. In the central part (;58–108S)
and along the east coast (;1008–1158E) of the Indian

Ocean, up to 45% of the geodetic and reanalyzed steric*

variance can be predicted by a combination of climate

indices (IOD, IOBM, and ENSO). Finally, in a large

part of the North Atlantic (including the Labrador Sea

and the southeast quadrant), up to 30% of the rean-

alyzed steric* variance is predicted by AMO.

The recovery of the complete steric signal is signifi-

cantly improved when climate modes are combined

with a linear trend, an annual sinusoid, and a semiannual

sinusoid, withR2 values exceeding 0.5 over large regions

of the world’s oceans (Fig. 5, second column). In par-

ticular, high R2 values are reached for the geodetic

dataset (Fig. 5k), largely because of high amplitudes

in the annual and semiannual sinusoids. Annual and

semiannual signals are much smaller in the ocean re-

analysis and objective analysis datasets, in which steric

anomalies are computed with respect to the climatology.

Overall, the results of our climate mode analysis (six

climate indices and six fingerprints) can be used in sev-

eral regions of the world (tropical Pacific, eastern Pa-

cific, and large parts of the Atlantic and Indian Oceans)

to predict the steric variability with a limited number of

parameters, with about 60%–90% of signal recovered

in recent years (2003–15; Fig. 5k) and 50%–75% of the

signal recovered over longer time scales (1958–2015)

when using ocean reanalysis (Fig. 5b).

Climate indices cannot fully predict the steric signals

(Fig. 5, last column), as other relevant processes con-

tribute to the ocean variability. Complex circulation

processes occur, for example, in the Southern Ocean,

northeast Atlantic, and Kuroshio region. In these re-

gions, the climate indices that we have used are unable

to explain the steric signal (low R2 and high RMSE

values in Fig. 5). Particularly low RMSE values are

seen in the ocean reanalysis, which may be due to the

underestimation of transport energy in these regions

(Balmaseda et al. 2013). Globally averaged, climate in-

dices can predict 11% of the ocean reanalysis, 5% and

4% of the objective analyses (EN4 and CORA5, re-

spectively), and 10% of the geodetic steric* variance.

When a linear trend, an annual sinusoid, and a semi-

annual sinusoid are added to the climate indices, 37%

of the steric signal can be predicted in ocean reanalysis,

26% and 28% in objective analyses (EN4 and CORA5,

respectively), and 39% in satellite geodesy. Other

climate indices representing the North Atlantic Oscil-

lation (NAO), Arctic Oscillation (AO), and Antarctic

Oscillation (AAO) have been considered to com-

plete the model, but were found to be inefficient (im-

provement of R2 values smaller than 0.03 locally) to

predict interannual or decadal variations in our steric*

reconstructions.

Our analysis reveals climate mode fingerprints syn-

chronous with climate indices, providing typical series

of events and oscillations, identified point by point in
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steric* sea levels with a LASSO regression. Sea level

changes occur, however, on a wide range of temporal

scales (e.g., Carton and Giese 2008), so that aliasing of

temporal signals (e.g., Ray 1998) should be expected

in steric* time series (e.g., Stammer 1997). Climate in-

dices reflect to some extent this issue, as long-term SST

anomalies result in large part from the stochastic re-

sponse of the ocean surface to the excitation of the at-

mosphere at high frequencies (e.g., Frankignoul and

Hasselmann 1977). Besides, climate modes are intrinsi-

cally coupled with one with another. The PDO includes,

for example, a reddened response to ENSO (e.g., Newman

et al. 2016). Similarly, IOD (e.g., Ashok et al. 2003) and

IOBM(e.g., Yang et al. 2007), while constituting inherent

modes of variability of the Indian Ocean, have been

shown to interact with ENSO through the atmospheric

bridge. The reemergence of climate mode signals (e.g.,

Nidheesh et al. 2017) through atmospheric or oceanic

teleconnections patterns, that are not already included in

the six climate indices considered here (Table 2), cannot

be detected with our approach, which does not include a

time lag.

The LASSO aims to find the minimal set of climate

indices explaining the typical succession of events and

oscillations constituting each time series. Because of

temporal aliasing, some of the signals predicted with

climate modes may be artifacts of the regression. For

example, the AMO index is the only one to display

multidecadal oscillations. Long-term oscillations pres-

ent in steric* time series may overfit this index in order

to explain some of the variance. Also, complex circula-

tion processes are likely to generate a high level of noise

FIG. 5. Contribution of predicted signals to historical steric reconstructions derived from an ocean reanalysis (ORAS4: 1958–2015), two

objective analyses (EN4: 1958–2015 and CORA5: 1990–2015) and one combination of satellite geodetic measurements (CMEMS–GSFC:

2003–15). (a),(d),(g),( j) TheR2 values between the climatemodes predictions and steric* anomalies. (b),(e),(h),(k) TheR2 values between

the total predicted steric anomalies (including a linear trend, an annual sinusoid, a semiannual sinusoid, and six climate indices) and the

historical reconstructions. (c),(f),(i),(l) The RMSE values associated with the steric residuals (i.e., difference between the historical

reconstructions and total predicted anomalies).
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and variability in the steric sea levels observed over the

Southern Ocean, northeast Atlantic, and Kuroshio re-

gion, so that observed steric anomalies may be aliased

with climate modes in the regression process. This may

explain the small-scale variability observed in geodetic

fingerprints (Fig. 4, last column) in complex ocean cir-

culation regions (Southern Ocean, Kuroshio, and Gulf

Stream regions). Overfitting issues are reduced by the

LASSO constraint, which only allows solution co-

efficients [ci in Eq. (3)] to be different from zero if they

significantly minimize the residuals.

On the other hand, an overestimation of the LASSO

constraint would lead to the underestimation of the

parameters [ci in Eq. (3)] of the regression, which would

result in a shrinkage of climate mode fingerprints. Such

scenario may be observed in the northeast Atlantic,

where a high level of noise is expected because of the

oceanic circulation, which may mask the AMO signal

retrieved in the ocean reanalysis dataset (Fig. 4m). This

may also explain why the IOD and IOBM fingerprints

are smaller than typical SST patterns observed for these

two modes (e.g., Saji et al. 1999; Yang et al. 2007). The

cross-validation process ensures the balance between

the excess of noise (low LASSO constraint) and the

absence of solution (high LASSO constraint). Overall,

the climate mode fingerprints retrieved with steric*

datasets are consistent with typical signatures observed

in SST (e.g., Deser et al. 2010) and sea surface heights

(e.g., Han et al. 2017).

If many common characteristics are shared among

the four datasets compared, our analysis points out

the abilities of each technique to detect interannual

to multidecadal signals. Ocean reanalysis performs re-

markably well, as relevant fingerprints are recovered for

each climate mode with relatively low noise. In spite of

the short (13 years) record available, satellite geodesy

also allows us to recover many relevant features of the

steric* variability for most of the climate modes. The

climate mode fingerprints retrieved in the geodetic

dataset exhibit, however, a rather high level of noise in

the Southern Ocean, Gulf Stream, and Kuroshio re-

gions, appearing as small-scale signals likely associated

with ocean circulation, such as eddies. The difficulty of

isolating climate mode signals in objective analyses is

presumably related to the sparsity of measurements.

Among the two objective analyses considered, the EN4

dataset was better able to recover the climate mode

signals associated with the PDO and NPGO, probably

because of the inclusion of a larger number of temper-

ature and salinity profiles. Neither EN4 nor CORA5

could detect the typical patterns expected from the

AMO, IOD, or IOBM. The performance of objective

analyses is noticeably improved in recent years (2003–15),

which benefited from increased data coverage, with the

detection of stronger PDO, NPGO, IOD, and IOBM

fingerprints (see appendix, Fig. A1).

We acknowledge that only four products are consid-

ered in this study and that different results may be ob-

tained with other datasets (Storto et al. 2017). However,

because the datasets considered here are representative

of the three techniques available to reconstruct steric

signals, themain conclusions reported here should remain

valid in the general case. Different datasets should be

included in future assessments of the interannual to

multidecadal steric variability to generalize these findings.

7. Conclusions

The regional variability of steric sea levels is strongly

influenced by climate modes oscillating from inter-

annual tomultidecadal time scales. A combination of six

climate indices (PDO, ENSO, NPGO, AMO, IOD, and

IOBM) can explain most of the detrended and deseas-

oned steric variance observed across the tropical and

North Pacific (especially along the coast with North

America), and large parts of the variance in the Atlantic

and Indian Oceans. The comparison of four steric

datasets reveals that the ocean reanalysis dataset out-

performs the other three, as it is the only one able to

predict the signals associated with climate modes on

multidecadal time scales. Geodetic techniques offer

promising solutions to reveal the regional variability of

steric sea levels but on shorter time scales (less than 15

years). The two objective analyses, on the other hand,

struggle to recover the variability associated with cli-

mate modes other than ENSO (which is the only mode

recovered with CORA5), PDO, and NPGO (which are

the three modes recovered with EN4). The objective

analyses datasets perform better after 2003, likely be-

cause of the deployment of Argo floats.

While opening new possibilities to investigate the in-

terannual to multidecadal variability in steric sea levels,

our approach has two main limitations. First, only six

climate indices and four steric products are considered

in our analysis. Future studies assessing the steric vari-

ability related to climate modes should include dif-

ferent datasets and climate indices to generalize the

findings reported here. Besides, the interpretation of the

steric variability is limited to the combination of a linear

trend, an annual sinusoid, a semiannual sinusoid, and

six climate indices. Aliasing of climate mode signals is

neglected with our approach, which does not include a

time lag. Besides, other sources of variability could be

considered to explain the steric signal, especially across

complex ocean circulation regions such as the Southern

Ocean, Gulf Stream, and Kuroshio regions.
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The approach presented in this study can, however, be

used to identify robust features of the steric variability at

interannual and multidecadal time scales with a combi-

nation of only six climate indices and six climate mode

fingerprints. Such information will make it possible to

partially reconstruct steric signals over time spans as

long as the climate indices themselves, which will be

particularly valuable for the interpretation of long

tide gauge records. Climate indices provide useful cri-

teria to assess the efficiency of ocean reanalyses, ob-

jective analyses, and satellite geodesy to reconstruct

the interannual to multidecadal changes in steric sea

levels associated with the natural variability of ocean and

climate. Our approach is based on a simple paramet-

ric model that can be easily adapted to different datasets.

Such progress is important to increase confidence in

the historical reconstructions of steric sea levels and to

guide the selection of steric products used to compute sea

level budgets and validate climate model predictions.
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FIG. A1. Comparison of climate mode fingerprints in one ocean reanalysis, two objective analyses, and one combination of satellite

geodetic observations over recent years (2003–15).
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APPENDIX

Comparison of ClimateMode Fingerprints from 2003
to 2015

Figure A1 shows fingerprints recovered from one

ocean reanalysis (ORAS4), two objective analyses (EN4

and CORA5), and one combination of satellite geodetic

observations (CMEMS-GSFC) over the same time pe-

riod (2003215).
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