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ORIGINAL RESEARCH • THORACIC IMAGING

In chronic obstructive pulmonary disease (COPD), struc-
tural remodeling of the airways, airway inflammation or 

obliteration, and parenchyma destruction commonly result 
from chronic inhalation of combustible materials, including 
tobacco cigarettes and biomass fuels (1). Chest CT is used to 
visualize and quantify the many pulmonary structural abnor-
malities found in COPD. These measurements have been 
exploited in large cohort studies, including COPDGene (2), 
ECLIPSE (3), SPIROMICS (4), and CANCold (5), which 
have resulted in tens of thousands of thoracic CT images 
acquired in study participants with COPD (6). While all 
of these studies have focused on anatomic measurements, 

complementary functional information may also be gleaned 
by using inhaled xenon gas and dual-energy CT or multivol-
ume CT acquisition through the breathing cycle in combi-
nation with registration and analysis techniques (7,8).

Hyperpolarized (HP) helium 3 (3He) and xenon 129 
(129Xe) MRI pulmonary measurements also provide high 
spatial and temporal resolution of lung ventilation het-
erogeneity and microstructural information in COPD 
(9,10). HP gas MRI measurements in COPD are repro-
ducible over short periods of time (11) and are sensitive 
to therapy (12) and to the lung changes that accompany 
exacerbations (13). In particular, HP 3He and HP 129Xe 
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Background:  Fixed airflow limitation and ventilation heterogeneity are common in chronic obstructive pulmonary disease (COPD). 
Conventional noncontrast CT provides airway and parenchymal measurements but cannot be used to directly determine lung 
function.

Purpose:  To develop, train, and test a CT texture analysis and machine-learning algorithm to predict lung ventilation heterogeneity 
in participants with COPD.

Materials and Methods:  In this prospective study (ClinicalTrials.gov: NCT02723474; conducted from January 2010 to February 2017), 
participants were randomized to optimization (n = 1), training (n = 67), and testing (n = 27) data sets. Hyperpolarized (HP) helium 
3 (3He) MRI ventilation maps were co-registered with thoracic CT to provide ground truth labels, and 87 quantitative imaging 
features were extracted and normalized to lung averages to generate 174 features. The volume-of-interest dimension and the train-
ing data sampling method were optimized to maximize the area under the receiver operating characteristic curve (AUC). Forward 
feature selection was performed to reduce the number of features; logistic regression, linear support vector machine, and quadratic 
support vector machine classifiers were trained through fivefold cross validation. The highest-performing classification model was 
applied to the test data set. Pearson coefficients were used to determine the relationships between the model, MRI, and pulmonary 
function measurements.

Results:  The quadratic support vector machine performed best in training and was applied to the test data set. Model-predicted 
ventilation maps had an accuracy of 88% (95% confidence interval [CI]: 88%, 88%) and an AUC of 0.82 (95% CI: 0.82, 0.83) 
when the HP 3He MRI ventilation maps were used as the reference standard. Model-predicted ventilation defect percentage (VDP) 
was correlated with VDP at HP 3He MRI (r = 0.90, P , .001). Both model-predicted and HP 3He MRI VDP were correlated 
with forced expiratory volume in 1 second (FEV1) (model: r = -0.65, P , .001; MRI: r = -0.70, P , .001), ratio of FEV1 to forced 
vital capacity (model: r = -0.73, P , .001; MRI: r = -0.75, P , .001), diffusing capacity (model: r = -0.69, P , .001; MRI: r = 
-0.65, P , .001), and quality-of-life score (model: r = 0.59, P = .001; MRI: r = 0.65, P , .001).

Conclusion:  Model-predicted ventilation maps generated by using CT textures and machine learning were correlated with MRI ven-
tilation maps (r = 0.90, P , .001).
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Materials and Methods
Participants provided written informed consent to this prospec-
tive, longitudinal cohort study (20), which was approved by a 
local research ethics board in compliance with the Health In-
surance Portability and Accountability Act (ClinicalTrials.gov: 
NCT02723474; Institutional Review Board #00000940) (19). 
The authors had control of the data and information submitted 
for publication. Participants evaluated in this study have been 
reported previously (16,19); however, the analysis undertaken in 
the current study was unique and has never been reported before 
in this group of COPD participants or in any other cohort study.

Study Participants
Participants with a clinical diagnosis of COPD between the 
ages of 40 and 85 years were recruited from a tertiary-care aca-
demic center in London, Ontario, Canada between 2010 and 
2017 as a convenience sample. The Consolidated Standards of 
Reporting Trials diagram is provided in Figure 1. Participants 
were excluded if they did not have COPD or if the CT acquisi-
tion parameters were prospectively altered to include a modi-
fied inspiration-expiration protocol or scheme. One participant 
data set was used to perform texture parameter optimization, 
and the remaining participant data sets were randomized to a 
training set (for tuning model hyperparameters) and a testing set.

Study Design and Pulmonary Function Tests
Spirometry measurements were acquired according to Ameri-
can Thoracic Society guidelines (21) by using a whole-body 
plethysmography system (MedGraphics, St Paul, Minn), and 
results were corrected for age and sex (percentage predicted). 
Body plethysmography was performed for the measurement of 
lung volumes, and diffusing capacity of lung for carbon mon-
oxide was measured by using the attached gas analyzer. The St 
George’s Respiratory Questionnaire (22) was used to measure 
participant quality of life.

MRI Examination
Conventional proton (hydrogen 1 [1H]) and HP 3He MRI were 
performed with a whole-body 3.0-T MRI system (MR750 Dis-
covery; GE Healthcare, Waukesha, Wis) with broadband imag-
ing capabilities as previously described (9). Hydrogen 1 MRI 
was performed by using a fast spoiled gradient-recalled-echo 
sequence, with acquisition parameters as previously described 
(9). HP 3He MRI involved the use of a whole-body gradient 
set with maximum gradient amplitude of 50 mT/m and a sin-
gle-channel, rigid elliptical transmit-receive chest coil (RAPID 
Biomedical, Wuerzburg, Germany). The basis frequency of the 
coil was 97.3 MHz, and the excitation power was 3 kW us-
ing an AMT 3T90 RF power amplifier (GE Healthcare). The 
3He gas was polarized to 30%–40% polarization using a spin-
exchange optical polarizer (Polarean, Durham, NC).

CT Examination
Chest CT was performed with a 64-section Lightspeed VCT 
scanner (GE Healthcare) (64 3 0.625 mm, 120 kVp, 100 mA 
[effective], tube rotation time = 500 msec, and pitch = 1.0). 
CT images were reconstructed by using a section thickness of 

Abbreviations
AUC = area under the receiver operating characteristic curve, CI = 
confidence interval, COPD = chronic obstructive pulmonary disease, 
CVM = cluster volume matrix, GLCM = gray-level co-occurence ma-
trix, HP = hyperpolarized, SVM = support vector machine, VDP = 
ventilation defect percentage, VOI = volume of interest

Summary
In participants with chronic obstructive pulmonary disease, machine 
learning and texture analysis of chest CT were used to generate pul-
monary ventilation maps that correlated with MRI ventilation maps 
and pulmonary function and quality-of-life measurements.

Key Results
nn With use of machine learning of thoracic CT texture features to 

predict lung ventilation heterogeneity, overall accuracy was 88%, 
with an area under the receiver operating characteristic curve of 
0.82.

nn Ventilation maps based on conventional CT data were strongly 
correlated with MRI ventilation defect percentage (VDP) (r = 
0.90, P , .001).

nn Both model and MRI VDP were correlated with pulmonary 
function (for forced expiratory volume, model r = -0.65, P , 
.001; MRI r = -0.70, P , .001) and quality-of-life measurements 
(model r = 0.65, P = .001; MRI r = 0.59, P , .001).

MRI ventilation heterogeneity, quantified as MRI ventila-
tion defect percentage (VDP) (14), is predictive of COPD 
exacerbations (15) and longitudinal changes in quality of life 
and exercise capacity (16). Despite these unique advantages, 
HP gas MRI has been limited to specialized research centers 
and has not been used in multicenter cohort COPD stud-
ies and clinical trials, largely because of the cost of these HP 
noble gases and the specialized equipment needed (specialty 
tuned surface coils and a noble gas hyperpolarizer) for MRI 
ventilation imaging. For these reasons, the unique functional 
information provided by HP gas MRI has not been translated 
to the clinic. With the recent success of texture analysis and 
machine learning in medical imaging (17,18), we postulated 
that it would be possible to identify sufficient features in 
CT images to generate lung ventilation heterogeneity maps, 
which would make this important lung functional informa-
tion more widely available.

The TINCan cohort study (19) prospectively acquired vol-
ume-matched CT and MRI scans in a relatively large group of 
study participants with COPD and provided a unique oppor-
tunity to train and test a machine-learning approach to generate 
pulmonary ventilation maps based on single-volume, noncontrast 
CT data. We hypothesized that ventilation maps could be gener-
ated based on texture features and machine learning of CT images, 
and that such maps would correlate spatially with HP 3He MRI 
VDP acquired experimentally in participants with COPD. Such 
pulmonary ventilation predictions based on nearly universally 
available conventional CT may increase clinical access to valu-
able functional lung information beyond sites with HP gas MRI. 
Therefore, the purpose of this study was to develop, train, and test 
a pulmonary CT texture analysis and machine learning pipeline to 
predict HP 3He MRI ventilation heterogeneity maps acquired in 
the same participants with COPD.



CT Texture Analysis and Machine Learning to Predict Pulmonary Ventilation in COPD

678	 radiology.rsna.org  n  Radiology: Volume 293: Number 3—December 2019

tion transformation was applied to the MRI ventilation cluster 
maps. Coregistration was evaluated by using the Dice similar-
ity coefficient.

CT and MRI VOIs were defined by applying a three-
dimensional grid, with dimensions of L 3 L 3 15 mm3, 
to the segmented CT and MRI ventilation map, where L 
was the VOI size in the coronal plane, which was optimized 
within the training set. The MRI ventilation map was la-
beled as background, ventilated, or nonventilated, with 
the label of each VOI being the mode, or most common, 
value. The grid was then shifted L/2 mm horizontally and 
L/2 mm vertically, to generate additional training samples, 
such that each voxel belonged to three separate VOIs. This 
technique was further used when predicting the final label 
in the test set, as the mean score of three overlapping L 3  
L 3 15 VOIs was used, which then defined unique predic-
tions for L/2 3 L/2 3 15 mm3 regions.

1.25 mm (0.5 pitch) with a standard convolution kernel. The 
total effective dose to the participant was 1.8 mSv according 
to manufacturer settings and the Imaging Performance Assess-
ment of CT patient dosimetry calculator based on software 
from the Health Protection Agency of the United Kingdom 
(NRPB-SR250). The voxel dimensions in the coronal plane 
were 3.1 3 3.1 3 15 mm3 for MRI and 1.25 3 0.7 3 0.7 
mm3 for CT. Both MRI and CT were performed during a 
static breath hold at functional residual capacity plus 1 L.

Image Coregistration
Figure 2 shows the image processing pipeline we developed to 
generate ventilation maps based on thoracic CT data. Figure 3  
shows the MRI-CT registration and the volume-of-interest 
(VOI) extraction approach. MRI 1H and 3He images were reg-
istered by using landmark registration, and k-means cluster-
ing was used to generate ventilation cluster maps, as previously 
described (14), with the lowest cluster representing ventilation 
defects. MRI data were resampled by using nearest neighbors 
to 1.25 3 0.7-mm voxels to match the original CT coronal 
plane dimensions and were cropped to match the CT field of 
view. CT images were segmented by using Pulmonary Work-
station 2.0 (VIDA Diagnostics, Coralville, Iowa) and then 
concatenated to 15-mm-thick sections in the coronal plane to 
match the MRI dimensions. The segmented 1H MRI thoracic 
cavity masks were registered to the CT data by using a deform-
able registration method (modality independent neighborhood 
descriptor, or MIND, registration) (23). The resultant registra-

Figure 1:  Consolidated Standards of Reporting Trials (CONSORT) diagram 
shows the number of participants who completed a visit and the number of partici-
pants excluded in this study because they did not have chronic obstructive pulmo-
nary disease (COPD) or because their CT data were acquired with different voxel 
spacing. For the training set, participants were randomly divided into five groups. 
Training was performed during five iterations, whereby for each iteration the model 
was trained on four groups (gray rectangles) and validated on one group (blue 
rectangles). FEV1 = forced expiratory volume in 1 second, FVC = forced vital ca-
pacity, Iter. = iteration.

Figure 2:  Schematic for image analysis shows texture analysis image pro-
cessing steps for generating predicted ventilation maps from thoracic CT for an 
82-year-old man with chronic obstructive pulmonary disease (forced expiratory 
volume in 1 second [FEV1] = 60% predicted value; FEV1/forced vital capacity = 
45%; diffusing capacity of lung for carbon monoxide = 33% predicted value). In 
the predicted ventilation image, aqua = ventilated regions and dark gray = ventila-
tion defects. VOI = volume of interest.
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than −950 HU (RA950), RA less than −910 HU (RA910), and RA 
less than −856 HU (RA856).

The GLCM (24) was populated by binning voxels based on 
Hounsfield units into 45 bins from 0 to −1000 HU, where 45 
bins was the result from the parameter search in the single par-
ticipant’s data set removed participant data set. As previously 
described (24), features were calculated as shown in the right 
side of Table E1 (online) for the 13 unique three-dimensional 
directions.

Although run-length matrix is commonly used as a method 
to extract features from two-dimensional images (25), this be-
comes computationally intensive and does not account for re-
gions that are fully but not linearly connected, which can be 
accounted for by using low-attenuating clusters (26). Therefore, 
here we used a combination of the run-length matrix with CT 
cluster analysis by creating a new texture parameter, the CVM. 
This is a three-dimensional analog of the run-length matrix, 
where p(i,j) is the number of clusters, i is the gray level, and j 
is the three-dimensional cluster size of the same gray level. The 
features calculated from the CVM are the same as those calcu-
lated from a run-length matrix, as shown on the left side of Table 

Thoracic CT Feature Extraction
First- and second-order features were extracted by using a cus-
tom-built texture analysis software in MATLAB (MATLAB 
R2018a; MathWorks, Natick, Mass) available from the authors 
online (http://www.imaging.robarts.ca/parraga/our_code.html). A 
parameter search was performed to determine the texture param-
eters (gray-level co-occurence matrix [GLCM] bin width, cluster 
volume matrix [CVM] bin width, and CVM bin range) by us-
ing one participant data set, which was then removed for the 
remainder of the analysis. The results from this parameter search 
are provided in Figure E1 (online). Exemplar feature maps using 
these optimized parameters are shown in Figure 4. There were 87 
global features calculated per VOI. To provide the model more 
context in terms of COPD severity, each VOI feature was also 
divided by the average value of the feature within the same par-
ticipant, and this generated an additional 87 features (ie, ratio 
features), for a total of 174 features per VOI.

First-order features that were generated included mean CT 
attenuation, standard deviation of attenuation, skewness, kur-
tosis, 2nd moment, 3rd moment, 95th percentile attenuation, 
15th percentile attenuation, relative area (RA) of the lung less 

Figure 3:  MRI-to-CT registration analysis. A three-dimensional grid was used to define the CT volume of interest (VOI) and the corresponding MRI-based ventilation la-
bel, where L is the length of the VOI in the coronal plane, which is varied to determine the optimal VOI dimensions. Thoracic images are shown for a 75-year-old man with 
chronic obstructive pulmonary disease (forced expiratory volume in 1 second [FEV1] = 28% predicted value; FEV1/forced vital capacity = 29%; diffusing capacity of lung for 
carbon monoxide = 17% predicted value). MIND = modality independent neighborhood descriptor.
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E1 (online). The matrix was populated by binning 
voxels into 18 bins between −300 and −1000 HU, 
where all voxels with values greater than −300 were 
collapsed into a single bin and all voxels less than 
−1000 HU were included in the lowest density bin.

Feature Selection
To avoid model overfitting and maximize model 
generalizability, a forward feature selection scheme 
was developed in MATLAB. As shown in Figure 1,  
training data were divided into five different groups, 
and fivefold cross validation was performed by us-
ing logistic regression, where features were itera-
tively added based on the feature that led to the 
greatest improvement in the validation area under 
the receiver operating characteristic curve (AUC). 
As shown in Figure E2, A (online), this was per-
formed for up to 20 features, as the AUC pla-
teaued to a maximum when 20 features were used. 
Those features, which were included in the first 
20 features selected for at least two of the fivefold 
cross-validation steps, were utilized in the final 
model approach provided by the authors online 
(http://www.imaging.robarts.ca/parraga/our_code.
html).

Training the Classification Model
To simplify the anatomic heterogeneity included 
in the model while maintaining the information 
that was representative of the entire lung, we in-
cluded the center-most six sections (of approxi-
mately 15 total sections) that encompassed 58% 
6 5 of the volume of the lung. In the training 
set, the VOI size and sampling scheme were op-
timized to maximize AUC. The VOI dimensions 
were 15 mm in the posterior-to-anterior direction 
and were varied from 15 3 15 to 30 3 30 mm2 in 
the coronal plane. Because of a greater number of 
ventilated versus nonventilated VOIs, the method 
for sampling VOIs to create the training set was 
critical. To include a balance of participants with 
large ventilation defects and participants with a 
lower magnitude of VDP, a threshold was varied 
to define the minimum percentage of each par-
ticipant’s lung sampled (ie, for threshold = 20%, 
participants with VDP , 20%, ventilated volume 
sampled = 20% of the lung and nonventilated vol-
ume sampled = VDP). The sampling scheme that 
resulted in the highest AUC was used to train the 
final model.

Once all parameters and features were selected, 
fivefold cross-validation training was performed by 
using a logistic regression (with no interactions con-
sidered), a linear support vector machine (SVM), 
and a quadratic SVM. The data were standardized 
and hyperparameter optimization was performed 
by using MATLAB (Classification Learner app) for 

Figure 4:  Hyperpolarized MRI ventilation, thoracic CT image, and feature maps in an 86-year-
old man with chronic obstructive pulmonary disease (forced expiratory volume in 1 second [FEV1] = 
38% predicted value; FEV1/forced vital capacity = 35%; diffusing capacity of lung for carbon mon-
oxide = 36% predicted value). Feature maps were calculated by using volume-of-interest dimensions 
of 15 3 15 3 15 mm3. CVM = cluster volume matrix, 15th percentile = the 15th percentile of the CT 
attenuation histogram, GLCM = gray level co-occurrence matrix, GLN = gray-level nonuniformity.

Table 1: Participant Demographic Data and Pulmonary Function and  
Imaging Measurements

Parameter
All Participants  
(n = 94)

Training Set  
(n = 67)

Test Set  
(n = 27) P Value

Age (y) 70 6 9 70 6 8 69 6 10 .6
Percentage of women 33 31 48 .2
No. of pack-years  
  smoked

50 6 30 49 6 29 50 6 27 .9

FEV1 (percentage  
  predicted)

63 6 25 63 6 25 61 6 24 .6

FEV1/FVC (percentage  
  predicted)

51 6 13 51 6 13 51 6 13 ..99

DLco (percentage  
  predicted)

56 6 23* 54 6 21)† 57 6 22 .7

SGRQ score 40 6 18‡ 41 6 18)§ 37 6 20|| .5
RA950 (%) 10 6 10 10 6 10 10 6 10 .7
VDP 12 6 12 12 6 11 11 6 12 .9
DSC (%) 95 6 1 95 6 1 95 6 1 .6

Note.—Unless otherwise specified, data are means 6 standard deviations. 
Pack-years = no. of cigarette packs smoked per day times years of smoking. 
DLco = diffusing capacity of lung for carbon monoxide, DSC = Dice similarity 
coefficient for CT-MRI coregistration, FVC = forced vital capacity, FEV1 = 
forced expiratory volume in 1 second, RA950 = relative area of CT histogram 
less than −950 HU, SGRQ = St George’s Respiratory Questionnaire, VDP = 
ventilation defect percentage.
* Available for 93 participants.
† Available for 66 participants.
‡ Available for 90 participants.
§ Available for 64 participants.
|| Available for 26 participants.
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each model to find the 
optimal hyperparameters, 
as shown in Table E2 (on-
line). The mean cross-vali-
dation AUCs were used to 
compare models, and the 
model with the greatest 
AUC was applied to the 
testing set. There was no 
patient overlap between 
the training and testing 
data sets, as well as no 
patient overlap between 
each of the five validation 
experiments. This en-
sured that the model was 
trained on a data set that 
was different from the 
testing data set.

Statistical Analysis
All statistical analyses 
were performed by us-

ing GraphPad Prism, V8.0 (GraphPad Software, La Jolla, Ca-
lif ). To determine group differences, unpaired parametric t tests 
were used when the data were normally distributed, and non-
parametric Mann-Whitney tests were used when the data were 
not normally distributed (tested by using the Shapiro-Wilk test 
for normality). Pearson correlation coefficients were used to de-
termine the relationships between the model and the HP 3He 
ventilation MRI and pulmonary function measurements. Accu-
racy, sensitivity, specificity, and AUC were calculated on a VOI 
level. Sensitivity, specificity, and AUC were the primary metrics 
of performance and were the metrics considered during train-
ing. Results were considered significant when the probability of 
a two-tailed type I error (a) was less than 5% (P , .05).

Results
Of the 183 participants enrolled in the study, 88 were excluded 
for not having COPD (n = 67) or for having different CT ac-
quisition parameters (n = 21). The participants included in this 
study were 33% women, with a mean age of 70 years 6 9 
and a mean smoking history of 50 years 6 30. Complete de-
mographic data, pulmonary function test results, and imaging 
measurements are provided in Table 1 and show there were no 
differences between the training and testing data sets.

As shown in Table 2, the best-performing VOI size was 30 
3 30 mm2 based on the largest AUC. The optimal sampling 
threshold required a minimum of 30% ventilated lung, based on 
the AUC while maintaining the sensitivity once the AUC pla-
teaued. Table 2 also shows that by varying the sampling pattern, 
there was a trade-off between sensitivity and specificity. There-
fore, feature selection was performed by using fivefold cross 
validation with VOI dimensions of 30 3 30 3 15 mm3 and a 
sampling minimum of 30%.

Table 3 shows that first-order density-based features had the 
largest individual AUC and both global and ratio values helped 

Table 2: VOI and Training Sample Patterns

Parameter
Validation  
Accuracy (%) Validation AUC

Validation  
Sensitivity (%)

Validation 
Specificity (%)

Coronal VOI size (mm)
  15 3 15 82 (81, 82) 0.77 (0.77, 0.78) 44 (42, 46) 89 (88, 89)
  20 3 20 79 (78, 79) 0.78 (0.78, 0.79) 58 (56, 60) 82 (82, 83)
  25 3 25 80 (79, 81) 0.80 (0.80, 0.81) 61 (58, 63) 83 (83, 84)
  30 3 30 85 (84, 86) 0.82 (0.81, 0.83) 49 (47, 52) 91 (90, 91)
Sampling scheme minimum  
  percentage of lung sampled
  0 69 (68, 70) 0.78 (0.77, 0.78) 73 (70, 76) 69 (68, 70)
  10 79 (78, 80) 0.81 (0.80, 0.82) 66 (64, 68) 81 (80, 82)
  20 83 (82, 83) 0.82 (0.81, 0.82) 58 (55, 61) 86 (86, 87)
  30 85 (84, 86) 0.82 (0.81, 0.83) 49 (47, 52) 91 (90, 91)
  40 86 (86, 87) 0.82 (0.81, 0.83) 38 (35, 41) 94 (93, 94)

Note.—Data in parentheses are 95% confidence intervals. To optimize coronal volume of interest (VOI) 
dimensions, the sampling scheme ensured that 30% or more of the ventilated lung was evaluated. To 
optimize the sampling scheme, for each participant evaluated in the training set, at least as many ventilated 
samples as nonventilated samples were evaluated. To ensure that disease severity (ventilation, ventilation 
defects) was represented to train the model, a minimum percentage of the ventilated lung was sampled. 
AUC = area under the receiver operating characteristic curve.

Table 3: Training Set Features and Individual AUCs for 67 
Participants and 48 313 VOIs

Feature AUC
15th percentile global 0.76 (0.76, 0.77)
Skewness global 0.51 (0.50, 0.51)
15th percentile ratio 0.71 (0.71, 0.72)
GLCM energy [-1,1,1] ratio 0.58 (0.58, 0.59)
GLCM homogeneity [0,1,0] ratio 0.57 (0.56, 0.58)
Skewness ratio 0.51 (0.50, 0.52)
CVM GLN ratio 0.62 (0.61, 0.63)
RA950 ratio 0.71 (0.70, 0.72)
CVM LGRE global 0.55 (0.54, 0.56)
RA950 global 0.76 (0.75, 0.77)
GLCM energy [1,1,-1] ratio 0.59 (0.58, 0.60)
GLCM energy [1,0,0] global 0.58 (0.58, 0.59)
GLCM contrast [1,0,1] global 0.59 (0.58, 0.60)
RA910 global 0.75 (0.75, 0.76)
CVM GLN global 0.66 (0.65, 0.67)
GLCM energy [1,1,0] ratio 0.58 (0.57, 0.59)
GLCM contrast [1,0,-1] ratio 0.59 (0.59, 0.60)
CVM SRLGE global 0.55 (0.54, 0.56)
CVM HGRE global 0.57 (0.56, 0.58)
GLCM correlation [1,0,-1] ratio 0.59 (0.59, 0.60)
Standard deviation ratio 0.54 (0.53, 0.54)

Note.—Data in parentheses are 95% confidence intervals. AUC =  
area under the receiver operating characteristic curve, CVM =  
cluster volume matrix, 15th percentile = 15th percentile of CT, 
GLCM = gray-level co-occurrence matrix, GLN = gray-level 
nonuniformity, global = value of volume of interest (VOI) 
feature, HGRE = high gray-level run emphasis, LGRE = low 
gray-level run emphasis, RA950 = relative area of CT histogram 
less than −950 HU, ratio = value of VOI feature divided by mean 
feature value for whole lung, SRLGE = short run low gray-level 
emphasis.
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capacity (model: r = -0.73, P , .0001; MRI: r = -0.75, P , 
.0001), diffusing capacity of lung for carbon monoxide (model: 
r = -0.69, P , .0001; MRI: r = -0.65, P , .001) and St George’s 
Respiratory Questionnaire score (model: r = 0.59, P , .005; 
MRI: r = 0.65, P , .001).

Discussion
We developed a CT analysis pipeline that combined texture fea-
ture analysis with machine learning to generate pulmonary ven-
tilation heterogeneity maps for direct comparison with hyperpo-
larized (HP) helium 3 (3He) MRI ventilation maps acquired in 
study participants. The algorithm was trained and tested in a co-
hort of 95 study participants with chronic obstructive pulmonary 
disease (COPD) in whom volume-matched MRI and CT were 
performed within 10 minutes of each other. We made the follow-
ing observations: (a) The best-performing model on the training 
set was applied to the testing set, where it classified ventilated 
and nonventilated volume of interest with 88% accuracy and an 
area under the receiver operating characteristic curve (AUC) of 
0.82; (b) there was a strong correlation between model-predicted 
ventilation defect percentage (VDP) and HP 3He MRI VDP (r = 
0.90, P , .001); and (c) both model-predicted and HP 3He MRI 
VDP were correlated with clinically relevant measurements such 
as forced expiratory volume in 1 second/forced vital capacity 

optimize the model, where a total of 21 features were included in 
the final model. The correlation plot for all included features (Fig 
E2, B [online]) shows the strong correlation between GLCM fea-
tures in different directions. During training, logistic regression, 
linear SVM, and quadratic SVM achieved accuracies and AUCs, 
respectively, of 85% (95% confidence interval [CI]: 84%, 86%) 
and 0.82 (95% CI: 0.81, 0.83), 86% (95% CI: 85%, 87%) and 
0.81 (95% CI: 0.80,0.82), and 87% (95% CI: 86%, 88%) and 
0.86 (95% CI: 0.85,0.87), respectively. Therefore, the quadratic 
SVM model was applied to the test set based on the increased 
AUC.

Figure 5 shows the predicted ventilation maps for four partic-
ipants within the test set, along with the experimentally acquired 
CT and MRI ventilation images. A qualitative spatial agreement 
between the model ventilation prediction and the MRI ventila-
tion was observed, and the magnitude of predicted ventilation 
defects corresponds to that observed in the MRI ventilation.

In Figure 6, test set evaluations are shown where the final 
model achieved an accuracy of 88% (95% CI: 88%, 88%) and 
an AUC of 0.82 (95% CI: 0.82, 0.83). Figure 6 also shows the 
strong relationship between model-predicted VDP and HP 
MRI VDP (r = 0.90, P  .0001) as well as their relationships 
with forced expiratory volume in 1 second (FEV1) (model: r = 
-0.65, P , .001; MRI: r = -0.70, P , .0001), FEV1/forced vital 

Figure 5:  Representative CT, MRI, and model outputs for four study participants in the testing set. Images in participants with a range of chronic 
obstructive pulmonary disease severities are shown, where qualitative spatial correlations between predicted ventilation and measured ventilation are 
provided. Participant 1 was an 83-year-old man (forced expiratory volume in 1 second [FEV1] = 116% predicted value, FEV1/forced vital capac-
ity [FVC] = 67%, diffusing capacity of lung for carbon monoxide [DLco] = 107% predicted value), participant 2 was a 66-year-old woman (FEV1 = 
39% predicted value, FEV1/FVC = 34%, DLco = 63% predicted value), participant 3 was a 75-year-old man (FEV1 = 25% predicted value, FEV1/
FVC = 29%, DLco = 17% predicted value), and participant 4 was a 75-year-old man (FEV1 = 30% predicted value, FEV1/FVC = 30%, DLco = 39% 
predicted value).



Westcott et al

Radiology: Volume 293: Number 3—December 2019  n  radiology.rsna.org	 683

with previous experimental results 
(15,27). The influence of both global 
and ratio features for predicting ven-
tilation underscores the importance 
of considering disease severity in rela-
tion to the rest of an individual’s lung 
and relative to all individual lungs.

The strong relationship between 
the model, pulmonary function test 
results, and MRI VDP also provides 
support that this model would pre-
dict a wide range of disease severity 
present within our study. Our results 
are important in the context of previ-
ous automated disease quantification 
methods developed by using texture 
analysis (28–31), which were trained 
by using unsupervised learning or 
with previously developed disease clas-
sification systems. In contrast, our pre-
dicted model provided a quantitative 
measure that was spatially dependent 
and trained by using HP 3He MRI 
ventilation results as the ground truth. 
The bias to overestimate ventilation 
defects was an artifact of training the 
model on a data set with a more 
balanced ventilated-to-nonventilated 
volume ratio compared with the ratio 
present within the testing set.

We acknowledge numerous study 
limitations, including the fact that 
the TINCan cohort comprised a con-
venience sample with many patients 
with moderate to severe disease, so 
generalizability should be considered 
in this context. We also acknowledge 
that only the center 60% or so of 
the lung was included in the analysis 
to simplify CT-MRI coregistration. 
Nevertheless, the center six sections 
provided an appropriate representa-

tion of all five lung lobes, with a mean VDP difference of 1% 6 
2 between the sections we used and whole-lung measurements. 
CT protocol and scanner image reconstruction may influence 
texture features (32,33), and hence, the generalizability of 
the trained model presented here to other scanners and CT ac-
quisition protocols needs to be considered. Further, MRI and 
CT were both performed at the same lung volume (functional 
residual capacity plus 1 L), and the participants were coached 
to ensure that this was the case. Lung quantitative features are 
known to be influenced by lung volume, which has implications 
for the general application of this approach (34). With that in 
mind, it is expected that the inclusion of the normalized fea-
tures (to whole-lung means) may help mitigate interscanner 
and intersite variability. While application of our approach to 
a multicenter data set will evaluate its utility, it is worth noting 

(model r = -0.73, P , .0001; MRI: r = -0.75, P , .0001), diffus-
ing capacity of lung for carbon monoxide (model: r = -0.69, P 
, .0001; MRI: r = -0.65, P , .001), and St George’s Respira-
tory Questionnaire score (model: r = 0.59, P , .005; MRI: r = 
0.65, P , .001).

Because of the imbalance between ventilated and nonven-
tilated volumes, we identified the parameters and final model 
on the basis of maximizing the AUC, such that both sensitiv-
ity and specificity of detecting ventilation heterogeneities were 
considered for algorithm performance. However, the sensitivity 
and specificity of the final model were not balanced, allowing 
for a higher specificity to minimize the false detection of venti-
lation defects. Attenuation-based first-order features generated 
the largest AUCs, which was consistent with the spatial overlap 
between emphysema and ventilation defects and in agreement 

Figure 6:  Testing set model outputs and relationships. A, Confusion matrix shows the model-predicted and the 
ground-truth hyperpolarized helium 3 MRI ventilation classification, where accuracy was 88% (95% confidence 
interval [CI]: 88%, 88%), the area under the receiver operating characteristic curve was 0.82 (95% CI: 0.82, 0.83), 
the sensitivity was 58% (95% CI: 56%, 59%), and the specificity was 92% (95% CI: 92%, 92%) in 32 457 volumes 
of interest. B, Graph shows predicted ventilation defect percentage (VDP) versus observed VDP (r = 0.90, y = 0.65x 
+ 3). C–F, Graphs show clinical measurements versus model VDP and MRI VDP. DLco = diffusing capacity of the 
lung for carbon monoxide, FEV1 = forced expiratory volume in 1 second, FVC = forced vital capacity, SGRQ = St 
George’s Respiratory Questionnaire.
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that many of the density-based measures such as relative area of 
the lung less than −950 HU and 15th percentile attenuation are 
already successfully used in clinic as well as in multisite studies 
(35,36).

In conclusion, in participants with chronic obstructive pul-
monary disease, machine learning and texture analysis of chest 
CT data was used to generate pulmonary ventilation maps that 
correlated with MRI ventilation maps and pulmonary function 
and quality-of-life measurements. This approach, if externally 
validated, will enable widespread generation of ventilation het-
erogeneity maps using nearly ubiquitous CT scanners, providing 
a way to generate ventilation maps beyond the specialist centers 
with hyperpolarized gas MRI.
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