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Abstract

Carotid plaque surface irregularity and ulcerations play an important role
in the risk of ischemic stroke. Ulcerated or fissured plaque, characterized
by irregular surface morphology, exposes thrombogenic materials to the
bloodstream, possibly leading to life- or brain-threatening thrombosis and
embolization. Therefore, the quantification of plaque surface irregularity is
important to identify high-risk plaques that would likely lead to vascular events.
Although a number of studies have characterized plaque surface irregularity
using subjective classification schemes with two or more categories, only a few
have quantified surface irregularity using an objective and continuous quantity,
such as Gaussian or mean curvature. In this work, our goal was to use both
Gaussian and mean curvatures for identifying ulcers from 3D carotid ultrasound
(US) images of human subjects. Before performing experiments using patient
data, we verified the numerical accuracy of the surface curvature computation
method using discrete spheres and tori with different sampling intervals. We
also showed that three ulcers of the vascular phantom with 2 mm, 3 mm and
4 mm diameters were associated with high Gaussian and mean curvatures,
and thus, were easily detected. Finally, we demonstrated the application of
the proposed method for detecting ulcers on luminal surfaces, which were
segmented from the 3D US images acquired for two human subjects.

(Some figures in this article are in colour only in the electronic version)
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1. Introduction

Stroke is the most common serious neurological problem globally and the third leading cause
of death among North American adults (Thom et al 2006, The Heart and Stroke Foundation
of Canada 2003). The direct and indirect costs of stroke alone are estimated to be $2.8 billon
year−1 in Canada and $51 billon year−1 in the USA (Thom et al 2006, The Heart and Stroke
Foundation of Canada 2000, The Heart and Stroke Foundation of Canada 2003). Clearly,
stroke represents a staggering mortality, morbidity and economic cost. Improved methods for
identifying patients at increased risk of stroke and better techniques for treating and monitoring
them will have an enormous impact.

About 85% of strokes are ischemic, mostly caused by the blockage of a cerebral artery
by a thrombotic embolus. Atherosclerosis at the carotid bifurcation is a major cause for the
generation of thrombosis and subsequent cerebral emboli (Golledge et al 2000). Improved
identification of patients who are at risk of stroke, new strategies for treating atherosclerosis
and sensitive techniques for monitoring carotid plaque in response to therapy will have a great
impact on the management of these patients, and decrease the risk of stroke.

Degree of stenosis has been used as the conventional clinical measure of severity of
atherosclerosis in the carotid arteries. However, the degree of stenosis alone is not a sufficiently
sensitive and specific marker of the risk of stroke. The NASCET results showed that 74% of
the patients with severe stenosis (�70%) do not suffer stroke within two years (Barnett 1992),
and ECST results showed that 10% of symptomatic patients with low-grade stenosis (17–50%
by NASCET) suffer ipsilateral stroke within four years (Warlow 1991). Although the risk of
stroke increases with the severity of carotid stenosis (NASCET Collaborators 1991, Warlow
1991), it is generally accepted that the risk of major vascular events is more related to the
stability of plaque than to carotid stenosis (Eliasziw et al 1994, Streifler et al 1994, Spence
et al 2005, Fisher et al 2005). Ulcerated or fissured plaque, characterized by irregular surface
morphology, exposes thrombogenic materials to the bloodstream, possibly leading to life- or
brain-threatening thrombosis and embolization (Sztajzel 2005, Fisher et al 2005, Rothwell
et al 2000, Sitzer et al 1995). Therefore, the ability to characterize and quantify plaque surface
irregularity may improve the efficacy of stroke prevention by carotid endarterectomy (Fisher
et al 2005).

Several investigations using x-ray angiography analysed plaque ulcerations by classifying
them into two or three categories qualitatively and subjectively (e.g., ulcerated/irregular, no
ulceration/smooth and uncertain), and then correlated these classifications with occurrence
of vascular events (Eliasziw et al 1994, Streifler et al 1994, Rothwell et al 2000). Other
investigations have used ultrasound imaging for identifying plaque ulcerations (Steinke et al
1992, Sitzer et al 1996, Schminke et al 2000, Sztajzel 2005). In these studies, plaque
ulcerations were defined as recesses with a certain depth (e.g., 2 mm in Schminke et al (2000),
Sztajzel (2005)), and with a well-defined back wall at the base exhibiting an area of reverse flow
as shown in power Doppler imaging. Miskolczi et al (1996) gave a more specific definition of
plaque ulceration in their study using intravascular ultrasound. They also set the lower limit
of the orifice diameter and depth of an ulceration to 0.5 mm, which they measured for each
suspected ulceration from the intravascular ultrasound image. However, the above studies did
not further quantify the degree of surface irregularity of the detected ulcerations.

Mean and Gaussian curvatures are two local geometric descriptors of surface ‘roughness’
in classical differential geometry. Differential geometric theories for continuous surfaces are
well established (do Carmo 1976). However, there is no consensus on the best method for
estimating surface curvatures on discrete surfaces, although the triangular mesh representation
of surfaces is extensively used in the computer graphics community (Meyer et al 2003).
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Previous investigations using 3D ultrasound (US) and magnetic resonance (MR) imaging
techniques have reported quantification techniques for plaque surface morphology. Fenster
et al (2004) reconstructed the segmented contours of plaque into a 3D surface mesh. They
then calculated the local Gaussian curvature at each vertex and averaged the curvature values
within a 1 mm radius of each vertex on the mesh. The results presented in Fenster et al (2004)
are, however, preliminary and have not been validated. Han et al (2001) have computed the
Gaussian curvature of the lumen surface that they reconstructed from contiguous contours
segmented from MR images. The Gaussian curvature of each vertex on the mesh was
computed using the method introduced in Besl and Jain (1986). However, the Gaussian
curvature computation method by Besl and Jain (1986) ignored the surface partitioning issue,
which is essential to establish a tight error bound for curvature estimation. In addition, a
partitioning scheme without region overlapping is essential for the Gauss–Bonnet theorem, an
important geometrical property, to be satisfied (Meyer et al 2003).

The goal of this paper is to identify ulcers from in vivo 3D US images based on the
mean and Gaussian curvatures computed using the method proposed by Meyer et al (2003).
Before achieving this goal, we demonstrate the accuracy of the surface curvature computation
algorithm using synthetic surfaces and the practicality of the algorithm in detecting ulcers
using a vascular phantom.

2. Methods

In this section, we describe the surface curvature computation algorithm, introduce three
types of surface data that were used to validate the algorithm and describe how these data
were obtained. The three types of surfaces are: (1) synthetic spherical and toridal surfaces,
(2) surfaces constructed by segmenting a 3D US image of a vascular phantom with ulcer-
mimicking hemispheres and (3) surfaces constructed from 3D US images of human subjects.
The Gaussian and mean curvatures of the synthetic surfaces are known. The purpose of
computing the curvatures of these surfaces was to verify the numerical accuracy of the
algorithm. The purpose of computing the curvatures of the vascular phantom was to show
that ulcers have higher mean and Gaussian curvatures, and thus, curvatures can be used as a
feature to assist the detection of ulcers. Finally, we compute the surface curvatures for carotid
lumen of human subjects to demonstrate that the purposed algorithm can be used to detect
ulcers from 3D carotid ultrasound images.

2.1. Vascular phantom with ulcerations

To simulate the carotid vessel, a vascular phantom was constructed and filled with a heated
85 ◦C agar mixture consisting of the following (by % mass): 3% agar (A-7002, Sigma-Aldrich,
Oakville, ON, Canada), 8% glycerol, 86% distilled water, 3% Sigmacell R© (S-5504, Sigma-
Aldrich). Sigmacell R© is a product consisting of 50 μm cellulose particles added as scatterers
(Rickey et al 1995). Hemispheres made of acetal with diameters of 2 mm, 3 mm and 4 mm
(McMaster-Carr, Aurora, OH) were glued on a brass cylinder with 10 mm diameter. The
distance between the centres of the 2 mm and 3 mm hemispheres was 11 mm, and the distance
between the centres of the 3 mm and 4 mm hemispheres was 14 mm (figure 1(a)). The brass
cylinder was composed of two longitudinal halves, which were inserted into a box to create
a vascular channel that was 15 mm below the surface of the phantom. The agar mixture was
then poured into the vascular phantom box and allowed to cool for 30–40 min until the agar
mixture solidified. Then, the brass cylinder was removed. To avoid damaging the phantom,
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(a) (b)

(c)

Figure 1. 3D ultrasound image of the phantom. (a) The longitudinal view of the phantom with
the 2 mm, 3 mm and 4 mm ulcers labelled. (b) The same longitudinal view as shown in (a), but
with the segmented luminal surface superimposed on the image. (c) The transverse view of the
4 mm ulcer.

the bottom half of the cylinder with no sphere was removed first. Then, the top half was
detached from the phantom, before it was slid out.

2.2. Image acquisition for the vascular phantom

The 3D carotid US imaging system was described elsewhere (Fenster et al 2001) and is briefly
summarized here. The images of the phantom were acquired by translating an ultrasound
transducer (L7-4, ATL-Philips) over the surface of the phantom along the longitudinal axis of
the vessel, with the three synthetic ulcers facing the transducer. The US probe was held by a
mechanical assembly, and the transducer angle was fixed to be perpendicular to the phantom
surface and the longitudinal axis of the vessel. The video frames from the US machine (HDI-
5000, ATL-Philips) were digitized, saved to a computer workstation and reconstructed into
a 3D image (Fenster et al 2001, Fenster et al 2004, Landry and Fenster 2002, Landry et al
2005). The acquired 2D images were parallel to each other with a pixel size of 0.13 mm ×
0.13 mm. The mean spatial interval between adjacent 2D images was of 0.3 mm.
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2.3. Study subjects and image acquisition

We used the 3D US images acquired for two subjects to demonstrate the application of our
algorithm. These subjects, who participated in a clinical study focusing on the effect of
atorvastatin, were asymptomatic with carotid stenosis >60% according to carotid Doppler
flow velocities (Ainsworth et al 2005). Before conducting our study, we obtained consent
from each of the subjects regarding the study’s protocol, which was approved by the University
of Western Ontario’s standing board of human research ethics.

The 3D US images were acquired by translating an ultrasound transducer (L12-5, ATL-
Philips) along the neck of the subjects for approximately 4.0 cm, which takes approximately
8 s. The transducer angle was fixed to be perpendicular to the skin and the direction of the
scan for all patient scans. The US machine and the image pixel sizes were the same as those
used for the phantom image acquisition.

2.4. Carotid segmentation and surface reconstruction

The vascular phantom was segmented using the semi-automatic segmentation algorithm
developed by Ladak et al (2000) based on the discrete dynamic contour (DDC) model proposed
by Lobregt and Viergever (1995). A transverse 2D image at approximately 8 mm away from
the centre of the 2 mm hemisphere (i.e., 19 mm and 33 mm from the centres of 3 mm and
4 mm hemispheres, respectively) was chosen as the initial 2D image, and a single observer
initialized four points, from which the boundary of the phantom was determined using a
cubic-spline interpolation technique (Ladak et al 2000). The estimated boundary on the initial
2D image was then automatically refined using the DDC model. The deformed contour was
then propagated to the adjacent 2D transverse image, which was 1 mm away from the initial
2D image, and was used as the initial contour before refining. This process was repeated until
the complete vascular phantom was segmented.

From the 3D US images acquired for two subjects, ulcers on the CCA lumen were
identified by a physician who is experienced in analysing carotid US images. A separate
observer, knowing the location of the ulcers as identified by the physician, segmented the
CCA lumen using the method described in the previous paragraph, for 10 mm with a 1 mm
inter-slice distance.

Although it was reported that ulcers larger than 1 mm are clinically significant (Sitzer
et al 1995) and that ulcers with orifice diameter and depth larger than 0.5 mm could be
detected using intravascular US (Miskolczi et al 1996), non-invasive US imaging has a coarser
resolution and the consensus is to define ulcerations as craters with a width and depth of 2 mm
(de Bray et al 1997, Schminke et al 2000, Meairs and Hennerici 1999, Sztajzel 2005). By
choosing 1 mm as the inter-slice distance, ulcerations with a width and depth of 2 mm will not
be missed as the sampling interval is exactly half of the size of the ulcer. Inter-slice distance
greater than 1 mm may lead to distortion of the shape of the ulcer.

Each set of 2D contours was then reconstructed into a triangulated surface mesh (Chiu
et al 2006, 2008b). The reconstructed surface of the phantom is represented as a red surface
superimposed on the 3D US image of the phantom in figure 1(b), and the luminal surfaces for
the two subjects are shown in figures 6(b) and 7(b).

2.5. Computation of surface curvatures

Surface curvature computation methods can be classified into two major types. The first type
is based on local surface fitting and the second type estimates the curvature directly from the
triangular mesh (Besl and Jain 1986, Han et al 2001). Local surface fitting can be achieved by
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Figure 2. Two shapes that have the same Gaussian curvatures, but different mean curvatures. This
figure shows that if high Gaussian curvature was used as the only criterion to identify ulcers, both
the inward- and outward-curving regions, shown in (a) and (b) respectively, would be identified as
ulcers. However, the outward-curving region shown in (b) is not an ulcer while (a) shows an ulcer.
The mean curvature normal vector K(p) points inwards from the surface. Thus κH (p) is positive
according to equation (5). (b) shows a region that has the same Gaussian curvature as the ulcer
shown in (a). Since it curves outwards, it is not an ulcer. K(p) points outwards from the surface,
and κH (p) is negative according to equation (5). Ulcers are associated with high Gaussian and
mean curvatures.

polynomial reconstruction and analytical evaluation. However, overshooting and unexpected
surface behaviour between sample points often occur with this method (Meyer et al 2003).
With this in mind and that we have established a method for constructing a triangular mesh
for a stack of segmented lumen contours in our previous work (Chiu et al 2006, 2008b), we
used the algorithm proposed by Meyer et al (2003), which computed the mean and Gaussian
curvatures directly from a triangular mesh. In the following two sections, we briefly describe
the methods used to compute the mean curvature and the Gaussian curvature.

The reason for using both the Gaussian curvature and the mean curvature for quantifying
luminal surface irregularity is that the Gaussian curvature, as an intrinsic geometrical property,
cannot be used to differentiate between regions curving inwards and those curving outwards.
However, the mean curvature, as an extrinsic property, can be used for this purpose.
Hemispheric regions curving inwards, such as the ulcers in the phantom experiment, have
a positive mean curvature, whereas hemispheric regions curving in the opposite direction have
a negative curvature (according to the orientation defined in equation (5)) (figure 2). Ulcers,
as recesses on the vascular lumen, are located at regions where the luminal surface curves
inwards, and therefore, must be associated with a positive mean curvature. Thus, in this study,
we combined the Gaussian and mean curvatures in the identification of ulcers.

2.5.1. Discrete mean curvature. The mean curvature κH at a point P is related to the mean
curvature normal operator K by the equation K(P ) = 2κH (P )n(P ), where n(P ) is the normal
vector of the surface. Meyer et al (2003) proved that the integral of the mean curvature
normal operator over a cell with vertex i at the centre and with edge intersecting midpoints
of the edges connecting the vertex i and its 1-ring neighbour vertices (i.e., the grey region in
figure 3(a)) can be expressed in terms of the angles of the triangulation and the length of the
edges in the following simple form:∫∫

A

K(x) dA = 1

2

∑
j∈N1(i)

(cot αij + cot βij )(xi − xj ), (1)
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Figure 3. (a) Voronoi region (shaded) in a 1-ring neighborhood that does not contain a non-obtuse
triangle. (b) Voronoi region (shaded) of P on a non-obtuse triangle. (c) Voronoi region is not
defined in an obtuse triangle. In this case, the shaded area is used for the surface partitioning
purpose. (d) In a 1-ring neighbourhood with at least one obtuse triangle, the shaded area (with area
Amixed) is used for surface partitioning.

where αij and βij are the two angles opposite to the edge in the two triangles sharing the edge
(xi , xj ) and N1(i) is the set of 1-ring neighbour vertices of vertex i (see figure 3(a)).

The only condition required for equation (1) to hold is that the edge of the cell centred
at vertex i intersects the midpoints of the set of edges {(xi , xj ) : j ∈ N1(i)}. Thus, the grey
region depicted in figure 3(a), called the Voronoi region, with its edge passing through the
circumcentres of all triangles, is not the only region that satisfies this criterion. However,
Meyer et al (2003) showed that the numerical error of curvature estimation is minimized when
the Voronoi region is used. Given a non-obtuse triangle, the area of the Voronoi region for P
is (see figure 3(b)):

AVoronoi = 1
8 |PR|2 cot( � Q) + 1

8 |PQ|2 cot( � R). (2)

The Voronoi partitioning scheme used for a non-obtuse triangle (shown in figure 3(a))
cannot be used for triangles with an obtuse angle (figure 3(c)), because the circumcentre of
the obtuse triangle does not lie inside the triangle. However, as long as we use a region whose
edges pass through the midpoint of the edges of the triangles, equation (1) is still valid. To
allow efficient surface partitioning, Meyer et al (2003) used a third vertex that is the midpoint
of the edge opposite to the obtuse angle to define the partition. This partition is represented
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by the grey region in figure 3(c). We can now define a new surface area for each vertex x,
denoted by Amixed(x), which is computed by the following algorithm (figure 3(d)):

Amixed(x) =
#f∑
i=1

FA(Ti), (3)

where

FA(Ti) =
⎧⎨
⎩

AVoronoi, Ti is non-obtuse.
Area(Ti)/2, Ti is obtuse and the angle of Ti at x is obtuse.
Area(Ti)/4, Ti is obtuse and the angle of Ti at x is non-obtuse.

Here, #f denotes the number of triangular faces around the vertex x and Ti denotes the triangle
corresponding to the ith face (see figure 3(a)).

With Amixed defined, we can express the mean curvature normal operator K as

K(xi ) = 1

2Amixed(xi )

∑
j∈N1(i)

(cot αij + cot βij )(xi − xj ). (4)

Defining n to be the normal vector pointing inwards from the surface, the mean curvature
is expressed as

κH (xi ) = 1
2 K(xi ) · n(xi ) (5)

This equation implies that κH > 0 if K points inwards from the surface. Otherwise, κH < 0
(figure 2).

2.5.2. Discrete Gaussian curvature. The Gaussian curvature computation method is very
similar to the way in which the mean curvature was obtained. First, we note from the
Gauss–Bonnet theorem that the integral of the Gaussian curvature, κG, is

∫ ∫
A

κG dA = 2π −
#f∑
j=1

θj , (6)

where θj is the angle of the j th face around the vertex xi (see figure 3(a)) and #f denotes the
number of faces around the vertex.

We use the same partitioning scheme here as that used in the computation of the mean
curvature normal operator giving the following expression for the Gaussian curvature:

κG(xi ) =
⎛
⎝2π −

#f∑
j=1

θj

⎞
⎠/

Amixed(xi ). (7)

2.5.3. Smoothing of curvatures. Since semi-automatic or manual segmentation of US carotid
images is prone to observer variability due to speckle, shadowing and noise (Mao et al 2000,
Zagzebski 1996), we smooth the curvature (either the Gaussian or the mean curvature) at each
vertex using an iterative algorithm proposed in Sundaram et al (2008) to successively average
the curvature at a vertex with those of its adjacent neighbours. As emphasized in Sundaram
et al (2008), the surface mesh was not smoothed in this procedure. Rather, only the curvature
superimposed on the mesh was smoothed. We briefly summarize the smoothing algorithm
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as follows:

(i) initialize Si,0 = Si and σ0 = 0.5 mm,

(ii) at iteration l + 1, set

σl+1 = 1.1σl

Si,l+1 = 1

2

(
Si,l +

∑
j∈N1(i)

wij,lSj,l∑
j∈N1(i)

wij,l

)
and

(iii) terminate when σl > 1 mm,

where we have used the following notations:
Si = curvature at vertex pi

Ni = normal at vertex pi

N1(i) = 1-ring neighbourhood of vertex pi

Ai = Amixed(pi).

We selected the termination condition to be σl > 1 mm because the segmentation inter-slice
distance is 1 mm. wij,l , the weight of the vertex pj in the calculation of the smoothed curvature
at pi at iteration l, was obtained by the following equation:

wij,l = Aj(Ni · Nj)
exp

(−‖pi−pj ‖2

2σ 2
l

)
σ 2

l

. (8)

2.6. Area-preserving flattened map

For visualization and interpretation of the results, the surface curvature computed using the
above method was superimposed on the arterial lumen to produce a 3D surface curvature map.
Although 3D surface curvature maps thus constructed provide rich information on surface
irregularity, the flattened representation of the 3D maps allows analysis in a single view,
eliminating the need to study the 3D maps from multiple angles in an investigation, thereby
allowing an easy comparison between two maps obtained either for a single patient at different
time points or for different patients under different treatment arms. Thus, the area-preserving
surface-flattening algorithm we developed in a previous publication (Chiu et al 2008a) was
used for displaying the surface curvature maps for the phantom and the study subjects.

2.7. Implementation

The surface reconstruction (section 2.4), surface curvature computation (sections 2.5.1 and
2.5.2) and curvature smoothing algorithms (section 2.5.3) were implemented using C++. The
surface used in the phantom study contained approximately 3000 vertices. Reconstructing
the phantom surface from 2D transverse contours took 0.8 s. Computing κG and κH for the
surface took 0.3 s. Smoothing κG and κH took 9 s. The implementation details of the area-
preserving map were described elsewhere (Chiu et al 2008a) and are not repeated here. The
carotid lumen surfaces used in the in vivo US studies contained approximately 500 vertices
and required approximately 1/6 of the time for the phantom study. All experiments were
performed using an Intel R© CoreTM 2 2.0 GHz CPU with 1.0 GB memory.
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Table 1. Numerical accuracy in computing mean (κH ) and Gaussian curvature (κG) for three
spherical meshes, which were constructed by sampling a sphere with unity radius in different
sampling intervals. For each mesh, the means and the root-mean-square errors (RMSE) of κH and
κG were tabulated. Since a (continuous) sphere with unity radius has κH and κG both equalling
1, the means of κH and κG provide a measure of the bias in computing κH and κG for discrete
spheres.

Sphere, radius = 1

Ang. interval No of points Mean κH RMSE κH Mean κG RMSE κG

5◦ 2450 1.0002 5.04 × 10−4 1.0017 1.76 × 10−3

10◦ 578 1.0007 1.89 × 10−3 1.0070 7.01 × 10−3

20◦ 128 1.0022 6.58 × 10−3 1.0304 3.04 × 10−2

2.8. Validation of numerical accuracy in the mean and Gaussian curvature calculations

We evaluated the accuracy of the mean and Gaussian curvature computations by using two
types of synthetic surfaces: the sphere and the torus. We also investigated the relationship
between the number of sampling points used to represent the discrete surfaces and the numerical
accuracy of the computed curvatures. These synthetic surfaces were not susceptible to noise,
and thus, the curvature was not smoothed.

For a sphere, κG equals 1/r2 everywhere, where r is the radius of the sphere, and κH

equals 1/r (according to the orientation defined in equation (5)). We use the following
parameterization for the sphere:

(x, y, z) = (r cos v cos u, r cos v sin u, r sin v), (9)

where 0 � u < 2π and 0 � v < π . We created meshes of the unit sphere (i.e., r = 1) by
sampling u and v in 5◦, 10◦ and 20◦ intervals, and then computed κH and κG for each point on
the meshes using the discrete curvature operators.

We also tested the curvature operators on a torus with the following parameterization:

(x, y, z) = ((a + r cos u) cos v, (a + r cos u) sin v, r sin u), (10)

where 0 � u < 2π and 0 � v < 2π . The theoretical κH and κG are expressed as follows:

κH = a + 2r cos u

2r(a + r cos u)
, (11a)

κG = cos u

r(a + r cos u)
. (11b)

We created three toroidal meshes (with a = 1, r = 0.25) by sampling u and v in 5◦, 10◦

and 20◦ intervals respectively, and then computed κH and κG for each point on the meshes.

3. Results

3.1. Numerical accuracy of the mean and Gaussian curvature calculations

Table 1 shows the root-mean-square error (RMSE) in the calculations of κH and κG for three
spheres with different sampling intervals. Since a (continuous) sphere with unity radius has κH

and κG both equalling 1, the means of κH and κG provide a measure of the bias in computing
κH and κG for discrete spheres, and therefore, were also tabulated. In this test, we observed, in
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Table 2. Numerical error in computing mean (κH ) and Gaussian curvature (κG) for three toroidal
meshes, which were constructed by sampling a torus (parameterized by equation (10) with a = 1
and r = 0.25) in different sampling intervals. For each mesh, the root-mean-square errors (RMSE)
of κH and κG were tabulated.

Torus, a = 1, r = 0.25

Ang. interval No of points RMSE κH RMSE κG

5◦ 5184 0.00409 0.00727
10◦ 1440 0.00862 0.0181
20◦ 480 0.0233 0.0517

agreement with Meyer et al (2003), that the integral of the discrete Gaussian curvature over an
entire sphere is equal to 4π regardless of the sampling interval used. For the spherical mesh that
was produced by sampling u and v in 20◦ intervals, because the spherical mesh has a surface
area that is 3% smaller than the continuous sphere, the Gaussian curvature was overestimated
by an average of 3% so that the Gaussian curvature of the discrete sphere integrates to 4π .
Similar comment applies for the spheres with sampling intervals equalling 5◦ and 10◦. As the
surface mesh becomes denser, the total surface area for the discrete sphere becomes closer to
the continuous surface, resulting in a reduction of the RMSE of κG. Meanwhile, the RMSE
of κH also decreases as the sampling intervals of u and v decrease.

Table 2 shows the RMSE in the calculations of κH and κG for three tori with different
sampling intervals. Similar to the results obtained for the spheres above, the integral of
the discrete curvature over an entire torus agrees with the Gauss–Bonnet theorem (which
is 0 for torus because torus has 1 hole), regardless of the sampling intervals of u and v in
equation (10). The RMSEs of κH and κG converge to 0 as sampling intervals decrease.

3.2. Mean and Gaussian curvatures of the vascular phantom

Figure 4(a) shows the surface representing the vascular phantom, with the mean curvature
colour-coded and superimposed on the surface. In this orientation, the 2 mm hemisphere was
located on the top, with the 3 mm hemisphere located 11 mm below and the 4 mm hemisphere
located further 14 mm below. The area-preserving flattened map of the vascular phantom
surface shown in figure 4(a) was constructed and displayed in figure 4(b). The mean curvature
values at all vertices were collected, and the 98th percentile of this sample was obtained. The
clipping algorithm implemented in Visualization Toolkit (VTK) (Schroeder et al 2002) was
used to extract regions with mean curvature greater than the 98th percentile. The result is
displayed in figure 4(c), which shows the surface patches that have mean curvature greater than
or equal to the 98th percentile, with the boundary of the flattened map represented by the black
outline. Figure 4(c) shows that the hemispheres could not be detected as connected regions and
that small patches outside the hemispheres were extracted erroneously. The mean curvature
was then smoothed, colour-coded and superimposed on the vascular phantom surface, which
is shown in figure 4(d). It is important to note that the same surface is shown in figures 4(a)
and (d), only with different mean curvature values mapped onto them (i.e., the surface was not
smoothed). The area-preserving flattened map of figure 4(d) is displayed in figure 4(e). We
computed the 98th percentile of the ‘smoothed’ mean curvature and used it as the threshold
to clip the surface, producing the result shown in figure 4(f). After smoothing, only regions
corresponding to where the hemispheres were located were extracted, and the sizes of the
three surface patches extracted corresponded approximately to the sizes of the hemispheres.
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(a) (b) (c)

(d) (e) (f)

Figure 4. (a) Mean curvature map of the vascular phantom and (b) its flattened map. The 98th
percentile of the mean curvature at all vertices was computed, which was used as a threshold
to extract surface patches. (c) shows surface patches that have mean curvature greater than or
equal to this threshold, with the boundary of the flattened surface represented by the black outline.
(d) Smoothed mean curvature of the phantom and (e) its flattened map. (f) Surface patches that
have mean curvature greater than or equal to the 98th percentile.

The Gaussian curvature was computed, colour-coded and superimposed on the vascular
phantom as shown in figure 5(a). The experiment performed here was the same as that
described previously for the mean curvature. The area-preserving flattened map of figure 5(a)
was displayed in figure 5(b). Figure 5(c) shows regions with the Gaussian curvature that
was greater than or equal to the 98th percentile. The Gaussian curvature was then smoothed
(figure 5(d)) and flattened (figure 5(e)). Figure 5(f) shows regions with the ‘smoothed’
Gaussian curvature greater than or equal to the 98th percentile. The results obtained were
similar to those for the mean curvature.

3.3. Results for study subjects

We demonstrated in the phantom experiment that ulcers are characterized by high Gaussian
and mean curvatures. In the phantom experiment, we identified ulcers using the Gaussian and
mean curvatures independently because there is no outward-curving region in the vascular
phantom. However, for accurate identification of ulcers from carotid luminal surfaces of
human subjects, we required to combine the use of the Gaussian and mean curvatures because
it is not possible to differentiate between inward- and outward-curving regions by using the
Gaussian curvature alone (figure 2). Outward-curving regions exist in carotid luminal surfaces,
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(a) (b) (c)

(d) (e) (f)

Figure 5. (a) Gaussian curvature map of the vascular phantom and (b) its flattened map. The 98th
percentile of the Gaussian curvature at all vertices was computed, which was used as a threshold
to extract surface patches. (c) shows surface patches that have Gaussian curvature greater than or
equal to this threshold, with the boundary of the flattened surface represented by the black outline.
(d) Smoothed Gaussian curvature of the phantom and (e) its flattened map. (f) Surface patches that
have Gaussian curvature greater than or equal to the 98th percentile.

and the combined information of the Gaussian and mean curvatures allowed us to exclude
these regions in the identification of ulcers.

Figure 6(a) shows the 3D carotid US image of subject 1 with segmented lumen. Figure 6(b)
shows the CCA lumen surface of subject 1 with the smoothed Gaussian curvature colour-
coded and superimposed on the surface. Figures 6(c)–(e) show the transverse 2D images that
correspond to slices 1, 2 and 3 labelled in figure 6(b). Figure 6(f) shows the area-preserving
flattened map with the Gaussian curvature colour-coded and superimposed on the map. The
shaded area in this map represents regions where the Gaussian curvature was greater than
or equal to the 98th percentile (as described in the phantom experiment). We denoted this
region by G98. Figure 6(g) shows the area-preserving flattened map with the mean curvature
colour-coded and superimposed on the map. Similarly, the shaded area in this map represents
regions where the mean curvature was greater than or equal to the 98th percentile, denoted by
M98. As a criterion, we identify ulcers as the intersection between G98 and M98. Figure 6(h)
shows the region identified by this method.

Figure 7(a) shows the 3D carotid US image of subject 2 with segmented lumen.
Figure 7(b) shows the CCA lumen surface of subject 2 with the smoothed Gaussian curvature
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(a) (b)

(c) (d) (e)

(f)

(g)

(h)

Figure 6. (a) 3D US image with segmented lumen. (b) 3D Gaussian curvature map for the arterial
lumen of subject 1. The transverse views of (c) slice 1, (d) slice 2 and (e) slice 3 as labelled in
(b). (f) 2D Gaussian curvature map corresponding to the 3D map shown in (b). The shaded area
represents the region where the Gaussian curvature is equal to or greater than the 98th percentile
(i.e., G98.) (g) 2D mean curvature map corresponding to the 3D map shown in (b). The shaded
area represents the region where the mean curvature is equal to or greater than the 98th percentile
(i.e., M98). (h) G98

⋂
M98.
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(a) (b)

(c) (d)

(e)

(f)

(g)

Figure 7. (a) 3D US image with segmented lumen. (b) 3D Gaussian curvature map for the arterial
lumen of subject 2. The transverse views of (c) slice 1 and (d) slice 2 as labelled in (b). (e) 2D
Gaussian curvature map corresponding to the 3D map shown in (b). The shaded area represents
the region where the Gaussian curvature is equal to or greater than the 98th percentile (i.e., G98.)
(f) 2D mean curvature map corresponding to the 3D map shown in (b). The shaded area represents
the region where mean curvature is equal to or greater than the 98th percentile (i.e., M98).
(g) G98

⋂
M98.
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colour-coded and superimposed on the surface. Figures 7(c) and (d) show the transverse 2D
images that correspond to slices 1 and 2 labelled in figure 7(b). Unlike subject 1, there were
multiple smaller ulcers on the artery of this subject. Figure 7(e) shows the area-preserving
flattened map with the Gaussian curvature colour-coded and superimposed on the map. The
shaded area represents the region G98. We note from this figure that G98 covered regions
where two of the three ulcers were, but did not cover the ulcer between the two identified
ulcers. In addition, the ulcer on the right of figure 7(e) is much smaller than the detected
region. The upper part of the detected region curves outwards, and therefore, is not a part
of the ulcer. The lower part of the detected region, however, corresponds to an ulcer shown
in figure 7(d). Figure 7(f) shows the area-preserving flattened map with the mean curvature
colour-coded and superimposed on the map. The shaded area represents the region M98. The
region we mentioned above that curves outwards had a negative mean curvature, and thus,
was not covered by M98. Figure 7(g) shows the region G98

⋂
M98, which covered two of the

three ulcers.

4. Discussion and conclusion

In this work, we have introduced a multi-step method for quantifying and displaying the
irregularity of vessel wall and plaque surfaces. First, we implemented the method proposed by
Meyer et al (2003) to compute the Gaussian and mean curvatures. We validated our curvature
computations by testing the algorithm using discrete spherical and toroidal meshes sampled
in different intervals, and have shown that the RMSEs for the Gaussian and mean curvature
computations were small if the meshes were densely sampled. Since ultrasound images are
susceptible to artefacts caused by speckle, shadowing and noise (Mao et al 2000, Zagzebski
1996), we applied a smoothing algorithm proposed in Sundaram et al (2008) to smooth the
curvatures computed for surfaces segmented from 3D US images. It was demonstrated in the
vascular phantom experiment that the 2 mm, 3 mm and 4 mm ulcers could be detected as
connected regions after the curvatures had been smoothed (figures 4(f) and 5(f)).

In our phantom study, the ulcers were oriented in a direction that was facing the transducer.
It is known that sections of boundary perpendicular to the direction of the pulse transmission
produce higher contrast, and sections of boundary parallel to the pulse transmission direction
give lower contrast (Rohling et al 1998). Therefore, the segmentation of the ulcers may be less
accurate if the boundaries of the ulcers are parallel, instead of perpendicular, to the direction
of US propagation. The same may be true for the in vivo US images, causing the ulcers
with boundaries parallel to the direction of US transmission more difficult to be detected.
Compound US imaging is a potential solution to this problem (Rohling et al 1998, Jespersen
et al 2000), in which multiple US images of the vessel are obtained from different directions,
then averaged and registered to produce the final US image.

To enhance the visualization and facilitate the interpretation of the 3D surface curvature
maps (i.e., the luminal surface with curvatures colour-coded and mapped onto it), the 3D
maps were flattened to 2D using the area-preserving flattening map algorithm introduced in a
previous publication (Chiu et al 2008a). 2D maps allow the study of surface curvature maps in
a single view, thereby allowing an easy comparison between multiple maps. For example, the
difference between figures 4(c) and (f) (or figures 5(c) and (f)) was much easier to visualize in
2D. Finally, we combined the Gaussian and mean curvatures in detecting ulcers from luminal
surfaces segmented from 3D US images acquired for two human subjects. Only regions with
high Gaussian and mean curvatures were identified as ulcers. These two criteria precluded
the false detection of outward-curving regions as ulcers, since outward-curving regions would
have a negative mean curvature.
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This study has shown the accuracy and practicality of the proposed algorithm in
the synthetic surface experiment and the vascular phantom experiment, respectively. In
demonstrating the application of the proposed algorithm for the carotid luminal surfaces of
human subjects, we considered a physician’s identification of the ulcers as the surrogate gold
standard, and have segmented the arterial lumen according to his identification. One limitation
of this study is that the ulcer identification and the subsequent segmentation are subjective, and
therefore, susceptible to observer bias and variability. Future studies should be performed to
quantify the intra- and inter-observer variability in luminal segmentation. The accuracy of the
segmented luminal boundaries should also be validated against the corresponding histological
specimens before the proposed ulcer detection algorithm is applied. After an ulcer has been
detected using the algorithm, the location of the detected ulcers should also be verified against
histological observations in future studies.

The motivation for this work stems from increasing evidences that suggest the risk of
vascular events is related to atherosclerosis plaque stability (Barnett 1992, Warlow 1991). The
risk of stroke has been correlated with carotid stenosis (NASCET Collaborators 1991, Warlow
1991) and with plaque features related to plaque stability, such as lesion surface irregularities,
ulcerations and fissures (Eliasziw et al 1994, Streifler et al 1994, Rothwell et al 2000, Fisher
et al 2005). An automated method described here may be used to provide a rapid and feasible
method of screening a large number of images for the presence of surface irregularities.
Carotid US images with irregular surface features can then be flagged for observer analysis
and validation. The proposed automatic algorithm can be used in large cross-sectional studies
to evaluate the risk associated with irregular plaque surfaces and in longitudinal studies to
evaluate whether there is any correlation between the degree of plaque surface irregularity and
symptoms of ICA occlusive diseases (e.g., transient ischemic attacks and strokes), which are
two important long-term goals for vascular imaging research.
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