
Efficient Vectorised Cuda Kernels for High-Order Finite
Element Flow Solvers

Jan Eichstädt1,∗, David Moxey2, Joaquim Peiró1

1 Department of Aeronautics, Imperial College London, UK. jan.eichstaedt13@imperial.ac.uk,
j.peiro@imperial.ac.uk

2 College of Engineering, Mathematics and Physical Sciences, University of Exeter, UK.

d.moxey@exeter.ac.uk

Abstract
In this work, we develop efficient kernels for elemental operators of matrix-free solvers of the Helmholtz
equation, which are the core operations for more complete Navier-Stokes solvers. We consider straight-
sided and deformed quadrilateral elements from unstructured high-order meshes. We investigate two
types of efficient CUDA kernels for a range of polynomial orders; a first type which maps each elemental
operation to a CUDA-thread, and a second that maps each element to a CUDA-block. Our results show
that the first option is beneficial for small elements with low polynomial order, whereas the second option
is beneficial for larger elements. For both options we show the importance of the right layout of data
structures, and analyse the effect of utilising different memory spaces on the GPU.

Key words: High-order FEM; Parallelisation; CUDA

1 Introduction

Modern shared-memory systems like GPUs offer massively parallel compute power, while the gap
between available FLOPS and memory bandwidth increases. This demands for parallel schemes
with high arithmetic intensity, such as high-order finite element methods. These methods are
frequently used to simulate fluid dynamics problems, for example by discretising the Navier-Stokes
equation and using the large eddy simulation (LES) approach to model the turbulent nature of the
flow. High-order methods are very suitable for this class of simulations, due to their low diffusion
and dispersion error and their exponential error convergence [3]. Considering the incompressible
Navier-Stokes equation, an operator splitting scheme as introduced in Reference [2] leads to very
efficient implementations. In this scheme, the advection terms are solved using explicit time-
stepping, while the diffusion and pressure terms are solved using implicit time-stepping. The
latter forms the computationally most expensive part and can be expressed in terms of solving
the Helmholtz equation. In a continuous Galerkin projection, the global Helmholtz operator
can be efficiently solved with a low memory footprint using a matrix-free approach, which is
performed in three steps: first the global modes are scattered to their local element-wise modes,
then the Helmholtz operation is performed on each element independently, and finally all elemental
modes are gathered back to their global modes. In this work we focus on the central part of this
scheme, the parallel execution of the elemental Helmholtz operator. We restrict our work to
quadrilateral elements, both straight-sided and deformed, but note that our investigations can be
easily transferred to other tensor product based element types. Similar work has been conducted
by other finite element groups, see for example deal.II [4] and Dune [1] focusing mostly on efficient
vectorised operations for quadrilateral and hexahedral elements on CPUs.
Deformed high-order elements allow to represent curved CAD geometries exactly, leading to more
accurate flow solutions. They however require more involved computations, as the Jacobian of
these elements is not constant, a fact that on the other hand we exploit for straight-sided elements.
The evaluation of the elemental Helmholtz operator in described in more detail in Section 2. It is
crucial to design our algorithms with the GPU hardware in mind, especially with regards to the
hierarchical parallel structure and also with regards to the different memory spaces, that can be
addressed explicitly. We discuss this in more detail in Section 3. High-order finite element methods
additionally posses the desirable feature of varying the polynomial order p of the shape functions
that are used to perform the elemental evaluations. The question which polynomial order to choose
is influenced by multiple factors and is subject of significant ongoing research efforts. Here we
consider the computational aspect, thus our target measure is maximising a throughput expressed

1

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Loughborough University Institutional Repository

https://core.ac.uk/display/304375708?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


in degrees of freedom (DOF) per time-unit. With increasing polynomial order the number of
operations per DOF increases faster than the memory footprint. This results in higher arithmetic
intensities of the algorithms for higher polynomial orders p, which on GPUs is often required to
achieve good performance and utilisation of the hardware. We present performance results of our
kernels for a range of polynomial order in Section 4 and draw conclusions in Section 5.

2 Method

We implement the following arithmetic operations in our CUDA kernels. The elemental Helmholtz
operation He for a quadrilateral element is the sum of the Laplacian operator and the mass
operator and can be expressed in matrix form as

ŝel = Heûel = [Le + λM e]ûel (1)

ŝel = [(Dx1B)TWDx1B + (Dx2B)TWDx2B + λBTWB] ûel (2)

Here, the basis matrix B with Bi,j = φj(ξi) denotes the backward-transform from coefficient space
to physical space, its transform BT is the forward operator from physical space to coefficient space.
The diagonal weight matrix W with Wi,j = Ji,jwiwj includes the Jacobian J , that is the mapping
between the standard element defined on ξ ∈ [−1, 1] and the elemental global coordinates x, as
well as the quadrature weightings wi and wj . The derivative matrices Dx1

and Dx2
with respect

to the two spatial directions x1 and x2 are

Dx1 = Λ

(
∂ξ1
∂x1

)
Dξ1 + Λ

(
∂ξ2
∂x1

)
Dξ2 (3)

Dx2
= Λ

(
∂ξ1
∂x2

)
Dξ1 + Λ

(
∂ξ2
∂x2

)
Dξ2 , (4)

with the diagonal coefficient matrices Λ, and the block-diagonal derivative matrices Dξ1 = ∂
∂ξ1

and Dξ2 = ∂
∂ξ2

. We precompute the two matrix products Dξ1B and Dξ2B, that are the same
for all elements. To minimise the operator count for an efficient implementation, the Jacobian
matrix and the four different coefficient matrices Λ for each element have also been precomputed
and stored. We note that for straight-sided elements these five matrices are constant for each
element, which we leverage in our kernel implementations. We employ tensor-product bases for
our quadrilateral elements, which further allows the exploitation of the sum-factorisation approach
that reduces the number of operations.

3 Implementation

Within the global Helmholtz operation, each elemental operation can be performed independently
and hence in parallel. Additionally, we can realise a second nested level of parallelism within
each element, over the different quadrature points or modes. We hence investigate two different
mappings of the parallel algorithms to the parallel GPU hardware. As the first option, each
elemental operation is mapped to a single CUDA-thread. Here it is paramount to place special
emphasis on efficient data-structures by interleaving the data of a group of 32 elements for the
vectorised operations within a CUDA-warp. This is illustrated in Figure 1 for the default memory
layout, where each elemental data set is placed consecutively into the linear memory array. Here
all the first data units of each elemental data set are scattered over the memory, and need to be
loaded individually. However, when the data is interleaved with a stride equal to the vectorisation
length, as illustrated in Figure 2, a contiguous memory access can be achieved, and the bandwidth
of loading operations is increased significantly. As the second option, each elemental operation is
mapped to a single CUDA-block. Here it is critical to harness the parallelism within the elemental
operations by assigning each quadrature point or mode (depending if the operation is in physical
or modal space) to one CUDA-thread. In this case the default memory layout is employed.

2



Figure 1: Default memory layout with
stride = 1

Figure 2: Interleaved memory layout with
stride = 32 (size of GPU warp)

1 2 3 4 5 6 7 8 9 10

Polynomial order p

0

500

1000

1500

2000

2500

3000

3500

4000

G
F

L
O

P
S

Quad per thread (straight) - Constant

Quad per thread (straight) - Shared

Quad per thread (straight) - Global

Quad per block (straight) - Shared/Constant

Quad per block (straight) - Global

Figure 3: Performance of various implementa-
tions for straigh-sided quadrilateral elements

1 2 3 4 5 6 7 8 9 10

Polynomial order p

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

T
h

ro
u

gh
p

u
t

(D
oF

/s
)

×1010

Quad per block (straight)

Quad per thread (straight)

Quad per block (deformed)

Quad per thread (deformed)

Figure 4: Performance of optimal implementa-
tions for straigh-sided and deformed quadrilat-
eral elements

To address a second design consideration, we analyse the effect of placing utility data like the basis
matrix B, quadrature weights w, and derivative matrices Dξi into either global memory, constant
memory, or shared memory of the GPU. Global memory has the lowest memory bandwidth,
whereas shared memory is physically located on a higher cache level with increased bandwidth,
but smaller size. Here each thread can fetch data without a penalty for non-contiguous access.
Finally, the constant memory allows very fast read access only, if all threads within one warp are
accessing the same memory address. This makes this memory space a promising candidate for
utility data of the completely vectorised kernels.

4 Results

We investigate our templated Helmholtz kernels for polynomial orders of p = 1 to p = 10 on a
Nvidia Titan V GPU, which possesses a maximum of 6900GFLOPS. We utilise the nvcc compiler
version 9.1 and set the -O3 optimisation flag. In Figure 3 we report the average achieved FLOPS
over 1000 executions of five different kernels for straight-sided quadrilateral elements. It shows
that placing constant utility data into the constant memory space for the completely vectorised
operation can lead to performance improvements of up to a factor of two, compared with the
default of loading this data from global memory space. For elements of p > 6, that are mapped to
a CUDA-block performance improvements of up to 20% can be realised by loading such utility data
to the shared memory space. In Figure 4 we compare the optimum kernels in terms of memory
placement. We can derive that for the specific GPU employed here, the mapping of elemental
operations per thread is beneficial up to a polynomial order of p = 4, after which the registers are
overflowing into the slower local memory. For higher polynomial orders the mapping per block
is superior, whereas for low polynomial orders there are not enough modes to fully occupy all 32
threads of a warp. The figure further shows the different throughput achieved depending on the
deformation of the elements.
To assess how efficiently we employ the GPU hardware, we plotted the achieved FLOPS of the
four optimal kernels in two different so called roofline plots. (The horizontal lines depict the
limits in terms of FLOPS, whereas the diagonal line depicts the memory bandwidth limit.) From
Figure 5, we can deduce that the kernels that map per thread are memory bound at the DRAM

3



1
4

1
2 1 2 4 8 16 32 64 128 256

Arithmetic intensity

256

512

1024

2048

4096

8192

G
F

L
O

P
S

Peak FLOPS with FMA

without FMA

Quad per block (straight)

Quad per thread (straight)

Quad per block (deformed)

Quad per thread (deformed)

Figure 5: Rooflines based on DRAM memory

1
64

1
32

1
16

1
8

1
4

1
2 1 2 4 8 16

Arithmetic intensity

256

512

1024

2048

4096

8192

G
F

L
O

P
S

Peak FLOPS with FMA

without FMA

Quad per block (straight)

Quad per thread (straight)

Quad per block (deformed)

Quad per thread (deformed)

Figure 6: Rooflines based on L1 cache

level, whereas from Figure 6 we can deduce that the kernels that map per block are memory bound
at the L1 cache. The best kernels nevertheless achieve 20% to 42% of the maximum theoretical
FLOPS, indicating a very good utilisation of the GPU hardware.

5 Conclusions

We have compared two options of mapping the parallel execution of the Helmholtz operator to the
parallel GPU hardware using the CUDA programming model. The first option maps each elemen-
tal operation to one CUDA-thread, whereas the second options maps each elemental operation to
a CUDA-block, where we assign each quadrature point or mode to a CUDA-thread. Our results
show that the first option is beneficial for small quadrilateral elements with low polynomial order
of up to p = 4, as larger elements quickly approach the register limits of the GPU. The second
option is beneficial for larger elements, that provide high arithmetic intensity to fully occupy all
CUDA-threads.
Our investigation shows that placing constant utility data into the constant and shared memory
space leads to performance gains compared with only using global memory space.
Finally, straight-sided elements result in a substantially increased throughput compared with
deformed elements, which should be taken into account in mesh-optimisation algorithms.

Acknowledgments

J.E. gratefully acknowledges the support of his research through the President’s Scholarship of
Imperial College London.

References

[1] P. Bastian, C. Engwer, J. Fahlke, Ma. Geveler, D. Göddeke, O. Iliev, O. Ippisch, R. Milk,
J. Mohring, S. Müthing, M. Ohlberger, D. Ribbrock, and S. Turek. Hardware-Based Efficiency
Advances in the EXA-DUNE Project. In Hans-Joachim Bungartz, Philipp Neumann, and
Wolfgang E Nagel, editors, Software for Exascale Computing - SPPEXA 2013-2015, pages
3–23, Cham, 2016. Springer International Publishing.

[2] G. E. Karniadakis, M. Israeli, and S. A. Orszag. High-Order Splitting Methods for the Incom-
pressible Navier-Stokes Equations. Journal of Computational Physics, 97(2):414–443, 1991.

[3] G.E. Karniadakis and S.J. Sherwin. Spectral/hp Element Methods for Computational Fluid
Dynamics. Oxford University Press, 2nd ed. edition, 2005.

[4] M. Kronbichler and K. Kormann. Fast Matrix-Free Evaluation of Discontinuous Galerkin
Finite Element Operators. ACM Transactions on Mathematical Software, 45(3):1–40, 2019.

4


