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Abstract
This work proposes a novel multi-output neural network for the prediction of the lift coefficient of aero-
foils using inviscid compressible flow data. Contrary to existing neural networks that are designed to
predict aerodynamic quantities of interest, the proposed network considers as output the pressure at a
number of selected points on the aerofoil surface. The proposed approach is compared against the more
traditional network where the lift coefficient is directly the only output of the network. Furthermore, a
detailed comparison of the proposed neural network against the popular proper orthogonal decomposition
method is presented. The numerical results, involving high dimensional problems with flow and geometric
parameters, show the benefits of the proposed approach.
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1 Introduction

During the design and optimisation stages of aerodynamic components, the simulations to be
performed involve a large number of parameters, both geometric and related to the flow conditions.
In this scenario, the simulation of all possible configurations is commonly not affordable. The use
of reduced order models (ROM) has become a popular alternative to alleviate the computational
burden associated to CFD simulations involving a large number of parameters. In the last two
decades, the use of artificial neural networks (NN) in CFD applications has grown significantly.
One of the most attractive properties of ROMs and NNs is that, once the ROM or NN is built,
predictions can be performed in almost real time. This enables the use of such models for the fast
evaluations of an objective function in optimisation and inverse problems.

2 Governing equations

The fluid flow problems considered in this work are governed by the Euler equations for an inviscid
compressible fluid. The strong form of the problem, in a computational domain Ω ⊂ Rd and in
the absence of external volume forces, can be written as

U t + ∇ · F (U) = 0 in Ω× ( 0, T ]

U = U0 in Ω× {0}
B(U ,U∞) = 0 in ∂Ω× ( 0, T ].

(1)

The vector of conservation variables, U , and the flux tensor, F , are given by

U :=

 ρ
ρv
ρE

 , F :=

 ρvT

ρv ⊗ v + pId
(ρE + p)vT

 , (2)

Here, U0 denotes the initial condition, T is the final time and B is the generic flux used to define
the boundary conditions over the boundary. In the above expressions ρ is the density, ρv is the
momentum, ρE is the total energy per unit volume, p is the pressure and Id is the identity matrix
of dimension d. A vertex-centred finite volume (FV) solver is used to build the training and test
datasets [1].
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3 Artificial neural networks

Artificial NNs are an arrangement of neurons where neurons of each layer are connected to the
neurons of the previous and next layers. The first and the last layers correspond to the inputs
and outputs, and the remaining layers, called hidden layers, are numbered from l = 1 to l = nL,
with nL being the number of hidden layers [2]. During the so-called forward propagation, the value
associated to each neuron is computed by using the values associated to the connected neurons in
the previous layer, the weights of the connections and an activation function F l. More precisely,
the value of the j-th neuron in the layer l + 1, denoted by zl+1

j , is computed as

zl+1
j = F l

 nlN∑
i=1

θlijz
l
i + blj

 , (3)

where bl is a bias that is introduced to enhance the approximation properties of the network, θlij
denotes the weight of the connection between the i-th neuron of the layer l and the j-th neuron
of the layer l + 1 and nlN is the number of neurons in the layer l.
A training case is defined by a vector of N inputs, x = {x1, . . . , xN}T , and a vector of M
outputs, y(x) = {y1(x), . . . , yM (x)}T . Given a set of nTr training cases, xk = {xk1 , . . . , xkN} and
yk = {yk1 , . . . , ykM}, for k = 1, . . . , nTr, the so-called cost function for a function approximant is
defined as

C(θ) = − 1

nTr

nTr∑
k=1

n
nL+1
N∑
i=1

[
yki (xk)− hki (θ)

]2
+

λ

2nTr

nL∑
l=0

nl+1
N∑
i=1

nlN∑
j=1

(θlij)
2. (4)

The values hki correspond to the predicted outputs, computed in the forward propagation, starting
from the input values z0i = xki for k = 1, . . . , nTr and i = 1, . . . , n0N. It is worth noting that the
number of neurons in the input layer is taken as n0N = N and, similarly, the number of neurons in
the output layer is taken as nnL+1

N = M .
The goal of the so-called training stage is to obtain the weights associated to all the connections
of the NN that minimise the cost function of equation (4). In this work, the backpropagation
momentum gradient descent is employed where a low pass filter is applied to alleviate the common
difficulty of gradient based methods to reach a global minimum in problems where multiple local
minimums are present.
When the NN is designed as a function approximant, the activation functions are selected as the
log sigmoid function for l = 0, . . . nL − 1 and a linear function in the outputs. In contrast, for NN
designed as classifiers, all the activation functions are taken as the sigmoid for l = 0, . . . nL.

4 Numerical examples

4.1 The benefits of using a multi-output neural network

The first example considers the computation of the lift coefficient of a NACA0012 aerofoil at a
free stream Mach number, M∞, and an angle of attack, α, in predefined intervals IM = (0.3, 0.9)
and Iα = (−5◦, 16◦), respectively. It should be noted that this range of the inflow conditions
considered leads to both subsonic and transonic flows.
Two NNs are considered and compared. The first network considers M∞ and α as inputs and the
lift coefficient, CL, as a single output. The second network considers M∞ and α as inputs and the
output is the pressure at a user defined set of points on the aerofoil. The set of points considered
corresponds to the 300 mesh nodes used to discretise the aerofoil.
To illustrate the performance of both networks in the different flow regimes considered, figure 1
shows the regression plots for the lift coefficient using the two networks, where different symbols
are used for different free-stream Mach numbers to show the accuracy of the predictions in terms
of the flow regime.
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(a) Network 1 (b) Network 2

Figure 1: Regression plot for the lift coefficient as a function of the free-stream Mach number M∞.

(a) overall performance

NN

(b) M∞ = 0.77, α = 2.7◦

Figure 2: The relative frequency of the error in the test dataset, measured in lift counts is shown
in (a), and the comparison of pressure coefficient predictions, Cp of the two ROMs with the CFD
solver is shown in (b)

4.2 A comparison on the performance of neural network and proper
orthogonal decomposition

The second example considers the prediction of the lift on a RAE2822 aerofoil at a free stream Mach
number, M∞, and an angle of attack, α, in predefined intervals IM = (0.3, 0.9) and Iα = (−5◦, 12◦)
respectively.
This example is used to compare the performance of the NN with multiple outputs proposed in the
previous example against a popular reduced order modelling technique, the POD. In both ROMs,
the prediction of the pressure is performed at the 300 points used to discretise the aerofoil and
the lift coefficient is computed. Figure 2(b) describes how the ROMs pressure prediction oscillates
near the shock, with more oscillations observed in the POD. The histogram of figure 2(a) show
that both approaches are able to provide an error below 10 lift counts for almost 70% of the test
cases, with the NN achieving a marginally higher percentage.

4.3 An inverse shape optimisation using geometrically parametrised
aerofoils

The last example employs a trained NN algorithm to the inverse shape design of an aerofoil,
with the goal to show the potential and reliability of the proposed NN for the fast evaluation
of the objective function in an optimisation process. This example can be broken down into
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two stages. The first stage involves the prediction of the lift coefficient for an aerofoil that
is parametrised using the control points of the NURBS describing the aerofoil. The base ge-
ometry corresponds to an approximation of the NACA0012 aerofoil using two cubic B-splines
with eight control points to define the top and bottom curves respectively, as proposed in [3].
The variation of the position of the control points with respect to the base geometry, namely
(±δxi,±δyi) is considered to be the input of the neural network, where (δxi, δyi) ∈ [0, 0.1c]2

and c denotes the chord of the aerofoil. In the second stage, the trained NN algorithm is used
to perform an inverse shape design given a pressure distribution and using a gradient-free al-
gorithm, namely the modified cuckoo search (MCS), proposed in [4]. The reference pressure
distribution used in MCS is that of an RAE2822 aerofoil, unseen in the training stage of the NN.

(a) Geometry

(b) Pressure coefficient

Figure 3: Target, initial and optimised
geometry and pressure coefficient ob-
tained using the MCS and the proposed
NN to predict the values of the objec-
tive function.

Figure 3(a) offers a visual comparison of the target ge-
ometry, the initial geometry used in the MCS algorithm
and the final optimised geometry while figure 3(b) shows
their corresponding pressure coefficient plots with mini-
mal relative error in the L2((0, c)) norm, as measured by
the objective function. It is worth mentioning that the
optimisation process using the MCS algorithm took only
55 seconds due to the almost negligible cost of evaluating
the objective functions using the proposed NN.

5 Conclusions

A new multi-output NN has been proposed to predict
the lift coefficient of aerofoils using inviscid compressible
flow data. The proposed approach has been compared
to a single-output NN and to the POD using numerical
examples with inflow and geometric parameters. In all
cases considered, the proposed NN produces more accu-
rate predictions for the same number of training cases
or snapshots. Finally, the potential of the proposed NN
approach to enable the fast evaluation of the objective
function in an inverse shape design problem has been
demonstrated. Using a gradient-free optimisation algo-
rithm and the predictions given by the proposed NN, it
was possible to perform an inverse identification of the
aerofoil geometry for a given pressure distribution in less
than one minute.
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