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Abstract
In the current work, a second order finite volume computational framework established upon a system of
first order conservation laws was employed. In this case, the classical linear momentum conservation equa-
tion is solved in conjunction with a geometric conservation equation for the deformation gradient tensor.
Taking advantage of this formalism, the continuity of the normal components of the velocity and traction at
contact interface was explicitly enforced by means of the Rankine-Hugoniot jump conditions. More specif-
ically, the normal traction will be enforced in the usual linear momentum equation, whereas the normal
velocity will be enforced in the geometric conservation equation without resorting to an iterative scheme.
Additionally, a Total Variation Diminishing shock capturing technique was easily incorporated in order to
improve dramatically the performance of the algorithm at the vicinity of contact. No ad-hoc algorithmic
regularisation procedures are needed. Finally, a numerical example which considered the impact of two
(nearly incompressible) elastic bars was presented in order to demonstrate the accuracy and robustness
of the methodology compared to standard linear Finite Elements. It was observed that oscillations were
present in the solution when using linear triangle Finite Elements while the proposed method produced
results that agreed well with bilinear quadrilateral Finite Elements. In conclusion, the mixed based system
of first order conservation laws effectively alleviate non-physical zero energy modes and spurious pressure
instabilities when modelling the contact between two (nearly incompressible) deformable solids.
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1 Introduction
Many problems in the simulation of prototype tests and manufacturing processes involve con-
tact and impact phenomena, typically characterised by a non-smooth response associated with
transitions between contact and separation modes and between stick and slip modes. Such prob-
lems are posed mathematically by demanding the usual satisfaction of linear momentum balance
equation and initial and boundary conditions for each body separately, while imposing addi-
tional set of kinematic and kinetic conditions that govern the interaction of these bodies with each
other. When considering frictionless model of contact, these conditions act to preclude interpen-
etration of the bodies (kinematic condition) and to insure compressive interaction normal to the
interface (kinetic condition). One challenging aspect is that impenetrability cannot be expressed
as an evolution (or algebraic) equation and so requires special numerical treatment [1]. The most
common techniques addressing this include penalty method, Lagrange multiplier method, or
a combination of both. In the penalty method, the impenetrability constraint is enforced as a
penalty normal traction along the contact surface. This allows unpredictable amount of interpen-
etration and, potentially, can generate ill-conditioned systems that may require extremely small
time steps for stability. For Lagrange mutiplier method, impenetrability is weakly enforced and,
in general, requires computationally demanding iterative solvers [1]. In this work, an alternative
approach to explicitly enforce those interface conditions is proposed through the use of a system
of first order conservation equations [2].

2 Reversible Elastodynamics
Consider the three dimensional deformation of an elastic body of material density ρR moving
from its initial undeformed configuration occupying a volume ΩR, of boundary ∂ΩR, to a time
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dependent deformed configuration occupying a volume ΩR(t), of boundary ∂ΩR(t) at time t.
The motion of the body is defined through a deformation mapping x = φ(X, t) which satisfies
the following first order system of balance equations [2, 3]

∂(ρRv)
∂t

−DIVP = f R; (1a)

∂F
∂t
−∇0v = 0. (1b)

To guarantee the existence of a single-valued mapping, expression (1b) requires the satisfaction
of a set of compability conditions, that is

CURLF = 0. (2)

Here, v represents the velocity field, f R is the body force, F is the deformation gradient tensor,
P is the first Piola–Kirchhoff stress tensor, DIV and CURL represent the material divergence and
curl operators, and ∇0 is the material gradient operator defined as [∇0]I =

∂
∂XI

.
Equation (1a) represents the usual linear momentum balance equation, whereas equation (1b)
represents additional geometric conservation equation for deformation gradient tensor. When
considering the interaction between two bodies, additional set of contact interface conditions
(also known as Karush-Kuhn-Tucker conditions) must be suitably enforced. Taking advantage of
the above formalism (1a,b), it is interesting to notice that kinetic conservation condition can be
ensured in (1a), whereas the kinematic impenetrability condition can be easily enforced in (1b).
In the presence of non-smooth solutions, above equations (1a,b) are accompanied by appropriate
Rankine Hugoniot jump conditions across a discontinuous surface (defined by a material unit
normal vector N) propagating with speed U in the reference space. This can be described as
[2, 3]

U ρRJvK = −JPKN; UJFK = −JvK⊗ N, (3)

with J·K = [·]R − [·]L being defined as the jump between the right state R and the left state L of a
discontinuous interface.

3 Contact Interface Conditions
When two separate bodies are in contact, they must follow certain interface conditions, whereas,
when the two bodies are not in contact they can deform independently. In the case of contact-
stick, one crucial interface condition is the complete continuity of the velocity and traction, that
is the velocity and traction are continuous in both the normal and tangential directions of the
surface. Another interface condition is the contact surface cannot support tension. In this work,
these interface conditions are enforced by solving a Riemann-like problem [4] at contact region.
To achieve this, it is necessary to evaluate both the velocity and traction vectors at the contact
point immediately following the impact. Note first that the impact will generate two types of
shock waves (e.g. volumetric wave cp and shear wave cs) travelling from the contact point into
each of the two bodies. Specifically, the generated shock waves will travel with volumetric speed
and from equation (3a) , the velocity jump across the left and right shock waves can be deduced
as

cL
pρL

RJvK = −JPK(−NL); cR
p ρR

RJvK = −JPK(−NR). (4)

Multiplying the above equations by a unique common normal vector n, and after some algebraic
manipulations, gives

tC
n =

ρR
RcR

p tL
n − ρL

RcL
ptR

n

ρL
RcL

p + ρR
RcR

p
+

ρL
RρR

RcL
pcR

p

ρL
RcL

p + ρR
RcR

p

(
vR

n − vL
n

)
; vC

n =
ρL

RcL
pvL

n + ρR
RcR

p vR
n

ρL
RcL

p + ρR
RcR

p
− tL

n + tR
n

ρL
RcL

p + ρR
RcR

p
,

(5)
where tL

n = n ·
(
PLNL) , tR

n = n ·
(
PRNR) , vL

n = n · vL and vR
n = n · vR.
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In the situation where friction is present to a sufficient degree to prevent relative sliding, a sim-
ilar derivation for the common tangential components of the velocity and traction can now be
followed. This is described as

tC
t =

ρR
RcR

s tL
t − ρL

RcL
s tR

t

ρL
RcL

s + ρR
RcR

s
+

ρL
RρR

RcL
s cR

s

ρL
RcL

s + ρR
RcR

s

(
vR

t − vL
t

)
; vC

t =
ρL

RcL
s vL

t + ρR
RcR

s vR
t

ρL
RcL

s + ρR
RcR

s
− tL

t + tR
t

ρL
RcL

s + ρR
RcR

s
.

(6)
Finally, the complete common velocity and traction vectors post-impact at the contact point can
be evaluated as

tC = tC
n n + tC

t ; vC = vC
n n + vC

t . (7)

Furthermore, when considering contact-slip, it is physically possible to postulate that the com-
mon tangential traction components vanish, that is tC

t = 0. With this at hand, the common
tangential components of velocity then become

vC
t = vL

t −
tL

t
ρL

RcL
s

. (8)

In the case of contact-slip, it is clear that the velocity and traction are continuous normal to the
surface, but are discontinuous in the tangential direction of the surface.

4 Numerical Scheme
From spatial discretisation standpoint, a very efficient vertex centred finite volume algorithm is
employed. Following the work of [2], the semi-discrete form of the underlying system (1) reads

Ωa
R

d
(
ρa

Rva
)

dt
=

 ∑
b∈Λa

tC ‖Cab‖+ ∑
γ∈ΓB

a

tC
γ ‖Cγ‖

+ Ωa
R f a

R; (9a)

Ωa
R

dFa

dt
=

 ∑
b∈Λa

1
2
(va + vb)⊗ Cab + ∑

γ∈ΓB
a

vC
γ Cγ

 . (9b)

The terms within the parenthesis in (9a,b) correspond to the evaluation of the control volume
interface and boundary fluxes. Such evaluation comprises a summation over edges (first term
in the parenthesis) and a summation over boundary surfaces (second term in the parenthesis).
Notice that the contact interface conditions presented in Section 3 can be viewed as a boundary
condition that couples Lagrangian meshes together by enforcing contact-impact physics. It is
important to emphasise that kinetic conservation condition is ensured in (9a), whereas, unlike the
classical displacement based formulation, the kinematic impenetrability condition in this case is
explicitly enforced in (9b) without resorting to computationally expensive iterative scheme. From
time discretisation standpoint, an explicit type of Runge-Kutta time integrator is used.

5 Numerical Example
In order to show the robustness of the algorithm, two (nearly incompressible) elastic bars trav-
elling at equal but opposite velocity of 50m/s are considered. The bars are initially set with a
gap of 8mm such that the bars impact at 80µs. Both bars are modelled using a neo-Hookean
model with a Young’s modulus of 585MPA, density of 8930kg/m3 and Poisson’s ratio of 0.495.
The problem is initially analysed using the standard Finite Element Method (FEM) available in
Abaqus, and then with the proposed approach. Figure 1 shows the pressure contour of post-
impact bars at time t = 100µs. Comparing these results, pressure oscillations is clearly observed
for standard linear triangles (FEM). Remarkably, the pressure profile obtained with the proposed
method compares well with those obtained from the quadrilateral element provided in Abaqus.
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(c) Abaqus discretised with bilinear quadrilaterals via mean dilatation

Figure 1: Pressure contour of post-impact bars at t = 100µs.

6 Conclusions
The paper presents a vertex centred finite volume method for the solution of fast transient com-
putational contact mechanics, where a mixed based system of first order conservation laws is
solved. It has been shown that non-physical zero energy modes and spurious pressure insta-
bilities can be effectively alleviated when attempting to model the contact between two (nearly
incompressible) deformable solids. The consideration of thermoelasticity within the current com-
putational framework is the next step of our work.
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