
Western University Western University 

Scholarship@Western Scholarship@Western 

Medical Biophysics Publications Medical Biophysics Department 

12-1-2010 

Imaging of lung function using hyperpolarized helium-3 magnetic Imaging of lung function using hyperpolarized helium-3 magnetic 

resonance imaging: Review of current and emerging translational resonance imaging: Review of current and emerging translational 

methods and applications methods and applications 

Sean Fain 

Mark L Schiebler 

David G McCormack 

Grace Parraga 

Follow this and additional works at: https://ir.lib.uwo.ca/biophysicspub 

 Part of the Medical Biophysics Commons 

Citation of this paper: Citation of this paper: 
Fain, Sean; Schiebler, Mark L; McCormack, David G; and Parraga, Grace, "Imaging of lung function using 
hyperpolarized helium-3 magnetic resonance imaging: Review of current and emerging translational 
methods and applications" (2010). Medical Biophysics Publications. 121. 
https://ir.lib.uwo.ca/biophysicspub/121 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Scholarship@Western

https://core.ac.uk/display/304375598?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/biophysicspub
https://ir.lib.uwo.ca/biophysics
https://ir.lib.uwo.ca/biophysicspub?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/668?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/biophysicspub/121?utm_source=ir.lib.uwo.ca%2Fbiophysicspub%2F121&utm_medium=PDF&utm_campaign=PDFCoverPages


Invited Review

Imaging of Lung Function Using Hyperpolarized
Helium-3 Magnetic Resonance Imaging:
Review of Current and Emerging Translational
Methods and Applications

Sean Fain, PhD,1 Mark L. Schiebler, MD,1 David G. McCormack, MD,2

and Grace Parraga, PhD2*

During the past several years there has been extensive
development and application of hyperpolarized helium-3
(HP 3He) magnetic resonance imaging (MRI) in clinical re-
spiratory indications such as asthma, chronic obstructive
pulmonary disease, cystic fibrosis, radiation-induced lung
injury, and transplantation. This review focuses on the
state-of-the-art of HP 3He MRI and its application to clini-
cal pulmonary research. This is not an overview of the
physics of the method, as this topic has been covered pre-
viously. We focus here on the potential of this imaging
method and its challenges in demonstrating new types of
information that has the potential to influence clinical
research and decision making in pulmonary medicine.
Particular attention is given to functional imaging
approaches related to ventilation and diffusion-weighted
imaging with applications in chronic obstructive pulmo-
nary disease, cystic fibrosis, asthma, and radiation-
induced lung injury. The strengths and challenges of the
application of 3He MRI in these indications are discussed
along with a comparison to established and emerging
imaging techniques.

Key Words: pulmonary MRI; hyperpolarized noble gas;
3He MRI; COPD; cystic fibrosis; asthma
J. Magn. Reson. Imaging 2010;32:1398–1408.
VC 2010 Wiley-Liss, Inc.

RATIONALE FOR FUNCTIONAL
IMAGING OF THE LUNG

OVER THE PAST 25 YEARS, magnetic resonance
imaging (MRI) has developed as a critical research
and diagnostic tool. This is mainly due to the unique
tissue contrast of water and fat protons (1H) in their
local tissue environments provided by MRI, but MRI
also readily provides relatively high 3D spatial and
temporal resolution, especially in comparison to other
functional imaging methods such as positron emis-
sion tomography (PET) and single photon emission
computed tomography (SPECT) (1). However, until
recently, MRI of low proton or 1H density regions of
the lungs has been much more challenging than other
body tissues because of the inherently low 1H abun-
dance and corresponding low 1H signal. Furthermore,
the multitude of air–tissue interfaces within the lung
also create significant magnetic field distortions, or
susceptibility artifacts, which further diminish the
lung MR 1H signal. Moreover, respiratory and cardiac
motion during image acquisition can further degrade
pulmonary MR image quality. While respiratory gating
and/or rapid breath-hold imaging methods substan-
tially attenuate the effects of motion, low proton den-
sity and susceptibility effects together result in signifi-
cant technological roadblocks that have hampered the
clinical utility and use of pulmonary MRI.

The development of inhaled hyperpolarized (HP, or
magnetized) helium-3 (3He) and xenon-129 (129Xe)
contrast agents overcomes the low proton density
issues related to normal and diseased lung tissues.
Polarization is most commonly achieved using the
spin exchange optical pumping (SEOP) method (2–4),
although the metastability exchange process can also
be used to polarize the 3He nucleus (5). Both proc-
esses increase nuclear polarization of the unpaired
nuclear proton in these atoms of up to five orders of
magnitude compared to the modest linear increase
with field strength using thermal polarization (6–9).
This increased nuclear polarization compensates for
the low density of inhaled noble gas nuclei within the
lung (as compared to the abundance of tissue-based
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protons) and provides ventilation images of the air-
ways and airspaces of the entire lung. Typically,
achievable resolution is 1 mm in-plane and 5–10 mm
out-of-plane within a breath-hold interval. Currently,
3He MRI is most commonly used in research even
though the global quantities of 3He are very limited
and expensive (10). Volatility in the market cost of
3He (eg, $600–$1900/L in 2009) is partly due to gov-
ernment and political considerations, but the limited
supply of this agent will likely restrict reimbursable
clinical applications for the foreseeable future. For the
other noble gas used in pulmonary imaging, 129Xe,
the fractional solubility in the bloodstream (�17% at
equilibrium (11)) has additional applications for meas-
uring parameters related to gas exchange. Nonethe-
less, the application of HP 129Xe MRI has lagged
behind HP 3He MRI methods largely because 129Xe is
more challenging to polarize (4), has a lower gyromag-
netic ratio than 3He (11.8 MHz/T vs. 32.4 MHz/T),
and as well, clinical and research protocols for its
application are not as fully developed. Consequently,
HP 129Xe MRI in human subjects is only superficially
treated in this review, although there have been
recent advances in both polarization physics (12,13)
and application in human studies (14,15) that should
encourage further translation of this technique given
its more favorable cost and availability profile for
research and clinical applications.

Several excellent reviews focusing on the MR
physics and methodology of imaging with polarized
gases are in the literature (13,16–19). The principal
aim of this review is to focus on clinical and research
applications of this imaging technology. In practice
using the SEOP method, the 3He gas is polarized over
a period of 12–14 hours (overnight) and inhaled by
subjects from a bag mixed with medical nitrogen for
immediate breath-hold imaging (8–16 sec). The
method is safe, requires no ionizing radiation dose,
and can be repeatedly inhaled facilitating longitudinal
(20,21), interventional, (22), and pediatric (23) exams.
There is now extensive experience using 3He MRI in
human subjects and most typically no respiratory
adverse events are reported although mild events in
less than 10% of subjects (24,25) are not uncommon.
These mild adverse events are primarily related to a
temporary feeling of lightheadedness and are short-
lived. Importantly, there is no trend towards increased
adverse events in more severe disease, which is signif-
icant given that the primary safety concern is due to
the anoxic He-Nitrogen gas mixture that replaces the
air in the lungs during this test. Even extended
breath-holds of 10–20 seconds rarely result in the
measured pulse oxymetry hemoglobin saturation fall-
ing below 90% for more than a few seconds (25).
There are now a number of commonly used measure-
ments derived from HP 3He MRI including the static
airway functional measurement of 3He ventilation,
the structural measurement of airspaces using the
3He apparent diffusion coefficient (ADC), and the
dynamic measurement of 3He gas wash-in and wash-
out characteristics. Here we review the important
and relevant clinical research contributions of the
3He MRI measurements of the lung airspaces and

airway structure and function for healthy subjects
and in lung disease.

HYPERPOLARIZED 3HE MRI OF VENTILATION

Hyperpolarized 3He MRI provides an opportunity to
visualize those areas of the lung that participate in
ventilation and those that do not. This is particularly
true for the terminal respiratory bronchioles and their
adjacent alveoli that are only ventilated by diffusion.
As shown in Fig. 1, in healthy young adults, a single
inhalation of hyperpolarized 3He gas results in homo-
geneous signal, suggesting that all areas of the lung
are participating equally in ventilation. In contrast,
characteristic volumetric ‘‘focal’’ defects are observed
in chronic obstructive pulmonary disease (COPD) and
asthma, corresponding to areas of the lung that are
not ventilated or are poorly ventilated within the time-
course of a typical 8–16-second breath-hold scan.
Focal defects (26) are identified as regions with no sig-
nal or reduced signal relative to surrounding areas
(Fig. 1) that often create a pattern of spatially hetero-
geneity now recognized as a defining characteristic of
both COPD (27,28) and asthma (29). All three major
lung imaging platforms (CT, MRI, and PET) have
documented surprising and large subsegmental and
even segmental ventilation defects in asthmatics (30–
32). For asthma specifically, the extent of heterogene-
ity revealed by HP 3He MRI is surprising because
defects are observed even in asymptomatic patients

Figure 1. HP He MRI static ventilation center coronal slice
images. a: Healthy volunteer, 45-year-old female with FEV1

predicted ¼ 118%. b: COPD, 79-year-old male with FEV1

predicted ¼ 54%. c: Asthma subject at baseline without
provocation, 26-year-old male with FEV1 predicted ¼ 77%.
d: Cystic fibrosis, 23-year-old female with FEV1 predicted ¼
58%.
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and appear to involve the central airways, contradict-
ing some conventional assumptions about obstructive
lung diseases, previously thought to diffusely involve
predominantly small airways with little or no change
in the larger airways.

Ventilation defects in healthy normal subjects are
relatively common, although these defects are typi-
cally small (<3 cm) and confined to the peripheral
regions of the lungs (33,34). Consequently, there is
substantial overlap between normal volunteers,
patients with COPD, and patients with asthma with
respect to the number and size of ventilation defects.
However, on average the lungs of patients with ob-
structive disease have more numerous and larger
defects that become more pronounced as disease
becomes more severe (28,33). While it remains possi-
ble that some of these normal subjects have early-
onset disease, (28) further study of the reproducibility
and sensitivity of ventilation defect measures is
required before this can be claimed definitively.

One of the main strengths of MRI using HP noble
gases is in their ability to safely evaluate lung func-
tion longitudinally without ionizing radiation. This is
of particular importance for younger individuals,
where the risk of cancer induced by medical radiation
is thought to be of importance (35). Important new
observations about disease progression and persist-
ence in asthma patients have shown that greater than
half of defects are persistent over time periods of sev-
eral days to over a year (20), further challenging the
common perception of asthma as a dynamic disease
with highly reversible sites of airway obstruction. A
more systematic study found that 75% of defects were
reproducible day-to-day and that a similar number
did not change in size (21). Moreover, the persistence
of ventilation defects in these studies was observed to
be independent of asthma severity and medication
use, suggesting that these defects were refractory to
therapy. The ultimate clinical significance of these
fixed ventilation defects remains unknown and repre-
sents an area for further study.

The development of consistent protocols for gas in-
halation that control for gas polarization and lung
inflation volume are important for consistent interpre-
tation of the clinical meaning of ventilation defect
severity and pattern and for quantifying ventilation
defect measures. Due to the fact that HP noble gases
continue to be regulated as unapproved-for-marketing
drug contrast agents by national drug agencies, cali-
bration of polarized nuclei concentration in human
subject studies has been well controlled to within 1%–
2% using external low field (�5–10 Gauss) calibration
NMR systems. Typical doses are in the 5 ml/kg sub-
ject weight range; however, in recent studies the vol-
ume of He/N2 mixture used is individually adjusted
to the subject’s total lung capacity to normalize the
inflation volume across subjects (30,36) to total lung
capacity (TLC). Novel approaches are needed to inves-
tigate the effects of inflation volume, compare results
before and after respiratory maneuvers, such as
forced expiration(s) (37) and deep inspiration(s) (22),
that can readily be performed safely in conjunction
with bronchodilation or other challenge interventions.

Ultimately, quantitative measures of ventilation and
its spatial distribution are critical to the advance of
HP noble gas MRI. The most common metric used in
the early literature was the mean number of ventila-
tion defects per slice (VDS). While this and similar
scores are simple to implement and well suited to
consensus evaluation in blinded studies (33), they
typically condense the defect pattern into a single,
whole lung metric, which does not capture regional
information about the size and regional distribution of
defects. Another approach is to sum the total defect
volume observed in the lungs and normalize to total
lung volume. In this way, focal 3He ventilation defects
can be detected and directly quantified as the 3He
MRI ventilation defect volume (VDV) or as a percent
ventilation volume (PVV) (38). Van Beek and co-work-
ers (39) showed that PVV was significantly different
between healthy volunteers, healthy asymptomatic
smokers, and subjects with COPD, which clearly
shows the regional sensitivity of PVV to disease. In
stage III COPD, 3He MRI VDV was also shown to be
sensitive to small functional changes over short peri-
ods of time (40).

More quantitative regional measurement of defect
volume better facilitates cross-modality comparisons
to abnormalities observed using multidetector (MD)CT
and bronchoscopy. These quantitative approaches
normalize defect volume to both total lung volume
and individual lung lobes, to account for both defect
size and distribution (27,30). In cases of repeated
studies, these measures can be normalized to base-
line signal values to calculate fractional ventilated vol-
ume (22). Alternatively, a spatial coefficient of varia-
tion, or standard deviation kernel, can be used to
measure signal heterogeneity regionally (22). This
heterogeneity measure has been used effectively to
measure persistence of ventilation defects after deep
inspiration in subjects with asthma compared to
normal volunteers after methacholine challenge (22).
Importantly, when 3He MR ventilation images of a
patient with stage 3 COPD are directly compared with
CT (Fig. 2), there is no anatomical or tissue heteroge-
neity detected in the CT images that would be predic-
tive of the functional ventilatory changes clearly
revealed by HP 3He MRI.

Figure 2. Comparison of HRCT and HP He MRI in COPD.
Female COPD subject, 63-year-old with FEV1 predicted ¼
22%. a: Center slice coronal plane reconstruction of HRCT.
b: HP He MRI center coronal slice ventilation image.
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3HE MRI DIFFUSION-WEIGHTED IMAGING

3He is a low-density gas with a corresponding high
free-diffusion constant (�2 cm2/sec) that is biologi-
cally inert and effectively insoluble in blood and tis-
sues (11,41). Physical diffusion of the gas atoms due
to random Brownian motion (as opposed to trans-
membrane gas diffusion) within the open airspaces of
the lung parenchyma can be measured using similar
diffusion-weighted imaging (DWI) to that used in DWI
of water in conventional MRI (42). DWI of 3He gas pro-
vides a sensitive and rapid approach for evaluating
the lung microstructures generally, including dimen-
sions of the alveoli and acini that define the bounda-
ries of the fundamental units for gas exchange (43).

Fick’s law predicts that the mean displacement of
the gas spins (‘) measured over some time interval (D)
is approximated by the standard deviation of a Gaus-
sian function given by (44):

‘ �
ffiffiffiffiffiffiffiffiffiffi
2DD

p
ð44Þ ½1�

When 3He gas is restricted by tissue boundaries,
the diffusivity, D, is referred to as the apparent diffu-
sion coefficient, ADC. Typically the diffusion weighting
gradients for 3He MRI applications are short bipolar
pulses for which the timing variable, D, represents the
separation between the diffusion encoding gradient
pulses is on the order of 1–2 msec. These short bipo-
lar gradient pulses minimize the TE and breath-hold.
For D’s of 1–2 msec, the average displacement of he-
lium atoms is the same order of magnitude as alveolar
diameters (a few hundred micrometers) and this so-
called ‘‘short range ADC’’ measure is the one most
widely used in patient studies.

In practice, at least two measurements are generally
required: one with diffusion encoding gradients
applied, S, and one without, So. A simple monoexpo-
nential model is used to obtain the ADC, where:

ADC ¼ 1

b
In

So

S

� �
½2�

The ADC image can be interrogated on a pixel-by-
pixel basis to provide a quantitative ADC map of sur-
rogate airspace size measurements and accordingly of
emphysematous damage (9,45). Parametric images of
regional ADC changes in the lung are consistent with
alveolar changes expected with increases in lung vol-
ume (36), gravity dependence (36,46), age (47), and
etiology of emphysema, ie, COPD or alph1-antitrypsin
(28,48,49). Previous COPD studies have shown that
ADC correlates with pulmonary function (46,48,50)
and histological measurements of lung surface area
(51) and is highly reproducible in COPD (36) and sen-
sitive to subclinical disease (52) and potentially dis-
ease progression (49). Values for 3He ADC range from
0.8 cm2/sec for unrestricted free space (akin to an
infinitely large container) to 0.66 cm2/sec for an el-
derly COPD patient (FEV1 26% predicted) and 0.16
cm2/sec for a young nonsmoker (FEV1 130% pre-
dicted), as shown in Fig. 3. Although the free diffusion
of 129Xe is much smaller (53) (0.06 vs. 1.8 cm2/sec),

recent advances in Xe-129 polarization (12) have
encouraged preclinical studies (54–56) and several
promising pilot studies in human subjects, including
DWI to obtain measures of short-range ADC in the
lungs of healthy normal subjects (Fig. 4), support the
extension of DWI with 129Xe.

An important limitation of ADC is that it represents a
relative measure that does not directly represent a
quantitative structural dimension that can be related to
a measure on histology, for example. The ADC meas-
ured on different platforms with different b-values and
timing characteristics will necessarily yield different
absolute values (57). This has motivated efforts to
relate diffusion values to measurable histological fea-
tures such as mean length and surface area to volume.
In the short diffusion time regime, between 1 and 1.6
msec, workers (51,58,59) have exploited the known ge-
ometry of the pulmonary acinus, as first described by
Bachofen and Weibel (60) to derive geometric parame-
ters such as mean airspace chord length and surface
area to volume ratio and related these to histology
measurements in ex vivo human lungs.

LONG RANGE DIFFUSION

Novel approaches have also been used to measure dif-
fusion of HP 3He in the long time regime, where D is

Figure 3. Comparison of HP He ADC maps for healthy vol-
unteer and subject with COPD. a: Healthy volunteer male,
age 58 years FEV1 predicted ¼ 108% (i) ventilation (ii) ADC
map (iii) ADC histogram. b: COPD male subject, age 52 years
FEV1 predicted ¼ 51% (i) ventilation (ii) ADC map (iii) ADC
histogram.
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on the order of 0.5 to several seconds, which would
normally be difficult to acquire in the lungs due to the
short T2* and limited breath-hold. However, measures
of long-range diffusion across multiple acini and air-
ways have been achieved by storing the polarization
along the longitudinal axis for extended times of 1–1.5
seconds followed by readout of a stimulated echo (61).
Another approach for measuring long-range diffusion
uses low spatial frequency (wavelengths 2–3 cm) sinu-
soidal spin tags applied during breath-hold and fol-
lowed by serial images to monitor the tag decay due
to depolarization and diffusion (62).

Long-range diffusion has enabled the exploration of
communication and collateral ventilation within
healthy and diseased (63,64). Initial results have
found that long-range ADC is more sensitive to
changes associated with COPD and asthma (Fig. 5)
than short-range ADC (62,65,66), probably reflecting
the fact that airway level changes are more pro-
nounced in asthma. Much more restricted diffusion
across acinar and airway branches might be expected
and, in fact, long-range ADC is about 2 orders of mag-
nitude smaller than short-range ADC (eg, 0.002 cm2/
sec vs. 0.16 cm2/sec in healthy lungs). Simulations in
generalized branching models predict even smaller
long-range ADC than is measured (63), leading to
speculation that collateral ventilation in the healthy
lungs is higher than previously thought. However,
simulations using more complete models have found
predictions more in agreement with measured results

(67,68), inspiring ongoing debate in the literature
(69).

DYNAMIC IMAGING

Breath-hold images are limited to a binary interpreta-
tion, ie, presence or absence of a ventilation defect.
Fast MRI techniques provide the potential for visualiz-
ing gas distribution over the full respiratory cycle.
Fast MRI acquisitions for dynamic imaging typically
employ non-Cartesian k-space trajectories including
spiral and radial acquisition with SPGR sequences
(70,71). Early work in COPD made use of interleaved
spiral k-space acquisition to depict delayed flow-in
and washout in a single coronal slice followed by
extension of this approach to a multislice stack of spi-
rals acquisition (70). More recently, undersampled ra-
dial MRI methods (37,71,72) and stack of spiral ac-
quisition with parallel reconstruction along the slice
dimension have been introduced that can provide 3D
images at �1-second temporal resolutions.

Studies of dynamic inhalation and forced exhalation
in human subjects have demonstrated spatial and
temporal heterogeneity in the uptake and the washout
of the HP 3He in asthma (Fig. 6) (37,72) and cystic fi-
brosis (CF) (73). Dynamic methods can also provide
quantitative measures, such as arrival time, time to
peak, and washout slope in regions with partial
obstruction that demonstrate diminished but finite

Figure 4. Spin density and ADC map
using single inhalation of HP Xe-129
MRI. The ADC values are much lower
due to high density of Xe-129, which
may be advantageous in certain dis-
eases for short range diffusion mea-
sures. Image courtesy Dr. Bastiaan
Driehuys and GE Healthcare.

Figure 5. Comparison of short (top row)
and long (bottom row) range diffusion in
healthy subject (left) and asthma (middle)
and COPD patients (right). Image courtesy
Dr. Chengbo Wang, University of Virginia.
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Figure 6. Coronal maximum intensity projections of a 3D dynamic imaging study using HP 3He-MRI to assess ventilation
and gas trapping using a forced exhalation maneuver in asthma. Breath-hold encompasses the time from 10–13 seconds fol-
lowed by a forced exhalation maneuver showing gas trapping in the left lung most clearly visualized at 25 seconds (arrow).
This patient’s FEV1 was normal, 94% predicted, before and after imaging suggesting significant subclinical heterogeneity and
abnormalities of ventilation exist in this patient population.

Figure 7. Results from 3D
dynamic MRI in a subclinical
finding during inspiration,
breath-hold, and forced expi-
ration. MRI results (a,b) are
compared to follow-up MDCT
in the same subject in (c,d)
showing hyperlucency in the
RUL due to air trapping on
MDCT (arrows c,d). Plots
of signal time-course for
dynamic MRI for the right
upper lobe (yellow) compared
with left upper lung (green) in
the same case. Hyperintense
signal on HP 3He was found
to correspond to the second
segment that was not blocked
by a pulmonary aneurysm
(magenta). Note delayed filling
as evident by the later time-
to-peak signal enhancement
relative to the expected trape-
zoidal shaped enhancement
curve in the contralateral left
lung region.
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gas uptake and/or delayed filling (Fig. 7) (39). More-
over, dynamic imaging of respiratory dynamics with
whole lung coverage may be the only way to assess
regional lung function in very sick and pediatric
patients.

MECHANICAL DEFORMATION STUDIES

Changes in the mechanical properties of the lungs are
associated with a variety of restrictive (74) and ob-
structive lung diseases (75). Finite element analysis
can be used in conjunction with these dynamic
images using proton or HP gas MRI to calculate re-
gional stress and strain in healthy and diseased
lungs. Moreover, these images can be acquired during
spirometry maneuvers to further quantify regional
lung stiffness and compliance in the context of whole
lung function (76–78). However, mapping of lung ele-
ments over the multiple steps/time frames of the
experiment is challenging and represents a serious li-
mitation of conventional MRI in the relative absence
of anatomic markers within the lungs. Spin tagging of
hyperpolarized gases is an alternative for tracking
lung compliance (79–81). Recent development of
approaches for faster spin tagging sequences have
improved temporal resolution, allowing more precise
regional depiction of lung deformation during
dynamic maneuvers (82). More work in this area is
required in order to definitively relate these MRI-
derived mechanical properties of the lung to estab-
lished markers of airways disease and interstitial
fibrosis. Heretofore, lung compliance has not been
measured noninvasively in vivo. These new measures
of lung structure may provide a fertile area for further
research in the large number of restrictive lung dis-
eases and their progression, or after therapy.

EMERGING APPROACHES

Oxygen-weighted HP gas MRI was one of the earliest
methods proposed and demonstrated in animal mod-
els (83). The gas dose is mixed with pure O2 immedi-
ately prior to inhalation to approximate normoxic con-
centrations (20% O2). The T1 decay of 3He and Xe-
129 in normoxic mixtures (20% O2) are on the order
of 30 seconds or greater for field strengths from 1.5–3
T. There is effectively no signal recovery and the T1
signal decay for HP gases is dominated by radiofre-
quency (RF)-saturation and the paramagnetic effects
of residual oxygen in the lungs (83). Consequently,
the paramagnetic effects of O2 that effectively
decrease T1 of the polarized gas provide a quantitative
estimate of the PO2 (83–85) that can potentially be
used to calculate VA/Q (86). Typically, the same slice
is imaged at multiple phases and at different delay
times to separate RF-saturation of signal from signal
loss due to PO2 concentration (86). Recent work has
allowed measurement within a single breath-hold
(85,87). The technique has potential application in
pulmonary embolism (88) and in bronchiolitis obliter-
ans after lung transplant (89)

AIRWAY MEASUREMENT

All of the aforementioned techniques and most of the
previously published techniques focus on the paren-
chymal space in the lung rather than the large
airways. Quantitative measures of airway lumen on
MDCT (90) have shown changes in diseases such as
asthma (91). However, significant ionizing radiation is
associated with MDCT imaging of the lung spaces
limiting its use for serial longitudinal and pediatric
studies.

Several techniques using 3He MRI have evaluated
early-filling timepoints from dynamic MRI (92,93) to
isolate the large airways for quantitative measurement
of the lumen. Direct measurement of the lumen
(92,94) or after region growing segmentation of the
airway tree (93) can be employed. These methods
agree well with quantitative CT measures in phantom
studies and in human subjects and may provide an
alternative to CT for airway lumen measurement in
longitudinal and pediatric studies.

IMAGE-GUIDED INTERVENTIONS

The spatial resolution of 3He MR images is an advant-
age for guiding the assessment or therapy of heteroge-
neous diseases of the lungs. For example, bronchoal-
veolar lavage at ventilation defect sites on HP 3He MRI
show that neutrophil cell counts increase with extent
of ventilation defect in asthma (30). A proposed exam-
ple of treatment planning using 3He MRI includes
recent use of 3He ventilation images to guide so-called
‘‘dose painting’’ in radiotherapy treatment planning
(95–98). Response to therapy, including radiation-
induced lung injury or inflammation (RILI) (99), can
also be monitored. Similar applications of 3He MRI
may increasingly be used to guide interventions such
as stent placement in COPD (100) and smooth muscle
ablation treatments in asthma (101).

DISCUSSION

It is important to note that 3He MRI is unique among
pulmonary imaging methods because of its high spa-
tial and temporal resolution of respiratory disease
morphology (ADC) and function (ventilation volume-
try) and its safe use across a wide variety of vulnera-
ble pediatric, respiratory compromised, and elderly
patients (25) to explore mechanisms of disease patho-
physiology. Hence, a number of important respiratory
diseases have been evaluated in some depth and
breadth across different research sites including
COPD, asthma, CF, and RILI.

As with other functional imaging methods that are
yet in the ‘‘imaging physics’’ and ‘‘image processing’’
domain, there remain significant challenges to trans-
lating 3He MRI to clinical research and clinical care.
The unique ability to measure disease morphological
and functional consequences and explore mecha-
nisms of disease pathophysiology does not necessarily
directly translate to improved care unless alternative
therapies exist that can benefit from the information
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provided by HP He MRI. However, for the specific
cases of asthma and COPD there is an increasing rec-
ognition that different phenotypes exist (40,102,103)
and that these patient groups may have a differential
response to therapy. Moreover, as therapies become
more diverse and patient-specific, imaging with HP He
MRI will likely be one of the only ways to verify
response and efficacy for an individual patient or
group of patients. Nonetheless, HP He MRI techniques
need to become more quantitative, sensitive, and ac-
cessible to justify its current cost and complexity.

As with many functional imaging methods, there
remain significant challenges to translating these
methods to the clinic. It is also equally important to
point out that currently respiratory diseases still have
significant unmet treatment needs in terms of phar-
maceutical and minimally invasive interventions;
these disorders stand alone among the leading causes
of death and disease. As the world becomes more
industrialized and polluted, respiratory illnesses will
continue to increase in prevalence, morbidity, and
overall mortality. We believe this is largely the case
because until recently lung imaging methods have
been mainly restricted to x-ray-based methods and
the lung is particularly radiation-sensitive, which
diminishes the numbers and types of imaging ses-
sions that are practical. While pulmonary function
testing is quite reliable and inexpensive, there are
many diseases that cannot be easily diagnosed by
this type of functional lung testing. Imaging is often
not used in the diagnosis of COPD, CF, asthma, or
RILI in part because, unlike many organ systems,
where early or sensitive diagnosis has lead to earlier
and efficacious treatments, there is no such virtuous
cycle in place for most respiratory diseases. As shown
in Table 1, these current and emerging imaging meth-
ods for respiratory disease each have significant
strengths and challenges. It is in this context or clini-
cal reality that we continue to vigorously support the
research and development of 3He MRI methods even
in light of the increased costs, decreased availability,
and access that are predicted for the near future.
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