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Abstract
This work presents computational results of a reduced order model for the rapid calculation of conducting
object characterisations as a function of frequency in metal detection. Such characterisations are called
their spectral signature. We present a brief description of the eddy-current model and the magnetic
polarizability tensor (MPT) used for our object characterisations. The transmission problem required for
the computation of the MPT and its discretisation is then described followed by a summary of the reduced
order model. As an illustration of the capabilities of the approach for characterising realistic objects, we
show MPT spectral signatures of a British £1 coin.
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1 Introduction

The location and identification of hidden conducting security threats in metal detection is an
important yet difficult task. Recently, there has been considerable interest in using the magnetic
polarizabilty tensor (MPT), to characterise conducting permeable targets [1, 2, 3, 4]. Considering
the frequency (or spectral) behaviour of the MPT, henceforth called its spectral signature, offers
significant advantages to simple thresholding techniques, namely, information about a hidden
object’s size, shape, conductivity and permeability. This is because the associated metal detection
inverse problem becomes one of classifying an object according to its MPT spectral signature. We
are interested in machine learning approaches for the classification and to do this training data is
required. The purpose of this paper is to present computational results of a recently implemented
reduced order model [5] for practical examples to illustrate how the training data can be generated.
The paper is organised as follows: in Section 2, the eddy current model and asymptotic expansion,
which leads to the explicit expression of the MPT, are briefly reviewed. In Section 3, the full order
model along with the finite element discretisation are defined. This is followed, in Section 4, with
the reduced order model (ROM) scheme used. Section 5 presents numerical results for a British
£1 coin.

2 The eddy-current model and asymptotic expansion

The eddy-current model is a low frequency approximation of the Maxwell system in which the
displacement currents are neglected. For the case of a small conducting object Bα := αB + z,
where α is the object size, B is its shape and z is its position, in a non conducting medium Bcα
the model is described by

∇×Eα = iωµHα, ∇×Hα = J0 + σEα, (1)

where Eα and Hα are the electric and magnetic interaction fields, respectively, J0 is an external
current source, i :=

√
−1, ω is the angular frequency and µ, σ are the magnetic permeability and

electric conductivity respectfully and are defined as

µ(x) =

{
µ∗ x ∈ Bα
µ0 x ∈ Bcα

, σ(x) =

{
σ∗ x ∈ Bα
0 x ∈ Bcα

, (2)

where µ0 = 4π×10−7H/m and is the permeability of free space. Practical metal detectors measure
(Hα−H0)(x) and a traditional approach to solving the inverse problem of identifying the object
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would involve determining µ(x) and σ(x) and using these to infer the position and object shape,
which is expensive. Instead we follow an alternative approach in which objects are characteriesed
by MPTs. We accomplish this by using the asymptotic formula derived by Ammari et al [1], which
has been simplified by Ledger and Lionheart [2] to

(Hα −H0)(x)i = (D2
xG(x, z))ij(M[αB,ω])jk(H0(z))k +O(α4), (3)

as α → 0 where M[αB, ω] = (M[αB, ω])ijei ⊗ ej is the (complex symmetric) rank 2 MPT,
e is unit basis vector and D2

xG(x, z) is the Hessian of the free space Laplace Green’s function
G(x, z) = 1/(4π|x− z|).

3 Full order model and finite element discretisation

Our intrest lies in the computation of (M[αB, ω])ij as a function of ω that can be obtained from
the solution of the transmission problem

∇× µ−1
∗ ∇× θ

(1)
i − iν(θ̃

(0)
i + θ

(1)
i ) = 0 in B, (4a)

∇× µ−1
0 ∇× θ

(1)
i = 0 in Bc, (4b)

∇ · θ(1)
i = 0 in Bc, (4c)

[n× θ(1)
i ]Γ = 0 on Γ, (4d)

[n× µ−1∇× θ(1)
i ]Γ = 0 on Γ, (4e)

θ
(1)
i = O(|ξ|−1) as |ξ| → ∞, (4f)

where [·]Γ denotes the jump, Γ := ∂B, ν := α2ωµ0σ∗ and θ̃
(0)
i := θ

(0)
i + ei × ξ is a source term

independent of ω. We apply NGSolve to obtain discrete finite element approximations to (4) using
Nédélec hp version finite elements, leading to the linear system of equations of dimension Nd [5]

A(ω)q(ω) = r(θ(0,hp), ω), (5)

which must be solved for each ω where θ(0,hp) denotes the finite element (FE) solution of θ(0).
Note we have also dropped the index i for simplicity.

4 Reduced order model

To reduce the computational cost of repeatedly solving (5) for each value of ω, we use projection
based proper orthogonal decomposition (PODP) to create a much smaller surrogate problem as
described in [5] and references therein. We briefly summarise the steps below: Equation 5 is solved
for q(ωi), i = 1, . . . , N and the solution vectors stored as

D := [q(ω1),q(ω2), ...,q(ωN )] ∈ CNd×N . (6)

We then apply a truncated singular value decomposition to obtain

D ≈ DM = UMΣM (VM )∗, (7)

where UM ∈ CNd×M , ΣM ∈ RM×M , (VM )∗ ∈ CM×N , ∗ denotes the Hermission and where
M ≤ N is determined by the tolerance of truncation. We use UM to project problem (5) to a
lower dimensional space, resulting in a reduced system of dimension M � Nd,

AM (ω)p(ω) = rM (ω), (8)

where AM (ω) := (UM )∗A(ω)UM and rM (ω) := (UM )∗r(ω). Then, we obtain an approximate
solution q(ω) ≈ UMp(ω), from which, by combining with the FE basis functions, we can compute
(M[B,ω])PODPij . We have also obtained output certificate bounds |Re((M[B,ω])ij
− (M[B,ω])PODPij )| ≤ (∆[ω])ij and |Im((M[B,ω])ij − (M[B,ω])PODPij )| ≤ (∆[ω])ij for the accu-

racy (M[B,ω])PODPij with respect (M[B,ω])ij obtained by the full order FE model [5].
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5 Numerical results

To illustrate the practical capabilities of the approach, we apply it to the characterisation where
Bα = αB is a British £1 coin, The coin has a diameter of 23.43mm (point to point) and a thickness
of 2.88mm, the inner portion of the coin is made from nickel plated brass and the outer being
a nickel brass alloy [6], which we have modelled to have conductivities of σ∗ = 1.63 × 107 S/m
and σ∗ = 5.26× 106 S/m, respectively, with both parts of the coin having a relative permeability
µ∗/µ0 = 1. We have discretised this using a 30645 unstructured tetrahedral element mesh with
p = 4 elements, for which the solution was found to be converged under p-refinement across the
range of frequencies of interest.
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(a) |Je| for ω = 103 rad/s. (b) |Je| for ω = 105 rad/s. (c) |Je| for ω = 107 rad/s.

Figure 1: A £1 coin modelled with µ∗/µ0 = 1 and conductivities σ∗ = 1.63×107 S/m and σ∗ = 5.26×106

S/m for the inner and outer part of the coin, respectively: eddy-currents Je = iωσ∗θ
(1)
3 for the inner and

outer portions of the coin respectively for different values of ω, (a) ω = 103 rad/s, (b) ω = 105 rad/s, (c)
ω = 107 rad/s.

In Figure 1, we observe, as ω, increases that the eddy currents become confined to a thin layer close
to the outer edge and the material interface. This is associated with the small skin depth at high
frequencies and requires an accurate discretisation. For the inner interface this occurs at a lower
frequency, due to its higher conductivity [5]. The spectral signature of the MPT is considered
next. We use the full order FE model described above to generate solution snapshots at N = 13
logarithmically spaced frequencies such that 101 ≤ ω ≤ 1010 rad/s. The PODP approach using
M = N is then applied to compute the MPT spectral signature at 161 points leading to the result
for M[αB, ω] shown in Figure 2.

102 104 106 108 1010

Frequency (rad/s)

-6e-6

-5e-6

-4e-6

-3e-6

-2e-6

-1e-6

0

Re
(

) ii

Re( 11( ))
Re( 22( ))
Re( 33( ))
Re( 11( )) (Snapshot)
Re( 22( )) (Snapshot)
Re( 33( )) (Snapshot)

102 104 106 108 1010

Frequency (rad/s)

0

2.5e-7

5e-7

7.5e-7

1e-6

1.25e-6

1.5e-6

1.75e-6

Im
(

) ii

Im( 11( ))
Im( 22( ))
Im( 33( ))
Im( 11( )) (Snapshot)
Im( 22( )) (Snapshot)
Im( 33( )) (Snapshot)

(a) Re(M[αB, ω])ii. (b) Im(M[αB, ω])ii.

Figure 2: A £1 coin modelled with µ∗/µ0 = 1 and conductivities σ∗ = 1.63×107 S/m and σ∗ = 5.26×106

S/m for the inner and outer part of the coin, respectively: diagonal coefficients for (a) the real part and
(b) the imaginary part of M[αB,ω].

Due to the coin’s reflectional and rotational symmetries, its non-zero independent coefficients are
(M[αB, ω])11 = (M[αB, ω])22 and (M[αB, ω])33 and the MPT is diagonal. In Figure 3, we show
the certificates bounds (∆[ω])ii that are computed at run time of the PODP for M = N = 25.
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These give creditability in the ROM, without the need to repeat full order solutions. Note that
tighter bounds can be obtained by increasing N .
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Figure 3: A £1 coin modelled with µ∗/µ0 = 1 and conductivities σ∗ = 1.63×107 S/m and σ∗ = 5.26×106

S/m for the inner and outer part of the coin, respectively: certificate bounds (∆[ω])ii for (a) the real part
and (b) the imaginary part of (M[αB,ω])ii.

The PODP with N = 13 took 18:01 minutes where as the full order FE model took 2:04:43 hours
for the same MPT spectral signature, offering a saving of 86%. The solver time is clock time and
all the computations were made in a cluster node using a machine Bull Sequana X440-E5 2 x
Octa-Core (3.2 GHz) Xeon Gold v5 6134 and using a parallel pool of 16 workers.

The talk will also present results of object characterisations for both threat (e.g. guns and knives)
as well as non-threat objects (e.g. coins).
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