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A Survey of Riccati Equation Results in Negative Imaginary Systems

Theory and Quantum Control Theory

Ian R. Petersen

Abstract— This paper presents a survey of some new appli-
cations of algebraic Riccati equations. In particular, the paper
surveys some recent results on the use of algebraic Riccati
equations in testing whether a system is negative imaginary and
in synthesizing state feedback controllers which make the closed
loop system negative imaginary. The paper also surveys the use
of Riccati equation methods in the control of quantum linear
systems including coherent H

∞ control.

I. INTRODUCTION

The Riccati equation has been applied in a range of applica-

tions in modern control theory including the linear quadratic

regulator problem, the linear quadratic Gaussian problem and

the H∞ control problem; e.g., see [1]–[3]. In particular, it

has played a major role in robust control theory; e.g., see

[2], [4]. In this paper, we survey some results in which the

Riccati equation plays a role in the areas of negative imaginary

systems and quantum linear systems.

The theory of negative imaginary systems is an emerging

theory which is attracting interest among control theory re-

searchers; e.g., see [5]–[8]. This theory is broadly applicable

to problems of robust vibration control for flexible structures;

e.g., see [5], [7], [9]. Such flexible structures can be modelled

by high order linear systems models with highly resonant

dynamics [10]. In addition, uncertainties in resonant frequen-

cies and damping levels can cause problems of poor control

system performance or instability. Negative imaginary systems

theory provides a way of analyzing robustness and designing

robust controllers for such flexible structures in the case of

collocated force actuators and position sensors; e.g., see [9],

[11]. Although much of the theory of negative imaginary

systems revolves around the use of linear matrix inequalities

(LMIs), a number of recent results have emerged in which

Riccati equations are used instead of LMIs; see [9].

Quantum feedback control systems have been an active area

of research in recent years; e.g., see [12], [13]. In particular,

there has been considerable interest in the feedback control

and modeling of linear quantum systems; e.g., see [14]–

[21]. Linear quantum systems commonly arise in the area of

quantum optics; e.g., see [22].

An important class of linear quantum stochastic models

describe the Heisenberg evolution of the (canonical) position

and momentum, or annihilation and creation operators of

several independent open quantum harmonic oscillators that
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are coupled to external coherent bosonic fields; e.g., see

[23], [21], [24], [25], [17], [20], [26]–[30]). These linear

stochastic models describe quantum optical devices such as

optical cavities [22], [23], linear quantum amplifiers [24],

and finite bandwidth squeezers [24]. In particular, we con-

sider linear quantum stochastic differential equations driven

by quantum Wiener processes; see [24]. Further details on

quantum stochastic differential equations and quantum Wiener

processes can be found in [31]–[33].

Some papers on the feedback control of linear quantum

systems have considered the case in which the feedback

controller itself is also a quantum system. Such feedback

control is referred to as coherent quantum control; e.g., see

[16], [17], [26], [27], [34], [35]. Some recent results on the

coherent H∞ control problem and the coherent LQG control

problem involve the use of the Riccati equation and in this

paper, we survey some of these results; e.g., see [26].

Some of the references and discussions in this version of

the paper have been removed due to length limitations. A full

version of the paper can be found in [36].

II. THE RICCATI EQUATION IN NEGATIVE IMAGINARY

SYSTEMS THEORY

Negative imaginary (NI) systems theory is an emerging area

of robust control theory which is concerned with the analysis

and robust control of flexible systems with co-located force

actuators and position sensors.

Definition 1: [5], [6], [37] A square transfer function

matrix M(s) is NI if the following conditions are satisfied:

1) M(s) has no pole in Re[s] > 0.

2) For all ω > 0 such that s = jω is not a pole of M(s),

j (M(jω)−M(jω)∗) ≥ 0. (1)

3) If s = jω0 with ω0 > 0 is a pole of M(s), then it is

a simple pole and the residue matrix K = lim
s−→jω0

(s −

jω0)jM(s) is Hermitian and positive semidefinite.

4) If s = 0 is a pole of M(s), then lim
s−→0

skM(s) = 0 for

all k ≥ 3 and lim
s−→0

s2M(s) is Hermitian and positive

semidefinite.

The following definition defines the strict negative imagi-

nary property which is needed in the NI stability result.

Definition 2 (See [5].): A square real-rational proper trans-

fer function matrix N(s) is termed strictly negative imaginary

(SNI) if

1) N(s) has no poles in ℜ[s] ≥ 0;

2) j[N(jω)−M∗(jω)] > 0 for ω ∈ (0,∞).
We present the main stability result of negative imaginary

systems theory that guarantees the robustness and stability of
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control systems involving the positive-feedback interconnec-

tion of an NI system and an SNI system; see also [5]–[7].

Theorem 1 ( [5], [6]): Consider an NI transfer function

matrix M(s) with no poles at the origin and an SNI transfer

function matrix N(s), and suppose that M(∞)N(∞) = 0
and N(∞) ≥ 0. Then, the positive-feedback interconnection

of M(s) and N(s) is internally stable if and only if

λmax(M(0)N(0)) < 1. (2)

An important result in the theory of negative imaginary

systems is the following result which is referred to as the

negative-imaginary lemma. This lemma can be used for testing

if a given system is negative imaginary. It is also used in the

proof of the above stability theorem.
Theorem 2 (Negative Imaginary Lemma, [5], [6], [9].):

Let (A,B,C,D) be a minimal state-space realization of an
m × m real-rational proper transfer function matrix M(s),
where A ∈ R

n×n, B ∈ R
n×m, C ∈ R

m×n, D ∈ R
m×m.

Then, M(s) is NI if and only if D = DT and there exist
matrices P = PT ≥ 0, W ∈ R

m×m, and L ∈ R
m×n such

that the following linear matrix inequality (LMI) is satisfied:
[

PA+A
T
P PB −A

T
C

T

B
T
P − CA −(CB +B

T
C

T )

]

=

[

−L
T
L −L

T
W

−W
T
L −W

T
W

]

≤ 0.

(3)

The following result is our first result in the theory of

negative imaginary systems which uses the Riccati equation.

This result is a version of the negative imaginary lemma which

uses the Riccati equation rather than the LMI (3).

Theorem 3 ( [9]): Suppose the transfer function matrix

M(s) has a minimal realization

[

A B

C D

]

such that CB +

BTCT > 0. Then M(s) is NI if and only if D = DT and

there exists a matrix P ≥ 0 that solves the algebraic Riccati

equation

PA0 +AT
0 P + PBR−1BTP +Q = 0 (4)

where

A0 = A−BR−1CA,R = CB +BTCT , and

Q = ATCTR−1CA.

In our next result, we use an algebraic Riccati equation to

synthesize a state feedback controller such that the closed loop

system in NI. Consider the following state space representation

for a linear uncertain system given as follows;

ẋ = Ax+B1w +B2u, z = C1x, (5)

W (s) = ∆(s)Z(s),

where we assume that W (s) and Z(s) are the Laplace

transforms of the signals w(t) and z(t).
Here, A ∈ R

n×n, B1 ∈ R
n×m, B2 ∈ R

n×r, C1 ∈ R
m×n,

and ∆(s) is an strictly negative imaginary uncertainty transfer

function matrix; e.g., see [5], [37]. Also, suppose that K ∈
R

r×n is a state feedback matrix such that u = Kx. Then the

closed-loop interconnection of the system (5) with the state

feedback control law is given by

·
x = (A+B2K)x+B1w, z = C1x. (6)

and

W (s) = ∆(s)Z(s). (7)

Our aim is to construct the matrix K such that the corre-

sponding closed-loop system (6) is stable and satisfies the NI

property. From this, it follows that the closed-loop uncertain

system will be stable for any SNI uncertainty ∆(s) [5], [7]

providing the DC gain condition (2) is satisfied.

Consider the following Schur transformation:

Af = UT (A−B2(C1B2)
−1C1A)U =

[

A11 A12

0 A22

]

, (8)

Bf = UT (B2(C1B2)
−1 −B1R

−1) =

[

Bf1

Bf2

]

, (9)

B̃1 = UTB1 =

[

B11

B22

]

, (10)

where U is a unitary matrix.

The transformation (8) can be constructed such that A11

has all of its eigenvalues in the closed left half of the complex

plane and A22 has all of its eigenvalues in the open right half

of the complex plane; i.e., A22 is an anti-stable matrix.

Theorem 4 ( [9]): Given an uncertain system (5) with

C1B2 non-singular and R = C1B1 + BT
1 C

T
1 > 0, define

Af , Bf , B̃1, U , A11, A12, A22, Bf1, Bf2, B11 and B22 as in

(8)-(10), where A22 is the anti-stable block of the Af matrix.

Then there exists a static state-feedback matrix K such that

the closed-loop system (6) is NI if there exist matrices T ≥ 0
and S ≥ 0 such that

−A22T − TAT
22 +Bf2RBT

f2 = 0, (11)

−A22S − SAT
22 +B22R

−1BT
22 = 0. (12)

and T −S > 0. Furthermore, a static state-feedback matrix K

which makes the closed-loop system (6) NI and stabilizes the

anti-stable matrix A22 is given by

K = (C1B2)
−1(BT

1 P − C1A−R(BT
2 C

T
1 )

−1BT
2 P ), (13)

where P = UPfU
T and Pf =

[

0 0
0 (T − S)−1

]

≥ 0 satisfies

the algebraic Riccati equation

PfAf+AT
f Pf−PfBfRBT

f Pf+Pf B̃1R
−1B̃T

1 Pf = 0. (14)

III. THE RICCATI EQUATION IN LINEAR QUANTUM

SYSTEMS THEORY

We consider a class of linear quantum system models. These

linear quantum system models take the form of quantum

stochastic differential equations (QSDEs) which are derived

from the quantum harmonic oscillator; e.g., see [26], [38],

[39]. We will survey a number of results involving Riccati

equations which arise in the theory of such systems.

A. Quantum Harmonic Oscillators

We begin by considering a collection of n independent

quantum harmonic oscillators which are defined on a Hilbert

space H = L2(Rn,C); e.g., see [20], [32], [40]. Elements

of the Hilbert space H, ψ(x) are the standard complex

valued wave functions arising in quantum mechanics where
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x is a spatial variable. Corresponding to this collection of

harmonic oscillators is a vector of annihilation operators

a =
[

a1 a2 . . . an
]T

. The adjoint of the operator ai
is denoted a∗i and is referred to as a creation operator.

The quantum harmonic oscillators described above are

assumed to be coupled to m external independent quan-

tum fields modelled by bosonic annihilation field operators

A1(t),A2(t), . . . ,Am(t) which are defined on separate Fock

spaces Fi defined over L2(R) for each field operator [31]–

[33], [41]. For each annihilation field operator Aj(t), there

is a corresponding creation field operator A∗
j (t), which is

defined on the same Fock space and is the operator ad-

joint of Aj(t). The field annihilation operators are also col-

lected into a vector of operators defined as follows: A =
[

A1 A2 . . . Am

]T
.

In order to describe the joint evolution of the quantum

harmonic oscillators and quantum fields, we first specify the

Hamiltonian operator for the quantum system which is a

Hermitian operator on H of the form

H =
1

2

[

a† aT
]

M

[

a

a#

]

(15)

where M ∈ C
2n×2n is a Hermitian matrix of the form

M =

[

M1 M2

M
#
2 M

#
1

]

(16)

and M1 = M
†
1 , M2 = MT

2 . Also, we specify the coupling

operator for the quantum system to be an operator of the

form

L =
[

N1 N2

]

[

a

a#

]

(17)

where N1 ∈ C
m×n and N2 ∈ C

m×n. Also, we write

[

L

L#

]

= N

[

a

a#

]

=

[

N1 N2

N
#
2 N

#
1

] [

a

a#

]

.

In addition, we define a scattering matrix which is a unitary

matrix S ∈ C
n×n.

The Heisenberg evolution of the operator vectors a, and a†

is described the following QSDEs (e.g., see equations (1) and

(2) in [42] and equations (7) and (9) in [18]):

d

[

a

a#

]

=

−ı

[[

a

a#

]

,H

]

dt+
1

2

(

L†

[[

a

a#

]

, LT

]T
)T

dt

+
1

2

[

L#,

[

a

a#

]T
]T

Ldt+

[[

a

a#

]

, LT

]

dA#

−

[[

a

a#

]

, L†

]

dA. (18)

Using (15) and (17), these equations then lead to the fol-

lowing QSDEs, which describe the dynamics of the quantum

system under consideration:

[

da(t)
da(t)#

]

= F

[

a(t)
a(t)#

]

dt+G

[

dA(t)
dA(t)#

]

;

[

dAout(t)
dAout(t)#

]

= H

[

a(t)
a(t)#

]

dt+K

[

dA(t)
dA(t)#

]

,

(19)

where

F =

[

F1 F2

F
#
2 F

#
1

]

; G =

[

G1 G2

G
#
2 G

#
1

]

;

H =

[

H1 H2

H
#
2 H

#
1

]

; K =

[

K1 K2

K
#
2 K

#
1

]

. (20)

Here,

F = −iJM −
1

2
JN†JN ;G = −JN†

[

S 0
0 −S#

]

;

H = N ;K =

[

S 0
0 S#

]

. (21)

The QSDEs (19), (20) define the general class of linear

quantum systems considered. Such quantum systems can be

used to model a large range of devices and networks of devices

arising in the area of quantum optics including optical cavities,

squeezers, optical parametric amplifiers, cavity QED systems,

beam splitters, and phase shifters; e.g., see [14], [15], [17],

[21]–[24], [26], [28], [35], [43], [44].

B. Coherent Quantum H∞ Control

We formulate a coherent quantum control problem in which

a linear quantum system is controlled by a feedback controller

which is itself a linear quantum system. Such a controller is

said to be physically realizable; e.g., see [26], [38], [39]. The

fact that the controller is to be a quantum system means that

any controller synthesis method needs to produce controllers

which are physically realizable. The problem we consider is

the quantum H∞ control problem in which it is desired to

design a coherent controller such that the resulting closed loop

quantum system is stable and attenuates specified disturbances

acting on the system; see [16], [26]. In the standard quantum

H∞ control problem such as considered in [16], [26], the

quantum noises are averaged out and only the external distur-

bance is considered. We now formulate the coherent quantum

H∞ control problem for a general class of quantum systems

of the form (19), (20).

We consider quantum plants described by linear complex

quantum stochastic models of the following form defined in

an analogous way to the QSDEs (19), (20):
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�

da(t)
da(t)#

�

= F

�

a(t)
a(t)#

�

dt

+
�

G0 G1 G2

�





dv (t)
dw (t)
du (t)



 ;

dz (t) = H1

�

a(t)
a(t)#

�

dt+K12du (t) ;

dy (t) = H2

�

a(t)
a(t)#

�

dt

+
�

K20 K21 0
�





dv (t)
dw (t)
du (t)





(22)

where all of the matrices in these QSDEs have a form as

in (20). Here, the input dw(t) =

�

βw(t)dt+ dA(t)
β#
w (t)dt+ dA(t)#

�

represents a disturbance signal where βw(t) is an adapted

process; see [26], [32], [34]. The signal u(t) is a control input

of the form du(t) =

�

βu(t)dt+ dB(t)
β#
u (t)dt+ dB(t)#

�

where βu(t)

is an adapted process. The quantity dv(t) =

�

dC(t)
dC(t)#

�

represents any additional quantum noise in the plant. The

quantities

�

dA(t)
dA(t)#

�

,

�

dB(t)
dB(t)#

�

and

�

dC(t)
dC(t)#

�

are

quantum noises.

In the coherent quantum H∞ control problem, we consider

controllers which are described by QSDEs of the form (19),

(20) as follows:
�

dac(t)
dac(t)

#

�

= Fc

�

ac(t)
ac(t)

#

�

dt

+
�

Ḡc Ĝc Gc

�





dw̄c

dŵc

dy









du(t)
dû(t)
dū(t)



 =





Hc

Ĥc

H̄c





�

ac(t)
ac(t)

#

�

dt

+





Kc 0 0

0 K̂c 0
0 0 K̄c









dw̄c

dŵc

dy





(23)

where all of the matrices in these QSDEs have a form as in

(20). Here the quantities

dw̄c =

�

dAc(t)
dAc(t)

#

�

, dŵc =

�

dBc(t)
dBc(t)

#

�

are controller quantum noises. Also, the outputs du0 and

du1 are unused outputs of the controller which have been

included so that the controller can be physically realizable.

Corresponding to the plant (22) and (23), we form the closed

loop quantum system by identifying the output of the plant dy

with the input to the controller dy, and identifying the output

of the controller du with the input to the plant du. This leads

to the following closed-loop QSDEs:

dη (t) =

�

F G2Hc

GcH2 Fc

�

η (t) dt

+

�

G0 G2 0

GcK20 Ḡc Ĝc

�





dv (t)
dw̄c (t)
dŵc (t)





+

�

G1

GcK21

�

dw (t) ;

dz (t) =
�

H1 K12Hc

�

η (t) dt

+
�

0 K12 0
�





dv (t)
dw̄c (t)
dŵc (t)



 (24)

where

η (t) =









a(t)
a(t)#

ac(t)
ac(t)

#









.

For a given quantum plant of the form (22), the coherent

quantum H∞ control problem involves finding a physically

realizable quantum controller (23) such that the resulting

closed loop system (24) is such that the following conditions

are satisfied:

(i) The matrix

Fcl =

�

F G2Hc

GcH2 Fc

�

(25)

is Hurwitz;

(ii) The closed loop transfer function

Γcl(s) = Hcl (sI − Fcl)
−1

Gcl

satisfies

�Γcl(s)�∞ < 1 (26)

where

Hcl =
�

H1 K12Hc

�

, Gcl =

�

G1

GcK21

�

.

Theorem 5: (See also [3], [26].) Suppose that the plant (22)

satisfies the following conditions:

(i) E1 = K
†
12K12 > 0;

(ii) E2 = K21K
†
21 > 0;

(iii) The matrix

�

F − iωI G2

H1 K12

�

is full rank for all ω;

(iv) The matrix

�

F − iωI G1

H2 K21

�

is full rank for all ω.

Then the above coherent H∞ control problem has a solution

if and only if the Riccati equations

(F −G2E
−1
1 K

†
12H1)

†X +X(F −G2E
−1
1 K

†
12H1) +

X(G1G
†
1 −G2E

−1
1 G′

2)X +

H
†
1(I −K12E

−1
1 K

†
12)H1 = 0; (27)

(F −G1K
†
21E

−1
2 H2)Y + Y (F −G1K

†
21E

−1
2 H2) +

Y (H†
1H1 −H

†
2E

−1
2 H2)Y +

G1(I −K
†
21E

−1
2 K21)G

†
1 = 0. (28)
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have positive-semidefinite stabilizing solutions X and Y such

that the spectral radius of XY is strictly less than one. In this

case, the matrices Fc, Gc, and Hc in the controller system

(23) can be constructed according to the formulas:

Fc = F +G2Hc −GcH2 + (G1 −GcK21)G
†
1X;

Gc = (I − Y X)−1(Y H
†
2 +G1K

†
21)E

−1
2 ;

Hc = −E−1
1 (G†

2X +K
†
12H1). (29)

C. Riccati Equations in the Physical Realizability of Linear

Quantum Systems

In the coherent quantum H∞ control problem considered

above (see also, [16], [26], [39], [45] as well in other coherent

quantum control problems such as the coherent quantum

LQG problem [27]), it is required that the controller be a

physically realizable quantum system. One way to achieve

this is to first design a classical linear controller and then

to add additional quantum noises to the controller to make

it physically realizable; e.g., see [26], [39], [46]. In this

section, we consider a result from [46] in which the Riccati

equation plays a key role in this problem when it is desired

to minimize the number of added quantum noises to make a

system physically realizable.

Here, we consider quantum linear systems described by

QSDEs of the following form (see [26]):

dx(t) = Ax(t)dt+Bdw(t);

dy(t) = Cx(t)dt+Ddw(t). (30)

Here, x(t) =
�

x1(t) · · · xn(t)
�T

is a column vector

of n self-adjoint system variables which are operators on

the underlying Hilbert space. The components of vector x

are either position operators qi or momentum operators pi,

which are related to the annihilation and creation operators

considered above as follows:

qi = ai + a∗i ; pi = −ıai + ıa∗i .

Similarly, dw(t) is a column vector of nw self-adjoint, non-

commutative operators representing the input to the sys-

tem and dy(t) is a column vector of ny self-adjoint, non-

commutative operators representing the output of the system.

The components of vector w are either input field position

operators Qi or input field momentum operators Pi, which

are related to the input field annihilation and creation operators

considered above as follows:

Qi = Ai +A∗
i ; Pi = −ıAi + ıA∗

i .

Also, the components of the vector y are either output field

position operators Qout
i or output field momentum operators

Pout
i , which are related to the output field annihilation and

creation operators considered above as follows:

Qout
i = Aout

i +Aout∗
i ; Pout

i = −ıAout
i + ıAout∗

i .

We consider the problem of implementing an arbitrary,

strictly proper, LTI system as a quantum system (for example

when implementing a coherent controller) by introducing

vacuum noise sources. The resulting quantum systems are

described by the following QSDEs which are a special case

of (30):

dx(t) = Ax(t)dt+Budu(t)

+Bv1
dv1(t) +Bv2

dv2(t);

dy(t) = Cx(t)dt+ dv1(t). (31)

Here, u(t) (a column vector with nu components) represents

the inputs to the system. Also, v1(t) and v2(t) (column vectors

with nv1
and nv2

components respectively) are quantum

Wiener processes corresponding to the introduced vacuum

noise inputs. For convenience, the vacuum noises are parti-

tioned into two vectors v1(t) and v2(t) such that nv1
= nu.

Then, nv = nv1
+ nv2

is the total number of introduced

vacuum noise inputs. Subsequently, we will refer to v1 as the

direct feedthrough quantum noises and to v2 as the additional

quantum noises.

Definition 3: The system described by (30) is physically

realizable if there exists a quadratic Hamiltonian operator H =
1
2x(0)

TRx(0), where R is a real, symmetric, n×n matrix, and

a coupling operator vector L = Λx(0), where Λ is a complex-

valued 1
2nw ×n coupling matrix such that the matrices A, B,

C and D are given by:

A = 2Θ
�

R+ Im
�

Λ†Λ
��

; (32a)

B = 2iΘ
�

−Λ† ΛT
�

Γ; (32b)

C = PT

�

Σny
0

0 Σny

� �

Λ + Λ#

−iΛ + iΛ#

�

; (32c)

D =
�

Iny×ny
0ny×(nw−ny)

�

. (32d)

Here:

Θ =











J 0 · · · 0
0 J · · · 0
...

...
. . .

...

0 0 · · · J











; J =

�

0 1
−1 0

�

. (33)

Γnw×nw
= Pdiag(M); M = 1

2

�

1 i
1 −i

�

;

Σny
=

�

I 1

2
ny×

1

2
ny

0 1

2
ny×

1

2
(nw−ny)

�

; P is

the appropriately dimensioned square permuta-

tion matrix such that P
�

a1 a2 · · · a2m
�

=
�

a1 a3 · · · a2m−1a2 a4 · · · a2m
�

and diag(M)
is an appropriately dimensioned square block diagonal matrix

with each diagonal block equal to the matrix M . (Note that

the dimensions of P and diag(M) can always be determined

from the context in which they appear.) Im (.) denotes

the imaginary part of a matrix and † denotes the complex

conjugate transpose of a matrix.

The following theorem shows how a Riccati equation with

a skew-symmetric solution can be used to determine if a given

transfer function can be physically realized with only direct

feedthrough noises and no additional quantum noises.

Theorem 6: Consider a system with strictly proper transfer

function matrix:

G(s) = C̃(sI − Ã)−1B̃u.

Suppose the algebraic Riccati equation (ARE)

XB̃uΘnu
B̃T

uX − ÃTX −XÃ− C̃TΘny
C̃ = 0 (34)
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has a non-singular, real, skew-symmetric solution X . Here,

the matrices Θnu
and Θny

are defined as in (33). Then there

exists matrices {A,Bu, C} such that

G(s) = C(sI −A)−1Bu

and the corresponding system (31) is physically realizable

with only the direct feedthrough quantum noises v1 and no

additional quantum noises v2.
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