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a b s t r a c t

Various geospatial techniques have been employed to estimate children’s exposure to envi-
ronmental cardiometabolic risk factors, including junk food. But many studies uncritically
rely on exposure proxies which differ greatly from actual exposure. Misrepresentation of
exposure by researchers could lead to poor decisions and ineffective policymaking. This
study conducts a GIS-based analysis of GPS tracks—‘activity spaces’—and 21 proxies
for activity spaces (e.g. buffers, container approaches) for a sample of 526 children
(ages 9–14) in London, Ontario, Canada. These measures are combined with a validated
food environment database (including fast food and convenience stores) to create a series
of junk food exposure estimates and quantify the errors resulting from use of different
proxy methods. Results indicate that exposure proxies consistently underestimate
exposure to junk foods by as much as 68%. This underestimation is important to policy
development because children are exposed to more junk food than estimated using typical
methods.

! 2015 Elsevier Ltd. All rights reserved.

1. Background

A range of geospatial techniques have been used to esti-
mate children’s exposure to environmental car-
diometabolic risk factors, including junk food. Many of
these studies rely on assumptions, however, which inade-
quately represent the environments to which children
are truly exposed. The conclusions drawn by these studies
may be erroneous, which can have negative implications
for policy development if policymakers uncritically utilize
the research findings. The key objective of this paper is
therefore to demonstrate the bias created by using impro-
per methods to estimate exposure to junk food. GIS analy-
sis is used to visualize and quantify the errors present in a

range of geospatial techniques for estimating junk food
exposure, as well as contrast these results with validated
GPS tracks representing true exposure.

1.1. Defining exposure

Within the health geography literature, methodological
techniques for estimating exposure to cardiometabolic risk
factors (e.g. junk food environments, opportunities for
physical activity) and quantifying the effects of ‘place’ have
been in a state of refinement for much of the past two dec-
ades. Studies initially focused on density of junk food out-
lets in home (Maddock, 2004; Morland et al., 2006) or
school environments (Zenk and Powell, 2008; Gilliland,
2010) or both (Gilliland et al., 2012; He et al., 2012a,b),
but results have been mixed and most do not adequately
represent the contribution of environmental factors.
Kearns and Moon (2002) indicated that ‘‘place, though
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undoubtedly a focal concept in the new geography of
health, is neither unproblematic nor coherently applied”
(p. 612). Even 10 years later, Kestens et al. (2012) recount
that ‘‘in spatial epidemiology, the relationship between
environmental exposures and individuals. . .is traditionally
grounded to one reference location—most often, place of
residence” (p. 2), suggesting that the literature has yet to
transcend overly simplistic conceptions of exposure.

The need for transcendence is important because expo-
sure proxies—such as buffers or containers surrounding
home or school locations—ignore the well-known fact that
human activity spaces are much more complex than single
locations (Setton et al., 2011), an idea which Kestens et al.
(2012) and Matthews (2011) refer to as ‘spatial polygamy’.
Further, the epidemiologic literature has long recognized
the various components of personal exposure assessment,
including environmental concentration, exposure concen-
tration, and dose (Nuckols et al., 2004). To date, junk food
exposure research has not fully explored the opportunities
for quantifying exposure concentration or dose. Because
junk food exposure papers continue to struggle with the
first component—environmental concentration—in this
paper we critique the use of proxies for estimating
exposure to junk foods.

1.2. Bias in estimating exposure from misclassification of
proxies

Recognizing the potential bias inherent in studies with
simplistic methodologies, comparison studies have shown
the effectiveness of various buffer types in estimating
exposure to physical activity indicators. In one study, net-
work buffers had more positive predictive associations
with measuring the relationship between land use and
propensity to walk for leisure (Oliver et al., 2007). Another
study more comprehensively compared actual GPS tracks
with circular, polygon network, line-based network, and
variable-width buffers, as well as polygon, ellipse, and line
buffers around recreational facilities (Boruff et al., 2012).
Findings suggested that GPS measures have significant
potential to revise the way exposure proxies of ‘neighbor-
hood’ are conceptualized.

In methodological studies on measures of the built
environment, authors lament that work continues to lean
too heavily on exposure proxies of the built environment
(Rainham et al., 2008). Oliver et al. suggest that ‘‘when
making conclusions about the influence of the built envir
onment. . .researchers need to carefully consider the
methodology used to measure the built environment”
(p. 10). Using buffers in exposure estimation has now been
roundly criticized by spatial scientists (Boruff et al., 2012;
Chaix et al., 2009; Rainham et al., 2010; Spielman and
Yoo, 2009). And while researchers have cautioned against
using GPS as the sole source of exposure data or expecting
greater causal influences from GPS-derived daily activity
paths solely because of a perception that these should be
more accurate (Chaix et al., 2013; Nuckols et al., 2004),
the use of GPS data to capture actual activity spaces is a
significant improvement over the assumptions made in
using buffers for analysis (Rainham et al., 2008).

1.3. Measuring the built environment

Leal and Chaix (2011) quantify the concerns that many
studies are using insufficient methods for estimating expo-
sure by noting that 90% of built environment studies con-
sidered only the subject’s residence in estimating
exposure. Nearly three-quarters of these studies use some
kind of administrative boundary (e.g. census tract), but
only one calculated exposure around both the home and
school. Inagami et al. (2007) likewise showed that, when
neglecting to consider exposure beyond residential loca-
tion, the relationship between exposure and self-reported
health was underrepresented. Thus by including more
sophisticated, objective measures of exposure, we can
more accurately estimate the relationship between expo-
sure and health. Yet because a range of proxy techniques
continue to be employed, quantifying the bias arising from
misclassification due to inadequate measurement tech-
niques is critically important.

GPS tracking has been used to estimate exposure to
physical activity opportunities (Almanza et al., 2012;
Lachowycz et al., 2012; Rodríguez et al., 2012) and the food
environment (Christian, 2012; Zenk et al., 2011). In one
study, exposure to fast food was correlated with higher
consumption of fat (Zenk et al., 2011). Two earlier studies
also showed that GPS tracking is more accurate in quanti-
fying activity spaces than estimations by parents or partic-
ipant self-report (Elgethun et al., 2006; Burdette et al.,
2004). Accurate tracking via wearable devices is therefore
important to increase certainty in spatial analysis and pro-
vide accurate assessments of exposure. Given the bias
found in misclassified exposure proxies of the built envi-
ronment, and the use of GPS tracking as a baseline for accu-
rate measurement, our objective is to quantify the errors in
using a range of commonly employed techniques for esti-
mating exposure when compared to GPS tracks. And while
inroads are being made toward making this bias explicit
(Shearer et al., 2014), we build on recent work by address-
ing differences in bias by travel mode and for a broader
range of exposure proxies which continue to be used in
spatial epidemiology and public health research.

2. Methods

2.1. The spatial temporal environment & activity monitoring
(STEAM) project

Data was taken from the previously completed STEAM
Project, which compiled demographic and spatial data
(including home and school location) on 614 children
(grades 4–8, or ages 9–13) in London, Ontario, Canada.
STEAM’s central aim is to assess how the physical (built
and natural) environment influences children’s activity
patterns and food consumption habits. Data was collected
over four years (2010–2013), and each child was surveyed
twice (once in the spring, and again in the following fall
season). Participating children represent 22 schools from
a broad range of built and social environments.

Relevant data for this study include the child’s
geocoded home and school address, junk food sites
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(including fast food restaurants and convenience stores),
and GPS tracks. Junk food sites were generated from the
public health inspector database for the City of London
and geocoded to their exact location (using principles of
accuracy and inclusion as discussed in Healy and
Gilliland, 2012, and Sadler et al., 2011). GPS tracks were
generated by passive GPS devices which tracked children’s
movement every second along their trips to and from
school, thus providing a validated measure of location for
each child. We first screened out any tracks with less than
3 h of data on at least 2 weekdays, as defined by Loebach
and Gilliland (2014) for another paper on the STEAM
Project. Due to data quality and tracking issues, we used
tracks for 526 children to conduct further spatial analysis.
From our GPS tracking, we created activity space polygons
(i.e. the viewsheds through which every child passed
during tracking). Zenk et al. (2011) derived ‘‘daily path
areas” by buffering points at half a mile. We posit that this
is too large an area for an individual to see in an urban
context, and have instead used 100 m (!328 feet) to repre-
sent a viewshed. While others have used 50 m as a buffer
threshold (Larsen et al., 2012), the distance from adjacent
sidewalks to strip mall storefronts is often greater than
50 m. As well, even in urban areas the distance from one
side of a sidewalk to a setback storefront can exceed
50 m. We thus likewise suggest that 100 m is thus better
suited to representing the full scope of a child’s point of
view in suburban and urban locations.

2.2. Comparative method

To quantify the bias created by using non-GPS based
techniques, we contrast the results seen from GPS tracking
with a range of proxy techniques, including: circular and
network buffers around home and school at 500, 800,
1000, and 1600 m (16 measures), container of home and
school census tracts and dissemination areas (4 measures),
and assumed network path to school (1 measure). Circular
buffers were created around each individual’s home or
school location, while network buffers used the road net-
work to compute the equivalent distance travelled along
a street from each individual’s home or school location.
Container metrics consisted of assigning each individual
to the census unit in which their home or school was
found. As we also collected data on mode of travel to
school, we report on the aforementioned measures for
sub-groups of children (including those who travel
actively, by car, by bus, mixed but dominated by active tra-
vel, and mixed but dominated by passive travel).1 Fig. 1
represents the spatial dimensions of all 22 junk food expo-
sure estimates for one child. The lack of overlap between
the objectively derived track and the various estimates is

indicative of the high degree of error found when evaluated
for all 526 children.

3. Results

3.1. Proxy estimates vs. GPS tracking for measuring exposure

Table 1 shows the mean values for the various spatial
measures, as well as the Pearson’s R correlations and error
measures to exposure measurements made using the
actual path. Mean deviation is given to show how far the
observed proxy mean was from the mean of actual paths.
Percent error is calculated as: |(T " E)/T|, where T equals
the actual value, E equals the error, and T minus E equals
the net error. Percent difference is calculated with the
assumption that the actual path is also an estimate, and
computes the difference between the proxies and the
actual path divided by the mean of the two estimates:
|E1 " E2|/((E1 + E2)/2).

The average child passed by 14.5 fast food restaurants
and 10.8 convenience stores on their way to and from
school. Overall, 19 of the 21 measures underestimated
exposure to fast food when compared to actual GPS tracks,
while 17 of 21 underestimated exposure to convenience
stores. The average mean deviation between GPS and
exposure proxies was 9.8 for fast food and 6.5 for conve-
nience stores, meaning on average that these exposure
proxies would yield errors of 68% and 61%, respectively.
The average percent difference between them was 110%
for fast food and 84% for convenience stores. The lowest
error values in Table 1 are 1600 m network school buffers
for fast food (36%) and 1000 m circular school buffers for
convenience stores (9%). Using an assumed network path
between home and school provided the highest Pearson’s
R correlations—0.52 for fast food and 0.56 for convenience
stores.

3.2. Estimates by mode of travel to school

Table 2 breaks down the same estimates by mode and
reports on mean values and Pearson’s R correlations to
determine whether any estimates would be better suited
for particular modes of travel, especially since exposure
is experienced differently depending on the mode of travel.
Generally, the proxy-derived routes for children taking the
bus were most closely correlated with the actual paths
taken (on average, 0.45 for fast food and 0.39 for conve-
nience stores), perhaps a result of the fact that buses take
circuitous routes to school and would thus capture the
approximate areas that the proxy measures would enclose.
Yet these estimates are least valuable because children on
buses have no autonomy to make their own food con-
sumption decisions along the path to school.

Conversely, the estimated measures of exposure for
children who actively travel or are driven to school have
weak relationships with the validated GPS measure. Only
a few measures were statistically significant with the GPS
tracks, though this is not consistent across modes. The
assumed path (0.45) and 800 m circular home buffers
(0.42) were the highest estimates of fast food exposure
for active travelers. Smaller associations were seen,

1 ‘Active’ modes of travel include children walking or bicycling to school
at least 60% of the time. ‘Car’ as a mode of travel includes children being
driven to school at least 60% of the time. ‘Bus’ includes children taking a bus
to school at least 60% of the time. ‘Mixed – Active Dominant’ includes
children who walk or bike to school between 30% and 60% of the time.
‘Mixed – Sedentary Dominant’ includes children who are driven or bussed
to school between 30% and 60% of the time and do not walk at least 30% of
the time.
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Fig. 1. Junk food exposure estimates for 21 exposure proxies and GPS-derived activity space.

Table 1
Mean values, Pearson’s R correlation with actual path, mean deviation, indication of over- or underestimation, and percent error/difference of exposure to junk
food sites (Fast Food = FF; Convenience Stores = CS).

Container type Point of origin Buffer size Mean value Correlation with
actual path

Mean
deviation

Percent error Percent
difference

FF CS FF CS FF CS FF (%) CS (%) FF (%) CS (%)

Circular buffer Home 500 1.5 1.8 0.20* 0.07 12.8 8.8 89 83 162 142
800 4.4 4.7 0.14* 0.01 9.7 5.7 69 57 106 79

1000 7.5 7.5 0.11* "0.01 6.4 2.8 48 31 64 36
1600 20.5 19.7 "0.02 "0.06 "7.2 "10.2 41 82 34 58

School 500 1.8 2.6 0.04 0.11* 12.5 7.9 88 76 156 123
800 5.0 8.3 0.22* 0.35* 9.5 1.2 66 23 98 27

1000 7.8 11.8 0.21* 0.35* 7.3 "2.3 47 9 61 8
1600 20.6 25.9 0.16* 0.41* "6.9 "19.0 42 139 35 82

Network buffer Home 500 0.6 0.7 0.21* 0.08 13.8 9.9 96 93 185 174
800 1.6 1.9 0.19* 0.06 12.7 8.8 89 83 160 141

1000 2.8 3.2 0.15* 0.00 11.6 7.4 81 71 136 110
1600 9.1 9.4 0.02 "0.04 4.5 0.7 38 13 46 14

School 500 0.8 1.3 0.10* 0.22* 13.5 9.1 95 88 180 157
800 2.8 5.1 0.26* 0.35* 11.3 4.3 81 52 136 71

1000 4.3 7.2 0.24* 0.36* 9.8 1.9 70 33 109 40
1600 9.3 14.5 0.23* 0.36* 4.8 "5.9 36 34 44 29

Census tract Home 6.9 5.6 0.12* 0.13* 7.5 4.5 53 49 72 64
School 7.8 7.7 0.13* 0.41* 7.1 2.5 46 29 60 33

Dissemination area Home 1.1 0.9 0.17* 0.12* 13.1 9.7 93 91 172 169
School 1.5 3.0 0.32* 0.38* 12.8 7.2 90 72 163 113

Assumed path 3.1 3.8 0.52* 0.56* 10.7 6.3 78 65 129 96
Actual path 100 14.5 10.8
Mean values 0.18 0.20 9.8 6.5 68 61 110 84

* Significance at 0.05 level.
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meanwhile, for children being driven to school; the
assumed path (0.40) and 1600 m circular school buffers
(0.27) yielded the highest correlations. For exposure to
convenience stores, the highest correlations for mixed
commuters/active dominant were school dissemination
area (0.56) and school census tract (0.35), while for mixed
commuters/sedentary dominant the highest correlations
were assumed path (0.63) and school census tract (0.41).

3.3. Estimates by neighborhood classification as
urban/suburban

Table 3 likewise breaks down the average estimates of
fast food restaurants or convenience stores to which chil-

dren are exposed, this time by the classification of their
neighborhood as urban or suburban (as defined by the City
of London). Mean values and Pearson’s R correlations are
given to determine whether any exposure proxies are more
useful in urban or suburban locations. As before, the
assumed path exhibited the highest associations, but these
were higher for estimates in urban locations.

Overall, 13 of 21 proxies for fast food and 9 of 21 prox-
ies for convenience stores were positively statistically sig-
nificant in urban locations, while 9 of 21 proxies for fast
food and 8 of 21 proxies for convenience stores were pos-
itively statistically significant in suburban locations. Gen-
erally, associations between proxies and GPS tracks were
higher in urban locations, but as with the overall estimates

Table 2
Mean values and Pearson’s R correlation with actual path of exposure to junk food sites by dominant mode.

Container type Point of origin Buffer size Active
(bike, walk)

Car Bus Mixed – Active
Dominant

Mixed – Sedentary
Dominant

Fast food
Circular buffer Home 500 2.3 0.08 1.4 "0.08 1.7 0.61* 1.2 "0.02 1.1 0.16

800 6.1 0.42* 4.8 "0.13 3.6 0.52* 4.9 0.14 5.3 0.18
1000 10.5 0.23* 7.8 "0.05 6.0 0.48* 9.9 0.08 8.0 0.09
1600 34.5 "0.02 19.3 "0.03 14.6 0.33* 23.2 0.09 21.3 "0.08

School 500 2.4 0.01 2.2 0.02 1.5 0.23* 2.0 0.07 2.0 ".29*

800 5.1 "0.01 6.3 0.19* 3.8 0.40* 4.3 0.17 5.1 "0.21
1000 7.8 0.08 8.9 0.20* 5.6 0.39* 6.2 0.22 6.8 "0.21
1600 25.0 "0.03 23.3 0.27* 17.0 0.35* 23.0 0.25* 20.5 "0.22

Network buffer Home 500 1.0 "0.02 0.4 "0.11 0.8 0.63* 0.6 0.00 0.3 0.20
800 2.5 0.13 1.4 "0.15 1.5 0.63* 1.2 0.07 1.2 0.11

1000 3.8 0.22* 2.6 "0.12 2.6 0.56* 2.5 0.17 2.7 "0.13
1600 15.9 0.08 8.2 "0.08 7.2 0.42* 10.8 0.12 9.3 "0.12

School 500 1.2 0.01 1.0 0.18* 0.6 0.35* 1.4 0.06 0.9 "0.22
800 2.9 0.00 4.3 0.13 2.5 0.42* 2.5 0.25* 3.4 "0.13

1000 4.6 0.00 5.8 0.17* 3.7 0.43* 4.1 0.27* 4.9 "0.18
1600 10.2 0.08 11.4 0.20* 7.7 0.48* 10.0 0.25* 9.6 "0.18

Census tract Home 9.3 0.11 6.2 0.08 6.2 0.33* 5.8 0.31* 7.5 "0.12
School 8.5 "0.10 7.7 0.13 9.0 0.12 4.2 0.42* 8.1 0.35*

Dissemination area Home 1.5 0.04 1.2 0.10 1.2 0.53* 1.3 "0.11 1.5 "0.10
School 1.0 "0.17 2.7 0.06 1.7 0.53* 0.4 0.30* 2.4 0.13

Assumed path 1.0 0.45* 6.8 0.40* 5.5 0.59* 1.9 0.08 4.9 0.64*

Actual path 100 3.8 24.5 12.6 9.0 24.7
Average correlation 0.08 0.07 0.45 0.15 "0.02

Convenience stores
Circular buffer Home 500 2.6 0.13 1.8 "0.03 1.7 0.35* 1.8 0.07 1.6 0.07

800 6.9 0.11 5.1 "0.11 3.9 0.23* 4.8 0.30* 4.2 "0.12
1000 11.1 0.02 8.0 "0.13 6.1 0.23* 8.1 0.30* 7.0 "0.13
1600 31.1 "0.09 20.1 "0.04 15.4 0.16* 22.1 0.22 18.5 "0.22

School 500 3.4 "0.03 3.1 0.06 2.3 0.38* 2.9 0.22 3.0 "0.06
800 5.9 "0.05 14.2 0.22* 9.1 0.45* 6.3 0.21 10.4 0.14

1000 9.1 0.03 18.1 0.22* 12.6 0.46* 9.2 0.13 13.5 0.12
1600 21.8 0.07 37.0 0.26* 30.2 0.64* 25.0 0.26* 31.4 0.12

Network buffer Home 500 1.3 "0.04 0.7 "0.02 0.7 0.40* 0.9 0.11 0.4 0.25
800 3.2 0.04 1.7 "0.05 1.6 0.39* 1.7 0.18 1.1 0.20

1000 5.0 0.04 3.0 "0.08 2.8 0.22* 3.0 0.22 2.1 0.00
1600 14.8 0.04 9.3 "0.14 7.9 0.24* 10.3 0.26* 8.9 "0.15

School 500 1.8 0.01 2.0 0.14 1.2 0.50* 1.8 0.28* 1.7 0.09
800 3.2 0.02 10.3 0.20* 6.2 0.45* 3.4 0.32* 7.2 0.18

1000 4.6 "0.02 13.6 0.21* 8.7 0.47* 4.7 0.32* 9.8 0.18
1600 10.5 0.12 23.4 0.23* 16.3 0.48* 12.5 0.16 17.4 0.14

Census tract Home 6.3 0.07 6.4 0.06 5.6 0.32* 6.4 0.18 7.3 "0.15
School 5.0 "0.11 12.0 0.26* 9.8 0.42* 5.4 0.35* 10.1 0.41*

Dissemination area Home 1.0 0.26* 1.1 "0.02 0.9 0.30* 1.2 0.06 1.1 0.11
School 0.8 "0.16 7.3 0.20* 3.9 0.44* 0.4 0.56* 5.2 0.33*

Assumed path 1.2 0.29* 7.8 0.42* 6.5 0.57* 2.5 0.32* 7.1 0.63*

Actual path 100 2.6 18.3 9.7 6.5 17.5
Average correlation 0.04 0.09 0.39 0.24 0.10

* Significance at 0.05 level.
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the proxies tended to underestimate exposure even when
they were correlated. Importantly, some proxy measures
became negatively correlated to the GPS tracks for urban
children, suggesting that such proxies may have some
value for estimating exposure in suburban but not urban
locales.

4. Discussion and conclusions

The correlation between proxy estimates of exposure to
junk food and the real exposure to junk food as measured
by GPS tracking is generally not strong enough to support
the uncritical use of exposure proxies. The basic assump-
tion is that when initial exposure estimates are inaccurate,
the potential for error propagation increases and subse-
quent summary estimates decrease in value. When broken
down by mode of travel to school, few consistent strong
associations were found between proxies and GPS tracks.
For most modes but especially for active commuters (those
with the most autonomy and thus those for whom these
estimates would be most useful), few measures were sta-
tistically significant, and those that were significant had
high error estimates, suggesting parallel but highly sepa-
rated regression lines. Such underestimated by correlated
proxies may be useful if an appropriate metric can be
devised to adjust the values up to the likely values. Still,
research cannot only consider mode of travel as a determi-
nant of exposure in the absence of personally-derived
measures, because proxy measures for active commuters
exhibited the highest error and least correlation to GPS
tracks.

Estimates also varied widely when split by level of
urbanicity (urban/suburban). This variation could be due
to a number of factors. As traditional urban grid networks

provide more direct routes, the buffer approaches used
may be more likely to provide direct estimations in urban
areas. Using varied distance buffers based on level of
urbanicity may also provide a better estimate than using
a single buffer distance for all children. As well, shorter
or more varied paths to school in urban areas could mean
that certain container proxies perform better at predicting
exposure. In suburban areas, avoidance of major commer-
cial strips by walkers or long, car-oriented trips could
introduce bias into exposure estimates and contribute to
proxies having less value. The uniformity of suburban land
use (e.g. lack of land use mixing) could mean that proxies
are not able to capture the full range of environments to
which children are exposed in suburban areas. Conversely,
the inverse correlations for some estimates (negative in
urban areas, positive in suburban areas) suggest that
proxies also cannot be used uncritically in urban areas.
The geographically diffuse exposure pattern among suburban
children may have yielded better estimates for these
proxies, since proxies in urban areas could enclose vastly
different environments than what is actually experienced.

Responding to concerns that insufficient, unidimen-
sional methods continue to be employed in spatial epi-
demiologic research (Leal and Chaix, 2011; Kestens et al.,
2012), the central objective of this paper was to quantify
the bias created by using proxies of exposure to junk food.
We compared a range of methods (including circular and
network buffers at a range of distances, container
approaches for census tracts and dissemination areas,
measurements from home and school locations, and
assumed shortest network paths) with validated GPS
tracks of children. Unequivocally, exposure proxies gener-
ate substantial errors. Assumed network paths most clo-
sely approximate real exposure, but even they only

Table 3
Mean values and Pearson’s R correlation with actual path of exposure to junk food sites by neighborhood classification as urban/suburban.

Container type Point of origin Buffer size Fast food Convenience stores

Urban Suburban Urban Suburban

Circular buffer Home 500 2.1 0.20* 1.2 0.14* 2.4 "0.02 1.4 0.11*

800 6.0 0.04 3.3 0.20* 6.3 "0.18* 3.3 0.08
1000 10.3 "0.07 5.5 0.28* 10.0 "0.30* 5.4 0.17*

1600 27.7 "0.25* 14.8 0.22* 26.5 "0.34* 13.2 0.15*

School 500 2.8 0.01 1.4 "0.06 4.6 0.06 1.7 "0.13*

800 6.5 0.36* 4.6 0.00 15.2 0.42* 5.0 "0.03
1000 9.7 0.36* 7.4 0.07 19.8 0.42* 8.2 0.03
1600 31.2 0.11 16.5 0.04 48.7 0.57* 14.9 0.07

Network buffer Home 500 1.0 0.26* 0.3 0.03 1.1 0.04 0.5 0.07
800 2.3 0.19* 1.2 0.09* 2.6 "0.02 1.3 0.09*

1000 3.9 0.06 1.9 0.15* 4.5 "0.17* 2.1 0.11*

1600 13.8 "0.15* 5.6 0.22* 13.5 "0.31* 6.3 0.18*

School 500 1.8 0.02 0.2 "0.09* 3.4 0.11 0.2 "0.12*

800 4.8 0.30* 1.8 0.03 11.1 0.40* 2.1 0.03
1000 6.8 0.30* 3.3 0.01 15.0 0.42* 3.3 0.04
1600 16.0 0.28* 6.3 0.03 27.7 0.41* 8.0 0.05

Census tract Home 7.0 0.19* 6.7 0.05 7.1 0.04 4.4 0.15*

School 8.2 0.26* 7.6 0.00 11.8 0.46* 5.2 0.02
Dissemination area Home 1.6 0.25* 0.8 0.00 1.2 0.07 0.7 0.08

School 2.3 0.34* 0.9 0.09* 6.7 0.40* 0.8 0.03
Assumed path 4.9 0.57* 1.9 0.41* 6.1 0.62* 2.2 0.37*

Actual path 100 18.2 10.8 13.9 7.9
Average correlation 0.17 0.09 0.15 0.07

* Significance at 0.05 level.
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correlate moderately with GPS tracks. Proxies in urban
areas tend to perform better, but also generate negative
correlations to GPS tracks in some cases. This research sup-
ports the literature suggesting that exact measures for esti-
mating exposure to junk food must be used where possible
because exposure proxies are consistently inaccurate
either by underestimating exposure or generating negative
correlations to GPS tracks.

By employing GPS tracks to measure exposure to junk
food, ours is one of the first studies to quantify the errors
in using proxy-derived measures, building on recent work
by Shearer et al. (2014). This study has important implica-
tions for researchers examining children’s health and the
built environment, since it shows the necessity of using
measures based on GPS tracking. Since most of the expo-
sure proxies also underestimated exposure to junk food,
these results are also important for policymakers to con-
sider when assessing junk food siting policies near schools
and in residential neighborhoods. Broadly, it lends support
that healthier food environments must be pursued at all
levels of policymaking, as the concentration of exposure
to junk foods is even higher than most estimates would
suggest. Given the ongoing childhood obesity epidemic,
future research must link more exact measures of exposure
with dietary behaviors to determine the net impact of junk
food environments on food consumption. It is only through
combining the best methods for environmental exposure
and food consumption that we can develop the knowledge
base toward meaningful interventions that promote
healthy behaviors for children to continue throughout
their lives.
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