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Abstract
Nonradiating current configurations have been drawing the attention of the physics community for many years. It has been demon-

strated recently that dielectric nanoparticles provide a unique platform to host such nonradiating modes, called “anapoles”. Here we

study theoretically the excitation of such exotic anapole modes in silicon nanoparticles using structured light. Alternative illumina-

tion configurations, properly designed, are able to unlock hidden behavior of scatterers. Particularly, azimuthally polarized focused

beams enable us to excite ideal anapole modes of magnetic type in dielectric nanoparticles. Firstly, we perform the decomposition

of this type of excitation into its multipolar content and then we employ the T-matrix method to calculate the far-field scattering

properties of nanoparticles illuminated by such beams. We propose several configuration schemes where magnetic anapole modes

of simple or hybrid nature can be detected in silicon nanospheres, nanodisks and nanopillars.
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Introduction
The triumph of Maxwell’s equations is associated with the

unification of electric and magnetic phenomena on the same

footing, which has led to the prediction of existence of an elec-

tromagnetic radiation, which can carry energy and momentum.

As it is explained in all classical textbooks [1], any accelerated

motion of a charged particle should result in the excitation of

electromagnetic waves propagating away from the source,

leading to radiative decay. Despite the success at the macro-

scopic scale, it fails when one tries to apply it at the micro-

scopic level and attempts to explain the stability of an atom,

where the electrons are confined and in constant motion, so they

are inevitably accelerated. In quantum mechanics it was postu-

lated that electrons live at certain orbits, which do not radiate.

And this postulate was taken for granted, since it does not

contradict any experimental observation at the microscale. But

still, there were numerous attempts to find confined classical

trajectories of charged particles that do not produce far-field ra-

diation, and many interesting examples are known by now
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[2-6]. The key ingredient in their explanation is destructive

interference in the far-field.

Despite the purely fundamental aspect of them, nonradiating

sources have attracted a great deal of attention in various nano-

scale structures. Recently, it was suggested that silicon nano-

disks can support a nonradiating excitation known as anapole

[7], literary meaning “without poles”, in which the electric

dipole radiation vanishes completely. It was demonstrated that

such states can be explained by the co-existence of electric and

toroidal dipole moments, simultaneously excited inside dielec-

tric nanoparticles. Despite their different near-field configura-

tions both dipole moments emit with the same radiation

pattern allowing for the complete destructive interference in

the far-field. Toroidal dipole moments became extremely

popular in the metamaterial community [8,9], which focused on

designing optimal structures for their strong excitation. It

turns out that the superposition of comparable toroidal and elec-

tric dipoles might result in nonradiating anapole excitation [10-

14]. It has a number of interesting features and can be used to

design near-field laser [15], to obtain high-efficiency harmonic

generation [16], to achieve pure magnetic dipole scattering

without admixture of other components under plane-wave illu-

mination [17] as well as for a variety of other promising appli-

cations [18,19].

One may wonder now: Can nanostructures be a platform of

hosting such nonradiating current configurations? The answer is

yes. Actually, particular designs have been proposed and fabri-

cated that experimentally verified the excitation of anapole

states either in microwaves [20,21] or at optical frequencies

[7,22]. One convenient way of approach is to analyze the scat-

tered field into a superposition of vector spherical harmonics

(VSHs). Due to their completeness and orthogonality any radia-

tion profile can be uniquely decomposed in a series of such

partial waves. It turns out, that high-index dielectric particles

can exhibit infinite number of conditions where the scattering

contribution of any such partial wave vanishes. As was

mentioned above, the first zero of the electric dipole scattering,

for example, can be explained in terms of destructive interfer-

ence of Cartesian electric and toroidal dipoles. But for higher-

order zeros additional terms are required and currently there is

an effort to identify them all [23]. As highlighted in [24], ac-

cording to the reciprocity theorem, a nonradiating anapole cur-

rent configuration implies a poloidal current distribution that is

orthogonal, in an integral manner, to the incident E-field distri-

bution inside the volume of the particle. Moreover, it has also

been proved that a nonradiating current configuration will bear

no spatial frequencies that are able to be coupled with free

space radiation [25]. In that sense, a multipolar anapole condi-

tion corresponds to a current configuration that has a spatial fre-

quency spectrum on the spherical cell of radius k0, that is or-

thogonal to the far field radiation of that particular multipolar

partial wave. Recently, the excitation of anapole states in pure

dielectric nanoparticles was studied under the prism of a Weier-

strass-type product expansion in terms of the resonant-state

frequencies that correspond to zeros of the elements of the

S-matrix of the particle in the complex frequency plane [26].

Moreover, excitation of anapole states has also been examined

under a projection scheme on Fano–Feshbach resonances [27].

For our purposes, we associate any zeros of the partial scattered

power of spherical harmonics with the potential of nonradiating

anapole excitation.

Importantly, high-index dielectric nanoparticles, in addition to

multipolar modes of electric type, also support magnetic ones.

In analogy with anapole excitations of electric type, one might

also expect the existence of magnetic anapoles, associated with

the vanishing scattering contribution of the magnetic dipole

term. It now raises the question of how such conditions can be

experimentally observed. The problem is that under plane-wave

illumination such vanishing partial wave scattering will usually

be overshadowed by stronger contributions of other modes. The

answer to this question was recently suggested by a number of

groups and incorporates the use of so-called structured-light ex-

citations. Lately, vector beams generally attracted lots of scien-

tific attention since they can have various interesting applica-

tions [28-31]. With such illumination schemes we are able to

shape the multipolar content of the incident field. For example,

by using a radially polarized focused beam, only spherical

harmonics of electric type will be present at the focal point of

the beam, without any magnetic. It was suggested that such a

type of illumination offers an ideal condition for the electric

anapole excitation, which can be tested experimentally [24,32].

It turns out, that if we change the polarization from radial to

azimuthal, then, only magnetic harmonics will be present. Thus,

using such an illumination scheme will be ideal to test the pos-

sibility of the magnetic anapole excitation. An excited magnet-

ic anapole is expected to have useful applications in biosensing,

i.e., in the detection of molecules that interact strongly once

exposed to magnetic field hotspots, which nanoparticles in a

magnetic anapole state can offer in their near field. Moreover,

the signal-to-noise ratio of an MRI machine, that is defined as

the ratio of the local magnetic to electric field intensity, could

be significantly improved by employing these nano-optical

properties that a magnetic anapole can offer.

In this paper we discuss in detail the possibility of magnetic

anapole excitation under various configurations and suggest

how they can be tested experimentally. We begin with a general

multipolar analysis in vector spherical harmonics of arbitrary

focused beams. We generalize the results of [33,34] for arbi-
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trary focused beams under 2π- or 4π-illumination schemes and

for arbitrarily translated frames of reference compared to the

coordinate system of the beam. Next, we describe the T-matrix

method that we use to treat the scattering process of nanoparti-

cles under arbitrary illumination schemes and we highlight im-

portant properties of the T-matrix under several symmetry

conditions. We also discuss the implications that an anapole ex-

citation condition would have on the coupling of the external

field with the natural modes of the nanoparticle under the prism

of the singular value decomposition of its T-matrix. Last, we

present our results on the excitation of magnetic anapole states

under various illumination schemes and various geometries of

hosting nanoparticles.

Multipolar Decomposition of Focused
Beams
Physicists have been lately concerned with the multipolar de-

composition of various types of structured light, in order to

study its interaction with particles [33-37]. Here, we consider a

focused beam propagating along , with xOy being its focal

plane. An arbitrary paraxial beam, with sufficiently large waist

in order to neglect its longitudial z-component, can be consid-

ered as a superposition of one radially ( ) and one azimuthally

( ) polarized beam with different complex transverse profiles

for each one of this parts. According to [38], such a beam, after

being focused by a lens, has an electric field intensity that is

given near its focal point, with respect to the O(r) coordinate

system, by the following formula:

(1)

where  is a constant, with  being the focal

length of the objective and λ0 the free-space wavelength. k0 is

the correspondent wavevector. δ0 is the angle of the marginal

ray that passes through the entrance pupil of the objective,

which has a numerical aperture of NA. So, δ0 = sin−1(NA). The

term  derives from the conservation of the energy flux of

each ray that is refracted through the Gaussian reference sphere

of the objective. The indicator p stands either for the radial ( )

or the azimuthal ( ) part of the input beam. The field at the

focal plane of the objective is a kind of 2D inverse Fourier

transform of the input to the lens field. So, in that sense, it is

expressed as a superposition of plane waves propagating in

angles γ,δ, with γ being the azimuthal and δ the polar angle of

the direction of the propagation vector of each plane wave.

Each pixel of the input to the objective field with cylindrical co-

ordinates ( ) gives birth to a plane wave that propa-

gates along the direction

The radial part of the E-field of such a pixel gives birth to a

plane wave in the image space that is polarized along

whereas the azimuthal part of the E-field of such a pixel gives

birth to a plane wave polarized along

 are the correspondent complex transverse profiles of the

input beam that impinges on the objective.

Next, we decompose the E-field of such a focused beam into

an expansion of vector spherical harmonics with respect to

a coordinate system O1(r1), the natural frame of the scatterer,

that is translated and parallel to the coordinate system

O(r) of the focused beam. The position vector of its center

O1, in spherical coordinates, with respect to the coordinate

system of the focused beam, is given by the vector

d(R,Θ ,Φ) = r−  r1 .

(2)

where  are the VSHs. The indicator α acquires the names

M,N for the TE (magnetic) and TM (electric) VSHs respective-

ly, the index ν stands for the angular momentum quantum num-

ber, which takes the values 1, 2, … and corresponds to dipoles,

quadrupoles, etc. The index μ stands for the azimuthal quantum

number, which takes the values −ν, …, −2, −1, 0, 1, 2, …, ν.

The exponent (ι) refers to the correspondent Bessel (ι = 1, 2)

and Hankel (ι = 3, 4) functions of first and second kind, respec-

tively. For the incident field, being a standing wave, we make

use of the Bessel functions. The VSHs are given by the

formulas below [39]:

(3)

(4)
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where

(5)

(6)

and  is a spherical Bessel (ι = 1) or Hankel (ι = 3)

function of the first kind and

is the corresponding Riccati function.  is the associat-

ed Legendre function of the 1st kind, with

being the generalized Legendre functions.

is a normalization factor for the Legendre functions and plays

an important role for the numerical calculation of the elements

of the T-matrix that will follow later.

 are the correspondent spherical amplitudes of the

multipolar expansion of the incident field with respect to the co-

ordinate system O1(r1). In order to calculate them we make use

of the above plane wave spectrum representation of such an ex-

citation field. In our case they are straightforwardly given by

the formula:

(7)

where we substituted

(8)

It is proven (see Supporting Information File 1) that the spheri-

cal amplitudes of the multipolar expansion of each component

of the plane wave spectrum of the incident field, denoted as

, are given by the formula below:

(9)

where  and δαβ is the Kronecker delta,

which yields 1 for α = β, or 0 for α ≠ β.

By integrating the flux of the Poynting vector of the incident

field over an infinite plane, oriented transverse to the optical

axis, we can calculate the total power that such a focused beam

carries. It is given by the formula below:

(10)

where Z0 is the wave impedance of free space.

At this point, we would also like to consider the case of

two counterpropagating focused beams that constitute a

standing wave excitation. For simplicity, without loss of

generality, we consider that both beams are focused by

the same optical system. The newly introduced beam travels

towards the  direction and is described by the coordinate

system . By applying the same

rotation transformation to the natural frame of the scatterer

and making use of properties of the Legendre functions, we

have

where, again, the rotated system attached to the natural frame of

the scatterer is denoted with a prime. We end up with the

following expression for the spherical amplitudes  that

correspond to the multipolar decomposition of the superim-

posed counterpropagating beams around the natural frame of

the scatterer O1(r1):

(11)
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(13)

(14)

where

(12)

The indicator s stands for the propagating direction of the two

beams and takes the values + and − for the beam that propa-

gates along the  and  direction, respectively. The complex

transverse profile of the first beam with respect to the O(r) co-

ordinate system is denoted as

and the complex transverse profile of the second beam with

respect to the O′(r′) coordinate system is denoted as

Moreover, the spherical coordinates of the position vector with

respect to the O(r) coordinate system for the two cases are

d(+) = (R, Θ, Φ) and d(−) = (R, π − Θ, −Φ), respectively.

To access some of the properties of the above multipole expan-

sion of the excitation field, we further simplify the formula by

expanding the complex transverse profiles of the beams into

Fourier series with respect to the azimuthal angle γ. So, due to

its 2π-periodicity, we have: , which

is an expansion into modes with different orbital angular

momentum m. Then, we can also perform the integration over

the azimuthal angle analytically. This yields the simplified

formula of Equation 13 where Jν(x) is the cylindrical Bessel

function of first kind.

We can observe that in the case of sinΘ = 0, which means that

the natural frame of the scatterer is located along the optical

axis of the two beams, the argument of the Bessel function

becomes zero, and therefore we end up with the condition

. This implies that the orbital angular momentum

m of the input beams before their focusing is bequeathed to the

azimuthal quantum number of the multipolar expansion of the

focused beams with respect to such a reference frame. This

would mean, for example, that a focused beam with m = 3

would bear only multipoles of orders higher than ν = 2. It would

lack a dipolar and quadrupolar content.

We conclude this section by considering the particular

case of rotationally symmetric (  = 0 for m ≠ 0) focused

beams with the natural frame of the scatterer being along

the optical axis (sinΘ = 0). The spherical amplitudes of

the field that corresponds to such a case are given by

Equation 14.

In Equation 14 we want to place emphasis on the following ob-

servations:

(1) The radial part of the beams bears a multipolar content of

purely electric type, whereas the azimuthal part bears a multi-

polar content of purely magnetic type.

(2) Due to the mirror symmetry with respect to the focal plane,

if the two counterpropagating beams have the same complex

transverse profile, , then, for a natural frame of

the scatterer placed at their common focal point (R = 0), the ex-

citation field has a multipolar content of purely even order ν. In

contrast, if the two counterpropagating beams are out of phase,

, then the excitation field has a multipolar

content of purely odd order ν, for a natural frame of the scat-

terer placed at the focal point (R = 0).
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To sum up, in this section we began with the plane-wave repre-

sentation of a focused beam, which is the decomposition of its

field into the Cartesian eigenfunctions of the Helmholtz equa-

tion of free space. Based on this, we derived formulas for its

multipolar decomposition in VSHs, which is the decomposition

of its field into the spherical eigenfunctions of the Helmholtz

equation of free space. This second expansion, as we will see in

the next section, is of crucial importance in studying the far-

field scattering properties of particles illuminated by such an

excitation field.

T-Matrix Method for Far-Field
Scattering Calculations
The T-matrix formulation is a general method of dealing

with far-field scattering phenomena. It is based on decom-

posing both the incident and the scattered field into the

basis of the eigenfunctions of the Helmholtz equation of

free space. So, both fields can be represented by vectors

containing their correspondent expansion amplitudes.

Thinking in terms of a multichannel system where the input is

the incident field and the output is the scattered field, the scat-

tering process is a linear process that can be described by a

square matrix, called the T-matrix, which takes as an input the

amplitudes of the incident field and gives as an output the

amplitudes of the scattered field. The decomposition of the

fields could be performed either on a Cartesian eigenfunction

basis, that is in plane waves, or in a spherical eigenfunction

basis, that is in VSHs. The plane-wave spectrum is a continu-

ous spectrum that needs to be discretized, whereas the VSHs

spectrum is a discrete but infinite spectrum. The great advan-

tage of using VSHs as the basis of those decompositions is that

the rows and columns with significant elements of the T-matrix

are boiled down to the first fundamental multipolar terms. This

means that the infinite T-matrix can be truncated early without

loss of accuracy. We end up fully describing the phenomenon

of the EM-scattering just by a N × N matrix, where N =

2νmax(νmax + 2), with νmax being the maximum order of the

multipolar decomposition of the fields that we will take under

consideration. For subwavelength particles, νmax can take

values, for example, from 2 or 3 up to 15 or 20. This depends

on (1) the size of the particle: small particles can be sufficiently

described by just using the very first orders; (2) the geometrical

complexity of the particle, that is, to which extent the particle

is aspherical; and also (3) the degree of accuracy that we want

to achieve. The absolute values of the elements of the T-matrix

range from 0 to 1 and usually they decrease while the order of

the multipoles they refer to increases. So, practically, the

particle can only interact with incoming multipoles of the

order of up to νmax. For higher-order multipoles it behaves as

if it was transparent and this fact enables us to truncate the

matrix.

One other significant feature of the T-matrix is that it is charac-

teristic of the particle in the particular wavelength and it is irrel-

evant to the incident field. Once computed it can be straightfor-

wardly used for scattering calculations from arbitrary excitation.

Hence, one can understand that the T-matrix method plays a

key role in capitalizing on the results of the previous section.

The spherical amplitudes  of the multipolar decompo-

sition of the excitation field will compose the input vector of the

multichannel system with a transfer function given by the

T-matrix and the output being the vector of the spherical ampli-

tudes of the multipolar decomposition of the scattered field,

which will be denoted as . Shaping the light that is

incident to the particle, that is, acting on the input vector of the

system, instead of acting upon the inner dynamics of the

system, i.e., its transfer function, the geometry of the particle, is

an alternative way of designing the output of the system, i.e.,

the scattering response of the particle. The T-matrix method

reveals the inner dynamics of the scattering system. By deter-

mining the multipolar content of the field scattered by the parti-

cle one has immediate knowledge of its far-field radiation

pattern as well. This means that one readily knows its behavior

as a nanoantenna. Hence, apart from being useful for analytical

purposes, it is also a powerful synthetical tool when it comes to

designing the scattering response of a particle. And this is a

very special and valuable feature, that other methods of

approaching scattering problems rarely offer.

The multipolar expansion of the scattered field with respect to

the natural frame of the scatterer is given by:

(15)

where we make use of the Hankel instead of the Bessel func-

tions for the VSHs since the scattered field is a radiating field.

The series of this formula is considered to converge only

outside of the circumscription of the particle sphere, and this is

known as the Rayleigh hypothesis [40,41]. The spherical ampli-

tudes of the scattered field will be given in the T-matrix formu-

lation by the following expression:

(16)

or in matrix formulation: B = T· A.

Not only the spherical amplitudes of the input vector, but also

the elements of the T-matrix, as well as the values of the output

vector of the scattered spherical amplitudes, do depend on the

choice of the reference frame of the scatterer, i.e., the coordi-

nate system that we will employ for the multipolar decomposi-
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tion of the fields. There are analytical formulas to obtain a new

version of the T-matrix of a particle that corresponds to a

rotated or translated system of coordinates [39,42].

The total power that is scattered by the particle is given by inte-

grating the flux of the Poynting vector of the scattered field

over a spherical surface of infinite radius and is given by the

formula:

(17)

There are several methods in order to calculate the elements

 of the T-matrix [43-45]. We are going to employ the

semi-analytical extended boundary condition method (EBCM)

[39,46], also known as null-field method [42], which was origi-

nally introduced by Waterman in 1965 [47]. This method best

applies for cases of homogeneous, isotropic, star-shaped parti-

cles. The elements of the matrix end up being given by

Stratton–Chu type integrals, with the Dyadic Green functions

being expanded in dyadic products of VSHs, over the surface of

the particle that match the boundary conditions of the multi-

polar field representations inside and outside of the particle.

This method is highly efficient for the cases of rotationally sym-

metric particles, such as cylinders, since the integration over the

azimuthal angle can be performed analytically leading to

simplified expressions of single integrals over the polar angle

(see Supporting Information File 1). One needs to pay special

attention on the fact that the EBCM method becomes numeri-

cally unstable for particles with extreme aspect ratios, due to

numerical calculations with limited digits of precision [48,49].

This is mainly a problem because in these integrals Hankel

functions with small arguments are involved, which give

outputs that go to infinity and spoil the integration. Limited

precision accuracy plagues also the inversion process of a

matrix (see Supporting Information File 1) that is usually close

to being singular and is needed for the calculation of the

T-matrix.

The T-matrix has some important symmetry properties that

need to be taken under consideration [39,42]:

(1) A particle that is rotationally symmetric with respect to the

z1-axis of its natural frame has a T-matrix that is diagonal over

the index μ, which means that the azimuthal quantum number of

the scattered field is inherited by that of the incident field:

(2) A particle with N-fold symmetry with respect to the z-axis

of the natural frame of the scatterer has the following property:

for |μ − μ′| ≠ κN, with κ = 0, 1, … This means that a particle of

small size can practically exhibit diagonality over the azimuthal

index, which means behave like a rotationally symmetric parti-

cle, if it has a N-fold symmetry with N being greater than twice

the maximum index νmax where we truncate the T-matrix. For

example, for a particle small enough, so that it practically inter-

acts only with dipole fields (dipole approximation, νmax = 1), a

three-fold symmetry is enough for it to behave as a rotationally

symmetric particle in terms of its far-field scattering [50].

(3) A particle that is rotationally symmetric with respect to the

z1-axis of its natural frame has a T-matrix with also the

following property:

which gives

for α ≠ α′. This means that for a rotationally symmetric excita-

tion, with μ′ = 0, the electric multipoles of the incident

field give birth only to scattered multipoles of electric type,

and the magnetic multipoles give birth only to magnetic multi-

poles.

(4) A particle with mirror symmetry with respect to the z1 = 0

plane of its natural frame has a T-matrix with the following

property:

where with the last notation, integration over only half of the

surface of the particle with z1 > 0 is implied. If the particle is

rotationally symmetric as well, we have that
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when α = α′ and ν + ν′ is an odd number, or when α ≠ α′ and

ν + ν′ is an even number. This means that for a rotationally

symmetric excitation (μ′ = 0), the incident multipoles of even

order give birth only to scattered multipoles of even order, and,

similarly, the incident ones of odd order, only to scattered ones

of odd order.

(5) A particle with spherical symmetry has a T-matrix that is di-

agonal over all its indices α, μ, ν:

where bα,ν are the well-known Mie scattering coefficients,

which in the case of homogeneous spheres are given by the

formula:

(18)

The indices α, β acquire the names M and N with α ≠ β. The

abbreviations x0 = k0α0 and x1 = n1k0α0 are used, with α0 being

the sphere radius and n1 its refractive index. Z1 is the wave

impedance inside the particle and x0 is called the size parame-

ter of the sphere.

We will close this section by unveiling the property that the

T-matrix of one particle should have in order to be able to host

a nonradiating anapole state. For this, we need to perform a

singular value decomposition (SVD) of the T-matrix [51]:

(19)

where Σ is a diagonal matrix with real, positive elements σi

sorted in descending order, U and V are unitary matrices with

columns of the vectors ui and vi, respectively, and both form a

different orthonormal basis in N-space. Those vectors are called

the left- and right-singular vectors of the T-matrix and form

pairs of vectors that correspond to the singular values σi of the

matrix. They have the property T· vi = σiui.

An ideal anapole state, corresponding to zero scattered power,

can only be hosted by a particle whose T-matrix has at least one

singular value equal to zero. If this condition is satisfied,

then the ideal anapole can be excited by illuminating it by

a field that has a spherical wave amplitude vector A0 that

can be written as a linear combination of the null-space

vectors of the T-matrix, that is as a linear combination of

the right-singular vectors that correspond to singular values

equal to zero: . Then we would have

B = T· A0 = . So, this is the ideal condition

of the T-matrix that would indicate the ability of the particle to

host an ideal non-radiating anapole state. In order to have

access to such kind of excitation we need to shape the multi-

polar content of the illumination field. The result is that the par-

ticle is critically coupled with the excitation field inside of

which electromagnetic energy is stored without a scattered field

needed to fulfill the boundary conditions on its surface. Further-

more, we should also denote that those right-singular vectors of

the null-field space should describe nontrivial excitations, that

is excitations with significant multipolar content for multipoles

of the first order, since, for higher-order multipoles, a nanoparti-

cle is actually behaving as if it was transparent. The incident

field in the vicinity of the center of the coordinate system at-

tached to the particle is mainly described by the first few multi-

polar terms.

However, in practice, when exciting an anapole state, we just

aim to minimize, not to eliminate, the norm of the vector B. If

we define the quality factor of the anapole excitation as Q =

(4Pinc/Psca) − 1, then, by expanding the output vector again on

the basis of the left-singular vectors, finally we have:

(20)

It becomes obvious now that the ability of a particle to host a

nonradiating anapole state with high Q, in terms of its T-matrix,

means the correspondence of sufficiently small coupling coeffi-

cients αi to the first singular values σi, which take the largest

values, since they are sorted in descending order. So, in order to

achieve a nonradiating state, the key lies in illuminating the par-

ticle with a field, the multipolar decomposition of which, will

be well described by a linear combination of those right-

singular vectors that correspond to small enough singular

values. We need to avoid using, for our input, the right-singular

basis vectors that are not enough scaled down in magnitude by

the T-matrix transformation.

Results and Discussion
We can use the results and conclusions of the previous sections

in order to design the scattering response of a nanoparticle at

will. We want to achieve a purely magnetic response by the par-

ticle, the scattered power of which, will be suppressed for some

particular frequency. We will properly design its geometry and,

also, its excitation field, in order to achieve the desired scat-

tering response.
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In the former sections, we proved that an azimuthally polarized

focused beam that is rotationally symmetric, i.e., that has a zero

orbital angular momentum: m = 0, bears only multipoles of

magnetic type for particles that are located over the optical axis.

Moreover, it was also proven that if this particle has a rota-

tional symmetry as well, it will only scatter multipoles of mag-

netic type. So, it will have a purely magnetic response. More

specifically, the scattered field would be a superposition of

VSHs of type , with the magnetic dipole, , corre-

sponding to a dipole moment along the z-axis, mz, and the

magnetic quadrupole, , corresponding to a Cartesian

quadrupole moment , and so on. So, for

demonstration purposes, we are going to use an azimuthally

polarized, rotationally symmetric, focused vector beam with a

Bessel–Gauss transverse profile given by

with a ratio of pupil radius to beam waist β0 = 1.5 and a numeri-

cal aperture of NA = 0.85. The multipolar decomposition of

such an excitation in VSHs is given by Equation 14.

In Figure 1a we plot the normalized total scattered power, (Psca/

Pinc), at a wavelength of λ0 = 500 nm, for golden spheres of

various sizes, placed at the focal point of a vector beam like the

one described above. As shown there, in such a way, we can

even achieve a purely magnetic response by a plasmonic nano-

particle at optical frequencies. Of course, gold has a poor per-

formance in optical frequencies, since it suffers from severe

thermal losses, and as a result, the resonances of the particle

correspond to Mie scattering coefficients, the amplitudes of

which, are usually significantly less than one, and the quality

factor of the supported anti-resonances is quite low as well. A

plasmonic nanoparticle can only provide us with a very poor

(anti-)resonant spectrum to work with.

So, we resort to high-index silicon nanoparticles as a platform

to excite a nonradiating anapole state of magnetic type. Silicon

nanoparticles suffer negligible losses at infrared light. Due to

their high refractive index, they constitute also a good platform

to host Mie resonances of magnetic type, since they can confine

light and support circulating current loops inside. Now, we

replace the golden sphere with a one of silicon and in Figure 1b,

we plot the normalized total scattered power (Psca/Pinc) at a

wavelength of λ0 = 1550 nm, for spheres of various sizes. As

we can see, its resonant multipolar content is much richer than

the previous case of the plasmonic nanoparticle. We can

observe a steep dip of the scattered power for a sphere of size

parameter x0 = 1.62, which belongs to a sphere of a radius of

Figure 1: Plots of the normalized scattered power (Psca/Pinc) in dB,
decomposed into its multipolar contributions, as a function of the size
parameter of the particle, x0. a) Golden sphere at the focal point of an
azimuthally polarized, rotationally symmetric beam at λ0 = 500 nm.
b) Silicon sphere at the focal point of an azimuthally polarized, rotation-
ally symmetric beam at λ0 = 1550 nm. c) Silicon sphere at the focal
point of two counterpropagating, out of phase, azimuthally polarized,
rotationally symmetric beams, modulated by the proposed phase
mask, at λ0 = 1550 nm. Purple dotted lines indicate the first anapole
condition for a sphere of size x0 = 1.62. On the right-hand side, there
are illustrations of the actual E-field intensity of the excitation over a
window of 2 × 4 wavelengths at the focal region, on the ρOz plane,
with a sphere of size x0 = 1.62 placed at the focal point.

α0 = 400 nm. We have already avoided any interference by the

electric modes and this sphere could be a promising candidate

to host a magnetic anapole state, if it were not, as we can see,

for the overlapping magnetic quadrupole and octupole

that interfere and spoil the anapole condition of the magnetic

dipole.

To overcome this, we take the following two actions: First, we

employ a second, similar, counterpropagating beam and illumi-

nate the silicon particle under a standing-wave configuration.

As proven in the previous section, if the second counterpropa-

gating beam has the same transverse profile and is out of phase
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Figure 2: a) 2D plot of the normalized scattered power (Psca/Pinc) in dB as a function of the cubic root of the volume Vol of the disks and the aspect
ratio Ar of the disks. Isoheight (dashed) and isowidth (dotted) contour lines in terms of the dimensions of the disks (in nm) are plotted as well. The
silicon disks are located at the focal point of a rotationally symmetric, azimuthally polarized vector beam at λ0 = 1550nm. Three cases of excited
anapole states are highlighted with A, B and C, the multipolar decomposition of the scattering spectrum of which, is depicted in subfigures b-d respec-
tively. On the right side of them, there are illustrations of the actual E-field intensity of the excitation over a window of 2x4 wavelengths at the focal
region, with a disk of the corresponding dimensions placed at the focal point.

with the first beam, there would be no excitation of multipoles

of even order for a scatterer located at their common focal

point. And, since the T-matrix of a spherical particle is diago-

nal over ν, the scattered multipoles of even order are canceled

out. Therefore, there will be no spurious interference by the

magnetic quadrupole any more. But we still need to get rid of

the octupolar interference. For this, we apply a phase mask to

the two beams before their focusing by the objective. The

simplest phase mask that we can come up with is introducing a

π phase difference inside a circular disk with a radius that corre-

sponds to the angle δ where the cumulative value of the inte-

gral of Equation 14 corresponding to the magnetic octupole

term takes half of its final value. In our case, this happens for

δ = 29.225°. In this way, the octupolar content of the beam is

eliminated, finally leading to the excitation of a nearly ideal

magnetic anapole state that has a dynamic range of more than

three orders of magnitude (Figure 1c). Only spherical particles

with perfect dielectric behavior or of perfect conductivity can

exhibit truly ideal multipolar dips to zero. We should also note

the fact that any silicon nanosphere placed at the focal point of

such illumination scheme will exhibit purely magnetic dipole

response. However, as one can observe, there is also a price to

pay for the phase mask that we introduced: the field intensity at

the vicinity of the focal spot drops to less than a third. Nonethe-

less, one could potentially come up with more efficient ways of

shaping the multipolar content of the excitation, i.e., more com-

plex illumination schemes that can also include amplitude

modulation or multiple-beam configurations. Alternatively,

avoiding the use of such a phase mask, we can observe that one

can obtain another anapole corresponding to the magnetic

quadrupole of a sphere of size x0 = 1.96. Under illumination of

two in phase beams the interfering magnetic dipole and octu-

pole will be diminished, leading to a scattering dip of less than

−30 dB between two, hexadecapolar and quadrupolar, reso-

nances. In Supporting Information File 1, one can find a plot

with the proposed phase-modulation mask, together with some

electric and magnetic field plots that correspond to the illumina-

tion of a silicon sphere, with the size of this anapole case, under

illumination of both one single and two out of phase beams,

with and without the phase mask applied.

Next, we will shift our attention to silicon disks since they

represent, in terms of fabrication, experimental verification and

applications, more realistic cases. We use the T-matrix theory
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described before in order to study numerically the interaction of

an azimuthally polarized cylindrical vector beam with the cylin-

ders. As one can see in Figure 2a, we scan the aspect ratio,

Ar = d/h, and the volume  of various cases

disks , with diameter d and height h, located in free space illu-

minated by a single azimuthally polarized, cylindrically sym-

metric, focused vector beam at fixed wavelength λ0 = 1550 nm,

plotting the normalized total scattered power (Psca/Pinc) on a

logarithmic scale in search of dips that would indicate the pres-

ence of some anapole states. The disks are aligned along the

optical axis.

The particular design of the excitation is essential in obtaining

nonradiating behavior of the cylinders. Again, we want to em-

phasize that the symmetries of the cylinder are of crucial impor-

tance. Such a particle is rotationally symmetric, which means

that it will provide the diagonality identity over the index μ,

which is zero due to the cylindrical symmetry of the excitation.

This will result in the scattered field being of purely magnetic

type. In addition, a cylinder exhibits a mirror symmetry with

respect to the z = 0 plane. This property, as we have shown

earlier, will cancel out all scattered multipoles of even order

when using the same standing-wave configuration that was em-

ployed before for the silicon sphere. This is the case even if the

T-matrix of a cylinder disk does not have this diagonality over

the index ν that spherical particles have. However, as we can

see in Figure 2a, there are several anapole instances already

accessible by the single beam illumination scheme. In

Figure 2b–d, we focus our attention on three of these cases. The

first anapole case is hosted in an oblate disk of small volume,

Vol,A
(1/3) = 526 nm, but with high aspect ratio, Ar,A = 4.98. It is

a magnetic anapole that exhibits a single dip of the magnetic

dipole. The two other cases, that appear in larger disks of bigger

volumes, Vol,B
(1/3) = 718 nm and Vol,C

(1/3) = 904 nm, but with

smaller aspect ratios, Ar,B = 0.905 and Ar,C = 0.45, respectively,

exhibit magnetic anapole states of higher order. There is a

hybrid condition where, simultaneously with the magnetic

dipole dip, we also have dips of the magnetic quadrupole and of

the magnetic octupole. In Supporting Information File 1, there

are 2D maps of the multipolar decomposition that corresponds

to Figure 2a.

Last, we compare the properties of the T-matrix of the cylinder

for which the second anapole case was highlighted previously,

with the properties of the T-matrix of a cylinder that has the

same aspect ratio, Ar,B′ = Ar,B = 0.905, but a larger volume,

Vol,B′ = 759 nm, and yields resonant scattering. We perform a

singular value decomposition of the μ = 0 T-submatrices for

each of those two cylinders and calculate their singular values

σi. We also expand the input vector A, with the spherical ampli-

tudes of the excitation field, over the basis of the right-singular

Figure 3: Comparison of the scattering behavior of two disks of the
same aspect ratio but of different size under the prism of the singular
value decomposition of their μ = 0 T-submatrices. One of them corre-
sponds to an anapole case (a,c) and the other to a resonant case
(b,d). In (a,b) we plot the singular values σi of the T-submatrices
(yellow stars), together with the coupling coefficients ai of the excita-
tion field with the corresponding right singular vectors (red stars), as
well as the final contribution of the correspondent singular mode to the
total scattered power (blue stars). In (c,d) the multipolar content of
each right singular vector vi of the two T-submatrices is plotted. Weak
coupling of the external field with the first right singular vectors of the
T-submatrix, that correspond to high singular values, leads to the exci-
tation of the anapole state.

vectors of each matrix, calculating the coupling coefficients ai

for both of the two cases. We show the corresponding results

for multipoles up to the fifth order.

In Figure 3a,b we plot the quantities  and , as

well as their product  for the two cylinders. As

we mentioned above, the sum of the last quantity over the index

i is proportional to the total scattered power. Therefore its mini-

mization would lead to an anapole state. We can observe that

for the cylinder that hosts an anapole state, there is weak cou-

pling of the excitation field with the right-singular vectors that

correspond to the first, largest, singular values of the matrix.

The result is suppressed scattering leading to an anapole state.

This does not happen in the case of the resonant cylinder. For

the anapole case, the strongest part of the scattered power

derives from the part of the incident field that corresponds to

the sixth right singular vector, and is more than three orders of

magnitude weaker than the prevailing scattered power that

belongs to the first right singular vector of the T-submatrix of

the disk in the resonant case.
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Figure 3c,d depicts the multipolar content of the right singular

vectors of the T-submatrices that belong to each of those two

cylinders. As one can see, there is absolutely no coupling at all

with the right singular vectors that have a multipolar content of

electric type. In both cases there are no right singular vectors of

mixed type multipolar content since for μ = 0 the T-submatrix

of a rotationally symmetric particle is diagonal over the indi-

cator α, which represents the type of the multipoles. Further-

more, due to the mirror symmetry of the particles, we can

also observe that the right singular vectors are separated

into vectors with either purely even or purely odd multipolar

content.

Hence, we can claim that the key for the excitation of this par-

ticular nonradiating anapole state is connencted to the suppres-

sion of the coupling of the external field that we apply, with the

first, third and fourth right singular vectors of the T-submatrix

of the particle, which have electric multipolar content that is not

supported by an azimuthally polarized focused beam. In addi-

tion, it is connected with the coincidence of the weak coupling

of the excitation with the second right singular vector, which

has a multipolar content of magnetic type and corresponds to a

significantly large singular value that could potentially spoil the

excitation of the anapole state.

Conclusion
In this paper we describe the so-called magnetic anapole modes

and discuss various experimental setups of how they can be ob-

tained. Such modes are associated with the complete suppres-

sion of magnetic dipole scattering. In order to be able to obtain

anapole states experimentally, we employed structured-light ex-

citation of a particular configuration. Usually we use illumina-

tion with a plane wave at normal incidence. Such an excitation

carries a multipolar content of μ = ±1 angular momentum and

acts on the correspondent T-submatrices when it comes to scat-

tering by rotationally symmetric particles. By using a rotation-

ally symmetric excitation, instead, we have access to the μ = 0

T-submatrix of these particles, which constitutes a whole new

scattering system, a whole new field to work with where new

interesting phenomena may wait to be unveiled. It turns out that

azimuthally polarized beams contain only spherical harmonics

of magnetic type in the focal region. Depending on the size of

the particle compared to the incident wavelength it can couple

to dipole and/or higher-order harmonics. By using two counter-

propagating out of phase beams it is possible to cancel out all

harmonics of even order because of symmetry properties.

Together with a phase mask applied to the beams, designated to

suppress the interfering octupolar content, this provides an ideal

condition for the excitation of a magnetic anapole state in a

silicon nanosphere. We also discussed realistic setups, based on

silicon nanodisks and nanopillars, which can be used for the ex-

perimental detection of magnetic anapole states. We also ex-

plained, under the T-matrix formalism, the physical mechanism

of their excitation in the hosting nanoparticles, by means of a

singular value decomposition of their T-matrices.

Supporting Information
Supporting Information features the proof for the

multipolar decomposition of an arbitrary plane wave and

the formulas with which the elements of the T-matrix are

calculated based on the EBCM method. It also includes a

plot of the proposed phase mask for Figure 1c, electric and

magnetic field plots corresponding to the anapole condition

discussed in Figure 1b and Figure 1c, and some extra 2D

plots of the multipolar decomposition of the scattered field

of cylinders of various geometries illuminated by an

azimuthally polarized, rotationally symmetric, focused

beam.

Supporting Information File 1
Additional computational data.

[https://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-9-139-S1.pdf]
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