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Abstract
In the contexts of fluid–structure interaction and reduced order modeling for parametrically–dependent
domains, immersed and embedded methods compare favorably to standard FEMs, providing simple and
efficient schemes for the numerical approximation of PDEs in both cases of static and evolving geometries.
In this note, the a priori analysis of unfitted numerical schemes with cut elements is extended beyond the
realm of linear problems. More precisely, we consider the discretization of semilinear elliptic boundary
value problems of the form −∆u + f1(u) = f2 with polynomial nonlinearity via the cut finite element
method. Boundary conditions are enforced, using a Nitsche–type approach. To ensure stability and error
estimates that are independent of the position of the boundary with respect to the mesh, the formulations
are augmented with additional boundary zone ghost penalty terms. These terms act on the jumps of
the normal gradients at faces associated with cut elements. A–priori error estimates are derived, while
numerical examples illustrate the implementation of the method and validate the theoretical findings.
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1 Introduction

The overall objective of this note is to extend the a–priori analysis of cutFEM beyond the realm
of linear problems. To this end, we propose an unfitted framework for the numerical solution of a
semilinear elliptic boundary value problem with a polynomial nonlinearity. Our approach is based
on classical arguments for the p–Laplacian [3] and on key results from [2] for a stabilized unfitted
method for the Poisson problem. We start by introducing the model problem and the necessary
notation in Section 2. Then, Section 3 focuses on the derivation of the a–priori error estimates
and a numerical experiment is reported in Section 4, verifying the theoretical convergence rates
and showcasing the accuracy of the method. The paper concludes with a brief discussion of our
contributions and suggestions for future work in Section 5.

2 The model problem and preliminaries

As a model problem, we consider a semilinear elliptic boundary value problem of the form

−∆u+ f1(u) = f2 in Ω, (2.1)

u = 0 on Γ ,

where Ω ⊂ R2 is a simply connected open domain with boundary Γ = ∂Ω. The nonlinearity
is assumed to be of type f1(u) = |u|p−2 u. Such equations have been studied previously in the
context of problems with critical exponents [4] and are referred to in the theory of boundary layers
of viscous fluids [9] as Emden–Fowler equations. The weak formulation∫

Ω

(∇u · ∇v + f1(u)v) =

∫
Ω

f2v, for every v ∈ H1
0 (Ω) (2.2)

of (2.1) clearly admits a weak solution u ∈ H1
0 (Ω). Assuming f2 ∈ H−1(Ω), the a–priori error

bound 1
2 ‖∇u‖

2
L2(Ω) + ‖u‖pLp(Ω) ≤

1
2 ‖f2‖

2
H−1(Ω) readily follows.

Implementation of an unfitted FEM for the discretization of (2.2) requires a fixed background
domain B which contains Ω; let Bh a corresponding shape–regular mesh and its active (unfitted
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to the boundary Γ ) part Th = {T ∈ Bh : T ∩Ω 6= ∅} . Considering the extended domain ΩT =⋃
T∈Th T and the finite element space Vh :=

{
wh ∈ C0(Ω̄T ) : wh|T ∈ P1(T ), T ∈ Th

}
, we define a

discrete counterpart to the continuous bilinear form in (2.2), setting

ah(uh, vh) =

∫
Ω

∇uh · ∇vh −
∫
ΓD

vh (nΓ · ∇uh)−
∫
ΓD

uh (nΓ · ∇vh) + γDh
−1
∫
ΓD

uhvh, (2.3)

for uh, vh ∈ Vh. Here, nΓ denotes the outward pointing unit normal vector on the boundary Γ .
The cutFEM discretization scheme reads as follows: find a discrete state uh ∈ Vh, such that

ah(uh, vh) + jh(uh, vh) +

∫
Ω

f1(uh)vh =

∫
Ω

f2vh, for all vh ∈ Vh, (2.4)

where the stabilization term jh(uh, vh) =
∑
F∈F γ1h

∫
F

[[nF · ∇uh]][[nF · ∇vh]] acts on the gradient

jumps [[nF ·∇uh]] := nF ·∇uh
∣∣∣
K
−nF ·∇uh

∣∣∣
K′

of uh over element faces F = K∩K ′ in the interface

zone F := {F : F is a face of T ∈ Th with T ∩ Γ 6= ∅, F /∈ ∂ΩT } and is included in the bilinear
form to extend its coercivity from the physical domain Ω to ΩT [2]. The quantities γD and γ1 in
the definitions of ah and jh are positive penalty parameters; see Lemma 3.2 below.

3 Norms, approximation properties and a–priori analysis

The convergence analysis of the method (2.4) is based on the following mesh–dependent norms:

|||v|||2∗ = ‖∇v‖2L2(Ω) +
∥∥∥h−1/2γ1/2D v

∥∥∥2
L2(Γ )

, |||v|||2h = ‖∇v‖2L2(ΩT )
+
∥∥∥h−1/2γ1/2D v

∥∥∥2
L2(Γ )

+ jh(v, v),

which satisfy |||vh|||∗ ≤ C∗|||vh|||h. Some preliminary lemmata and our basic error estimate follow:

Lemma 3.1. [2, Lemma 5] Let E : H2(Ω) → H2(ΩT ) a linear H2–extension operator on ΩT ,
such that Eφ|Ω = φ|Ω, Eφ|Γ = φ|Γ , ‖Eφ‖H2(ΩT )

. ‖φ‖H2(Ω) and Πh : H1(Ω)→ Vh the Clément-

type extended interpolation operator defined by Πhφ = Π∗hEφ, where Π∗h : H1(ΩT ) → Vh is the
standard Clément interpolant. Then, the estimate

|||u−Πhu|||∗ + j(Πhu,Πhu)1/2 ≤ Ch|u|H2(Ω) (3.1)

holds for every u ∈ H2(Ω).

Lemma 3.2 (Coercivity and continuity of ah + jh). [2, Lemmata 6 and 7] Defining the method
(2.4) with sufficiently large parameter γD and γ1 = 1, then

cbil|||uh|||2h ≤ ah(uh, uh) + jh(uh, uh), ah(uh, vh) + jh(uh, vh) ≤ Cbil|||uh|||h|||vh|||h, (3.2)

for every uh, vh ∈ Vh, and

ah(v, vh) ≤ ca|||v|||∗|||vh|||∗, for every v ∈
[
H2(Ω) + Vh

]
and vh ∈ Vh, (3.3)

independently of h and of the way in which the boundary Γ intersects the background mesh.

Lemma 3.3 (Galerkin orthogonality). Let u ∈ H1
0 (Ω) be the solution to the semilinear problem

(2.2) and uh ∈ Vh its finite element approximation in (2.4). Then,

ah(uh − u, vh) =

∫
Ω

[f1(u)− f1(uh)] vh − jh(uh, vh), for every vh ∈ Vh. (3.4)

Proposition 3.4 (Optimality with respect to interpolation). Let u ∈ H1
0 (Ω) be the solution to

the semilinear problem (2.2) and uh ∈ Vh its finite element approximation in (2.4). Then, there
exists a constant C > 0, independent of u, uh, such that

|||uh −Πhu|||2h + ‖u− uh‖pLp(Ω) ≤ C
([
|||u−Πhu|||h + jh(Πhu,Πhu)1/2

]2
+ ‖u−Πhu‖qLq(Ω)

)
,

(3.5)

where q is the conjugate index of the power p in the nonlinear term f1(u) = |u|p−2 u.
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Proof. As in the proof of [3, Thm. 5.3.3, p. 319] for the p–Laplacian, there exists c > 0, such that∫
Ω

f1(u− uh)(u− uh) ≤ c
∫
Ω

[f1(u)− f1(uh)] (u− uh). (3.6)

Then, denoting eh := uh−Πhu, we successively apply the coercivity estimate (3.2), (3.6) and the
Galerkin orthogonality (3.4) to estimate

cbil|||eh|||2h +
1

c
‖u− uh‖pLp(Ω) ≤ [ah + jh] (eh, eh) +

1

c

∫
Ω

f1(u− uh)(u− uh)

= ah(u−Πhu, eh) + ah(uh − u, eh) + jh(eh, eh)+

+

∫
Ω

[f1(u)− f1(uh)] (u− uh)

= ah(u−Πhu, eh) + jh(−Πhu, eh) +

∫
Ω

[f1(u)− f1(uh)] (u−Πhu).

A bound for the leading two terms is readily implied by the continuity estimate (3.3), the Cauchy–
Schwarz inequality and (3.1):

ah(u−Πhu, eh) + jh(−Πhu, eh) ≤ ca|||u−Πhu|||∗|||eh|||∗ + jh(Πhu,Πhu)1/2jh(eh, eh)1/2

≤
[
caC∗|||u−Πhu|||∗ + jh(Πhu,Πhu)1/2

]
|||eh|||h

≤ max {caC∗, 1}2

2cbil

[
|||u−Πhu|||∗ + jh(Πhu,Πhu)1/2

]2
+
cbil
2
|||eh|||2h,

while the third term is estimated by∫
Ω

[f1(u)− f1(uh)] (u−Πhu) ≤ Cf1 ‖u− uh‖Lp(Ω) ‖u−Πhu‖Lq(Ω)

≤ 1

2c
‖u− uh‖pLp(Ω) +

( p
2c

)−q/p Cf1
q
‖u−Πhu‖qLq(Ω) .

Hence, the assertion (3.5) already follows for C = min
{
cbil
2
, 1
2c

}−1
max

{
max{caC∗,1}2

2cbil
,
(
p
2c

)−q/p Cf1
q

}
.

Theorem 3.5 (Optimal convergence). Let u ∈ H1
0 (Ω) ∩H2(Ω) ∩W 2,q(Ω) be the solution to the

semilinear problem (2.2) and uh ∈ Vh its finite element approximation in (2.4). Then, |||u− uh|||∗ =
O(h).

Proof. We decompose the total error |||u− uh|||∗ into its discrete–error and projection–error com-
ponents; i.e., |||u− uh|||∗ ≤ |||u−Πhu|||∗+C∗|||Πhu− uh|||h. The desired estimate for the first term
is already provided by (3.1), while the latter is bounded by Proposition 3.4. Indeed, by (3.1) and
the properties of the Clément interpolant [5, p.69], estimate (3.5) yields

|||uh −Πhu|||2h ≤ Ĉ
(
h2 |u|2H2(Ω) + h2q |u|qW 2,q(Ω)

)
for Ĉ > 0. Recalling q = p

p−1 is the conjugate index of p, clearly min {1, q} = 1 and the bound is
optimal.

4 Numerical validation

Let the two–dimensional test case of (2.1) for p = 4 with manufactured exact solution and right–

hand side force defined respectively by u (x, y) = 1
2 (1−x2−y2) and f (x, y) = 1

8

(
1− x2 − y2

)3
+2

in Ω = D(0, 1); i.e., the unit disc centered at the origin.
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Table 1: Errors and experimental orders of convergence (EOC) for H1 and L2 norms.

hmax ‖u− uh‖H1(Ω) EOC ‖u− uh‖L2(Ω) EOC

0.15 7.74620e-2 2.47468e-3
0.075 3.90601e-2 0.988 5.83351e-4 2.085
0.0375 1.93383e-2 1.014 1.33451e-4 2.128
0.01875 9.63082e-3 1.006 3.34143e-5 1.999
0.009375 4.80627e-3 1.003 8.12293e-6 2.040
0.0046875 2.40450e-3 0.999 2.01406e-6 2.012

Mean 1.002 2.049

We embed Ω in the background domain B = [−1.5, 1.5]
2

and consider a corresponding sequence
of successively refined tessellations {Bh`

}`≥0 with mesh parameters h` = 0.15× 2−` (` = 0, . . . , 6).
Taking γD = 1 and γ1 = 0.1, the theoretically predicted rates of convergence from Theorem 3.5
are verified by the numerical findings in Table 1.

5 Conclusions

The present note concentrated on the derivation of an a–priori error estimate for a cut finite
element approximation of a semilinear model problem. To the authors’ best knowledge, this is
one of the few instances in the literature that such an analysis has been carried out beyond a
linear context. Future work will delve more deeply in the analysis of unfitted FEMs for general
time–dependent problems with nonlinearities. From a computational point of view, the effect of
preconditioning on the performance of the method will be assessed in the spirit of [1]. Finally,
the method seems promising for controlling nonlinear PDEs with uncertainties, involving large
deformations and/or topological changes [6, 7].
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