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Abstract

Climate change and environmental concerns are instigating widespread changes in modern

electricity sectors due to energy policy initiatives and advances in sustainable technologies. En-

ergy demand management is a strategy that Electric power utility (EPU) companies commonly

adopt to modify consumer demand for energy through various method such as time-based rates,

incentive-based programs and education. Non-intrusive Load Monitoring (NILM) technique

generates appliance-level power consumption data based on a single smart meter readings,

providing users more information about the components and proportions of their whole house

energy consumption and bills, and creating the data source for Home Energy Management

System (HEMS). This thesis proposes a novel deep learning model for NILM that can be used

by EPU companies and third party entities for active or passive consumer power demand man-

agement. Although machine learning (ML) algorithms are powerful, these remain vulnerable

to adversarial attacks. This thesis also studies on the vulnerabilities of ML models in smart

grid, and proposes a novel stealthy black-box attack that targets NILM models. Valuable in-

sights are provided for maintaining security especially with increasing proliferation of artificial

intelligence in the power system.

Keywords: Non-intrusive Load Monitoring, Deep Learning, Neural Network, Recurrent

Neural Network, Adversarial Machine Learning, Power Grid Security, Black-box attack
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Summary for Lay Audience

The rapid increase on numbers of smart meters deployment enables utility companies to design

and manage various sustainable power consumption programs, such as time-of-use (TOU) and

real-time pricing (RTP). Although these programs reduce the engagement of unsustainable and

expensive peak-following generation sources, they do not offer so much guidance to improve

efficiency of power usage for residents. In this thesis, an ensemble based deep learning model

is designed to disaggregated smart meter reading data to appliance-level, so supplying the

insight with better granularity. By analyzing and making sense of the disaggregated data, users

can engage more into different power usage programs. One potential problem for machine

learning based algorithms is they are vulnerable to adversarial attack, which aims to force

models making mistakes by only add some indistinguishable perturbations. A novel stealthy

algorithm is designed, which can successfully fool deep learning models. It shed lights on the

further study to improve the robustness of machine learning model in power grid area.
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Chapter 1

Introduction

1.1 Overview

In smart grid, Advanced Metering Infrastructure (AMI) is an integrated system of smart meters

that measure the power usage data, communication equipment and networks that transmit the

measured data, and data management systems that analyze the data and support policy making.

It continuously generates large number of power usage data, enables two-way communication

between Electric power utility (EPU) companies and homeowners. Furthermore, EPU compa-

nies can utilize these data to reduce supply-demand pressures, and optimize for environmental

objectives. Some programs have been widely deployed in practice such as demand response

program, which are widely deployed across the residential, commercial and industrial sectors.

Time-based utility dynamic pricing schemes such as time-of-use pricing, real-time pricing and

critical peak pricing are designed to shave the peak in power demand curve. For EPU compa-

nies, these programs may be beneficial because they mainly research on aggregations level of

buildings, blocks and regions. However, these policies do not give consumers enough informa-

tion and guidance on efficient power usage.

Smart meter is the physical component installed on each single building to measure power

usage data in AMI. It constantly provides household level data with certain intervals. Non-

1



2 Chapter 1. Introduction

intrusive load monitoring (NILM) is a process for analyzing changes and context in a house and

deducing each appliance’s operational state and energy consumption, meaning it transforms

household level data to appliance level. Typically, NILM models are trained by EPU companies

with a large data set containing power consumption data of various brands and models of

appliances, so as to capture general operational patterns of each single appliance. These models

will be general models for all users to provide the disaggregated data. With NILM, common

issues, like over-estimation or under-estimation of power usage, leaving some appliances at

on state forever, using old inefficient appliance which should be replaced, can be visualized in

proportions of power consumption and bills. To capitalize these more detailed report and data

set, consumers will probably engage more in efficient power consumption by re-scheduling

their appliance usage needs, getting rid of old appliances or change their inefficient power

usage habits.

Most implementations of NILM is learn patterns of load profile of each appliance with ML

models so that accurately provide the states or power consumption value of them. These state-

of-the-art models have achieved very high accuracy on NILM problem. However, it is proved

that many machine learning (ML) models including deep neural networks are vulnerable to

delicately designed adversarial examples[1]. Attackers can affect a target model to generate

wrong outputs by only adding small perturbations on the original inputs. This not only happens

in the condition that hackers have all the knowledge about the model, but also happens when

the knowledge that adversaries hold is very limited like a black-box with only input and output

pairs. Therefore, to improve the security and robustness of the power grid while maintaining the

intelligence provided by ML algorithms, recognizing the potential vulnerabilities is necessary.

1.2 Motivation

Disaggregated energy usage data are valuable for residents, policy makers, and utility compa-

nies. Regarding to residents, reference [2] shows a survey result that only 1 to 2 percent of the
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respondents knew how many kWh they used per month or per day and most of them did not

even know where their electricity meter was located. This lack of awareness can cause ineffi-

cient power usage for the sake of underestimation or overestimation of daily behaviors, using

older appliances that burn energy even more costly than purchasing new ones, and leaving ap-

pliances at persistently active state. For policy makers, the disaggregated data sets are crucial

for developing and evaluating evidence-based energy efficiency policies and programs, so that

avoiding additional capacity and capital expenditure. Besides, there are some other features

that may influence users’ decision on appliance usage, such as seasons and time. Thus, it is

necessary to consider these information as additional features inside a NILM system to further

improve the accuracy.

Moreover, utility companies can use the result of NILM to not only display the real-time

power usage compositions, or weekly and monthly appliance-level bills to consumers, but

also provide seamless customer service and applications with broader strategy. One of the

most important applications is appliance scheduling in Home Energy Management Systems

(HEMS): in a given time range, the application minimizes the cost of all schedulable appliances

while dealing with the leveling of appliances usage demand; meanwhile, it monitors and reacts

to the operational states of these appliances and demand tariff. Therefore, if the appliances’

states given by ML-based NILM models in HEMS are incorrect, the appliance scheduling

software will react in an inappropriate way. Consequently, adversaries may also design the

attacks to drive the HEMS wasting expenses of a building. This risk can be easily exploited

by conducting adversarial attacks, because it is proved that ML models have instability to

delicately designed adversarial examples although they have exhibited powerful performance

in various areas.

From perspectives of game theory, adversarial attack and defense is a zero-sum game, and

the goal of defender is to minimize the maximum damage by the attacker. This is actually an

arm race between two players.[3] Therefore, discovering more advanced attack mechanisms

and identifying potential vulnerabilities of the ML models before they are invented by adver-
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saries is a crucial step for improving the robustness and security of smart grid.

1.3 Contributions

As such, main contributions of this thesis are two-fold:

• Firstly, this thesis capitalizes on not only the capability of pattern recognition of deep

learning models on time-series data, but also additional features extracted from time

stamp which represent users’ general preferences and habits of appliances usage. To

learn the two types of data (time-series and additional features), a novel deep learning

NILM model is proposed.

• Secondly, as discovering vulnerabilities of proposed ML model provides prior knowl-

edge for building more robust and trustworthy applications. This thesis studies on ex-

isting black-box adversarial attack mechanisms and proposes a novel mechanism with

Jacobian-based momentum data set augmentation algorithm and gradient based adver-

sarial sample crafting algorithm. Through experiments and testing process, this mech-

anism proves to be more stealthy and effective to generate adversarial examples for the

targeted NILM model.

1.4 Thesis Organization

The remainder of this thesis is organized as follows. The existing work on both NILM and

adversarial attack is reviewed and compared in Chapter 3. The background knowledge of these

two sub-areas are introduced in Chapter 2, including the context and basic techniques used in

the research. The methodology utilized to design the proposed NILM classifier is discussed in

Chapter 4 and the adversarial model is illustrated in Chapter 5. Finally, the conclude is made

in Chapter 6, and the future research work is also pointed out in this chapter.



Chapter 2

Background

2.1 Non-Intrusive Load Monitoring

In Smart Grid, AMI constantly generates household level power consumption data, but appliance-

level data, which have better granularity, are with high demand when house holders or building

managers analyze how each single load contribute to the whole building power consumptions

and bills. The traditional way to collect these data requires physical installation of sensors on

each load across the building, so it is called intrusive load monitoring. Although it can record

the exact power usage for each appliance, it is unscalable, inefficient, and expensive.

By contrast, NILM uses software disaggregation algorithm to analyze the patterns inside

the whole house data, and accurately outputs the appliance-level power consumption data.

This concept was originally invented in reference[4], where the basic process is to detect and

monitor the changes on voltage and current, so that identify when different appliances are

turned on and off. An example on Fig.2.1[4] illustrated how NILM works: the algorithm

tries to capture and recognize individual appliance events from their influence on whole house

energy use.

According to the goal of NILM algorithms, they can be classified into three types:

• On/Off Classification: On this level, the NILM model only classifies whether each ap-

5
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pliance is on or off, ignoring the changes during their operations. The advantage is its

high accuracy and simplicity. For each appliance, it has only on and off states, they are

relatively easier to be captured, so the complexity of models are low. Yet, it treats all

running states the same, which may cause overestimation or underestimation of some

appliances’ consumptions.

• Multiple States Recognition: In some Markov Chain based literature(i.e.[5, 6]), it is

called Finite State Machine (FSM). This mechanism categorizes the power consumption

of an appliance into different states, trying to recognize which state the target appliance

is working on. This type of tasks tries to capture more specific activities when appliances

are running, and it also gets rid of details generated by the circuit. The problem is that it

is difficult to manually create labels and power consumption ranges of them.

• Wave Reconstruction: Its goal is to recover the power wave for each single load. How-

ever, it seems impossible to 100% recover every detail of the power signals, because even

a same appliance runs several times at the exactly same condition, the circuit may also

add random noise onto the waves so that generate different data. Also, the high correla-

tion of appliances will cause serial problems if one random noise or error happens.

In the industry, Enetics, Inc., a US certified meter Data service provider, brought the world’s

first NILM product to the marketplace in the Enetics’ SPEED software in 1996[7]. Since then,

42 EPU and third-party companies around world have provided NILM service to their end-

users. Products are for both businesses and households. The purposes include faulty appliance

detection, appliance scheduling and customer education. These applications provide users the

disaggregated data at different time intervals, such as real-time (secondly), minutely, hourly

data. i.e., On the mobile application ‘Trickl’ of London Hydro Inc. (2.2), a Canadian EPU

company based on London, Ontario, share the hourly NILM data to customers. According to

the survey conducted by Home Energy Analysis, Inc., NILM help saving an average of 12.8%

of the energy consumption[8].
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Figure 2.1: Non-intrusive Load Monitoring by Event Capturing.

2.2 Feed-forward Neural Network

2.2.1 Architecture of the Network

In Artificial Neural Network (ANN), the non-linear computational unit called perceptron is the

key component. It is inspired by biological neuron from neuroscience: dendrites receive inputs,

and if the inputs are big enough to activate the nucleus, axons will transmit the encoded infor-

mation to synapses, which take response of transmitting information to other neurons. This

process is shown in Fig. 2.3(a)[9]. In ANN, perceptrons imitate the basic operation process of

their biological counterparts. This is shown in 2.3(b)[9], where xi is the information received

from the i-th dendrite to the cell body, and wi is the weight for this input dimension which

can be learned through a training process. To generate the output of a neuron, the weighted

summation of all inputs is encoded by a non-linear function f called activation function. There

are many choices of activation functions, such as sigmoid function, tanh function and rectified

linear unit (ReLU) in Fig.2.4[10].
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FFNN is a type of ANNs composed of many perceptrons. In FFNN, these perceptrons are

laid out into multiple layers, and there is no loop between layers, meaning the information

only flow from previous layers to following layers until reaching the output layer. A typical

architecture of FFNN can be shown in Fig.2.5, in which there are an input layer with three units,

an output layer with two units and two hidden layers with many neurons for each. The number

of hidden layers and the number of neurons inside each layer are tunable hyper-parameters

decided by the complexity of the problem.

2.2.2 Feedforward Pass

Although there exist some connections between ANN and Neuroscience or human brain, it was

only inspired by this area to some extent, and the its goal is not to build any artificial neural

intelligence or brain function. Rather, it aims to compose many different functions together,

so that approximate some complex function y = f (x). Universality Approximation Theorem

(UAT) states that a FFNN will be able to approximate any smooth function given that sufficient

number of layers and nodes are incorporated into the network[11].

To achieve complex functionality, layers (functions) are connected in a chain to form a

composite non-linear function, in which outputs of previous layers are inputs of latter layers.

For example, three functions f1, f2, and f3 can represent three layers, and the composite function

is in the form of Equation.2.1, in which x is the input of the network. By adding enough layers

and neurons, the complexity of FFNN can be increased.

f (x) = f3( f2( f1(x))) (2.1)

2.2.3 Learning Process

Neural Networks learn a mapping function from inputs to outputs. This is achieved by updat-

ing the weights of the network in response to the errors the model makes on the training data

set. To evaluate the errors, a Cost Function,which is used to measure the distance between
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model’s output and expected output in the training set, is defined. The common cost function

for regression problem is Mean Squared Error (MSE) denoted in Equation.2.2, while in classi-

fication problem Cross Entropy(Equation.2.3) is used more often. In both definitions, n is the

number of training examples in a training set, yi and f (xi) are the expected and actual outputs

for the i-th input of the network respectively. For Cross Entropy, k is the number of output

dimensions.

J =
1
n

n∑
i=1

(yi − f (xi))2 (2.2)

J =
1
n

n∑
i=1

k∑
j=1

y j
i log( f (xi)) (2.3)

Although various cost functions are used, they have the common ground: larger cost values

denote poor performance, and smaller costs represent better performance. And the goal of the

learning process is to keep updating weights inside the model so that decrease the cost. Using

Gradient Descent and Backpropagation to learn errors and update all weights regarding to the

errors is the classic mechanism to achieve this.

Gradient Descent is the update rule for learning, which is defined in Equation.2.4, in which

w is weight vector in a neural network, J is the cost function, ∇wJ is the first order derivative

of J with respect to each component of w and α is learning rate deciding the update step size.

w← w − α∇wJ (2.4)

However, in most case in multiple layer FFNN, the gradient is impossible to directly calcu-

lated. Backpropagation algorithm is an efficient way to achieve this. The ”backwards” part of

the name stems from the fact that calculation of the gradient proceeds backwards through the

network, with the gradient of the final layer of weights being calculated first and the gradient

of the first layer of weights being calculated last. Partial computations of the gradient from one

layer are reused in the computation of the gradient for the previous layer. This backwards flow
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of the error information allows for efficient computation of the gradient at each layer versus the

naive approach of calculating the gradient of each layer separately.

2.3 Long Short-Term Memory Recurrent Neural Network

RNN adds recurrent connections on FFNN, giving the model another dimension: time. The

architecture is shown on Fig.2.6(a)[12]: with the recurrent connections, input from the previous

time step can be taken into the neuron as part of the incoming information. Fig.2.6(b) illustrates

how the information flows through the network in a feed-forward manner across time can be

visually understood by unrolling the previous diagram in Fig.2.6(a)[12]. One of the most

important properties for RNN is that the weights are shared along all time steps, so the error

would flow back through time when it is trained with Backpropagation algorithm.

However, RNN is known to have the ‘vanishing gradient problem’ when the model is deep.

The errors flowing back through layers tend to decrease to zero, which causes the neural net-

work not learning anything. The most effective way to solve the problem of RNN is to use the

LSTM variant of RNN. The critical component in LSTM is the memory cell, which is shown

on Fig.2.7[12]. The activated block input z calculated by Equation 2.5 is actually a function

of input data and recurrent data from previous time step. The input gate protects the unit from

irrelevant input events, the output i of this gate is derived by Equation 2.6; and the forget gate

helps the unit forget previous memory contents, its output f is obtained by Equation 2.7; Equa-

tion 2.9 is for output gate, which exposes the contents of the memory cell (or not) at the output

of the LSTM unit. The central memory is stored in the ‘Cell’, and its state is calculated by

Equation 2.8, and peepholes provide the state of the ‘Cell’ as additional information to the

three gates. Finally, Equation 2.10 generates the block output of LSTM. The gate structure al-

lows information to be retained across many time-steps, and consequently also allows gradients

to flow across many time-steps.
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Zt = g(WzXt + Rzyt−1 + bz) (2.5)

it = σ(WiXt + Riyt−1 + pi � ct−1 + bi) (2.6)

f t = σ(W f Xt + R f yt−1 + p f � ct−1 + b f ) (2.7)

ct = itzt + f t � ct − 1 (2.8)

ot = σ(WoXt + Royt−1 + po � ct−1 + bo) (2.9)

yt = ot � h(ct) (2.10)

2.4 Adversarial Attack

Powerful data-driven ML models have achieved amazing advances these years in many re-

search areas such as computer vision, natural language processing and power grids. Though

these state-of-the-art models exhibited excellent performance on classification tasks, reference[13]

discovered that there exists a vulnerability in ML models which can be exploited by deliber-

ately crafting some indistinguishable perturbations. This vulnerability reveals attackers can

evade human’s detection, and at the same time force ML models making mistakes. Further-

more, the wide use of ML models in many industries motivates adversaries to manipulate the

data maliciously.

This type of attack does not influence the training process, and it only attacks at the test

phase. It tries to explore how target models work and make decision, so malicious test samples
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can be crafted by only adding small perturbations on the original test samples. This attack can

be very dangerous in practice. In an autonomous vehicle example in Fig.2.8[14], self-driving

cars may recognize a stop sign which is modified with malicious perturbation as a yield sign, so

an adversary could potentially use the altered image to cause a car without failsafes to behave

dangerously.

Adversaries’ knowledge is a crucial part in a threat model. Reference[15] introduces four

dimensions of attackers’ knowledge: the training data D; the feature set X; the learning algo-

rithm f; and the parameters w learned after training the model. According to different levels of

knowledge, attacks can be categorized into white-box and black-box scenario.

• White-box Attack: The knowledge tuple is K = (D, X, f ,w), and this is the best scenario

for attackers and worst scenario for model owners, because full knowledge of the target

model including model architecture and parameters are exposed to attackers. Hence

adversarial samples can be directly crafted on target model. A straightforward method

to generate malicious samples it the gradient-based optimization algorithm, it iteratively

updates inputs with the following update rule in equation 2.11.

~x← ~x + λ∇~xJ f (~x, θ) (2.11)

It uses gradient descent algorithm on input to perturb and force the cost function keep

increasing until the target points is classified as another class.

• Black-box Attack: In this scenario, attackers’ knowledge is limited much more than

white-box attack, because attackers are assumed only knowing the input feature repre-

sentationi.e. the dimension s of input, and the meaning of these dimensions) and having

access to query the target model. The knowledge tuple is K = (X). A potential solution

is to query the model many times to observe how outputs change with different input, but

it may take prohibitive times of queries when the target model is complex. It is shown in

reference [16] that it takes about 1,500 times of query to solve a logistic regression model
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and 11,000 for a simple Neural Network. Furthermore, these numbers all drastically in-

crease while there are more classes or features. However, frequent queries in a short time

can very easily expose adversarial activities, and a better attack mechanism is supposed

to be stealthy and without much more effort such as brute force attack. In [1], authors

proposed a two steps model to efficiently exploit the vulnerability of black-box model, in

which it firstly learn a substitute model with Jacobian Data set Augmentation algorithm,

and then craft adversarial samples based on this model. This will be discussion in detail

in Chapter 5.
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Figure 2.2: NILM result on ‘Trickl’ of London Hydro Inc.
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Figure 2.3: How Perceptrons Are Inspired by Biological Neurons.

Figure 2.4: Different Activation Functions for Neural Networks.



16 Chapter 2. Background

Figure 2.5: A Typical FFNN Topology.
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Figure 2.6: The Architecture of RNN.



18 Chapter 2. Background

Figure 2.7: The Structure of LSTM Unit.

Figure 2.8: Adversarial Examples on Image Classifier Attack.



Chapter 3

Literature Review

3.1 Non-Intrusive Load Monitoring

Several types of ML techniques are commonly adopted to solve NILM problem, which take

power readings from smart meters as inputs and output disaggregated data. Reference [17, 18,

19] consider NILM problem as a Markov Chain, and try to learn how different states inside the

chain transition from each others. Another group of algorithm is Convolutional Neural Net-

work (CNN), which consider smart meter readings as images and scan them to capture patterns

of load profiles[20, 21, 22]. Inside the group of CNN, variations are also proposed such as CNN

with dilated causal convolutional layers for obtaining broader visual context in reference [20].

Another sub-area of NILM algorithm is Recurrent Neural Network (RNN) [23, 24, 25], which

aims to capture the temporal dependencies in power usage sequences. References [26, 27]

solve NILM problem with Denoising Autoencoder (DAE): while disaggregated for a specific

appliance, power consumptions of other appliances are all considered as noise to be removed.

There exists literature studying on the impact of additional features on power demand and

consumption. Reference [28, 29, 30] focus on the subject of energy–weather relationship using

primitive variables, such as temperature, relative humidity and solar radiation, and derived

variables, including heating degree-days and cooling degree-days.

19
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The research work on NILM in this thesis contains two aspects: firstly, it defines the energy

disaggregation task as a time-series data classification problem, and then classify the time-

series data with RNN model; secondly, it extracts temporal features from timestamps because

it is found in this thesis that there exists energy-time relationships. The combination of the

output of the RNN model and the additional features are considered as the input of another

neural network. This forms a ensemble model to learn two types of features, which make

the study in this thesis differing from all existing literature. Another challenging issue is the

imbalanced classification problem which is solved in this thesis via re-sampling techniques.

3.2 Adversarial Attack

An intriguing phenomenon was found in 2014 that several ML models, including state-of-the-

art neural networks, are vulnerable to adversarial examples[13]. Reference [31] explained the

reason for the existence of adversarial examples as a property of high-dimensional dot prod-

ucts, which is a result of models being too linear, rather than too nonlinear. For black box at-

tack, Reference [16] introduced how an adversary can extract a functional substitute model by

collecting input and output pairs. Black-box adversarial attacks on ML models have been intro-

duced by Papernot et al in references [1] in the context of images. The reason why adversarial

samples transfer among ML models, and the conditions for these transfers are demonstrated in

[15]. The research on adversarial attack in smart grid area is relatively new. Reference [32]

directly applies the technique proposed in [31] to manipulate the power data so as to fool the

event cause analysis model without being detected by the bad data detectors. Reference [33]

introduced a way to fool the event diagnostics model by injecting bad data, and [34] discussed

both attack and defense with data injection technique. However, the main study in power grid

area seems to simply borrow ideas and algorithms from image recognition and natural language

processing, and there is no any related works targeting on NILM classifier. In this thesis, ref-

erence [1] is considered as the baseline model. Because it only use one step exploration to
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detect decision boundaries and crafting adversarial examples, it probably results in inaccurate

estimation and unnecessary large perturbations. The research work in the thesis considers more

complex conditions of black-box attack where the output of the model can be two types, and

the decision curve can also be more sophisticated.



Chapter 4

Ensemble-based Deep Learning Model for

Non-Intrusive Load Monitoring

Solving NILM on a real data set is challenging, because of the various definition of NILM in

different literature, the data imbalanced problem which is unavoidable in real data set, and the

accuracy bottlenecks in some cases. In this chapter, section.4.1 firstly introduce the data set,

define the problem and then extract useful features from the data set. In section.4.2, an ensem-

ble model with RNN and FFNN is proposed, and its fine-tuned parameters and performance

are demonstrated in section.4.3.

4.1 Data Engineering

This section firstly introduces the data set in the research, and then states how the problem is

defined. The feature extraction part elaborates the process to construct the two different types

of inputs, and finally the imbalanced problem is discussed.

22
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Table 4.1: Appliances and Units in AMPds
ID Load ID Load
WHE Whole House Meter FRE HVAC/Furnace
B1E North Bedroom GRE Garage
B2E Master/South Br HPE Heat Pump
BME Basement Plugs & Lights HTE Instant Hot Water Unit
CDE Clothes Dryer OFE Home Office
CWE Clothes Washer OUE Outside Plug
DNE Dining Room Plugs TVE Ent TV/PVR/AMP
DWE Dishwasher UTE Utility Room Plug
EBE Electronics Workbench WOE Wall Oven
EQE Security/Network UNE Unmetered Loads
FGE Kitchen Fridge

4.1.1 Data Set

In order to train the NILM classifier, comprehensive power consumption data recorded for each

appliance over an extended period of time must be available. As such, the AMPds measure-

ments made available in [35] are utilized. This data set is composed of two years of measure-

ments recorded for the whole house and 20 appliances inside the house. Using branch circuit

power metering (BCPM, see Fig.4.1), 21 breakers from the house power panel were metered.

The two BCMP units were queried once per minute by an industrial data acquisition server.

Table 4.1 lists the 21 sub-metered breakers/loads. The data set provides eleven attributes (e.g.

voltage, current, frequency, real power, reactive power and so on) of these appliances at the

granularity of one minute, but only the real power measurements provided in this data set are

considered since smart meter data is composed of real power readings. This data set is widely

utilized for building and testing load monitoring algorithms. Not all 21 meters readings are

used as the research targets, rather the loads to be considered are decided based on the Pareto’s

80/20 principle, which means a subset of appliances that consume most of the power is se-

lected as the goal of NILM[18]. As such, the research focuses on six specific appliances out

of 21: clothes washer, clothes dryer, dish washer, wall oven, heat pump and HVAC (heating,

ventilation and air conditioning)/furnace.
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Figure 4.1: The Branch Circuit Power Metering for Power Consumption Data Collecting
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4.1.2 State Identification

As introduced in Chapter 2, NILM problem can be classified into three types: On/Off classi-

fication, multiple states recognition and wave reconstruction. When an appliance is running,

its power consumption may be very different during its operational cycle, so only classify-

ing on/off state cannot capture the accurate power usage at each point of time. By contrast,

wave reconstruction aims to recognize all the details inside the aggregated readings, yet this is

impossible because even running the same appliance at same condition may generate signals

with subtle differences. The trials would probably result in an over-fitting problem, because

the model is too sensitive on small changes. Therefore, multiple state recognition is the main

goal of the research: modeling the power usage of each appliance into finite states, and then

disaggregating the whole house data into one of the states for each of them.

The difficulty for solving a finite states classification problem is the definition of the classes,

given only the continuous power consumption data. To extract more states rather than just only

off/on state, the histogram of the training set is plotted firstly. Observing and analyzing the

histogram helps to make sense of the data distributions, their densities and areas. Then based

on these knowledge, the definition of various operating states can be manually carried out.

For instance, Fig.4.2 is an example of state labeling for dryers, it is obvious that one state is

clustered close to 0 Watts, which reveals the dryer is at the off-state for the most of the time, but

when it runs, it has a low power consumption state clustered between about 100 to 300 Watts

and a high power consumption state consuming 4,000 Watts and above. Thus, it is evident that

there are two dominant states(State 1 and 2) of power consumption in addition to the “off” state

(State 0) for the clothes dryer.

Moreover, the number of states and the range of each state in various appliances can be

different as well. To extract this information for the six appliances considered in the research

work, the histogram of the occurrences of various power consumption levels for each appli-

ances are computed. As such, the dominant states for all six appliances are extracted and these

are listed in Table 4.2. This process, re-frames a real value disaggregation problem to be a
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finite state classification problem. The mean value of each class is stored during these process,

and then the model only output mean value of the target class if real values are needed.

Figure 4.2: Power Consumption Distribution When Cloth Dryer Is On

Table 4.2: Data Labeling Information

Appliance Labels and Intervels
Cloth Washer S0:0, S1:(0,300], s2:300+

Cloth Dryer S0:0, S1:(0,2000], s2:2000+

Dish Washer S0:[0,400], s1:400+

Wall Oven S0:[0,800], s1:800+

Heat Pump S0:[0,500], s1:500+

HVAC/Furnace S0:[0,210], s1:210+

4.1.3 Feature Extraction

Based on the research work of this thesis, the power consumption patterns of household appli-

ances is dependent on two types of features: temporal characteristics, which is how the whole

house power usage signals change over time; and external characteristics, which is the features

and conditions from the environment at the time of monitoring.

To capitalize on the temporal features, the algorithm is designed to scan a piece of memory
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of power usage data. The idea is to solve the current disaggregation problem by looking back

into the history. If the memory fragment contains whole history, it would be the most accurate

case, because it includes all the details in the past. However, whole history is too long in

AMPds (two years), and the length of memories at each monitoring time will be different,

which brings more difficulties and inefficiencies on the disaggregation tasks. Therefore, a

sliding window approach is adopted to generate fixed length data. The length of this window is

sixty minutes which is long enough to contain operational cycles for any appliance in the data

set, and the stride of the sliding function is one minute. This is illustrated in Fig. 4.3. Thus, the

task of the model becomes: learning the previous one hour aggregated data to classify the state

of the target appliance for now.

Figure 4.3: Sliding Window Approach

The existing literature all focus on introducing different ML models into NILM area so that

improve the performance. In another word, the features are fixed, but only applied with differ-

ent trendy algorithms. However, there are actually other distinguishing features can be utilized

into this problem. The exploratory data analysis (EDA) technique, where the main character-

istics can be summarized through data visualization, is utilized to extract intelligence from the

data set itself. For example, Fig.4.4 shows the percentage of power consumption of heat pump

in different quarters, revealing Q1 and Q4 consume about 70% of the total power usage. It is

clear that the seasonal influence on the operation of the heat pump. Thus, when the algorithm
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encounters any ambiguity for heat pump, seasonal feature can be additional information to

calibrate the output probabilities.

Figure 4.4: Power Consumption Percentage of Heat Pump by Quarter

Another example is presented in Fig.4.5 to illustrate how different hours affect the power

usage: the average power consumption(Watts) of cloth dyer in each hour are very different,

meaning people tend to use dryers more often during the night, while almost nobody uses

it in the morning and early afternoon. Similarly, day-of-week is another important feature

denoting people’s preference on using appliances. As shown on Fig.4.6, the usage of washer

has a dominant feature on Sundays, while the usage on Wednesdays are relatively less often.

Therefore, three additional features are extracted by EDA process, and these are the month,

day of week, and hour of the sliding window data which are passed into the classifier as inputs.

4.1.4 Data Imbalance and Under-sampling

In ML area, a common problem encountered during training and evaluation is Data Imbalance.

If one of the classes (majority class) inside the data set contains much more examples than other

classes (minority classes), this data set is said to be imbalanced. Although minority classes

are very small, they are often of interest in practical problems. For example, a well-trained



4.1. Data Engineering 29

Figure 4.5: Minutely Mean Power Consumption Comparison of Cloth Dryer by Hours

Figure 4.6: Minutely Mean Power Consumption Comparison of Washer by Day-of-week
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Table 4.3: Data Imbalance for Appliances in AMPds
Load Percentage of Majority Class Percentage of Minority Class

Cloth Dryer 97.9% 2.1%
Cloth Washer 97.1% 2.9%
Dish Washer 98.2% 1.8%

Furnace/HVAC 99.2% 0.8%
Wall Oven 99.8% 0.2%
Heat Pump 92.7% 7.3%

Average 97.5% 2.5%

NILM model for Cloth Dryer must have capabilities to capture its running states, although it

may only take about one hour out of the whole week. Without this capability, NILM system

determines Cloth Dryer is always off, and then the model is worthless. Also, classification

accuracy is commonly used as main metrics to measure the performance. If the designer of

models has no awareness of the imbalanced issue, it would probably trick the metrics with

a extremely high accuracy by only outputting majority class, which means the accuracy is

equaled to the percentage of the majority classes. For example, the Cloth Dryer in AMP data

set is in off state at 97.9% of the time, and a model directly trained with this imbalanced data

will only output off state no matter how different the input is. This model actually does nothing

when the dryer runs, but it still has 97.9% accuracy. The percentages of majority and minority

classes for each appliance are shown on Table 4.3, revealing that data imbalance exists for every

appliance. In order to eliminate the problem of imbalanced classification, the random under-

sampling technique is adopted on the data set generated by the sliding window algorithm.

The sample rate is decided by the number of samples in minority class, because the aim is to

convert the training set to be comparable. It is obvious that some samples would be removed

from majority class, but re-sampling will repeat at each epoch of NILM model training, so

principally all majority samples will be used when the number of epochs is large enough. For

example, consider the clothes washer which is associated with three states: off, washing and

spinning that are composed of 1,000,000, 26,000 and 3,000 samples respectively in the data

set. Because the minority class spinning only has 3,000 samples, the algorithm under-samples
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both other two classes to 3,000 too in each epoch. Thus, the training set has 9,000 samples with

3,000 for each state. This technique not only solves the imbalanced classification problem, but

also speeds up the training process, because it is found in the experiments that there are very

high similarities that can be easily classified in most majority classes. This technique is novel

to this thesis.

4.2 Proposed Ensemble-based Deep Learning Model

Given how two types of features are extracted is elaborated in the section4.1, an ensemble

model to learn both sequential and non-sequential features is designed in this section.

4.2.1 Architecture of the Proposed Model

The proposed solution in this thesis is to build NILM model for each one of the six appliances.

The task of the models is to process the previous 60 minute whole house power consumption

data and the additional temporal features (month, day-of-week and hour) extracted from the

current timestamp so as to label the current operational state of the target appliance.

The proposed model consisting of a RNN and a FFNN is illustrated in Fig.4.7. RNN is se-

lected to read and process the time-series data, the reason is because of its capability of captur-

ing dependencies in sequential data inputs. It was originally created to mimic the learning pro-

cess utilized by humans to understand languages and music from contextual information[36].

Training of weight parameters of the RNN network is conducted using the back-propagation

through time (BPTT) to minimize the errors resulting in temporal learning processes. One

major issue with the standard RNN system is that the vanishing gradient or divergence [37].

To overcome this issue, LSTM units are incorporated. The LSTM units remember the most

’memorable’ aspects of the data and can process long time series data. In order to increase the

complexity for some appliances, stacked LSTM units are used. This allows for greater abil-

ity to enable abstraction. The output of RNN is the probabilities for the operational states of
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the target appliance. i.e. For cloth washer, the output state can be 70% for off state, 20% for

washing state, and 10% for spinning state.

Because the month, day-of-week, hour as additional temporal features extracted from times-

tamp are scalars, so they combine with the probabilistic output of the RNN model as the input

of the second model, which is a FFNN. The outputs of the second model are also probabilistic.

An intuition for this step is using additional features to improve the accuracy. i.e. For the same

case of cloth washer, the output can be improved to 95%, 3%, 2% for the three states if almost

nobody uses washer at this time point from history data.

Figure 4.7: Ensemble Model Architecture

4.2.2 Training of the Proposed Model

During the training phase, the data set is divided into training set (80%), validation set(10%)

and test set (10%). The training starts at simple model, such at 32 LSTM units and only 1

dense layer with 4 neurons for RNN, and 4 layers FFNN with 64 neurons in total. If a model
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is not able to fit the training set well, its complexity should be increased by adding more layers

and neurons. To avoid overfitting, in which case the model just remember how training set

looks like without capturing general patterns, validation set is used to evaluate the performance

of models with different settings. After all these parameters and weights are fine-tuned, the

testing set is for final evaluation.

The RNN model and FFNN model in the ensemble model need to be trained separately,

these are actually the two steps of the training. At the first step, using the the training set to

fine-tune the RNN model, and generate the probability output for all training examples when

the model is well-trained. The second step is to train the FFNN, the input of the model is the

prediction made by the first model and the additional features.

It is notable that at each epoch of the training, the algorithm will re-sample the training set.

4.3 Results

In this section, the performance metrics used in the research are demonstrated firstly, and then

the best hyper-parameters of ensemble model for each appliance are tabulated. Finally, the

performance of the ensemble model is comprehensively compared with a baseline model.

4.3.1 Performance Metrics

A common choice of performance metrics for a ML classification problem is the accuracy,

and it can be defined as in Equation.4.1, in which the correct trials means the number of

testing samples that correctly classified by the ensemble model, and total trials is the number

of testing samples.

A =
correct trials

total trials
(4.1)

Thus, accuracy is the first metrics in this thesis, and it is useful to reveal the overall performance

of the model especially when the testing set is balanced. However, the accuracy metrics will

be cheated while encountering imbalanced classification problem. As shown in Table.4.3,
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the average percentage of majority class samples is 97.5%, so only measuring accuracy will

misunderstand the performance of minority classes.

Hence, F1 score is considered as another metrics, which is the numerous measurement to il-

lustrate how NILM models perform on every state. From classification results, four concept the

true positives (TP—positive examples classified as positive), the True Negatives (TN—negative

examples classified as negative), the False Positives (FP—negative examples classified as posi-

tive) and the False Negative (FN—positive samples classified as negative) can be derived. Then

the precision and recall of the classification can be calculated by Equation.4.2 and Equation.4.3.

precision =
T P

T P + FP
(4.2)

recall =
T P

T P + FN
(4.3)

The F1 score is then calculated to be the harmonic mean of precision and recall:

F1 =
2 × precision × recall

precision + recall
(4.4)

For appliances with multiple states, precision and recall are the average of all states [26].

4.3.2 Hyperparameters

The parameters of proposed classifier are trained using 80% of the data set in mini-batches

with a size of 256. Stacked LSTM is utilized in the models representing the clothes washer,

clothes dryer, dishwasher and wall oven for which the distinguishing patterns are more difficult

to identify. The parameters utilized in the architecture of models for each appliance are listed

in Tables 4.4 and 4.5 for the LSTM RNN and FFNN components respectively. The FFNN

component is not involved for the model identifying the furnace operation as non-sequential

data does not effect the operation of this load. The parameters listed in these tables have been

obtained through multiple trials and design iterations. For the model selection and validation,
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10% of the data set is remained.

Table 4.4: Parameters of RNN

Appliance Parameter Type
Parameters RNN LSTM Units RNN Dense Layers Units

Cloth Washer 256,128 64,32,16,8
Cloth Dryer 256,128 256,128,64,32,16,8
Dish Washer 256,128 256,512,256,128,64,32,16,8
Wall Oven 256,256 256,128,64,32,16,8,4
Heat Pump 128 256,128,64,32,16,8,4

HVAC/Furnace 64 64,32,16,8,4
anumbers split by comma means multiple layers with numbers of neurons.

Table 4.5: Parameters of FFNN

Appliance Layers and Units
Clothes Washer 128,64,32,16,8
Clothes Dryer 64,128,256,128,64,32,16,8
Dishwasher 256,512,256,128,64,32,8
Wall Oven 64,128,256,128,64,32,8,4
Heat Pump 64,128,256,128,64,32,8,4

HVAC/Furnace -

4.3.3 Performance and Comparison

To evaluate the effectiveness of the proposed ensemble-based deep learning model, the com-

parison is firstly conducted between the model with and without additional features (month,

day-of-week and hour). Without additional features, the model is just RNN with LSTM units,

its performance is shown in the ‘LSTM RNN’ column in Table.4.6. Experiments show that

the ensemble model improve both accuracy and F1 score, as the additional features give the

algorithm more information to learn. Especially for Dish Washer and Wall Oven, there are 5

percent increases on accuracy. Therefore, introducing the temporal features results in better

accuracy and F1 scores in the ensemble model for all appliances.
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Secondly, the comparison is between the ensemble model and a Denoising Autoencoder

model (DAE) proposed in reference [26] which is considered as a baseline model. It solves the

same problem with the same data set, and provides the F1 score for each appliance. The results

of DAE model are listed in the last column of Table 4.6. It is clear that the performance of the

proposed model is better than the DAE model.

Table 4.6: Performance Comparison

Appliance LSTM RNN Ensemble Model DAE
Performance Accuracy F1 Accuracy F1 F1
Clothes Dryer 94.40 83.90 94.50 84.36 54.80
Dishwasher 86.40 92.54 92.14 95.83 76.80
Wall Oven 94.08 96.97 99.34 99.67 53.40
Heat Pump 91.56 95.27 93.90 96.64 93.40

HVAC/Furnace 92.48 96.45 92.48 96.45 -
Clothes Washer 89.80 65.80 93.48 66.80 76.00

In some context of applications, such as history power consumption trends visualization or

bill calculation, the time series power consumption data are required being reconstructed, so

the system built in the thesis needs to transform the output states back to real value data. As

demonstrated in section.4.1, the states of each appliance are manually labeled based on history

data, so the mean values of each state are known to EPU companies, and can be stored on their

host. When the real value data are required, the system can map the index of a state directly to

its mean value.

Fig.4.8(a) shows the measurement of cloth dyer from a physical sub-meter installed in the

experimental dryer, and the result of NILM model for dryer is demonstrated in Fig.4.8(b).

Comparing the two plots, the proposed model can reconstruct the original signal well.
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Figure 4.8: The Actual Measurement and Disaggregation Result for Dryer



Chapter 5

Adversarial Machine Learning on NILM

With the promising NILM technique being utilized in smart grid, consumers can engage more

in sustainable and efficient power usage. By aggregating this improvements of efficiency

across houses, communities and areas, unsustainable and expensive peak-following generation

sources can be reduced. Furthermore, NILM is building blocks for more complex applications.

Particularly, HEMS, which aims to reduce the energy consumption (and more importantly

the electricity bill) while maintain occupant’s comfort by scheduling the electrical appliances’

usage[38], is building upon on disaggregated data provided by NILM model. However, ML-

based NILM solutions are proved susceptible to adversarial samples, so the potential adver-

sarial attacks targeted this vulnerability may cause NILM models making mistakes, and all

applications on disaggregated data will be affected. In this chapter, the vulnerability of the

cloud applications built upon on smart metering data is discussed, and some assumptions are

made for the adversarial attack. Based on the knowledge of adversaries and the restrictions

of the threat model, a novel black-box attack mechanism is proposed. The mechanism adopts

the two-step framework from reference [1], with novel Jacobian-based momentum data set

augmentation algorithm for substitute training and projected gradient ascent (PGA) with con-

fidence margins to target the NILM model proposed in Chapter 4.

38
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5.1 Threat Model

In this section, the potential system flaws and threats that can be exploited are discussed, and

then the insight of the reason for the existences of adversarial samples are introduced. After

that, the attack paradigm and adversaries’ capabilities are assumed, and lastly the targeted

model in an attacker’s view is illustrated.

5.1.1 Assumptions

It is assumed that the purpose of the attack is to force this NILM model generating wrong

labels, so as to confuse the HEMS system of the targeted building and potentially drive it in

an costly operation manner. This attack can constantly occur, and a large financial loss would

happen to the building owners or the companies. The targeted model utilized in this chapter is

the NILM model for HVAC/Furnace proposed in Chapter.4. It provides minutely energy dis-

aggregation result to users, taking 60 minutes smart meter readings, and then deciding whether

HVAC/Furnace is active or inactive. The output of this NILM model can be labels of the states

(i.e. 0 if inactive or 1 if active) or probabilities (representing the confidence that the appliance

is active or inactive). This model will be referred to as the oracle in the reminder of the thesis.

As discussed in Chapter.2, there exist two types of attack paradigms: black-box and white-

box based attacks. In this thesis, only black-box paradigm is considered, where the model is

trained internally by the solution providers and public access to users or third-party entities in

various smart grid applications[39]. The internal components of the ML models are hidden

from the public. This implies that an adversary can pose as a third-party entity and query the

targeted ML model (i.e. obtain the output for a specific input).

The architecture of the oracle model and its internal parameters are irrelevant for the pro-

posed attack construction, because the black-box properties in this problem. The only infor-

mation given to adversary will be the dimension of the input ~x and the type of output y. Thus,

the model can be defined as a mapping f : ~x → y where ~x is the smart meter reading over
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60 minutes and the output is either discrete (i.e. active state of each appliance y ∈ {0, 1}) or

continuous (e.g. probability y ∈ [0, 1]).

It is assumed the adversaries are allowed to query the oracle so as to infer the relationship

between input and output. However, to control security challenges via cloud applications,

deploying limitation of requests per IP address or user is a common defensive mechanism by

solution providers[40]. Therefore, attackers need to consider minimizing the number of queries

via the oracle model while designing the adversarial model.

There is no any assumptions for the complexity and types of the targeted ML model, so

the adversarial framework proposed in this thesis is a general mechanism for black-box attack.

For the output of the oracle model, two types of output (labels and probabilities) from ML

models are considered. The scenario that ML models only generate labels is called strict sce-

nario, while the scenario generating probabilities is called slack scenario, because probabilities

outputs actually provide more information to attackers.

5.1.2 Vulnerability, Access and Exploitation

In AMI, the power usage data generated by smart meters will be transmitted to EPU companies

and stored in cloud server. Nonetheless, this process has malicious intermediary threat, where

messages are intercepted and altered with harmful data, and then sent to the destination [41].

Therefore, the threat model is illustrated in Fig.5.1: the target user’s data of the Home Area

Network collected by a smart meter are supposed to be sent via data transmission network

to AMI host, but attackers intercept the transmission pathway and conduct adversarial attack.

One of the characteristics of adversarial samples is its indistinguishability, so it can often evade

either human detection or other anomaly detection algorithm. The reason for this considered

in the thesis is the inherent ambiguity in decision boundaries between models[42].

In ML classification problems, ML models learn decision boundaries to partition input

space into c subsets where c represents the total number of classes. The training set with

training examples and labels are collected to provide knowledge of how model designers expect
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Figure 5.1: Threat Model of Black-box Adversarial Attack

the model to perform. However, the decision boundaries of ML models are impossible to be

the exactly same as the ideal model, so the ambiguities widely exist in ML area. An example

can be illustrated in Fig.5.2, there are some blind spots in the non-overlapping areas between

the two decision boundaries. Adversaries can move original points into these regions by adding

malicious perturbations so that different labels will be generated by two models (ex. moving a

to a’, and b to b’ in Fig.5.2). In smart grid and AMI, perturbed smart meter data will evade the

anomaly detection process and classified as benign data, but when they are applied on NILM

model, specific appliances will be misclassified as incorrect operational state. More severely,

other applications such as billing, demand response and data analysis will be devastatingly

influenced as a consequence.

5.1.3 Strategy of the Attack

For the nature of black-box attack, the architecture and parameters of the oracle are unknown

for adversaries, so the most difficult but essential part of the attack is to obtain the relationship

between inputs and outputs of the oracle. Reference[43] states attackers could utilize the same

idea of chosen-plaintext attack in Cryptography where attackers design plaintexts and observe

the changes of ciphertexts so that reduces the security of the encryption scheme. Thus, ad-
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Figure 5.2: Ambiguity in Decision Boundaries

versaries can steal information about how the oracle behaves by strategically design input data

and analyze the output data, and then build their own local substitute model. After this step,

the black-box attack problem is transformed as a white-box problem with all parameters and

relationships available locally. Then the focus of the next step is on how to design high success

rate adversarial samples with minimum scales of perturbations. Therefore, the attack strategy

in the research contains two steps: firstly building a functionally equivalent local substitute

model, and secondly crafting adversarial examples based on this model.

5.2 Substitute Model Construction

5.2.1 Substitute Model Selection

Because of the black-box construction of the problem, the oracle’s architecture is unknown for

adversaries. It can be CNN[20, 21, 22], RNN[23, 24, 25], or Autoencoder[26, 27], etc. for

a same problem. Therefore, to overcome this issue, the selected architecture of the substitute
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model should be capable of imitating any type of algorithm inside the black-box oracle. Ac-

cording to the Universality Approximation Theorem(UAT)[11], a FFNN can mathematically

approximate any functions when given appropriate parameters. Thus, FFNN is practically a

universal choice for Black-box substitute model training tasks. The output of the substitute

model is the probability of a class of appliance being active over the interval under consider-

ation and thus is continuous. Once the substitute model is trained to represent the oracle, the

internal parameters can be directly used to craft adversarial samples. In other word, substitute

model transform a black-box attack to white-box attack. Thus, FFNN is selected to be the

internal architecture of the substitute model.

Although the UAT justifies the capability of FFNN, it does not touch upon the learnability of

the model[11]. (i.e. the FFNN learns to represent a given model’s, but it does not guarantee to

generalize well and produce right prediction on future data.) Thus, the perturbations computed

using the substitute model may result in fooling the substitute model but not the Oracle. When

a perturbation results in successfully fooling the Oracle, it is referred to as a transferable attack

construction. The similarity between substitute model and oracle decides the transferability

of attacks. The more similar the substitute model is to the Oracle, the greater will be the

transferability.

However, the information of a black-box construction is very limited, so the similarity

cannot be directly compared. Reference [15] demonstrates that attack transferability depends

strongly on the complexity of the model, and their experiment proves adversarial examples

crafted with less complex model would transfer better to the victim model, while adversary

examples are more likely stuck at local optimal when they are from a high complexity model.

This can be conceptually visualized in an example on Fig.5.3, where Fig.5.3a illustrates the

targeted ML model and its decision boundary. Fig.5.3b illustrates the decision boundary com-

puted by a more complex substitute model and Fig.5.3c represents a less complex substitute

model. It is clear that the more complex model generate local optima that fools the substi-

tute model but fails to fool oracle, but less complex model transfers better although it travel
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further. In general, the complex substitute model fluctuates more often and strongly than the

target model, while the sample model generalize the main fluctuations better, and finally find

the transferable point. Thus, while picking up hyper-parameters for substitute model, it needs

to satisfy two criteria: being complex enough to fit the training set well and being as simple as

possible.

Figure 5.3: Transferability Based on Model Complexity

Next, the cost functions for the strict and slack black-box scenarios have to be different. For
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strict scenario, Cross-entropy is selected as the cost function[44] in the form of Equation5.1,

C = −

N∑
i=1

yilog(ŷi) (5.1)

where N denotes the total number of examples in the training set, yi is the discrete 0 or 1 output

from the Oracle for input ~xi (a vector with 60 components) and ŷi is the probabilistic output for

class i from the substitute model.

By contrast, in slack scenario, the probability for each state gives adversaries more infor-

mation about the details of the oracle model. Kullback–Leibler Divergence (KLD) is the cost

function chosen to measure the difference between two distributions[45], which matches the

goal of this thesis work here. It is defined in Equation 5.2, where N is the number of examples

in the training set, yi and ŷi are probabilistic output for class i from the oracle and substitute

model. When KLD cost function is minimized, the two distributions are getting closer.

C =

N∑
i=1

yilog(
yi

ŷi
) (5.2)

5.2.2 Training Data Augmentation

For the training process of a classifier in ML, a training data set that is full of knowledge

on how the trained model is expected to behave is essential. Furthermore, the knowledge

is actually means the entropy in Information Theory[46] (i.e. it contribute very small if all

training examples are either 100% confident to be class active or inactive; rather it is helpful

to have more examples closed to 50%), because training sets with high entropy represent the

details of decision boundaries better.

In order to construct this data set, adversaries can collect input/output pairs by querying

the oracle model. A brute-force based is introduce in [16], where attackers query targeted

model for infinite times, and then use the result collected through this process to train a replica.

In fact, however, the number of queries to oracle is monitored and limited, so the data set
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collection phase requires a more efficient approach. In this section, a novel iterative synthetic

data augmentation algorithm is proposed, and it started from a small data set with simple

signals. Jacobian data set augmentation technique is introduce in reference [1] is considered as

the baseline for comparison purpose, and it is referred to as the vanilla augmentation algorithm

in the remainder of the thesis.

Initial Data set Collection

Most literature of adversarial black-box attack focus on image classification problem, where the

prior knowledge is so abundant that the initial data set is easy to be collected. For instance, to

attack a ML model trained with the MNIST database of handwritten digits[47], one can collect

the images of number 1 to number 10 from his or her own handwriting[1] and effectively

utilized them as the initial data set for augmentations. However, in aggregated power data

analysis, contributions of various appliances and their states can be elusive to adversaries, so

the initial data set collection cannot rely on prior knowledge. To bypass this issue, the goal of

data augmentation is refined: instead of reproducing synthetic data which are similar to original

training examples, data augmentation process aims to iteratively search data points around the

oracle’s decision boundary to draw its better representation. Therefore, the initial data set S0

does not have to look like any power signal, they consists of simple data points that include

constant power consumption over the 60 minute interval and power consumption that changes

over 10 minute intervals. The only condition imposed on these data points is that when these

are passed as queries to the Oracle, the outputs must be a balanced representation of various

states of each appliance identified by the Oracle, and this can be achieved by several times of

trails. In Table 5.1, the initial set of five data points utilized for the appliance class Furnace are

illustrated, in which each column denotes different 10-minute intervals.
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Table 5.1: Initial Data set with Simple Examples
id T1 T2 T3 T4 T5 T6 Label
1 0 0 0 0 0 0 inactive
2 500 500 500 500 500 500 inactive
3 4500 3500 4500 5500 4500 5500 active
4 10000 500 0 1000 1500 3000 active
5 2000 10000 8000 1000 1500 7000 active

Vanilla Augmentation Algorithm

The vanilla data augmentation algorithm introduced in reference [1] crafts synthetic training

inputs by first identifying the directions in which the substitute model’s output is varying and

then applying an adjustment along the opposite of these directions to selected data points in the

training set. As shown in Fig.5.4, the data set augmentation algorithms utilized for adversarial

black box attacks are generally composed of the following steps:

• Identify the output labels for synthetic data points by passing these as inputs to the Ora-

cle;

• Calibrate the substitute model to adjust to the augmented data set

• Iteratively generate new synthetic data points.

These three steps are repeated for several epochs until the synthetic data represent the oracle

model well.

The Jacobian matrix J f̂ of the function f̂ , where f̂ represents the substitute model, contains

information about these directions of change and is defined as follows [48]:

J f̂ =


∂ f̂1
∂x1

... ∂ f̂1
∂x60

...
. . .

...

∂ f̂m
∂x1

... ∂ f̂m
∂x60

 (5.3)

where the (i, j) entry in J f̂ is the partial derivative of f̂ with respect to the ith component of

the input ~x ∈ R60 and jth output class. The new training sample crafted should represent
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Figure 5.4: The Process of Data Augmentation

the decision boundary of the Oracle. In order to realize this, it is necessary to identify the

direction in which the output of the substitute model is least confident (i.e. direction in which

the probability of an input belonging to the current class selected by the Oracle is lower). Let f

denote the Oracle. The afore-mentioned logic results in the following rule for the vanilla data

augmentation technique:

S ρ+1 ← {~x + λsgn(J f̂ [ f (~x)]) : ~x ∈ S ρ} ∪ S ρ (5.4)

where S ρ+1 is the training set that is being currently augmented, ρ denotes the augmentation

iteration, ~x is a training point obtained from S ρ, f (~x) is the label obtained from the Oracle

for the input ~x, sgn is the function that returns 1 if the input is positive and −1 if the input

is negative, J f̂ [ f (~x)]) is the column of the gradient whose index corresponds to the class the

Oracle maps to for input ~x and λ is a tunable parameter which alternates between a negative and

positive value every 3 iterations that allows for better exploration of the decision boundaries.

When the output of the Oracle is probabilistic, a threshold is used to select the class label
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(i.e. if the probability is above the threshold, appliance belonging to this class is active and

inactive otherwise). This newly synthesized data point is then passed as input to the Oracle

in order to obtain the label or confidence of the classes that this point belongs to. After every

augmentation, the substitute model is retrained to account for the new point.

The main issue for vanilla data augmentation algorithm is that the exploration of decision

boundaries is highly dependent on the initial training data set. According to Equation.5.4, it

is a one-step update by adding λ or −λ as noise on each dimension of the original data points

to explore the space. So initial training data set is significant, but actually adversaries have

no prior knowledge. Another problem is caused by the imbalanced data set, which does not

exist in other literature. The experiment proves small λ such as 0.01 drives the algorithm only

generating points around the initial data set in a small range, and these points may have same

result as the initial data. Algorithm with a large lambda tends to explore the whole space, but it

would be influenced by imbalanced problem, because majority class takes up over 90% of the

space in the NILM problem, and finally the substitute model will be trained under a extremely

imbalanced synthetic data set, so as to output weak hypothesis. The best lambda is 0.2, but it

still plateau at 78%. The result is shown in Fig.5.5.

Proposed Data Augmentation Algorithm

For the training process of a classifier, training examples that around the decision boundary

influence more on the details of the boundary. Given sufficient number of points around de-

cision boundary, the substitute model can be trained to have similar behaviors as the oracle.

Vanilla data augmentation algorithm and the proposed data augmentation algorithm share the

same ideas: they move current training examples crossing over the decision boundary from

currently class to the next class in the current substitute model. Yet, the proposed algorithm in

this section is different from the vanilla data augmentation algorithm in reference[1] from three

aspects:

• A new data point is not augmented in only one step, so the algorithm does not rely on
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Figure 5.5: Impact of λ on Substitute Model Accuracy

the initial data points as much as the vanilla algorithm;

• The update on each dimension has different scale, it gives synthetic data that are closer

to the decision boundary;

• To accelerate searching points around the decision boundary and tackle more complex

conditions, momentum is considered in addition to the gradient in the augmentation step.

As shown in Fig.5.6, the one step update on the direction to decrease the confidence may

result in failing to find satisfied points, because it may misled by the direction of local points.

(i.e. In Fig.5.6(a), there is no any points can cross over the 50% confidence boundary on the

direction to decrease the confidence of the start point. Multiple steps update with momentum

can overcome this issue. Like illustrated in Fig.5.6(b), the algorithm accumulate momentum to

overshoot the local optimum and land at the other side of the boundary.

The proposed algorithm is detailed in Alg.1, in which, maxρ is the maximum number of
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Figure 5.6: Vanilla vs Proposed Data Augmentation Algorithm
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Algorithm 1 Substitute model training and data augmentation:
Input: f ,maxρ, S 0, λ, α

1: Define f̂
2: while ρ ∈ 0 . . .maxρ do
3: D̂← (~x, f (~x)) : ~x ∈ S ρ . Label the data
4: train( f̂ , D̂) . Train the substitute
5: for each ~x ∈ S ρ do
6: ŷ← f̂ (~x), v̂ = 0
7: while f̂ (~x) == ŷ do
8: v̂← αv̂ + λ∇xJ f̂ [ f (~x)]
9: ~x← ~x − v̂

10: end while
11: S ρ ← ~x ∪ S ρ

12: end for
13: end while
14: return S ρ, f̂

points to be augmented into the training set, λ and α are parameters that represent step-size and

the weight of the momentum, α is typically set to 0.9 to balance the contribution of the gradient

term and the momentum, and ~x is a training example contained within the current iteration of

the training data set S ρ. At each augmentation iteration, the newly augmented data points in S ρ

are labeled by the Oracle. These new points are utilized to retrain the substitute model f̂ . Then,

in the subsequent search for a new point within the nested while loop, the adjustment to the

current data point is iteratively computed using the momentum term v and gradient J f̂ [ f (~x)]. It

is important to note that in this update, the actual gradient is utilized for the update rather than

the sign (e.g. vanilla algorithm). This update is applied in the direction of lower confidence of

the updated point belonging to the current class. After the point crosses the decision boundary,

the current augmentation iteration ends and the new point is added to the training set. This is

repeated until the limiting threshold maxρ is achieved (e.g. dictated by the maximum number

of Oracle queries to be made by the adversary without detection).

Next, how λ affects the first-norm of the normalized augmented data is evaluated as illus-

trated in Fig. 5.7. When λ is large, the augmented data point will be modified significantly and

result in faster crossing over the decision boundary due to overshooting. When λ is smaller,
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although the crossing over occurs less rapidly, the resulting data point will not deviate signif-

icantly from the starting point. As evident from Fig. 5.7, the L1-norm deviates significantly

from λ = 1.0 and is more or less similar for λ = 0.1, 0.2, and 0.5. Thus, λ = 0.5 is selected

as it allows for more rapid crossing over across the decision boundary than λ = 0.1 or 0.2 with

lower impact on the magnitude of the data point.

Figure 5.7: Impact of λ on First-norm of the Normalized Augmented Data

Finally, the performance of the substitute model in both strict and slack scenario is assessed

in Table 5.2. To reflect the overall performance of the models, the test points are selected to

be balanced (50% are active and another 50% is inactive). The results show that both of the

two scenarios perform well with more than 90% accuracy, it is much better than vanilla data

augmentation algorithm which has 78% accuracy in the best condition. Twice the queries were

needed for the slack scenario because it contains more

The accuracy of the substitute is measured with respect to the output of the Oracle (i.e.

percentage of outputs from the substitute that match the Oracle). It is clear that both types of
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Oracle outputs (i.e. discrete and probabilistic) perform well with more than 90% accuracy al-

though twice the queries were necessary for the probabilistic output that contains more nuanced

information.

Scenario Epochs Queries Accuracy toward Oracle
Strict 7 1210 92.99%
Slack 8 2174 90.79%

Table 5.2: Evaluation for Substitute Model Training

5.3 Adversarial Perturbations

The substitute model will be utilized to craft adversarial perturbations to input features that

result in the assignment of incorrect labels by the Oracle. The main objective in the design

of these perturbations is to fool the oracle model and evade the error checking or anomaly

detecting mechanisms that validate the smart meter measurements. Thus, the magnitude of

these perturbations must be negligible so that these are not detectable. Mathematically, this

problem amounts to the Equation.5.5, where δ~x is the adversarial perturbation applied to the

original input ~x, and r is the limitation on the infinite norm of the change.

f (~x) , f (~x + δ~x)

s.t.||δ~x||∞ < r
(5.5)

5.3.1 Fast Gradient Sign Method

Reference [1] proposed an algorithm called fast gradient sign method (FGSM), and become

widely used in the literature. It uses the sign of the gradient of the cost function C of the

substitute model f̂ to update the original samples so as to search adversarial examples. The

perturbation is calculated by Equation.5.6[1], where λ is the parameter that is tried in the

algorithm so that the label produced by the substitute model for the perturbed input data (i.e.
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~x + δ~x) changes from the original label to a different one and fools the Oracle.

δ~x = λsgn(∇~xC f̂ ) (5.6)

Although this is a very straightforward method, there exist three main problems with this

approach for the NILM problem. One is that the magnitude of perturbation applied to each

component or feature of ~x will be the same. Thus, even if one component of ~x need not be

perturbed as much as the other component, it will experience the same magnitude of pertur-

bation which can result in detection. The second issue is with the parameter λ which can be

increased until the substitute model misclassifies the perturbed point resulting in easy detection

of the attack. Thirdly, as there is no constraint imposed on λ, these perturbations can result in

infeasible outputs (e.g. negative power readings) which can be easily detected.

5.3.2 Proposed Adversarial Perturbation Crafting Algorithm

The issues of FGSM algorithm are solved by proposing a PGA method that defines a `∞-ball

and projects perturbed ~x into this legitimate space[49].

The `∞ norm of a vector is defined to be the maximum component. The radius of the `∞-

ball is constrained to be within a specific threshold r which varies for each targeted data point

as it is selected to be a percentage p of the mean value of the input signal. Input perturbations

are applied iteratively so that these remain within the boundaries defined by the `∞ ball while

moving in the direction that increases the cost incurred by the substitute model as follows:

~x← fp(~x + λ∇~xC f̂ , r) (5.7)

where fp projects the perturbed ~x into the `∞-ball. The perturbation applied to each component

of ~x varies based on the value taken by the gradient of the cost function C. The gradient can now

be exactly calculated as the attacker has access to the internal parameters and architecture of the

substitute model. These updates are repeated until the output of the substitute model changes
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from the original output to another output class or the algorithm exceeds the maximum limit n

of iterations.

In reality, the substitute model is not an exact copy of the Oracle. In many cases, adversarial

samples fool the substitute but fail to transfer to oracle model. For example, in Fig.5.8, a’ is

the point generated by using PGA. It is classified to be class 2 by the substitute model, but

still belongs to class 1 in oracle model. So if it travels a little further to the position of a”, it

can successfully transfer. In order to ensure that the effect of the perturbations applied to the

Figure 5.8: Conceptual Plot of the Failed Attack Caused by Insufficient Perturbations

substitute model transfers over to the Oracle, the notion of confidence margin m is introduced

where the probability of the dominant output class of the original unperturbed input is higher
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than that of the dominant output class of the perturbed input by m.

The margin can be conceptually drawn in Fig.5.9: the confidence margin is a parameter to

be tuned, the algorithm have to move target points across the margin to be adversarial examples.

This process avoid adversarial examples stuck at local optimum of substitute, but the price is

Figure 5.9: Conceptual Plot of Confidence Margins

that the more confident it is the more perturbations will be added to the data. When constructing

the perturbations, this confidence margin is maintained according to Alg. 2.
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Algorithm 2 Adversarial Perturbation Crafting:
Input: f̂ , λ, C, m, n, p, target example ~x

1: ŷ← f̂ (~x) . Save the original result
2: r = pE[~x] . Calculate radius of `∞-ball
3: repeat n times
4: ~x← fp(~x + λ∇xC( f (~x)), r)
5: until argmax f̂ (~x) , argmax(ŷ),max f̂ (~x) −max ŷ ≥ m
6: return ~x

5.3.3 Performance of Adversarial perturbations

In Tables 5.3 and 5.4, percentages of adversarial inputs that succeed in fooling the Oracle (i.e.

transfer rate) for various thresholds and confidence margins are tabulated for the active and

inactive states of a furnace. As expected, higher values of r permits greater success rates in

crafting adversarial examples and higher confidence margins result in greater transferability

between the substitute and Oracle models. The difference in the success and transfer rates for

the active and inactive states are due to the distribution of the data points. For instance, the

active-state is defined by input points that are concentrated and the inactive-state are defined

by points that are more dispersed. Thus, smaller perturbations are needed to transition from

the active to inactive state but not vice versa. If the initial training points are closer to the class

boundaries, then small perturbations that heed `−∞ boundaries will be sufficient for the attack.

Algorithm Success Rate Transfer Rate
r=10% mean 15.2% 14.3%
r=20% mean 37.5% 13%
r=50% mean 80.4% 45.9%
r=50% mean+10% margin 79.3% 52.1%
r=50% mean+20% margin 79.3% 52.7%
r=50% mean+50% margin 75.5% 66.2%
r=50% mean+80% margin 57.6% 89.6%

Table 5.3: Performance When Target Points Are Active

In Table 5.5, the performance of the proposed PGA algorithm with 100% mean value ra-

dius and 20% confidence margin and the FGSM algorithm on success rate of searching (i.e

percentage of adversarial examples found from the test set) and the transfer rate (i.e percentage
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Algorithm Success Rate Transfer Rate
r=50% mean 12.1% 23.5%
r=80% mean 24.3% 20.6%
r=100% mean 31.4% 18.2%
r=100% mean+20% margin 28.6% 22.5%
r=100% mean+50% margin 22.9% 25%

Table 5.4: Performance When Target Points Are Inactive

of adversarial examples that successfully fool the Oracle model).

Algorithm Type Success Rate Transfer Rate

FGSM
Discrete 100% 2.6%
Probabilistic 97% 4.7%

PGA
Discrete 48.6% 34%
Probabilistic 54% 37.6%

Table 5.5: Performance Comparison with FGSM.

It is clear that the proposed algorithm is more successful in transferring the attack con-

struction to the Oracle model than reference [1] on both discrete and probabilistic scenarios,

although FGSM algorithm can almost find a adversarial point for each test point for the sake

of no restriction.

5.3.4 Impact of Imbalanced Data

As the results of adversarial attacks shown in Table.5.3 and Table.5.4, the success rate and

transfer rate on active and inactive class data are very different. This is mainly because of

the imbalanced distribution of the original training data. In this section, data visualization

and decision boundary visualization are utilized to help analyzing how imbalanced data set

influence adversarial attacks.

Training data distribution influences classifiers trained on it fundamentally, because the

training process is to gradually understand and represent the training data. The scatter plot of

the original training data is shown in Fig.5.10, where the 60 dimensional data is mapped on to a

2 dimensional plane with Principal Component Analysis technique. It is clear that active-state
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points cluster in a relatively small range, while inactive-state points are almost everywhere

inside the space. This imbalance of distribution affects the shape and position of the decision

boundary.

Fig.5.11 shows the decision surface of the substitute model in a 3 dimensional space, where

the principal component 1 and principal component 2 are two random variables representing

the power consumption signal, and the vertical axis is the probability denoting how confident

the testing points belonging to active-state. Active-state region is at the upper-left corner, while

the remain of the space is all inactive. This explains why active-state points are easier to escape

their small region to be inactive, but inactive points may at any position on the blue area which

is far from the decision boundary.

Furthermore, active-state points commonly have larger mean value so the larger r in Alg.2.

This allows them perturbing more on the targeted points.

Figure 5.10: Training Data Visualization in a 2D Space
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Figure 5.11: Decision Surface of Substitute Model

5.3.5 Stealthiness of Attack Construction

Next, the stealthiness of the attack construction is presented. One method of establishing this

is via visual inspection. As such, Fig. 5.12 illustrates the smart meter reading for a household

over a 24 hour period where perturbation is applied to a single one hour window highlighted

by the orange curve. It is clear that the perturbed data is not distinguishable from actual smart

meter readings. With this attack, smart meter readings can be modified in a manner that is not

noticeable to the EPU and result in over-billing (e.g. consumer extortion) or under-billing (e.g

energy theft) for specific use of particular appliances.
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Figure 5.12: The Perturbations over 24 Hours Input



Chapter 6

Conclusion and Future Work

6.1 Conclusion

In conclusion, this thesis mainly discusses two applications building on smart meter data. The

first application is ML-based NILM, which aims to decompose the whole house power con-

sumption reading into appliance level measurements. The task is defined as a multiple class

classification problem for each appliance, as the running states of each of them are labeled dur-

ing data pre-processing phase. The smart meter readings are naturally time-series data, while

new features month, day-of-week and hour are scalars selected to help improving the models’

performance. To process these two types of input data, an ensemble-based deep learning model

is proposed. Models in existing literature (RNN and DAE) are comprehensively compared us-

ing accuracy and F1 score metrics. This work can be readily further trained and deployed

onto EPU companies’ applications to incentivize sustainable and economical power usage.

The second application is related to cyber security. Because the result of NILM provide prior

knowledge for HEMS especially appliance scheduling applications, the robustness of NILM

models is important. To discover new adversarial algorithms and new vulnerabilities before

hackers helps building more trustworthy ML models in smart grid, so the second application

focus on adversarial attack. It is proved that ML models are vulnerable to adversarial samples

63
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that are deliberately crafted to force the models generating incorrect labels, but the existing

algorithms are struggled to overcome classifiers trained on imbalanced data set. Therefore, a

novel black-box attack mechanism with a new local substitute model training algorithm and

a novel adversarial sample crafting algorithm is proposed in this thesis. By comparing the

performance with existing algorithm, this new mechanism performs better.

6.2 Future Work

As future work, firstly, the data set AMPds used in this thesis is only based on one house, it

may not represent how appliances of different made or working status, and the conditions that

several same appliances working together at the same time (e.x. two washers operating simul-

taneously), and a group of people’s habits in general. These problems are tough but practical,

these are worth investigating with the real life data. Thus, the next step for NILM research is

to collect more comprehensive data set and build model that can capture more general patterns.

Secondly, the outputs of different models may have complex correlations, and these knowledge

may be helpful to reduce ambiguities about states. This point means the output of NILM for

each appliance can be combined and considered together, so that form a collaborating system.

Another interesting topic is appliance scheduling building upon on NILM data and the EPU

company’s price schema. It is highly related to Reinforcement Learning (RL), where an agent

tries to learn the environment so that achieve the most reward. It can be seen as a scheduling

robot learning to operate appliances as requested by the house owner to achieve lowest bill

while maintain the comfort at the same time. Fourthly, a next step of adversarial attack is the

defensive mechanism in smart grid. The key for this problem is to reduce the ambiguities and

blind spots of the oracle’s decision boundary, but do not decrease its performance.
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