
Western University Western University

Scholarship@Western Scholarship@Western

Electronic Thesis and Dissertation Repository

3-26-2020 10:30 AM

Investigating Citation Linkage as a Sentence Similarity Investigating Citation Linkage as a Sentence Similarity

Measurement Task using Deep Learning Measurement Task using Deep Learning

Sudipta Singha Roy
The University of Western Ontario

Supervisor

Mercer, Robert E.

The University of Western Ontario

Graduate Program in Computer Science

A thesis submitted in partial fulfillment of the requirements for the degree in Master of Science

© Sudipta Singha Roy 2020

Follow this and additional works at: https://ir.lib.uwo.ca/etd

 Part of the Artificial Intelligence and Robotics Commons

Recommended Citation Recommended Citation
Singha Roy, Sudipta, "Investigating Citation Linkage as a Sentence Similarity Measurement Task using
Deep Learning" (2020). Electronic Thesis and Dissertation Repository. 6864.
https://ir.lib.uwo.ca/etd/6864

This Dissertation/Thesis is brought to you for free and open access by Scholarship@Western. It has been accepted
for inclusion in Electronic Thesis and Dissertation Repository by an authorized administrator of
Scholarship@Western. For more information, please contact wlswadmin@uwo.ca.

https://ir.lib.uwo.ca/
https://ir.lib.uwo.ca/etd
https://ir.lib.uwo.ca/etd?utm_source=ir.lib.uwo.ca%2Fetd%2F6864&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/143?utm_source=ir.lib.uwo.ca%2Fetd%2F6864&utm_medium=PDF&utm_campaign=PDFCoverPages
https://ir.lib.uwo.ca/etd/6864?utm_source=ir.lib.uwo.ca%2Fetd%2F6864&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:wlswadmin@uwo.ca

Abstract

Research publications reflect advancements in the corresponding research domain. In these
research publications, scientists often use citations to bolster the presented research findings
and portray the improvements that come with these findings, at the same time, to make the
contents more understandable to the audience by navigating the flow of information. In the
science domain, a citation refers to the document from where this information originates but
doesn’t specify the text span that is actually being cited. A more precise reference would
indicate the text being referenced. This thesis develops a framework which can create a linkage
between the citing sentences from the ongoing research article and the related cited sentences
from the corresponding referenced documents. This citation linkage problem has been modeled
as a semantic relatedness task where given a citing sentence the framework pairs this citing
sentence with each sentence from the reference document and then tries to determine which
sentence pair is semantically similar and which pair is not. Construction of the citation linkage
framework involves corpus creation and utilizing deep-learning models for semantic similarity
measurement.

Keywords: citation linkage, textual semantic relatedness, text classification, dataset cre-
ation

i

Lay Abstract

Research papers refer to some other research documents to bolster the proposed ideas in the
ongoing paper or when ideas from those documents are used. Some times, these references are
made to help the readers to build a good background over the topics. This referencing is done
by means of citation. After discussing any idea a citation is made. The span of the citation may
contain only one or more than one sentence. However, for the readers, this citation sentences
and the citations are nothing but a link to the referenced paper. It doesn’t give any specific
link or hint about which section of paragraph in the reference paper is actually being referred.
So, the readers have to read the whole referenced document. Citation linkage intents to reduce
this burden from the readers. The idea of citation linkage is to build a framework which given
a citation sentence and the cited research document tries to detects those sentences which are
being referred by the citation sentence in the ongoing paper by means of checking the semantic
similarity of every sentence of the referred research document against the citation sentence.

ii

Acknowledgements

At first, I would I like to express my sincere gratitude to my honorable thesis supervisor Dr.
Robert E. Mercer for his guidance, ideas, expertise, support, feedback and encouragement from
the very beginning to the end of my journey. His feedback and encouragement have motivated
me when I faced a lot of challenges. His guidance and expertise have helped me come out
of various difficulties and challenges I have faced while conducting the experiments. Special
thanks to Mahtab Ahmed and Felipe Urra for their contributions and helps in this work.

I am grateful to the Department of Computer Science of The University of Western Ontario
for providing me with the Graduate Research Scholarship.

In the end I would like to thank my parents and wife for their support and having faith in
me. Without their mental support the whole process would have been very complicated for me.

iii

Contents

Abstract i

Lay Abstract ii

Acknowlegements iii

List of Figures vi

List of Tables vii

1 Introduction 1

2 Literature Review 4
2.1 Citation Linkage Research . 4
2.2 Neural Net Research . 5

2.2.1 Recurrent Neural Networks . 6
2.2.2 Neural Network Based Word Embedding Models 10
2.2.3 Sentence Embedding . 15
2.2.4 Attention Mechanisms For Natural Language Processing Tasks 19
2.2.5 Hierarchical Attention Network . 23
2.2.6 Attention-Based Multi-Perspective Convolutional Neural Network 27

2.3 Semantic Similarity Measurement . 28

3 Methodology 31
3.1 Dataset Creation . 31

3.1.1 Sentence Embedding . 32
3.1.2 Annotated Sentence Pair Creation . 33
3.1.3 Data Cleaning . 34

3.2 Citation Linkage as a Semantic Similarity Measurement Task 37
3.2.1 Word Embedding for the Semantic Similarity Measurement Task 38
3.2.2 Neural Models for the Semantic Similarity Measurement Task 38
3.2.3 Using Infersent for the Semantic Similarity Measurement Task 41

iv

4 Experimental Setup And Results Analysis 44
4.1 Network Parameters and Settings . 44
4.2 Performance Analysis . 46

5 Conclusions and Future Work 52
5.1 Conclusions . 52
5.2 Future Work . 53

Bibliography 55

Curriculum Vitae 62

v

List of Figures

2.1 Unrolled recurrent neural network. 6
2.2 Long Short-Term Memory . 8
2.3 Gated recurrent unit . 9
2.4 Bi-directional long short-term memory . 10
2.5 Word2Vec: Skip Gram Model . 12
2.6 Word2Vec: Continuous Bag of Words Model 13
2.7 Schematic of learning word embedding based on PubMed literature and MeSH . 15
2.8 Quick Thought Model . 17
2.9 Sequence to sequence architecture . 20
2.10 An illustration of the attention mechanism . 21
2.11 Inner-Attention mechanism over Bidirectional LSTM 23
2.12 Hierarchical attention network . 24
2.13 Self-attention mechanism for sentiment classification task 26
2.14 MP-CNN architecture for semantic relatedness task 27
2.15 MP-CNN model with attention-based input interaction layer 28

3.1 Annotated sentence pair creation for synthetic corpus build-up. 34
3.2 Siamese adaptation of the LSTM architecture for the semantic relatedness task . 39
3.3 Infersent with Inner Attention . 40
3.4 Infersent training mechanism . 41
3.5 Hierarchical ConvNet architecture . 42
3.6 Infersent model with Bi-LSTM and max-pooling 43

4.1 Training set and validation set accuracy for different models 46
4.2 Training set and validation set accuracy for different bootstrapped models 47

vi

List of Tables

1.1 Sample citation and corresponding target reference sentence 3

2.1 Corpora for training BioSentVec embeddings 19
2.2 Examples of three types of labels in RTE . 22

3.1 Symbols for deletion . 35
3.2 Regex commands for capturing different patterns throughout the data 36
3.3 Symbols and their corresponding replacement 37

4.1 Hyper-parameter settings for the training of the fasttext model. 45
4.2 The hyper-parameter setting for Sent2Vec sentence embedding architecture . . . 45
4.3 Performance analysis of different models for the citation linkage task. 50

vii

Chapter 1

Introduction

Different types of written documents have different formats, writing patterns and serve different
objectives. A research article can reflect research trends, a new invention, or perspectives
to solve a problem in a particular domain. While writing a research document, the author
discusses previous research that is either prominent to solve the same problem or has influenced
the author’s ideas presented in the ongoing research paper. This referencing to some other
document while writing a research article is called a citation [26]. Thus, citations create links
between various research articles. Usage of citations reduces the writing overload of authors as
they don’t have to write down the same thing. At the same time, it helps readers achieve some
background knowledge over a topic which may be unknown to them but required to understand
the ideas in the ongoing article. Citations assist researchers in other ways. For example, in 1964
the idea of citation indexing was introduced [18]. Citation indexes contain the references found
in research documents in many scientific domains. Citation investigation based bibliometrics
are utilized to evaluate significance of any research work [19]. In 2000, Garzone and Mercer
[20] proposed a way to identify the internal purpose of a particular citation. As well, modern
applications such as multiple document summarization [51] and argumentation mining across
multiple research articles [41] use these citation links.

In the case of scientific research articles, a citation refers to the document from where the
idea stated in the citing sentence originates. However, a citing sentence typically refers to a
small portion of the referenced document. This referred to text span can be the summary of
the referred to paper’s methodology, or the results and findings, or the analysis of such. This
specific portion of text can be either single or multiple paragraphs or sentences. Citations help
the authors to be very specific about the ideas they want to share from some other research
documents, but at the same time, it reduces the writing overhead for the authors and helps
them maintain the constraints of page limits imposed by the publication authorities [26]. If
it were possible to pull out that specific text span from the reference document, it would be

1

Chapter 1. Introduction 2

advantageous for applications such as those mentioned above. Additionally, it would reduce
the burden of the readers having to read the complete cited document to find the piece that
is being cited. These objectives are the motivation for the topic of this thesis: to establish a
relationship between the citation sentence and its corresponding reference sentences from the
cited paper. This task is called citation linkage [26]. In this study, citation linkage is modelled
as a textual semantic relatedness measurement task and the text span is delimited to a single
sentence. Hence, this is why the citation linkage problem is formulated as a textual matching
operation between a citation sentence and every sentence in the corresponding cited paper.
This thesis investigates the ways to determine citation linkage using different unsupervised and
supervised deep-learning methods.

A citation establishes a semantic link between the citing and the cited paper and thus helps
to develop a body of knowledge from the previous research findings that bolsters the ideas
presented in the ongoing paper. For this the author can either explicitly use the words and
formulas from the cited paper or can refer to inherent domain information. In both ways,
both the citing and the cited paper share some common domain ideas and information which
is introduced in the cited paper. Table 1.1 shows a few examples of citation sentences and
their corresponding reference sentences from a cited paper. Example 1 gives the sentence pair
where the citation sentence is a paraphrase of the cited sentence. Both of the sentences contain
common words in a different order. In the second example, the citing sentence replaces the term
“pH4” by “extremely acidic environment”. To establish a linkage between these two terms a
mapping would be required between the pH scales and the acidic condition. From the sentence
pair in Example 3, it can be observed that the citing sentence interprets the information from
the target sentence. From these examples it is clear that for proper linkage between citation
and cited sentence, the proper mapping is essential from the word to the sentence level. As the
final models used for the textual semantic relatedness measurement are deep-learning models,
proper word and sentence embedding techniques are required prior feeding the data to these
models. Furthermore, while measuring semantic relatedness between two sentences, only a few
words rather than all the words in the sentences play the vital role. That’s why the attention
mechanism is used to give proper importance over individual words in the sentences.

The objective of this thesis is to establish a relationship between the citation sentence and
its corresponding reference sentences from the cited paper, a task called citation linkage. In
this study, citation linkage is modelled as a textual semantic relatedness measurement task and
the text span is delimited to a single sentence. Hence, this is why the citation linkage problem
is formulated as a textual matching operation between a citation sentence and every sentence
in the corresponding cited paper.

The major contributions of this thesis work are building a corpus for citation linkage task

Chapter 1. Introduction 3

Table 1.1: Sample citation and corresponding target reference sentence (source: Houngbo
[26]).

Example 1

Citation
Sentence

Formalin fixation, the most widely used fixative in
histopathology, has many advantages such as the ease of tissue
handling, the possibility of long-term storage, an optimal
histological quality and its availability in large quantities at low
price. [28]

Target
Sentence

The advantages of formalin fixation are the ease of tissue
handling, the possibility of long-term storage of wet material,
and its low price. [30]

Example 2

Citation
Sentence

Sample DNA is often damaged by exposure to formaldehyde and
a potentially extremely acidic environment. [60]

Target
Sentence

However, DNA is relatively stable in mildly acidic solutions, but
at around pH 4 the β glycosidic bond in the purine bases are
hydrolysed. [5]

Example 3

Citation
Sentence

Different PCR buffer systems and/or different Taq polymerases
may yield different real time PCR results. [28]

Target
Sentence

A significant difference can be seen between the results from the
different DNA polymerase-buffer systems. [62]

containing more than sixty thousand sentence pairs from the biomedical domain, developing
a method for cleaning and preprocessing sentences from different biomedical domains and
building a framework to determine the appropriate cited sentences from a cited paper given a
citation sentence. The new corpus, data cleaning tool, and citation linkage tool are available
on GitHub (https://github.com/sudipta90/CitationLinkage).

The rest of the thesis is structured as follows: Chapter 2 reviews some related literature
on the four main concepts used in the research: the citation linkage task, word embedding,
sentence embedding, and the attention mechanism used in neural architectures. Chapter 3
describes the data preprocessing, dataset creation techniques along with the overall architec-
tures used for the citation linkage task. The experimental results are elaborately reported and
analyzed in Chapter 4. In the end, the summary of the citation linkage work that has been
accomplished in this thesis is presented along with the shortcomings and direction for future
work in this domain.

https://github.com/sudipta90/CitationLinkage

Chapter 2

Literature Review

This chapter discusses research that has been conducted that directly concerns the citation
linkage task or research that will be useful for our approach to addressing this task.

Much research can be found for the citation analysis task in experimental sciences [39, 38,
6, 27, 44, 53, 19, 20]. Given a citing sentence, citation analysis tries to determine the section
(Introduction, Methods, Results, and Discussion) of the cited paper that is being referred to
by the citing sentence. However, most of this research cannot indicate the specific sentences
or the paragraphs from the cited paper that are being cited. On the other hand, few works are
available for the citation linkage task. The methods provided are discussed in Section 2.1.

Because this thesis formulates the citation linkage problem as a textual semantic similarity
measurement task modelled using deep learning, various deep learning models are discussed in
Section 2.2. As the textual semantic similarity measurement depends on words and sentences,
word and sentence embedding techniques form a major portion of this discussion. These tech-
niques are discussed in Sections 2.2.2 and 2.2.3. Furthermore, not all the words in a sentence
contribute equally to build the semantic meaning of the sentence. Different attention mech-
anisms have been introduced in recent times to put more focus on the important words in a
sentence. Utilizing attention mechanisms in textual semantic similarity measurement tasks has
improved the performance to some extent. Section 2.2.4 will discuss the attention mechanisms
that will be used for the citation linkage task.

2.1 Citation Linkage Research

In 2017, Houngbo and Mercer [25] developed a framework to detect cited sentences given a
citation sentence. For this task , they built a small corpus which was annotated by a domain
expert. The annotation was done over sentence pairs containing 23 citation sentences and
3857 candidate cited sentences. All the research papers chosen for this task were from the

4

Chapter 2. Literature Review 5

biomedical domain. Each sentence pair in this dataset is labeled with an integer number in the
range from 0 to 5 where 0 indicates the sentences are not similar at all and 5 indicates highest
similarity between the citation and cited sentences. For this task, they used different machine
learning models. However, the accuracy they achieved was low. They reported capturing only
48.5% positive samples correctly. Here the positive samples are those which are annotated with
similarity indexes 4 and 5.

In 2018, Li et al. [33] applied a ruled-based approach to determine the citation linkage be-
tween citation and cited sentence pairs. For this task, they used textual semantic similarity at
the sentence level. To compute the semantic similarity between citation and candidate citing
sentences, they computed inverse document frequency (idf)and Jaccard similarity. Later, they
trained Word2Vec [43] to get 200 dimensional word vectors and represented the sentence as
the concatenation of the word vectors in the sentence. To calculate the similarity between the
sentences, they then computed the cosine similarity between the sentence vectors. Later in their
following work, they ran the convolutional neural network (CNN) over the sentence represen-
tations to generate better feature representations and then computed cosine similarity between
the citation and cited sentences [34]. They conducted these experiments over computational
linguistics literature. The performance of their model in the case of analyzing citation linkage
for biomedical research articles is presented in Table 4.3 in Chapter 4.

2.2 Neural Net Research

In recent times, the introduction of deep learning models in the natural language processing
domain has boosted the performances for almost all possible applications. Simple deep neural
nets have one limitation. They are not capable of handling sequential data whereas human
conversations and sentences are sequential data. While reading one document, a person un-
derstands the meaning of the current content based on the previous words instead of forgetting
everything of the previous section of the document and thinking from scratch at each time step.
Recurrent neural networks (RNN) have the ability to preserve the information from the past
while considering current content. Recently, RNN based models have been used for different
NLP tasks like semantic similarity analysis, sentiment analysis, language model generation,
etc. Still, deep learning models can’t work with string data directly. They require the vector
form for both words and sentences. To solve this issue, different word and sentence embedding
techniques have been developed in the last decade. Furthermore, in case of NLP, the semantics
of a sentence or a document doesn’t depend equally on all of the words in the sentence. An
attention mechanism is applied in these cases to focus on different portions of the texts. This
section discusses different recurrent neural network models, word and sentence embedding

Chapter 2. Literature Review 6

techniques, and attention mechanisms using deep learning architectures.

2.2.1 Recurrent Neural Networks

In the case of natural languages, the meaning of a sequential text doesn’t depend on the last
word only, rather words at different positions help to develop the inherent sentiment or se-
mantics of the text span. Traditional deep neural nets cannot work with this persistence of
information. However, recurrent neural networks (RNNs), with the inner loop inside the struc-
ture, have the ability to process continuous data. Figure 2.1 portrays the working principle of
the traditional RNN module.

Figure 2.1: Unrolled recurrent neural network (source: easy-tensorflow [17]).

A simple RNN module looks at an input xt at a time step t and outputs a hidden state
representation ht and forwards this information to the next time step. Thus, the RNN propagates
information from the past. An RNN can be viewed as multiple identical neural networks placed
in sequence to process the information at different time steps, where each module passes the
information to its following one. Hidden layers in an RNN share the same bias and weight
matrices. The working principle of a simple RNN module is explained by Eqn. 2.1 and 2.2
[47].

ht = f (Whhht−1 + Whxxt) (2.1)

ot = Wohht (2.2)

where, ot is the output state at time step t, ht is the current hidden state at time step t, ht−1 is
the hidden state from the previous time step forwarded to the current time step and f is the
activation function. All Ws represent different weights like Whh is the weight matrix between
hidden states of two time steps, Whx is the weight between input and hidden states, and Woh

Chapter 2. Literature Review 7

is the weight matrix between hidden and output states. Initially all the weights and biases
are initialized randomly and gradually they are updated via backpropagation. For an RNN,
this backpropagation goes back to each time step. This technique is called backpropagation
through time (BPTT).

This chain-like architecture allows the RNNs to work with sequential data. As a result,
RNNs are being used successfully in speech recognition, machine translation, language mod-
eling, image captioning, etc. in recent times. However, the simple RNN model suffers from
two issues while working with long sequential data: the vanishing gradient and the exploding
gradient. In the vanishing gradient problem, the gradient becomes very small preventing the
weights from changing the values and may stop the training of the neural network. For ex-
ample, the gradients of run-of-the-mill activation functions like the sigmoid function remain
in the range (0, 1). During the backpropagation gradients are computed by the chain rule.
While computing the gradients for the nth time step, these n small gradient values have been
multiplied with each other thus generating a very small number. With very large values of n,
the gradient decreases exponentially and in the end, makes the convergence of the model very
slow [23]. For exploding gradients, error gradients are accumulated during backpropagation
and in the end can result in very large gradients. This situation makes the network unstable as
the network weights are changed at a too high rate than it should be, preventing convergence
of the network. If the gradients are too big, the network weights become very large and in-
stead of generating real values the network may output “not a number” values [11]. To solve
these issues, a few different models like long short-term memory (LSTM), gated recurrent units
(GRU), etc. have been proposed.

Long Short-Term Memory

Long Short-Term Memory (LSTM) [24] is an RNN model that has been upgraded to work with
long term dependencies. Like the simple RNN, an LSTM maintains the chain-like structure.
But, instead of working with a simple neural network layer only like RNN, it consists of four
layers to preserve the important information in its memory from the past. The architecture of
an LSTM is illustrated in Figure 2.2.

The key component of an LSTM cell is its cell state (ct) which acts as the memory of the
network. The first step of an LSTM cell is to decide which information to preserve and which
to remove. A sigmoid layer named the “forget gate” is responsible to make this decision. It
takes ht−1 and xt as input and generates a number between 0 and 1 for each number in the
previous cell state (Ct−1). If this value is 1, the LSTM preserves the corresponding information
completely and if it is 0 then the LSTM discards the information completely. The working
procedure of this forget gate (ft) is represented by Eqn. 2.3. In the following step, the LSTM

Chapter 2. Literature Review 8

Figure 2.2: Long Short-Term Memory (source: Olah [47]).

makes a decision over the importance of the new information. This is done in two steps. In
the first step, another sigmoid layer named the “input gate” decides which value to update. In
the second step, a tanh layer produces a vector of new candidate cell state values (C̃t) (Eqn.
2.4 and 2.5). Then the previous cell state Ct−1 is updated to Ct. To do so, Ct−1 is multiplied
with the forget gate value ft to remove the unnecessary information from the past. Then, the
input gate values are multiplied with the new candidate cell state values to store the important
portion of the new input values. Later, these two values are summed to generate the new cell
state memory (Eqn. 2.6). The last gating mechanism that the LSTM uses is the output gate.
It decides the next hidden state (ht) for the time step. ht propagates the information of the
previous inputs. For this, the previous hidden state (ht−1) and the current input (xt) are passed
to a sigmoid function (Eqn. 2.7). Then, the new cell state value is passed to a tanh function
and multiplied with the sigmoid output to decide which information the hidden state would
propagate to the next time step. This is also the hidden state (ht) at the current time step t.
Eqns. 2.3-2.8 are from Olah [47].

ft = σ(W f · [ht−1, xt] + b f) (2.3)

it = σ(Wi · [ht−1, xt] + bi) (2.4)

C̃t = tanh(Wc · [ht−1, xt] + bc) (2.5)

Ct = ft ∗Ct−1 + it ∗ C̃t (2.6)

ot = σ(Wo · [ht−1, xt] + bo) (2.7)

ht = ot ∗ tanh(Ct) (2.8)

Chapter 2. Literature Review 9

Gated Recurrent Unit

The gated recurrent unit (GRU) is a variant of LSTM that couples input and forget gates and
thus reduces computation costs to some extent. Unlike the LSTM which separately decides
which information to preserve and which to get rid of, GRU makes both of these decisions at
one time. To do so, it introduces an update gate. Again, it merges the cell state and the hidden
state and introduces the reset gate. The update gate decides which new information to add and
which information from the past to forget. The reset gate decides how much information from
the past to forget. The working procedure of GRU is described by Eqns. 2.9-2.12 [47].

Figure 2.3: Gated recurrent unit (source: Olah [47]).

zt = σ(Wz · [ht−1, xt]) (2.9)

rt = σ(Wr · [ht−1, xt]) (2.10)

h̃t = tanh(W · [rt ∗ ht−1, xt]) (2.11)

ht = (1 − zt) ∗ ht−1 + zt ∗ h̃t (2.12)

Bi-directional Recurrent Neural Networks

Bidirectional recurrent neural units are extensions of traditional recurrent units. Schuster and
Paliwal [54] introduced BRNNs to provide the recurrent neural units with information from
both past and future time steps while working with long sequential data [52]. These models
train two recurrent units rather than one on the same input sequence. One unit works over the
input sequence in the forward direction (from first to last). The other unit works with the very
same input but in the reverse order. This approach provides the network with additional con-
text as the information, in this case, comes from both the past and future time steps (forward
and backward directions) and thus makes the convergence of the model faster and with a better

Chapter 2. Literature Review 10

representation of the whole sequence [12]. Moreover, in the case of longer sequences, a simple
sequential recurrent unit may lose some information from the distant past. This approach tends
to prevent this situation as the sequence is processed from both directions and any informa-
tion which appears at the very beginning for one module appears as the latest information to
the other module. Finally, these models concatenate the hidden states of each RNN for corre-
sponding time steps. Thus the output layer of this type of model gets information from the past
(backwards) as well as the future (forward) states simultaneously [29]. For this bi-directional
recurrent model, any kind of recurrent neural network can be used like simple RNN, LSTM or
GRU. The procedure will be the same for all the variants. Figure 2.4 demonstrates the working
procedure of a simple Bi-directional LSTM architecture.

Figure 2.4: Bi-directional long short-term memory (source: Lee [32]).

2.2.2 Neural Network Based Word Embedding Models

Deep learning models are very capable of learning the inherent structures of the data and mak-
ing the final decision from the data based on the given task. Still, they can’t work with raw
string data, rather these models require input in the form of numbers. Word embedding is the
technique to map every word in the vocabulary to a numeric representation, more specifically
a specific vector representation. The simplest way of mapping words to vector forms is the
one-hot encoding technique. In one-hot encoding, the vector representation of a word is a
binary vector where all the positions apart from only one are zero values and the remaining

Chapter 2. Literature Review 11

position contains value 1. For example, if a vocabulary contains only three words: [‘Natu-
ral’, ‘Language’, ‘Processing’], the one-hot representation of these words will be ‘Natural’:
[1,0,0], ‘Language’: [0,1,0] and ‘Processing’: [0,0,1]. This technique has two drawbacks.
Firstly, the dimension of the vector increases as the vocabulary size expands. It increases the
computational complexity of the following models working with any large vocabulary. Sec-
ondly, this representation can’t preserve any semantics of the words. To provide a vocabu-
lary size-independent, semantic information preserving and fixed-sized vector representation,
a few methods have been proposed in recent times. The following section discusses various
techniques used for generating word embeddings.

Neural Language Model

In 2003, Bengio et al. [3] utilized a feed forward neural network in order to learn a distributed
representation of words. Given a training sentence, this model tries to learn the exponential
number of neighbour sentences which are semantically similar. During the training phase, this
model learns the probability function for word sequences along with the distributed representa-
tions of the words in the corpus. The architecture of neural network language model (NNLM)
has four components: (i) the input layer, (ii) the projection layer, (iii) the hidden layer and (iv)
the output layer.

This model follows the concept of auto-encoder (AE) in terms of working mechanism. The
input-hidden layer portion of the NNLM works as the encoder portion of the auto-encoder
whereas, the hidden-output layer portion of the model acts as the decoder portion. The input-
hidden layer portion encodes the higher-dimensional one hot representation of the words into a
lower dimensional vector representation. Then the following hidden-output layer portion maps
this lower-dimensional vector representation to its original higher-dimensional representation.
As a language model, NNLM takes N previous words as input and tries to predict the next
word in the sequence. The input words are fed to the model in the form of one-hot encoding.
Similarly, the final output at the output layer is also one-hot encoding of the desired word at that
end. The one-hot value from the input layer is projected to the projection layer P with N × D

computational complexity, where D is the projection layer dimension. The following hidden
layer computes the probability distribution of all the words. With an H dimensional hidden
layer, the computational complexity for mapping from projection to hidden layer is N ×D×H.
Finally, the H dimensional hidden representation is mapped to the V dimensional output layer,
where V represents the vocabulary size.

Chapter 2. Literature Review 12

Word2Vec and Distributed Representations of Words and Phrases and their Composi-
tionality

Mikolov et al. [42] proposed a predictive model (Word2Vec) for generating fixed-sized vector
representations of words. This model is applicable for co-occurrence data with respect to a
fixed sized context window. The context window is made of one target word and its surrounding
context words. Word2Vec has two versions based on the training method:

1. Skip-Gram (SG): For a given target word the model is trained to predict the context
words.

2. Continious Bag-of-Words (CBOW): Given a set of context words, based on the context
window size, this model is trained to predict the target word.

Figure 2.5: Word2Vec: Skip Gram Model (source: Mikolov et al. [42]).

Both of these models work on the principle of AE and try to map the vocabulary-size-
dependent one-hot encoding of the words to a fixed sized lower dimensional vector represen-
tation preserving semantic information. To make it precise, every component of this vector is
a float value, as floating point numbers manage precision in a better way. This shallow model
is trained on a 1.6 Billion word corpus and the resulting word representation captures better
semantic and syntactic information compared to other existing models at that time. They also
claim that their model can capture the multiple degree similarity between the words as well as

Chapter 2. Literature Review 13

Figure 2.6: Word2Vec: Continuous Bag of Words Model (source: Mikolov et al. [42]).

just making the similar words much closer. For example, nouns can have similar word endings
and we can find those words that have similar endings if we search for similar words in the
original vector space. The concept of this model is based on Bengio’s NNLM [3] model. The
major difference is that both of the Word2Vec models omit the hidden layer unit of NNLM and
establish a connection between the projection and output layers directly (Figure 2.5 and Figure
2.6). To maintain uniformity for all the words in the input layer this model takes all the words
as one-hot encodings. And to calculate a distribution of probability over all the words in the
corpus there is a one-hot form in the output layer as well. For both the cases (SG and CBOW),
the model attempts to maximize the log probability of the output word for a given specific word
or set of specific words (Eqn. 2.13) [43]. In order to calculate this probability distribution, they
use a softmax layer at the output (Eqn. 2.14) [43].

J = max(
C∑

t=1

n∑
k=−n,k,0

log P(wt|wt+k)) (2.13)

p(wt+k|wt) =
e(v′wt)

ᵀvwt+k∑
w∈V e(v′wt)

ᵀvwt+k
(2.14)

After both of these Word2Vec models are trained, it is possible to remove the decoder
portion (the hidden-output layer portion) and then this model can generate low dimensional
vector representation of the words. For CBOW this vector representation is for the context
words and for the target words in the case of the SG model. For both of these models with

Chapter 2. Literature Review 14

a larger context window size, these models come with higher accuracy, but the computational
time is compromised. The overall computational complexity of this model is:

Q = N × D + D × log2V (2.15)

However, this models’ training time complexity utilizing simple softmax is not suitable for
practical implementation as the cost of computing ∇ logp(wt|wt+k) ∝ |V |. To solve this issue,
later the authors came up with a solution to speed up the training process of Word2Vec [43].
The most important techniques are: i) Hierarchical Softmax and ii) Negative sampling [43].

FastText

Fasttext [4] follows the same architecture and concept of the skip-gram Word2Vec model with
a small change. Unlike skip-gram, this model doesn’t work with the vocabulary words, rather
adds n-grams of subwords to the vocabulary. For example, the tokens generated for the word
“apple” are <ap, app, ppl, ple, le>, apple, where the less than and greater than signs represent
the beginning and ending of the word, respectively. Though this model improves the accuracy
and gives better semantic and syntactic representation of the words, because every word is split
into a bag of character n-grams, the vocabulary size grows larger and a separate dictionary
function has to be maintained to find out the specific character n-gram. To adjust to the use
of subwords the objective function of the skip-gram model is also modified. The objective
function for FastText maximizes the sum of the vector representations of the words as well as
the subwords (Eqn. 2.16) [4].

j =

C∑
t=1

n∑
k=−n

∑
w∈Gwt

log p(wt+k|w) (2.16)

FastText does not only improve the quality of the word representations, but also has the ability
to generate vector representations for the out of vocabulary words as this model has the vector
representations for the subwords along with the vocabulary words. In case of any out of vo-
cabulary words, this model adds the vector representations of all possible subwords to generate
the vector representation.

BioWordVec

In 2017, Xhang et al. [65] trained the FastText model for biomedical natural language pro-
cessing (BioNLP) tasks. Their model generates the word embeddings for the words found in
biomedical texts. They trained their model on data from two sources: domain knowledge pro-
vided by Medical Subject Heading (MeSH) terms and biomedical literature found in PubMed,

Chapter 2. Literature Review 15

a corpus of more than 25 million journal article abstracts. For this task they first constructed
a MeSH term graph from the MeSH RDF data. They produced a number of MeSH term se-
quences utilizing a random sampling strategy. After that, they trained the FastText model over
this data to teach the model text sequences and MeSH term sequences. The work-flow of
BioWordVec training is presented in Figure 2.7.

Figure 2.7: Schematic of learning word embedding based on PubMed literature and MeSH
(source: Xhang et al. [65]).

2.2.3 Sentence Embedding

Word embedding techniques allow the deep learning models to work with the vector form of
the words and these vectors to some extent preserve semantic relatedness. However, for the
case of expressing information, having only words is not sufficient, rather, we need sentences.
One way to deal with this issue is to take the word vectors of any particular sentence and make
some simple mathematical operations like average them (a normalized sum) to generate the
sentence representation. However, this is not somehow the best way to preserve the semantic
meaning of the sentence. To understand the proper meaning of a sentence, information from
the context is also necessary. Keeping this idea in mind, a few sentence embedding techniques
have been proposed in recent times. Moreover, the length of the sentences are variable in
nature where deep learning models have the limitation that they work with fixed length data.
This section discusses some unsupervised sentence embedding techniques that try to generate
fixed-length vectors for sentences with some information about the context.

Chapter 2. Literature Review 16

Skip-Thought Vectors

In 2015, Kiros et al. [31] proposed an unsupervised sentence embedding model that tries to
capture contextual information to generate distributed vector representations of sentences. This
model is designed based on the skip-gram idea [42]. Skip-gram tries to generate the vector
representations of the context words given a target word. Here in the case of skip-thought, the
model tries to generate the distributed vector representations of the context sentences given a
target sentence.

The skip-thought model follows the principle of the encoder-decoder architecture. The
encoder portion tries to map the words of a sentence to a sentence vector, where the decoder
portion generates the sentence vector for the surrounding context. For the encoder-decoder
model, they explored a a variety of deep learning models like RNN-RNN, ConvNet-RNN,
LSTM-LSTM, etc. and got the best result for the GRU-GRU architecture.

The GRU-GRU model can be decomposed into three portions: i) the encoder, ii) the de-
coder, and iii) the objective function. For a sequence of N words (w1

i , . . . ,w
N
i) in a sentence

S i, at each time step t, the encoder generates a vector representation of the word sequence
(w1

i , . . . ,w
t
i) up till that time step (t) which is basically the hidden state representation (ht

i) of
the GRU unit. So, the hidden state of the GRU after it processes all the words in the sentence
is the representation of the sentence (hN

i). They designed the decoder like a neural language
model conditioning on the output of the encoder (hi) for sentence si. The decoder portion adds
additional biases on the update and reset gates and the hidden state of the GRU. The other op-
erations are similar to those of the encoder. This architecture uses two separate decoders with
the same architecture but different parameter settings. One decoder is assigned to generate the
sentence vector of the next sentence (si+1) in the context after the target sentence (si), while the
other decoder is used to do the same task for the previous sentence (si−1) in the context window.

QuickThought

In 2018, Logeswaran and Lee [37] proposed another framework which can learn the vector
representation of sentence from unlabeled data. The idea is similar to the skip-thought [31]
model in the sense that it also tries to predict the context sentence given a target sentence, but
not in the way of sentence generation rather by means of classification technique. The idea
behind this model is quite similar to the idea of negative sampling [43, 57]. For a given target
sentence, QuickThought tries to classify the appropriate and contrastive context sentences. To
achieve this goal, this model replaces the generative objective function of skip-thought with a
discriminative approximation function. Because of this approach this model is faster in terms
of training time, and at the same time, produced the state of the art performance at that time.

Chapter 2. Literature Review 17

Quick-Thought utilizes the target sentence’s meaning to predict the appropriate context
sentences with similar meaning. Here, the term “similar meaning” refers to the similarity
between the vector representations of the sentences. This approach helps the model to preserve
better semantics in the sentence vectors. Given few candidate context and the target sentences,
the encoder portion encodes the sentences at first. Then from the set of candidate sentences
Quick-Thought selects the correct one.

Suppose, f and g are two functions (f and g may or may not share the same parameter
set) responsible for the encoding of the sentences. For a target sentence s, let S context be the
set of true context sentences, and S candidate be the set of candidate sentences for a true context
sentence scontext where a few candidates are contrastive. So, for a given candidate sentence
scandidate ∈ S candidate the probability to be a true context sentence is Eqn. 2.17 [37]:

p(scandidate|s, S candidate) =
exp[c(f (s), g(scandidate))]∑
s′∈S candidate

exp[c(f (s), g(s′))]
(2.17)

where, c denotes the classification score function which is a simple inner dot product: c(u, v) =

uT v. The objective function of the model tries to maximize the true context sentence’s proba-
bility for a given target sentence (Eqn. 2.18) [37].

∑
s∈D

∑
scontext∈S context

log p(scontext|s, S candidate) (2.18)

After the model training is done, this model disposes the classifier portion and only the en-
coder portion is used for generating the sentence vectors. For any sentence si the final sentence
vector representation is [f (s), g(s)] (concatenation of sentence vectors generated from both of
the encoder functions).

Figure 2.8: Quick Thought Model (source: Logeswaran and Lee [37]).

Chapter 2. Literature Review 18

Sent2Vec

Sent2Vec [48], a general purpose sentence embedding model, is designed as an extension of
the CBOW model [42] with the intention to generate sentence embeddings rather than word
embeddings. This model composes the vector representation of the sentences using the vector
representations of the words (with n-gram embedding). At the same time, this model does
the training of the word embeddings as well. This model can be described as an optimization
problem like Eqn. 2.19 [48]:

min
U,V

∑
S∈C

fS (UVιS) (2.19)

where V denotes the vocabulary, U ∈ RV×h and V ∈ Rh×|V| are the two parameter matrices.
Columns in matrix V and U indicate the vector representation of the context words and target
words respectively. ιS ∈ {0, 1}|V| is a vector where a position is “1” only if that word is present
in the sentence S . To serve the purpose of sentence embedding, S (context window) can be
either a portion of the document or the entire document.

Sent2Vec tries to learn both the context (vw) as well as the target embedding (uw) for every
word w ∈ V. Later averaging context embedding vectors for all the words in the sentence
the final sentence embedding (νS) is generated. This model incorporates not only the unigram
words but also n-grams present in each sentence. The final formula for the sentence embedding
for any sentence S is defined as [48]:

νS =
1
|R(S)|

VιR(S) =
1
|R(S)|

∑
w∈R(S)

νw (2.20)

where R(S) denotes the set of all possible n-grams plus the unigrams for any sentence S . Later
this model uses negative sampling [43] along with the binary loss function ` : x→ log(1 + e−x)
and formulates the objective function as [48]:

min
U,V

∑
S∈C

∑
wt∈S

(`(uT
wt
νS \{wt})) +

∑
w′∈Nwt

`(−uT
w′t
νS \{wt}) (2.21)

where Nwt corresponds to the negative sampled words for the word wt ∈ S . The negative
samples are selected from a multinomial distribution. In this distribution, every word wt is
assigned with a probability qn(w) =

√
fw/(
∑

wi∈V

√
fwi). Here, fw denotes word wt’s normalized

frequency with respect to the corpus. For the purpose of subsampling, any word wt is discarded
with a probability 1 − qp(wt). qp(wt) is defined as [48]:

qp(wt) = min{1,
√

t/ fwt + t/ fw} (2.22)

Chapter 2. Literature Review 19

Table 2.1: Corpora for training BioSentVec embeddings (source: Chen et al. [14]).

Corpus Documents Sentences Tokens
PubMed 28,714,373 181,634,210 4,354,171,148
MIMIC-III 2,083,180 41,674,775 539,006,967

This subsampling method prevents the model from being biased by the most frequent words in
the corpus. So, the final objective function of the model is [48]:

min
U,V

∑
S∈C

∑
wt∈S

(qp(wt)`(uT
wt
νS \{wt})) + |Nwt |

∑
w′∈Nwt

qn(w′)`(−uT
w′t
νS \{wt}) (2.23)

Along with providing state of the art performance, this model is very simple and computa-
tionally cost efficient. Once the model is trained, for any sentence S , it requires only |R(S)× h|

floating point operations for the n-gram. The computational complexity of this model is only
O(1) vector operations per word. Moreover, because of its straight-forward nature, it supports
parallel training using parallel stochastic gradient descent.

BioSentVec

Chen et al. [14] trained the Sent2Vec model [48] over 30 million documents combining articles
from PubMed and clinical notes in the MIMIC-III clinical dataset. They evaluated their model
on two different semantic similarity tasks: i) sentence similarity and ii) multi-label text classifi-
cation. They claimed that their model captures better semantics at the sentence level compared
to other alternatives in the biomedical domain and produces state of the art performance. For
the training of their model, they built a corpora with 28,714,373 documents from PubMed and
2,083,180 documents from the MIMIC-III dataset.

Texts from both PubMed and MIMIC-III were split and tokenized using the NLTK frame-
work. Then they trained the Sent2Vec model [48] over this dataset. The output sentence
embeddings are 700-dimensional vectors. For their experiments they set the window size to
30 and utilize 10 negative examples for each word. They utilized the bi-gram along with the
words in the sentence for model training. Table 2.1 gives some details about the corpora they
made for training the BioSentVec.

2.2.4 Attention Mechanisms For Natural Language Processing Tasks

The basic principle behind the “attention” mechanism is that whenever a model tries to predict
a single output word, it doesn’t need to focus on the whole sentence, rather only on portions of
the sentence where the corresponding information is concentrated. This process is similar to the

Chapter 2. Literature Review 20

Figure 2.9: Sequence to sequence architecture (source: Brownlee [10]).

human visual system. While looking at any image, the human eye focuses on a certain portion
of the image with higher resolution without completely ignoring the surrounding portions with
lower resolution. Over time the focal point is adjusted to capture the information inherent
in the image. The attention mechanism in NLP is similar to the non-local means algorithm
[13] from the image processing domain. Recently, attention mechanisms have made their way
into recurrent neural network architectures that are typically used in NLP. Different attention
mechanisms and their application will be discussed in this section.

Introduction to the Concept of Attention

Neural machine translation (NMT) is the technique of applying a neural network architecture
for the machine translation task. NMT intends to build a single end-to-end neural network that
can be trained to maximize the translation performance. In most of the cases, these models
somehow follow the encoder-decoder architecture where the encoder portion generates a fixed
length vector from the source sentence and the translation is generated by the decoder portion.
For the encoder and decoder portions different neural network models can be used. For ex-
ample, Sutskever et al. [58] used LSTM for the machine translation task. Figure 2.9 shows
a general encoder-decoder architecture used as the backbone in most of the NMT tasks. The
encoder reads the entire input sequence as a vector x = {x1, x2, . . . , xt} and transforms it into a
fixed-length vector c. Then, the decoder tries to predict the next word given all of the words
generated before {y1, y2, . . . , yt−1}.

However, for the decoder to do language modeling based on just the encoded hidden state
is not feasible because a single context vector cannot encode the entire sequence information
if the sequence length is too long. That’s where the attention mechanism came to the rescue
because it allows the decoder to search through a source sentence during decoding a translation
and calculates which portion to attend to more and vice versa.

In 2014, Badhanau et al. [2] introduced the idea of attention in the task of NMT, which
defines how much importance a source word should get from the model while generating a
target word by the decoder portion. In this case, the term “context” means the last hidden state
value of the encoder plus the last hidden state of the decoder neural network unit at each time

Chapter 2. Literature Review 21

step. A demonstration of the NMT with attention mechanism is portrayed in Figure 2.10.

Figure 2.10: An illustration of the attention mechanism (indicated by ⊕ and the attention
weights αi, j) to generate the target word from the source sentence (source: Badhanau et al.
[2]).

This mechanism changes the context vector for each decoded word. This indicates that the
model is giving variable importance to different portions of the source sentence while decod-
ing different translated words. This process changes the joint probability from Eqn. 2.24 and
becomes:

p(yi|{y1, y2, . . . , yi−1}, c) = g (yi−1, h̃i, ci) (2.24)

where h̃t is the hidden state of the decoder RNN for time i. h̃t is computed by,

h̃i = f (h̃i−1, yi−1, ci) (2.25)

The context ci now depends on the weighted sum of the sequence of hi:

ci =

T∑
j=1

αi jh j (2.26)

The weights αi j are computed by

αi j =
exp (ei j)∑T

k=1 exp (eik)
(2.27)

where
ei j = a (h̃i−1, h j) (2.28)

Chapter 2. Literature Review 22

Here, ei j reflects how well the output word at the jth position aligns with the input word at the
ith position. This shallow neural network is trained simultaneously with the overall architecture
of the NMT model. Here, Eqns. 2.24-2.28 are from Badhanau et al. [2].

Inner Attention

In 2016, Liu et al. [36] proposed a sentence encoding model for the text entailment recognition
(RTE) task where instead of applying the attention mechanism over source and target sen-
tences, words in each individual sentence attend over themselves. They named this attention
mechanism “Inner Attention”. Their model works in two steps. In the first step, mean-pooling
is applied over the word-level Bi-LSTM. This step generates one vector representation of the
sentence. In the second step, their proposed inner attention mechanism is applied instead of
mean-pooling to get another vector representation of the sentence. They conducted their ex-
periments on the Stanford Natural Language Inference (SNLI) corpus, a corpus built for the
RTE task.

The RTE task is to determine whether an hypothesis can be inferred from a given premise.
This is a three class classification task. The three class labels are entailment, contradiction and
neutral. A few samples of the dataset are displayed in Table 2.2

This model is a framework for the RTE task which omits the necessity of feature engineer-
ing or any kind of additional resources. The baseline of this model uses a Bi-LSTM to generate
a vector representation for both the hypothesis and premise sentences. The architecture of the
model consists of three modules: i) the sentence input module, ii) the sentence encoding mod-
ule, and iii) the sentence matching module (Figure 2.11). The sentence encoding module works
in two steps. Mean-pooling at the first stage gives a rough insight about the information any
particular sentence wants to express. The inner attention mechanism in the second stage fine-
tunes the quality of the representation gained from the first step. The idea of the inner attention
mechanism originates from the observation that while reading a sentence, a human forms a
rough intuition about the importance of different portions of the sentence based on previous
portions. The formulation of the inner attention mechanism is as follows (Eqns. 2.29-2.31)
[36]:

Table 2.2: Examples of three types of labels in RTE (source: Liu et al. [36]).

Premise The boy is running through a grassy area. Label

Hypothesis
The boy is in his room. Contradiction
A boy is running outside. Entailment
The boy is in a park. Neutral

Chapter 2. Literature Review 23

Figure 2.11: Inner-Attention mechanism over Bidirectional LSTM (source: Liu et al. [36]).

M = tanh(WyY + WhRmean ⊗ eL) (2.29)

α = softmax(wT M) (2.30)

Rattention = YαT (2.31)

Here, Y is the matrix containing the output vectors of the Bi-LSTM, Rmean denotes the output
of the mean-pooling layer, Rattention represents the attention (α) weighted vector representation
of the sentence.

Furthermore, the authors developed a technique to remove the common sentences from the
hypothesis and premise sentences which boosts the performance of the model further. This
model beat the state-of-the-art model of that time by around 2 percentage points.

2.2.5 Hierarchical Attention Network

In 2016, Yang et al. [63] proposed a hierarchical attention architecture to classify documents.
This approach utilizes the attention mechanism at two levels. First, the attention mechanism [2]
is applied over the words in a particular sentence to generate the sentence embedding. Then, the
attention mechanism is applied over the sentence representations to determine the importance
of each sentence in the document. Finally with the attention weighted sentence representation,
the representation for the document is generated.

This hierarchical attention network consists of four different parts 2.12. In the first part, Bi-
GRU is applied over the word representations of a single sentence where at each time step one

Chapter 2. Literature Review 24

Figure 2.12: Hierarchical attention network (source: Yang et al. [63])

word representation is fed to the GRU. By concatenating the corresponding hidden state rep-
resentations, the word representation is generated. In the second part, the attention mechanism
is applied over these word representations to generate the sentence representation as follows
(Eqns. 2.32-2.34) [63]:

uit = tanh(Wwhit + bw) (2.32)

αit =
exp(uT

it uw)∑
t exp(uT

it uw)
(2.33)

si =
∑

t

αithit (2.34)

where hit represents the hidden state representation for the tth word in the ith sentence. hit is fed
to a single layer MLP to generate the hidden layer representation of hit (uit). The importance
of the word wit (αit) is measured against a word level context vector uw. Finally, softmax is
applied to get the normalized attention value. The sentence vector representation is computed
by adding the attention weighted word representation of the words in the sentence. In the next
part of the model, the sentence vectors are treated by Bi-GRU as was done with the word em-
beddings and a sentence level annotation is produced. After that, the attention mechanism (as
stated earlier) is applied over these sentence annotations to generate the vector representation

Chapter 2. Literature Review 25

of the whole document. This time another context vector (us) at the sentence level is used to
compute the normalized attention value of each sentence in the document. Both of the word
level and sentence level context vectors are initialized randomly and trained throughout the
training process.

Structured Self-Attention

Lin et al. [35] proposed a new mechanism for generating sentence embedding with a new type
of attention procedure called structured self-attention. Unlike the other methods which gener-
ate a vector representation of the sentence, the structured self-attention mechanism produces
a 2-D matrix representation for particular sentences. Each row of this matrix depicts the im-
portance put on different portions of each of these sentences. This model is very helpful when
there is only one sentence rather than a sentence pair to work with like the sentiment classifica-
tion task. This model allows the down-stream task to put different attention values on different
parts of the sentence.

This sentence embedding model consists of two modules: i) a Bi-LSTM and ii) the self-
attention mechanism. This self-attention mechanism outputs a summation of the dot product
of the weight vectors and the hidden states of the LSTM network to generate the final sen-
tence embedding matrix. Figure 2.13 shows the architecture of the model for the sentiment
classification task.

For a sentence S with n words, S can be presented as a sequence of corresponding d-
dimensional word embeddings (wi).

S = (W1, . . .wn) (2.35)

Thus, S is a 2-D matrix where S ∈ Rn×d. To maintain some dependency between indepen-
dent adjacent words a Bi-LSTM is operated over this matrix S and the hidden dimension at
each time step from both directions are concatenated to obtain the final hidden state ht ∈ R2u

where the hidden dimension of the LSTM unit is u. Combining all the ht at different time
steps the matrix H ∈ Rn×2u is formed. The self-attention mechanism takes this H and outputs a
attention vector A ∈ Rn as follows:

A = softmax(ws2 tanh(ws1HT)) (2.36)

Here, ws2 is a vector of dimension da and ws1 is a matrix of dimension Rda×2u. The value of
the hyper-parameter da can be picked arbitrarily. The final vector representation of the sentence

Chapter 2. Literature Review 26

Figure 2.13: Self-attention mechanism for sentiment classification task (source: Lin et al. [35]).

(m ∈ R2u) can be achieved by:
M = AH (2.37)

This vector representation of the matrix M focuses on a specific word or phrase of a sen-
tence. However, in case of long compound sentences, there may be multiple places where
higher importance should be given. To resolve this issue, the authors came with a multi-hop
idea for attention mechanism. In the multi-hop technique, for r different important parts of
the sentence, the vector ws2 is extended to a r ∈ da matrix (Ws2). Thus the attention vector
a becomes attention matrix A ∈ Rr×n and the sentence embedding vector m becomes sentence
embedding matrix M ∈ Rr∈2u where M = AH. However, the main ideology of this model may
be compromised if the attention mechanism always provides similar summation weights for all
the r hops [35]. To prevent this issue, the authors added one penalization term P where:

P = ||(AAT − I)||2F (2.38)

Here, P depicts the score redundancy, at the same time, is computationally faster than the
KL-divergence. Eqns. 2.35-2.38 are from Lin et al. [35].

Chapter 2. Literature Review 27

Figure 2.14: MP-CNN architecture for semantic relatedness task (source: He et al. [21]).

2.2.6 Attention-Based Multi-Perspective Convolutional Neural Network

In 2015, He et al. [21] proposed a semantic similarity measurement model for sentences us-
ing multiple convolution neural networks (CNN) with different convolution operations using
different window size and pooling types. They named their model multi-perspective CNN
(MP-CNN). The semantic similarity task can be viewed as a two class classification problem.
Given two sentences (S 1 and S 2), this model returns “1” if these two sentences are semanti-
cally similar and “0” otherwise. For the similarity measurement they incorporated three types
of distance functions: cosine, Euclidean and element-wise differences. They demonstrated
state-of-the art performance on two SemEval semantic relatedness tasks. They emphasize the
fact that this model doesn’t need any additional parser or part-of-speech tagger to achieve this
result. However, this model is very complex in nature and requires a lot of computational time.

The MP-CNN model has two major components: a sentence model and a similarity mea-
surement layer. For conducting operations over two different sentences, this model uses two
CNNs in parallel. For these parallel CNNs, MP-CNN follows the Siamese structure [9]. In the
end, the output features from these two CNNs are joined by the similarity measurement layer
followed by a fully connected layer for final class prediction. Figure 2.14 gives an overview of
the MP-CNN model.

In 2016, the authors extended this model [22]. For the extended version of MP-CNN, the
CNNs are fed with attention-based word embeddings instead of direct word embeddings. They
used the Paragram-Paraphrase word embedding as the initial word embedding and later applied
some attention mechanism over this Paragram-Paraphrase word embedding to generate the
attention-based word embedding. Figure 2.15 shows the overall architecture of the MP-CNN
model with the attention-based input interaction layer. For any sentence pair (`0 and `1), each
sentence is represented by a matrix S i ∈ R`i×d (i ∈ {0, 1}) where `i represents the length of the
sentence and d denotes the dimension of the word embedding. S i[a] represents the embedding

Chapter 2. Literature Review 28

Figure 2.15: MP-CNN model with attention-based input interaction layer (source: He et al.
[22]).

of the word at the ath position in the sentence. They defined an attention matrix D ∈ R`0×`1

where D[a][b] = cosine(S 0[a], S 1[b]). Given the matrix D, the attention weight vector Ai ∈ Rli

is generated where each element corresponds to the attention-based relevance score of that
corresponding word. The formulation of vector Ai is as follows (Eqn. 2.39) [22]:

E0[a] =
∑

b

D[a][b]E1[b] =
∑

a

D[a][b]Ai = softmax(Ei) (2.39)

Then the final attention based word embedding is generated by concatenating the original
word vector and the point-wise multiplication of the original word vector with corresponding
attention-based relevance score (concat(S i[a], Ai[a]) � S i[a]). Though this model gives state-
of-the-art result, this performance comes at a cost of high computational operations as a lot of
CNNs are being used for the feature generation task.

2.3 Semantic Similarity Measurement

Many problems in understanding natural language can be formulated as textual semantic simi-
larity measurement between pairs of text spans. The text spans can be a single sentence up to a
whole document. Similarity between two pieces of text can be measured in two ways: lexically
and semantically. Lexical similarity measurement techniques look for common words between
different pieces of text, whereas semantic similarity measurement techniques try to infer the
semantic relationship between the texts. These semantic similarity measurement techniques
are very important for NLP tasks such as the natural language inference task, where given a
hypothesis sentence and a candidate premise sentence the technique tries to figure out whether

Chapter 2. Literature Review 29

the premise is inferred from the hypothesis or not. Usually, this is formulated as a classification
problem. Other examples of this semantic relatedness measurement task are paraphrase detec-
tion, information retrieval, summarization, etc. In case of information retrieval task, semantic
relatedness measurement problem is formulated as a ranking problem where, given a query
candidate documents are ranked according to the semantic relatedness between the query and
each document. In case of question answering systems, semantic similarity measurement task
is converted as into a classification task where given two questions, the models try to figure out
whether two sentences are similar or not.

Much research has been conducted for modeling the inherent semantic relatedness between
text spans. Traditional methods like tf-idf or bag-of-words have been implemented in a lot of
work for measuring the semantic similarity between texts. However, these traditional models
have a severe limitation. They consider two text spans similar only when both of the compared
texts contain similar terms. However, two texts can be semantically similar even if they don’t
share similar terms. Furthermore, word positioning plays a vital role in modeling the semantics
of a text. These traditional models completely ignore these issues.

Deep learning based approaches have solved this problem as they have the ability to learn
the latent property of a text through the training step. These models represent the sentences as
vectors and then compute the vector distance between two sentences to measure the semantic
relatedness between them. In 2014, Shen et al. [56] applied a convolutional neural network
with different pooling operations for the textual semantic similarity measurement task at the
sentence level. Using a sliding window, this model splits the text into n-grams of words. For
each window, the three-gram characters are extracted and this is done for every word. Then,
a boolean vector of three-gram characters are used to represent the words and these word
vectors are concatenated in a following step to be the feature vector of the sliding window.
A convolution operation with a max-pooling layer is applied over each sliding window to
generate feature vectors for the following feed-forward neural network which determines the
semantic relatedness between two sentences. In 2018, Yao et al. [64] introduced a sentence
encoder architecture using an LSTM for the semantic similarity measurement task. In the
first stage, they introduced a new normalization algorithm to overcome the vanishing gradient
problem and then utilized an inception module approach [59] to extract useful features from
multiple dimensions. Finally, they used the cosine similarity metric to compute the semantic
relatedness between two sentences. Shashavali et al. [55] investigated models with the cosine
similarity computation incorporating both a sliding window and a weighted N-gram to generate
vector representations for sentences with the intention to compute textual semantic relatedness.
Mueller and Thyagarajan [46] utilized the siamese architecture [9] with an LSTM for this task.

However, these models give equal preference to all of the words in the sentences while

Chapter 2. Literature Review 30

computing the semantic relatedness, whereas some words in a sentence should be given higher
importance. For example, the word “not” can change the overall meaning of the whole sen-
tence. In that case, this word should get higher importance. To deal with this issue, a few
models have been introduced in recent times incorporating attention mechanisms for the se-
mantic similarity measurement task. Yang et al. [36] introduced inner attention to compute
the individual word’s importance in a sentence and applied it with Bi-LSTM for the natural
language inference classification task. For the same task, Lin et al. [35] introduced the struc-
tured self-attention mechanism where each sentence is represented by a matrix instead of a
vector. Each row in that matrix represents different important portions of the sentence with the
appropriate importance. Conneau et al. [15] incorporated the siamese architecture with these
attention mechanisms and Bi-LSTM for the semantic relatedness measurement task.

Chapter 3

Methodology

This chapter gives an overview of the complete project from the data preprocessing to the
citation linkage task. As little work has been done previously for the citation linkage task,
a proper dataset for the training and testing of the models used for this task is not available.
For this reason, we collected and preprocessed data for the training of the model. This dataset
creation together with generation of word embeddings, sentence embeddings, and the final
model design are the topics to be discussed in this chapter.

3.1 Dataset Creation

For the citation linkage task in the biomedical research article domain, only one dataset is avail-
able as per our knowledge. This dataset was created by Houngbo and Mercer [26]. Although in
scientific research papers the citation span can be one or more sentences (or part of a sentence),
for the above work, it is limited to a single sentence, so the citation linkage dataset is composed
of sentence pairs. These sentence pairs were annotated by a domain expert for likelihood of
being a citing-cited sentence pair on a scale of 0 (not likely) and 1 (lowest confidence score) to
5 (highest confidence score). This dataset is small. It contains only 3857 sentence pairs. This
small amount of data is not sufficient enough for the training of deep learning models. Deep
learning models have the ability to learn the inherent patterns of the data through the training
process, but they need a lot of data to be accurately trained. Moreover, the dataset is highly
imbalanced. Looking ahead to Section 3.2 we view the citation linkage task as a binary classi-
fication task, a view also suggested in [26]. Out of these 3857 samples only 81 are annotated
with rating 4 or 5 which in our experiments are what we have considered positive samples
and all others are negatively annotated. A model trained with this type of imbalanced dataset
becomes biased.

To overcome these issues, we have developed a synthetic corpus of 68,898 sentence pairs

31

Chapter 3. Methodology 32

over three biomedical topics: cell biology, biochemistry, and chemical biology to train our deep
learning models. Looking ahead again to Section 3.2, in this thesis we consider that a citing
sentence refers to a cited sentence if they are semantically similar. In creating the dataset, we
wanted to annotate the data without any human effort. For this reason, an unsupervised learning
technique needs to be involved. The synthetic corpus has been annotated, not by humans,
but rather by an unsupervised sentence embedding technique called Sent2Vec followed by a
cosine calculation of the angle between the resulting sentence vectors as a measure of semantic
similarity of the two sentences in each pair. Among these data, 45.89% samples are positive
samples and the remaining are negative. We have used the corpus built by Houngbo and Mercer
[25] for the validation and test purposes with a change in the scoring factor that was mentioned
previously: scores 4 and 5 in this corpus are replaced with 1 (positive) and the remaining scores
are replaced with 0 (negative).

Data must be collected for the creation of the synthetic corpus and as training data for
Sent2Vec. Our data sources are the citation sentences from 2289 articles manually collected
from the web and a set of 28,310 full-text articles from a wide spectrum of biomedical journals
(first made available by The National Center for Biotechnology Information (PubMed Central)
in 2009) that is used to train Sent2Vec. Upon inspection of these articles, we noticed that as
these articles are from various biomedical genre, they differ in format because of genre and
journal writing styles. For this and some other reasons that will be discussed below, the data
needs to be cleaned before it can be used. Before discussing the data cleaning procedure in
Section 3.1.3, we first turn to a description of the data and data sources and the creation of the
synthetic corpus.

3.1.1 Sentence Embedding

In order to calculate the cosine of the angle between the sentence pair vectors in the synthetic
corpus as a measure of semantic similarity of the two sentences in each pair, the sentences
must first be embedded in a vector space. We have chosen Sent2Vec to perform this embed-
ding. BioSentVec also provides sentence embeddings for biomedical sentences. However,
upon inspection we noticed that few chemical names in our corpus are absent from their data.
Furthermore, BioSentVec is trained with sentences from abstract section of the biomedical
research papers only which are usually short in length. Where, sentences in our case are com-
paratively long in length and BioSentVec was not producing good sentence representations for
them, That’s why we trained Sent2Vec with our data instead of using pre-trained BioSentVec.

To generate good sentence embeddings, Sent2Vec must be trained on sentences taken from
the same domain. Like other unsupervised sentence embedding models, Sent2Vec requires a

Chapter 3. Methodology 33

lot of data compared to supervised models. For this reason, 4,843,756 sentences from 28,310
research documents were collected. These documents are from 90 biomedical subdomains like
cell biochemistry, biology, bioinformatics, biological chemistry, cell biology, etc.

After cleaning the sentences, the next step is to train an unsupervised sentence embedding
model. This step is important for the annotation of the sentence pairs. Sentence embedding
models other than Sent2Vec require pretrained word embeddings as the input. Over these
input these models are trained and then generate the sentence vectors. In contrast, Sent2Vec
performs both tasks simultaneously. It first generates the word embeddings and then combines
them to generate the embedding for the sentence. Moreover, this is the state of the art model for
unsupervised sentence embedding. Biosentvec gives the pretrained model for biomedical texts.
However, the biosentvec model is not trained with all the words that appear in our collected
data. That’s why Sent2Vec is trained with various parameter settings over our data and the best
model is chosen against a validation set which is a portion of the human annotated dataset from
Houngbo and Mercer’s work [26].

3.1.2 Annotated Sentence Pair Creation

As the citation linkage task is formulated as a sentence level textual semantic similarity mea-
surement problem, a necessary step in creating the synthetic corpus is the gathering of pairs of
citation and candidate cited sentences. To provide the cited sentences, among the 28,310 re-
search documents, 112 were randomly selected from the biochemistry, cell biology and chemi-
cal biology domains. These papers were considered as the reference research papers while cre-
ating the corpus and conducting the downstream experiments. For these 112 research papers,
2289 papers which have cited them were manually collected. These papers were considered as
the citing papers. From these papers only the corresponding citation sentences are extracted.

After cleaning the data, sentence pairs are generated, the first sentence in the pair being
a sentence from the cited article and the second sentence being the citing sentence such that
there is one sentence pair for each sentence in the cited article. This step generates 475,807
sentence pairs. Then, individual sentences of each sentence pair is fed to the already trained
Sent2Vec model to get the vector representation. Then cosine similarity is measured between
the sentence vectors for each sentence pair. The cosine similarity values come in the range
from 0 to 1. For different cutoff cosine similarity values the performances are tested against the
validation set. This validation set is a portion of Houngbo and Mercer’s [26] human annotated
corpus containing 800 sentence pairs (20 positive samples and 780 negative samples). To
determine the best cutoff points, all the cutoffs are plotted on an ROC curve [45] and the best
performance was found for cutoff value 0.57. Sentence pairs with the cosine similarity values

Chapter 3. Methodology 34

Figure 3.1: Annotated sentence pair creation for synthetic corpus build-up.

which are greater than or equal to the selected cutoff value are annotated with similarity value
1 and the remaining are annotated with 0. However, among these 475,807 sentence pairs most
of the pairs are annotated with zero value. If the following models are trained with this data,
they are highly likely to be biased. For this reason, among these sentence pairs 68,898 samples
are chosen so that the dataset becomes balanced. Figure 3.1 shows the annotated sentence
pair creation steps in a graphical way for better understanding. While choosing these data
samples all of the sentence pairs annotated with similarity value 1 are kept. Then for each
citation sentence, n negative samples are chosen where n is the number of positive samples
found for that citation sentence. However, for some citation sentences, no positive sentence
pair is found. For those citation sentences, five randomly chosen negative samples are inserted
into the dataset. Thus, the dataset of 68,898 samples is created. This dataset contains 31,624
positively annotated sentence pairs which comprise 45.89% of the dataset.

Finally, for the validation set, 800 samples from the human annotated corpus are chosen.
As the human annotated dataset is highly imbalanced and only 81 positive samples are present,
we randomly chose 20 positive samples to use in the validation set. The test set is separated
with 3057 samples which contain 61 positive samples. Each of the sets are non-overlapping.

3.1.3 Data Cleaning

The full-text articles that we have to conduct our experiments differ in format because of genre
and journal writing styles. For instance, the same equation may appear in different contexts
with different variable names and symbols. Since these names and symbols could possibly be
used to make a semantic similarity decision it was decided to replace equations with a single

Chapter 3. Methodology 35

symbol. The same operation has been done for numbers as well, since the many different num-
bers would increase the vocabulary size and in many cases each number occurs infrequently.
Knowing that a number is part of a sentence rather than knowing its exact value is usually
what is needed for determining semantic similarity. Sentences may contain a few unnecessary
symbols in terms of semantic representations that need to be deleted. Furthermore, the same
symbol or operator is represented in different formats because of using different encoding sys-
tems while writing the documents. They need to be represented in a common format. Details
of this data cleaning are given next.

Some sentences collected from different biomedical research articles are simply equations,
nothing else. An analysis of the data suggested that identifying a few specific symbols (pre-
sented in Table 3.1) would be enough to recognize such equation sentences. These sentences
are deleted. Citation numbers like “[xx]”, which are unnecessary while computing the seman-
tic relatedness at the sentence level, are also removed. Table 3.2 shows the regex commands
used for this and other data cleaning steps that are discussed below.

All the equations that remain as part of a sentence are recognized and replaced with “<equ>”.
The regex for locating equations is constructed to consider various contexts. First, equations
may start with various brackets like “(”, “{”, etc. Equations may contain mathematical opera-
tors like “∪”, “∩”, etc. Functions like “ f (g(x))” need to be recognized. There may be special
symbols for log functions or integration functions. There may be words or numbers as part of
the equation. They may contain Greek letters as well. Following these operands there may or
may not be some enclosing brackets. Following that, there may be zero, one or more paren-
theses. Following that, there can be any mathematical symbol. And finally, there may be some
ending braces. So this regex can capture any equation with an optional first operand like “-”
followed by pairs of mathematical symbols and operands.

There is occasional ambiguity with some of the characters. One case appears for the “*”
sign. It may come as an operator in an equation or it may come out as a sign to represent
some reference inside the text. The second case is not important for the semantic relatedness
measurement task. For example, “By contrast , SP reduced the topological uncertainty of

Table 3.1: Symbols for deletion

Chapter 3. Methodology 36

Table 3.2: Regex commands for capturing different patterns throughout the data

PAUP* to a large extent .”. In this case the “*” sign with the word “PAUP” is not something
meaningful. In situations like this, this sign is deleted. Similarly, some ambiguities are found
for the α sign. This symbol may appear in a equation to indicate in proportion to. Or it may
appear with a chemical name like “AUCO-α”. In the case of chemical names, this sign is
replaced with the term “alpha”. The reason to do so is the presence of the chemical names
where only this symbol is different and it indicates some other chemical name. But the symbol
is kept as it is if it appears as a part of an equation.

Sentences may contain some numbers which are not a part of a equation. All of the stan-
dalone numbers are replaced with “<num>”. Among them, some may be composed just of
numerals and some may come with some symbols in front of them like “-5”. To capture them,
two different regexes are built. The reason behind making separate regexes is that some chem-
ical names come with hyphens, numbers and other operators like “C-O2”, “HER2”. If the
number appears as a part of any chemical name, they are preserved in their original form.

In the next step, all the symbols with different representation formats are replaced with

Chapter 3. Methodology 37

Table 3.3: Symbols and their corresponding replacement

their corresponding common format representation (Table 3.3). In the end, some unnecessary
symbols are deleted. Finally all alphabetic characters are lower-cased.

3.2 Citation Linkage as a Semantic Similarity Measurement
Task

Recalling from Section 3.1, the citation span is restricted to a single sentence. So, the citation
linkage task is to find the set of sentences that are being referred to in the cited article by the
citation sentence. With this in mind, the dataset discussed in Section 3.1 has been prepared

Chapter 3. Methodology 38

with pairs of sentences, the first sentence in the pair being a sentence from the cited article and
the second sentence being the citation sentence. These sentence pairs have been automatically
annotated in the manner discussed therein. The task for this dataset is to determine which of
the sentence pairs are examples of citation linkage.

One measure of citation linkage is whether the citing and cited sentences are semantically
similar. So, in this thesis, the citation linkage task is being viewed as a semantic relatedness
measurement problem. Henceforth, the task at hand will be viewed simply as a semantic relat-
edness task. Furthermore, the semantic relatedness task can be viewed as a binary classification
task: for each pair of sentences, are they semantically related or not.

In this thesis the semantic relatedness task is modelled using neural models. Section 3.2.2
discusses the supervised models that will be used for determining the semantic similarity of
the sentence pairs. These models need vector representations of the words as input. The word
embedding technique is discussed in Section 3.2.1.

3.2.1 Word Embedding for the Semantic Similarity Measurement Task

For the embedding of the words, fasttext [4] has been used. The reason for this choice is that
this model has the ability to generate word vectors even if that word is unseen to it in training
by utilizing the sub-word embeddings. Biowordvec, a word embedding specially developed for
the biomedical domain, offers pretrained word embeddings for biomedical corpora. However,
upon inspection, a lot of chemical names were absent in their pretrained embeddings. That’s
why we trained fasttext with our data. For the training of fasttext, all of the 4,843,746 sen-
tences from the 28,310 documents used to train Sent2Vec together with the citation sentences
collected from the 2289 papers used in the preparation of our citation linkage dataset are used.
The fasttext model has been trained with various parameter settings (see Chapter 4 for details).
The model with the best pearson and spearman values over the UMNSRS-Sim [49] dataset, a
standard dataset used to evaluate biomedical word embeddings, is chosen for use in the seman-
tic similarity task. This dataset contains 566 UMLS concept pairs manually rated for semantic
similarity using a continuous response scale.

3.2.2 Neural Models for the Semantic Similarity Measurement Task

Of the various top-ranked neural models for the semantic similarity task, infersent has proven
to be the best LSTM-based architecture on the standard semantic similarity tasks used to eval-
uate semantic similarity models. So, we have chosen the infersent [15] model to use in this
thesis. For a better understanding of this architecture, this section first discusses the siamese
architecture, a key component of infersent, and then the overall architecture.

Chapter 3. Methodology 39

Figure 3.2: Siamese adaptation of the LSTM architecture for the semantic relatedness task
(source: Mueller and Thyagarajan [46]).

In 2016, Mueller and Thyagarajan [46] adapted the siamese architecture [9] for the LSTM
network for the semantic relatedness task. For this task they restricted the subsequent opera-
tions of the LSTM network to work with a simple Manhattan metric and this model outputs the
vector representations of the sentences which can preserve complex semantic properties.

This model utilizes two LSTMs where each of them is responsible to process only one
sentence of the given sentence pair. However, the trick they used is that both the LSTMs share
the same architecture and weight matrices which makes this model more suitable for tasks in
asymmetric domains. Figure 3.2 gives the overview of the model architecture.

The LSTM tries to map a variable length sequence of word vectors into a fixed length
vector which eventually represents the sentence into a vector form. A sentence of T words
is passed to the LSTM. At each time step, the LSTM processes one word sequentially and
updates its hidden state. At time step T , the hidden representation of the LSTM, hT ∈ Rdsen, is
the vector representation of that sentence. For a sentence pair, this model utilizes a similarity
function g over the LSTM representations. This similarity measurement metric determines the
underlying semantic relatedness between the given sentence pair. The similarity function is
defined as (Eqn. 3.1) [46]:

g(h(a)
Ta
, h(b)

Tb
) = exp(−||h(a)

Ta
− h(b)

Tb
||) ∈ [0, 1] (3.1)

where, h(a)
Ta

and h(b)
Tb

are the hidden state representations of sentences S a and S b, respectively.

Later in 2017, Conneau et al. [15] investigated different neural network based techniques
for generating fixed length vector representations of the sentences utilizing the siamese struc-
ture [46]. They trained their model over SNLI dataset with the concept that better semantic of
a particular sentence can be preserved if the sentence encoding model is trained over natural
language inference data. Their explored neural network based techniques are simple recurrent

Chapter 3. Methodology 40

Figure 3.3: Infersent with Inner Attention (source: Conneau et al. [15]).

neural network (RNN), Long Short-Term Memory (LSTM), Bi-directional LSTM (Bi-LSTM),
and gated recurrent unit (GRU) with different pooling operations, hierarchical CNN, inner-
attention mechanism [36], hierarchical attention mechanism [63] and self-attentive network
[35]. In their first attempt,they applied simple LSTM and GRU over a input sequence of T

words (x1, x2, . . . xT) and at time step T , the sentence vector representation is generated in the
form of hidden state representation. Experiments with Bi-LSTM and Bi-GRU output one hid-
den representation from the forward pass and one hidden state representation from the back-
ward pass in both cases. They concatenated those two hidden vectors and pick either mean
or max value from the vector for each time step. This operation outputs a vector of size T

that represents the sentence in the vector space. Later they tried with inner-attention mecha-
nism over the hidden state representations of the Bi-LSTM unit (3.3) and generates the vector
representation of the sentence (u). The procedure is as follows (Eqns. 3.2-3.4) [15]:

h̄i = tanh(Whi + bw) (3.2)

αi =
eh̄T

i uw∑
i eh̄T

i uw
(3.3)

u =
∑

t

αihi (3.4)

In their next attempt, they utilized the idea from the hierarchical attention mechanism over Bi-
LSTM at sentence level. For this task, they applied the idea of the inner attention mechanism
[36]. But, unlike the previous approach which computes the attention weighted sentence rep-
resentation once, they computed it several times and finally concatenated them to generate the
final sentence representation. They got their best result utilizing four context vectors.

They also used the structured self-attention mechanism over Bi-LSTM for the natural lan-
guage inference task. Unlike the previous approaches, structured self-attention mechanism

Chapter 3. Methodology 41

Figure 3.4: Infersent training mechanism

represents a sentence by a matrix instead of a vector. Because of using siamese architecture,
two identical Bi-LSTMs with structured self-attention mechanism generate matrix formed sen-
tence representations for both of the sentences in the pair. Then for each sentence, rows in the
corresponding matrix are concatenated to form the sentence representation.

Being inspired by a hierarchical convolutional model named AdaSent [66], they introduced
the Hierarchical ConvNet [15] which applies four consecutive convolution operations over the
word vectors. At each layer max pooling is applied over the convoluted feature maps to gener-
ate one intermediate sentence representation. Finally, all four such intermediate representation
vectors are concatenated to produce the final sentence representation. The architecture of the
Hierarchical ConvNet is portrayed by Figure 3.5.

During the training of the models, two identical models are operated over two input sen-
tences which output two vector representations for the sentences (u, v). Then a feature map is
generated which accommodates the concatenation, absolute point-wise difference and point-
wise multiplication of these two sentence vectors. This feature map is then fed to the following
dense and softmax layer to get the class prediction. After the model is trained, everything else
in the sentence encoder part is discarded. Figure 3.4 shows the training process of the infersent
model. After completing experiments with all of the models, the authors noted that among all
the neural network architectures Bi-LSTM with max-pooling gives the best sentence encoding.
An architectural overview of the infersent model with Bi-LSTM and max-pooling is illustrated
in Figure 3.6.

3.2.3 Using Infersent for the Semantic Similarity Measurement Task

Recalling the discussion in the introduction to this section, the citation linkage task is being
viewed as a semantic similarity measurement task where sentence pairs are annotated as being
semantically similar or not. The dataset used for the experiments in Chapter 4 has been created

Chapter 3. Methodology 42

Figure 3.5: Hierarchical ConvNet architecture (source: Conneau et al. [15]).

with sentence pairs annotated with class label 1 to represent that the second sentence in the
pair, the citing sentence, is referring to the first sentence in the pair, the cited sentence, and
annotated with class label 0, if there is no reference. To decide whether the two sentences
in the sentence pair are similar, the infersent architecture has been designed as a binary class
classifier where class labels are 0 and 1.

For the semantic similarity measurement task five variants of the infersent architecture are
used. The first one is the Bi-LSTM with max-pooling architecture as described earlier. In
the second architecture, an inner attention mechanism [36] is applied over the outputs of the
LSTM network. For the third attempt, an hierarchical attention mechanism [63] is applied over
the output of the Bi-LSTM model. Hierarchical inner attention mechanism was introduced for
document classification. For our purposes, only the first portion of their approach is applied.
This approach makes it similar to the inner attention mechanism. The only difference in these
two approaches is that just like their way of focusing on multiple important portions of the

Chapter 3. Methodology 43

Figure 3.6: Infersent model with Bi-LSTM and max-pooling (source: Conneau et al. [15])

sentence [63], we used four context vectors instead of one like inner attention mechanism [36].
Thus this model generates four representations of the same sentence. These four different
representations are then concatenated to generate the sentence representation. In the following
attempt, Bi-LSTM with structured self-attention [35] is applied with four hops. For the last
attempt,the hierarchical convolutional neural network (Hierarchical ConvNet) is used. For this
task, four layers of the convolution operation with max pooling is applied. Max pooling is
applied over the feature map generated at each convolution layer and a representation ui is
generated. Concatenating this representation from each layer the sentence representation is
generated. After that the same operations, as stated earlier for the final classification task,
are applied for all the models. However, the best result is achieved for infersent with the
hierarchical attention mechanism over Bi-LSTM architecture.

In the end, bootstrapping approach is utilized for the citation linkage task. The bootstrap-
ping is performed with the variants of the Infersent architectures. For this task, the whole
sentence pair dataset is separated into three portions. The annotation we got after running
Sent2Vec is kept as it is for the first portion. Then with this data, the Infersent model is trained
and validated against the human annotated validation data. The model with best validation ac-
curacy is saved and used to annotate the second portion of the data. After annotating the second
portion of the data, this data is added with the previously trained set and this combined data
is used to train the Infersent model again. This time, the model is used to annotate the third
portion of the data. After this third run is done, this annotated data is also added to the training
set and Infersent is trained one more time with the latest trained dataset. The performance is
then tested against the human annotated dataset. For a single bootstrapping, the same neural
network architecture is used in all the trials, hence, five bootstrapping runs are made for the
experiments.

Chapter 4

Experimental Setup And Results Analysis

This chapter concerns the details of the experimental setup for the semantic similarity mea-
surement task and the analysis of the experimental results. It is divided into two parts. The first
section discusses the parameter settings of the different word embeddings, sentence embed-
dings, and the five Infersent architectures used in the experiments. We used various parameter
settings for the different models to obtain the optimal parameter configurations for these mod-
els. In the second section, the various models’ performances with these optimal parameters are
discussed in detail.

4.1 Network Parameters and Settings

For the dataset creation and semantic similarity measurement task discussed in Chapter 3, we
trained one word embedding, one sentence embedding and four infersent architectures with
different neural networks and attention mechanisms.

For the training of fasttext, we tried with both the skip-gram and CBOW architectures. We
also varied the word embedding dimension, number of epochs, and window size. The n-grams
at both the character and word levels were kept static to reduce the number of experiments. For
both n-gram hyper-parameters, the value is set to 5 as in most of the experiments this n-gram
value give the best result. Table 4.1 gives a list of different hyper-parameter configurations
used for the training of the fasttext model. These different hyper-parameter settings were used
for both skip-gram and CBOW architectures.

Finally, the fasttext model with the skip-gram architecture which generates 300 dimensional
word vectors after 10 epochs having window size 5, maximum number of considered subwords
5, and learning rate 0.05 was selected, as the best pearson and spearman values over UMNSRS-
Sim [49] are found with this parameter setting. The pearson and spearman values obtained for
this parameter settings are 0.576 and 0.566. These values are comparably lower than BioWord-

44

Chapter 4. Experimental Setup And Results Analysis 45

Table 4.1: Hyper-parameter settings for the training of the fasttext model.

Hyper-parameter Ranges Selected
Embedding dimension 200/300/600 300
Epochs 5/7/10 10
Window size 5/10/20 5
Maximum number of subwords 5 5
Learning rate 0.01/0.05/0.1 0.05
Architecture type Skip-gram/CBOW Skip-gram

Table 4.2: The hyper-parameter setting for Sent2Vec sentence embedding architecture

Hyper-parameter Ranges Selected
Embedding dimension 200/300/400/500/600/700/800 500

Epochs 5/7/10/15/20 10
Window size 10/20 20

Learning rate (LR) 0.01/0.05/0.1/0.2 0.2
Number of Negative Samples 10 10

Loss function
Negative sampling/

hierarchical softmax/

softmax
Negative sampling

Sampling threshold 0.0001 0.0001

Vec which obtained 0.667 and 0.657, respectively. However, when final infersent models were
run with BioWordVec the overall performance was not up to the mark. After analysing the
data, we found that some chemical names were not present in the pre-trained BioWordVec vo-
cabulary and due to our data cleaning process some chemical names are represented in ways
that are different from theirs.

The Sent2Vec model incorporates the fasttext CBOW architecture in its own architecture
and with these fasttext generated word vectors simultaneously generates the sentence vector.
For the training of the Sent2Vec architecture, different hyper-parameter values were tested.
Table 4.2 gives the list of different hyper-parameters. The best sentence embedding is found
with a 500 dimensional vector representation.

For the infersent architecture, the learning rate was set to 0.1. Gradient clipping was used
while training. For a decrease in validation set accuracy, the learning rate accuracy was divided
by 5. The batch size we tested with for all the architectures was 50 and the learning rate thresh-
old was set to 10−5. For the final multi-layer perceptron, the hidden layer dimension was set to
512, and for the input of the LSTMs, 300 dimensional word embeddings were used. For the
training of the architectures, stochastic gradient descent was used. For the infersent architec-
ture these parameter settings are found in the original paper to give the best performance. To

Chapter 4. Experimental Setup And Results Analysis 46

(a) Hierarchical ConvNet (b) Bi-LSTM with max-pooling

(c) Bi-LSTM with inner attention (d) Bi-LSTM with hierarchical attention

(e) Bi-LSTM with structured self attention

Figure 4.1: Training set and validation set accuracy for different models

avoid a lot of experiments, these parameter values are used.

4.2 Performance Analysis

This section describes the results obtained from the experiments conducted for the semantic
similarity measurement task. To analyze the performance of the word embedding models,
pearson and spearman metrics are used. For the 300 dimensional word embedding, the calcu-
lated pearson and spearman values are 0.576 and 0.566 respectively.

Chapter 4. Experimental Setup And Results Analysis 47

(a) Hierarchical ConvNet (b) Bi-LSTM with max-pooling

(c) Bi-LSTM with inner attention (d) Bi-LSTM with hierarchical attention

(e) Bi-LSTM with structured self attention

Figure 4.2: Training set and validation set accuracy for different bootstrapped models

Figure 4.1 shows the training and validation accuracy of the individual models against
epochs. From Figure 4.1(a) it is clear that the validation accuracy of the Hierarchical ConvNet
model is a little bit lower compared to the validation set accuracy from the other models. The
overall test accuracy of the model is also substantially lower compared to all of the other mod-
els (see Table 4.3). For the Bi-LSTM with max-pooling architecture, validation accuracy im-
proves. Validation set accuracy improves in the same manner for the inner attention, structured
self-attention and hierarchical attention mechanisms. For all other models apart from Hierar-
chical ConvNet, the validation accuracies are around 90%, whereas the Hierarchical ConvNet

Chapter 4. Experimental Setup And Results Analysis 48

is only 83.17%. Among the standalone models, the best validation accuracy is found for the
Bi-LSTM with structured self-attention model. It is 94.22%. The worst performance is found
for Hierarchical ConvNet. For Hierarchical ConvNet, the validation accuracy is 83.14%. Even
Hierarchical ConvNet’s training accuracy is less than 95%. Figure 4.2 shows the training and
validation accuracy of these above stated models when they are bootstrapped. For the boot-
strapped models the validation accuracy improves compared to their standalone forms. The
best training accuracy is found for Bi-LSTM with max-pooling and that is 97.92%. However,
the best validation accuracy is found for Bi-LSTM with hierarchical attention and Bi-LSTM
with structured self-attention. In both cases, the validation accuracy is more than 95%. For
Bi-LSTM with inner attention, the validation accuracy is 94.85%. Even in this scenario, the
bootstrapped model with Hierarchical ConvNet comes with the lowest validation accuracy. The
validation accuracy found for Hierarchical ConvNet is 85.27%. Still, the overall performance
of the model improves if it is bootstrapped.

To analyze the performance of the models for the semantic similarity measurement task,
precision, recall, accuracy, F1-score, false positive rate, true negative rate and false negative
rate are the considered evaluation metrics. These metrics (Eqns. 4.1-4.7) [61] are defined by:

precision =
tp

tp + fp
(4.1)

recall =
tp

tp + fn
(4.2)

F1-score =
2 ∗ precision ∗ recall

precision + recall
(4.3)

accuracy =
tp + tn

tp + fp + tn + fn
(4.4)

true negative rate (TNR) =
tn

tn + fp
(4.5)

false positive rate (FPR) =
fp

fp + tn
(4.6)

false negative rate (FNR) =
fn

fn + tp
(4.7)

However, for binary class classification with imbalanced datasets, the F-1 score doesn’t re-
flect the performance of the model properly as it ignores true negative rate from consideration.
Instead, metrics like the Matthews correlation coefficient (MCC) are more suitable when evalu-
ating the performance of a binary classifier dealing with an imbalanced dataset [50]. The major
advantage with MCC is that it considers true positives and negatives as well as false positives
and negatives. Thus, it generates a balanced evaluation of the model’s performance even if the
dataset is highly imbalanced [7, 16, 40]. Given true and false positives and negatives it outputs

Chapter 4. Experimental Setup And Results Analysis 49

a value in the range of -1 to +1. Here, +1 indicates an accurate classification performance, -1
means there is no match between the predictions of the model and the true observations. If the
MCC score is 0, then the model’s performance is considered as nothing but random predic-
tions. The MCC score for a binary classifier’s classification performance over an imbalanced
dataset is calculated using Eqn. 4.8 [61]:

MCC =
tp × tn − fp × fn√

(tp + fp)(tp + fn)(tn + fp)(tn + fn)
(4.8)

Another way to assess the performance of a binary classifier when it works with an im-
balanced dataset is balanced accuracy (BACC) [8]. The conventional accuracy metric can’t
properly evaluate the performance of a binary classifier if the dataset is highly imbalanced and
the model is biased towards the class with most of the samples. In this scenario, if the model
predicts the same class for all the samples in the dataset, the traditional accuracy metric would
be equal to the proportion of the more frequent class’s samples in the whole dataset, although
the model has no capacity of generalization. As an example, if 90% of the samples of a dataset
belong to class “A”, the remaining 10% belong to class “B” and a binary classifier classifies all
the samples as “A”, the traditional accuracy of the classifier would be 90%. BACC overcomes
this limitation of the traditional accuracy metric by considering the average recall gained by
both of the classes. It outputs in the range (0,1) (it can also be represented as a percentage
value). Higher BACC indicates better performance obtained by the model. The BACC is
computed as (Eqn. 4.9) [8, 61]:

BACC =

tp
tp+fn + tn

tn+fp

2
(4.9)

For the example given above, the BACC would be 0.45 (or 45%), which gives a better evalua-
tion of the model’s performance.

Table 4.3 shows the performance metrics found for different Infersent architectures and the
bootstrapped models. We first trained and tested each model with two different settings. In
the first setting, the models were provided with the pretrained BioWordVec word embeddings
and the sentence pairs in the training set were annotated using the pretrained BioSentVec. In
the second setting, the models were fed the fasttext word embeddings that we trained on our
corpus. The sentence pairs in the training set were also annotated using Sent2Vec which was
also trained on our corpus. Analysing the performance metrics from Table 4.3, it is clear that
the models perform better in the second setup where both the word and sentence embedding
models are trained on our own corpus. This happened for two reasons. First, the vocabulary of
BioSentVec and BioWordVec doesn’t contain all the words that appear in our corpus. Most of
the time, the missing words are for the chemical names. The second reason is that BioSentVec

Chapter 4. Experimental Setup And Results Analysis 50

Table 4.3: Performance analysis of different models for the citation linkage task. The mod-
els are: M1: Hierarchical ConvNet, M2: Bi-LSTM with max-pooling, M3: Bi-LSTM with
inner attention, M4: Bi-LSTM with hierarchical attention, M5: Bi-LSTM with structured
self-attention. These five models have been trained with BioWordVec word embedding and
BioSentVec sentence embedding. The notation used is “-Bio” after each method name. Fur-
thermore, the five original methods are also bootstrapped. The notation used is “Boot-” placed
in front of each method name. The column headings: TP and FP: true and false positives,
respectively; TN and FN: true and false negatives, respectively; P: Precision; R: Recall; F1:
F1-score; TNR: True Negative Rate, (True Positive Rate not shown because it is the same
as Recall); FPR and FNR: False Positive and Negative Rate, respectively; MCC: Matthews
correlation coefficient; Acc.: Accuracy; and BACC: Balanced accuracy.

Model TP FP TN FN P R F1 FPR TNR FNR MCC
Acc.
(in %)

BACC
(in %)

M1 44 580 2416 17 0.07 0.72 0.13 0.19 0.81 0.27 0.18 80.5 76.38
M2 53 365 2631 8 0.13 0.87 0.22 0.12 0.88 0.13 0.30 87.81 87.35
M3 54 358 2638 7 0.13 0.89 0.22 0.12 0.88 0.11 0.31 88.07 88.28
M4 55 356 2640 6 0.13 0.90 0.23 0.12 0.88 0.09 0.32 88.17 89.14
M5 54 356 2640 7 0.13 0.89 0.23 0.12 0.88 0.11 0.31 88.15 88.32
M1-Bio 42 644 2352 19 0.06 0.69 0.11 0.21 0.79 0.31 0.16 78.32 73.68
M2-Bio 52 419 2577 9 0.11 0.85 0.20 0.14 0.86 0.15 0.28 86.01 85.63
M3-Bio 52 420 2576 9 0.11 0.85 0.20 0.14 0.86 0.15 0.28 85.99 85.61
M4-Bio 54 376 2620 7 0.13 0.89 0.22 0.13 0.87 0.11 0.31 87.48 87.98
M5-Bio 54 374 2622 7 0.13 0.89 0.22 0.12 0.88 0.11 0.31 87.56 88.02
Boot-M1 46 576 2420 15 0.07 0.75 0.13 0.19 0.81 0.25 0.20 80.69 78.09
Boot-M2 53 359 2637 8 0.13 0.87 0.22 0.12 0.88 0.13 0.31 88.02 87.45
Boot-M3 54 349 2647 7 0.13 0.89 0.23 0.12 0.88 0.11 0.32 88.38 88.43
Boot-M4 56 339 2657 5 0.14 0.92 0.25 0.11 0.89 0.08 0.34 88.75 90.24
Boot-M5 56 343 2653 5 0.14 0.92 0.24 0.11 0.89 0.08 0.33 88.63 90.18
Houngbo
et al. [25] 34 995 2001 27 0.03 0.56 0.06 0.33 0.66 0.44 0.07 66.58 61.26

Li et al.
[33] 39 779 2217 22 0.05 0.64 0.09 0.26 0.74 0.36 0.12 73.81 68.97

was trained over sentences from the research article abstracts. These tend to be shorter in
length compared to the sentences from the Method section of research articles which comprise
our test set. Sentences in our training corpus are from different portions of the research articles
and they tend to be longer in length. For all the models, the F-1 score, MCC, accuracy, and
balanced accuracy are found to be better for the second setup. We then used these models,
which use our trained fasttext and Sent2Vec, for the bootstrap models.

Among the five different Infersent architectures, the best result in terms of test set accu-
racy and F-1 score is found for Bi-LSTM with hierarchical attention mechanism and the worst
performance is found for Hierarchical Convnet. For the Hierarchical Convnet, not only is its ac-
curacy is lower, but also it captures fewer true positives. Out of 61 positive samples, it correctly
captures only 44, whereas it captures 580 negatives samples as positive ones. It even captured

Chapter 4. Experimental Setup And Results Analysis 51

the most false negative samples (17). It captures 2416 negative samples properly. Both Bi-
LSTM with the structured self-attention mechanism and the inner attention mechanism capture
54 positive samples correctly. However, the Bi-LSTM with self-attention mechanism comes
with a higher accuracy as it captures more negative samples correctly. Among the bootstrapped
architectures the best test set accuracy and F-1 score is found for Bi-LSTM with hierarchical
attention. It captures 56 positive samples correctly with an F-1 score of 0.25. It also captures
2657 negative samples correctly. Both Infersent architectures with and without bootstrapping
captures 56 positive samples correctly. However, the bootstrapped version classifies negative
samples more accurately. The bootstrapped model with structured self-attention mechanism
over Bi-LSTM also classifies 56 positive samples correctly. However, it comes with a little
bit lower accuracy (88.63%). In terms of MCC and BACC, the best result is also found for
the bootstrapped Bi-LSTM with hierarchical attention mechanism (0.34 and 90.24%, respec-
tively). The bootstrapped Bi-LSTM with structured self-attention mechanism also gives higher
MCC and BACC scores than the other models. The MCC and BACC scores found for this
model are 0.33 and 90.18%, respectively. From the results with the bootstrapping approaches,
it is clear that the performance has improved in all cases, though the improvements are not
significant. In terms of MCC, the Bi-LSTM with hierarchical attention gives the best result
among the simple models (0.32) as well as bootstrapped models (0.34).

To compare the performance of the model with the two pre-existing models, we have trained
these two models with our synthetic corpus and then tested against the human annotated corpus.
From Table 4.3 it is clearly visible that the models we have developed in this thesis surpass
the previous works’ performances. In their own work, Houngbo and Mercer [25] reported that
their approach captured only 48.5% positive samples out of 81 whereas if their model is trained
with our much larger synthetic dataset, it captures 55.73% positive samples which we can say
is a good improvement. This result gives proof of the fact that our contributing this synthetic
dataset has been important for the citation linkage task research in the biomedical domain. We
report the retrained Li et al. model [33] but do not compare with the original work because
their task was performed on computational linguistics research articles.

Chapter 5

Conclusions and Future Work

Citations form a network of connected research articles. In the case of scientific research
articles, a citation refers to the document from where the idea stated in the citing sentence
originates. For a number of purposes that have been discussed in Section 1, being able to
determine a more precise focus of a citation would be advantageous. This thesis has provided
a neural learning method for finding those sentences in a cited article that are the focus of a
citation in a citing paper. This final chapter summarizes the contributions of this thesis, points
to the short comings of the study, and gives directions for future work.

5.1 Conclusions

This thesis looks at one method to establish a relationship between the citation sentence and its
corresponding reference sentences from the cited paper, a task called citation linkage. In this
study, citation linkage is modelled as a textual semantic relatedness measurement task. The
text span chosen for this semantic relatedness measurement task is the sentence. The task is
formulated as a textual matching operation between a citation sentence and every sentence in
the corresponding cited paper. A deep learning model is trained and evaluated as the method
for this task.

The main contributions of this thesis are:

1. building a framework to determine the appropriate cited sentences from a cited paper
given a citation sentence,

2. building a corpus for citation linkage task containing more than sixty thousand sentence
pairs from the biomedical domain, and

52

Chapter 5. Conclusions and FutureWork 53

3. developing a method for cleaning and preprocessing sentences from different biomedical
domains

With respect to the first contribution, we have provided a technique to determine the ap-
propriate cited sentences from a cited paper given a citation sentence that has significantly
outperformed previous methods [26] designed for the biomedical domain and evaluated on
that test data set and previous methods [34] that were designed for a different domain. The
best infersent model with bootstrapping has achieved an accuracy of 88.75 on the biochemistry
sentence pair data set provided by Hospice and Mercer [26] compared with 66.58 that was
achieved by our implementation of the Hospice and Mercer model [25, 26] and trained on the
synthetic training set and 73.81 that was achieved by [34] on a computational linguistics data
set.

Deep learning models can learn the inherent pattern from the data throughout the training
process. However, they require a lot of data for the training. As for this task no such large
dataset is available, for our second contribution, we built a synthetic dataset for the training
of our models. In the end, the quality of our synthetic dataset and the used models is tested
against the human annotated dataset and our models surpass the previous model in terms of
determining the relevant cited sentences from the referenced paper. As noted above, the use
of this data set to train the models provided by Houngbo and Mercer [25, 26] improved their
results as well. This is good evidence of the quality of this synthetic data set.

Regarding the third contribution, in order to provide sufficient data to train Sent2Vec, which
was used to annotate our synthetic data set, we needed to clean and preprocess biomedical
full-text articles. A number of regexes have been developed and are made available to the
community.

The synthetic corpus, data cleaning tool, and citation linkage tool are available on GitHub
(https://github.com/sudipta90/CitationLinkage).

5.2 Future Work

This thesis has suggested a method to make a link between citation sentences and sentences
in the cited article based on semantic similarity of sentence pairs. This final section suggests
directions to remove some of the assumptions made in this study and to improve the accuracy
of the method proposed here.

A citation sentence refers to text spans in the referred text document. This text span may be
either a part of a sentence, a single sentence, a paragraph, or a section. For our experiments, we
worked at the sentence level only. This is a limitation of our work. Moving to a sub-sentence

https://github.com/sudipta90/CitationLinkage

Chapter 5. Conclusions and FutureWork 54

level would need to use knowledge about sentence structure. We used sentence embeddings
as the representation in the semantic similarity measurement task. Using techniques to embed
larger text units would be an obvious generalization of this idea.

In addition to modifying the referred to text, one could consider more than the citation
sentence itself in the citation linkage task. While annotating the human annotated test dataset,
the annotator had some context knowledge. She annotated the data having some ideas about
what has been written previous to the citation sentence and she also had biochemisty knowl-
edge. This extra information can provide reasons why our model couldn’t capture more than
74 positively annotated sentences among the 81. Moving beyond simple sentence similarity as
a proxy for citation linkage to include this extra information is something to consider, but is
something that is will require just NLP techniques.

The test data set that was used in this study was created only for method citation sentences.
We have obtained good results having trained on a broader set of citations. It would be ap-
propriate to human annotate a test set with a variety of citation types and see how good the
proposed method performs on this expanded test set. Additionally, future research could also
look at a wider subset of biomedical subdomains rather than the ones used in this study.

Recalling that the experimental biomedical article is written in the IMRaD style, Hospice
and Mercer [25, 26] used this knowledge to improve the accuracy of their model. The citations
in the test set are sentences that mention methods. So by reducing the set of possible citation
linkage candidates to those that can be rhetorically categorized as method sentences, they were
able to improve the performance of their methods. This would be something to look at when
using the technique used in this thesis. (We attempted to obtain the reduced data set without
success. So, this idea would require recreating that data set.) Given the suggested future work
in the previous paragraph, it would be interesting to see how having the IMRaD rhetorical
information would affect the performance.

This framework has the ability to work at the sentence level semantic relatedness measure-
ment task. However, in future this semantic similarity measurement task can be performed
at a larger text span level like paragraph. Furthermore, the models used here don’t consider
any kind of parsing. As a result chemical names with multiple words are being considered
as separate entity. For an example, “sodium chloride” is being considered as two entities:
“sodium” and “chloride”. Using tree structured models like tree LSTM [1] might improve the
performance.

Bibliography

[1] Mahtab Ahmed, Muhammad Rifayat Samee, and Robert E Mercer. Improving tree-LSTM
with tree attention. In Proceedings of the 2019 IEEE 13th International Conference on

Semantic Computing (ICSC), pages 247–254, 2019.

[2] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by
jointly learning to align and translate. arXiv preprint arXiv:1409.0473, 2014.

[3] Yoshua Bengio, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. A neural prob-
abilistic language model. Journal of Machine Learning Research, 3:1137–1155, 2003.

[4] Piotr Bojanowski, Edouard Grave, Armand Joulin, and Tomas Mikolov. Enriching word
vectors with subword information. Transactions of the Association for Computational

Linguistics, 5:135–146, 2017.

[5] Serena Bonin, F Petrera, B Niccolini, and Giorgio Stanta. PCR analysis in archival post-
mortem tissues. Molecular Pathology, 56(3):184–186, 2003.

[6] Lutz Bornmann, K Brad Wray, and Robin Haunschild. Citation concept analysis (CCA):
A new form of citation analysis revealing the usefulness of concepts for other researchers
illustrated by two exemplary case studies including classic books by Thomas S. Kuhn and
Karl R. Popper. Scientometrics, 122:1051–1074, 2020.

[7] Sabri Boughorbel, Fethi Jarray, and Mohammed El-Anbari. Optimal classifier for imbal-
anced data using Matthews correlation coefficient metric. PloS ONE, 12(6), 2017.

[8] Kay Henning Brodersen, Cheng Soon Ong, Klaas Enno Stephan, and Joachim M Buh-
mann. The balanced accuracy and its posterior distribution. In Proceedings of the 2010

20th International Conference on Pattern Recognition, pages 3121–3124, 2010.

[9] Jane Bromley, James W Bentz, Léon Bottou, Isabelle Guyon, Yann LeCun, Cliff Moore,
Eduard Säckinger, and Roopak Shah. Signature verification using a “siamese” time delay

55

BIBLIOGRAPHY 56

neural network. International]ournal of Pattern Recognition and Artificial Intelligence,
7(4):669–688, 1993.

[10] Jason Brownlee. Encoder-decoder recurrent neural network mod-
els for neural machine translation. https://machinelearningmastery.com/

encoder-decoder-recurrent-neural-network-models-neural-machine-translation/. Ac-
cessed: 2019-12-11.

[11] Jason Brownlee. A gentle introduction to exploding gradients in neural net-
works. https://machinelearningmastery.com/exploding-gradients-in-neural-networks/.
Accessed: 2019-12-11.

[12] Jason Brownlee. How to develop a bidirectional LSTM for sequence
classification in python with keras. https://machinelearningmastery.com/

develop-bidirectional-lstm-sequence-classification-python-keras/. Accessed: 2019-
12-11.

[13] Antoni Buades, Bartomeu Coll, and Jean-Michel Morel. A non-local algorithm for image
denoising. In Proceedings of the 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 2, pages 60–65, 2005.

[14] Qingyu Chen, Yifan Peng, and Zhiyong Lu. BioSentVec: Creating sentence embed-
dings for biomedical texts. In Proceedings of the 2019 IEEE International Conference on

Healthcare Informatics (ICHI), pages 1–5, 2019.

[15] Alexis Conneau, Douwe Kiela, Holger Schwenk, Loic Barrault, and Antoine Bordes.
Supervised learning of universal sentence representations from natural language inference
data. In Proceedings of the 2017 Conference on Empirical Methods in Natural Language

Processing (EMNLP), pages 670–680, 2017.

[16] Harald Cramér. Mathematical Methods of Statistics, volume 9 of Mathematical Methods

of Statistics (PMS-9). Princeton University Press, 1946.

[17] easy tensorflow. Vanilla RNN for digit classification. http://www.easy-tensorflow.com/

tf-tutorials/recurrent-neural-networks/vanilla-rnn-for-classification. Accessed: 2019-12-
11.

[18] Eugene Garfield. “Science Citation Index”—A new dimension in indexing. Science,
144(3619):649–654, 1964.

https://machinelearningmastery.com/encoder-decoder-recurrent-neural-network-models-neural-machine-translation/
https://machinelearningmastery.com/encoder-decoder-recurrent-neural-network-models-neural-machine-translation/
https://machinelearningmastery.com/exploding-gradients-in-neural-networks/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
https://machinelearningmastery.com/develop-bidirectional-lstm-sequence-classification-python-keras/
http://www.easy-tensorflow.com/tf-tutorials/recurrent-neural-networks/vanilla-rnn-for-classification
http://www.easy-tensorflow.com/tf-tutorials/recurrent-neural-networks/vanilla-rnn-for-classification

BIBLIOGRAPHY 57

[19] Eugene Garfield. Citation analysis as a tool in journal evaluation. Science,
178(4060):471–479, 1972.

[20] Mark Garzone and Robert E Mercer. Towards an automated citation classifier. In Pro-

ceedings of the 13th Biennial Conference of the Canadian Society for Computational

Studies of Intelligence, pages 337–346, 2000.

[21] Hua He, Kevin Gimpel, and Jimmy Lin. Multi-perspective sentence similarity modeling
with convolutional neural networks. In Proceedings of the 2015 Conference on Empirical

Methods in Natural Language Processing (EMNLP), pages 1576–1586, 2015.

[22] Hua He, John Wieting, Kevin Gimpel, Jinfeng Rao, and Jimmy Lin. UMD-TTIC-UW at
SemEval-2016 Task 1: Attention-based multi-perspective convolutional neural networks
for textual similarity measurement. In Proceedings of the 10th International Workshop

on Semantic Evaluation (SemEval-2016), pages 1103–1108, 2016.

[23] Sepp Hochreiter, Yoshua Bengio, Paolo Frasconi, and Jürgen Schmidhuber. Gradient flow
in recurrent nets: The difficulty of learning long-term dependencies. In A Field Guide to

Dynamical Recurrent Networks, pages 237–243. IEEE Press, 2001.

[24] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory. Neural Computa-

tion, 9(8):1735–1780, 1997.

[25] Hospice Houngbo and Robert E Mercer. Investigating citation linkage with machine
learning. In Proceedings of the 30th Canadian Conference on Artificial Intelligence,
pages 78–83, 2017.

[26] Kokou Hospice Houngbo. Investigating Citation Linkage Between Research Articles.
PhD thesis, The University of Western Ontario, 2017.

[27] Sven E Hug, Michael Ochsner, and Martin P Brändle. Citation analysis with Microsoft
Academic. Scientometrics, 111(1):371–378, 2017.

[28] Cornelis JJ Huijsmans, Jan Damen, Johannes C van der Linden, Paul HM Savelkoul,
and Mirjam HA Hermans. Comparative analysis of four methods to extract DNA from
paraffin-embedded tissues: Effect on downstream molecular applications. BMC Research

Notes, 3:239, 2010.

[29] i2tutorials. Deep dive into bidirectional LSTM. https://www.i2tutorials.com/technology/

deep-dive-into-bidirectional-lstm/. Accessed: 2019-12-11.

https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/
https://www.i2tutorials.com/technology/deep-dive-into-bidirectional-lstm/

BIBLIOGRAPHY 58

[30] K Kayser, H Stute, J Lübcke, and U Wazinski. Rapid microwave fixation—a comparative
morphometric study. The Histochemical Journal, 20(6-7):347–352, 1988.

[31] Ryan Kiros, Yukun Zhu, Ruslan R Salakhutdinov, Richard Zemel, Raquel Urtasun, Anto-
nio Torralba, and Sanja Fidler. Skip-thought vectors. In Advances in Neural Information

Processing Systems, pages 3294–3302, 2015.

[32] Ceshine Lee. Understanding Bidirectional RNN in PyTorch. https://towardsdatascience.
com/understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66. Accessed: 2019-12-11.

[33] Lei Li, Liyuan Mao, Yazhao Zhang, Junqi Chi, Taiwen Huang, Xiaoyue Cong, and Heng
Peng. Computational linguistics literature and citations oriented citation linkage, classifi-
cation and summarization. International Journal on Digital Libraries, 19(2–3):173–190,
2018.

[34] Lei Li, Yingqi Zhu, Yang Xie, Zuying Huang, Wei Liu, Xingyuan Li, and Yinan Liu.
CIST@CLSciSumm-19: Automatic scientific paper summarization with citances and
facets. In Proceedings of the 4th Joint Workshop on Bibliometric-enhanced Informa-

tion Retrieval and Natural Language Processing for Digital Libraries (BIRNDL 2019),
volume 2414 of CEUR Workshop Proceedings, 2019.

[35] Zhouhan Lin, Minwei Feng, Cicero Nogueira dos Santos, Mo Yu, Bing Xiang, Bowen
Zhou, and Yoshua Bengio. A structured self-attentive sentence embedding. arXiv preprint

arXiv:1703.03130, 2017.

[36] Yang Liu, Chengjie Sun, Lei Lin, and Xiaolong Wang. Learning natural lan-
guage inference using bidirectional LSTM model and inner-attention. arXiv preprint

arXiv:1605.09090, 2016.

[37] Lajanugen Logeswaran and Honglak Lee. An efficient framework for learning sentence
representations. In 6th International Conference on Learning Representations (ICLR),
2018.

[38] Michael H MacRoberts and Barbara R MacRoberts. The mismeasure of science: Citation
analysis. Journal of the Association for Information Science and Technology, 69(3):474–
482, 2018.

[39] Tyler Martindale. How do I get started? Using citation analysis to become an effective
liaison. Poster for Association of College & Research Libraries (ACRL), 2019.

https://towardsdatascience.com /understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66
https://towardsdatascience.com /understanding-bidirectional-rnn-in-pytorch-5bd25a5dd66

BIBLIOGRAPHY 59

[40] Brian W Matthews. Comparison of the predicted and observed secondary structure of t4
phage lysozyme. Biochimica et Biophysica Acta (BBA) - Protein Structure, 405(2):442–
451, 1975.

[41] Robert Mercer. Locating and extracting key components of argumentation from scholarly
scientific writing. In Elena Cabrio, Graeme Hirst, Serena Villata, and Adam Wyner, edi-
tors, Natural Language Argumentation: Mining, Processing, and Reasoning over Textual

Arguments (Dagstuhl Seminar 16161), volume 6(4), chapter 3.15, pages 93–94. Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, 2016.

[42] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781, 2013.

[43] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
representations of words and phrases and their compositionality. In Advances in Neural

Information Processing Systems, pages 3111–3119, 2013.

[44] Tsendsuren Munkhdalai, John Lalor, and Hong Yu. Citation analysis with neural attention
models. In Proceedings of the Seventh International Workshop on Health Text Mining and

Information Analysis, pages 69–77, 2016.

[45] Sarang Narkhede. Understanding AUC - ROC curve. https://towardsdatascience.com/

understanding-auc-roc-curve-68b2303cc9c5. Accessed: 2019-12-11.

[46] Paul Neculoiu, Maarten Versteegh, and Mihai Rotaru. Learning text similarity with
siamese recurrent networks. In Proceedings of the 1st Workshop on Representation Learn-

ing for NLP, pages 148–157, 2016.

[47] Christopher Olah. Understanding LSTM networks. https://colah.github.io/posts/
2015-08-Understanding-LSTMs/. Accessed: 2019-12-11.

[48] Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi. Unsupervised learning of sentence
embeddings using compositional n-gram features. In Proceedings of the 2018 Conference

of the North American Chapter of the Association for Computational Linguistics: Human

Language Technologies, Volume 1 (Long Papers), pages 528–540, 2018.

[49] Serguei Pakhomov, Bridget McInnes, Terrence Adam, Ying Liu, Ted Pedersen, and
Genevieve B Melton. Semantic similarity and relatedness between clinical terms: An
experimental study. In Proceedings of the American Medical Informatics Association

(AMIA) Annual Symposium, pages 572–576, 2010.

https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://towardsdatascience.com/understanding-auc-roc-curve-68b2303cc9c5
https://colah.github.io/posts/2015-08-Understanding-LSTMs/
https://colah.github.io/posts/2015-08-Understanding-LSTMs/

BIBLIOGRAPHY 60

[50] Pierre Perruchet and Ronald Peereman. The exploitation of distributional information in
syllable processing. Journal of Neurolinguistics, 17(2-3):97–119, 2004.

[51] Dragomir R. Radev, Hongyan Jing, and Malgorzata Budzikowska. Centroid-based sum-
marization of multiple documents: Sentence extraction, utility-based evaluation, and user
studies. In Proceedings of the NAACL-ANLP 2000 Workshop: Automatic Summarization,
pages 21–30, 2000.

[52] Hojjat Salehinejad, Sharan Sankar, Joseph Barfett, Errol Colak, and Shahrokh Valaee.
Recent advances in recurrent neural networks. arXiv preprint arXiv:1801.01078, 2017.

[53] Niranjan J Sathianathen, Robert Lane 3rd, Benjamin Condon, Declan G Murphy, Nathan
Lawrentschuk, Christopher J Weight, and Alastair D Lamb. Early online attention can
predict citation counts for urological publications: The #UroSoMe_Score. European

Urology Focus, Available online 6 November 2019.

[54] Mike Schuster and Kuldip Paliwal. Bidirectional recurrent neural networks. IEEE Trans-

actions on Signal Processing, 45:2673–2681, 12 1997.

[55] D Shashavali, V Vishwjeet, Rahul Kumar, Gaurav Mathur, Nikhil Nihal, Siddhartha
Mukherjee, and Suresh Venkanagouda Patil. Sentence similarity techniques for short vs
variable length text using word embeddings. Computación y Sistemas, 23(3):999–1004,
2019.

[56] Yelong Shen, Xiaodong He, Jianfeng Gao, Li Deng, and Grégoire Mesnil. A latent seman-
tic model with convolutional-pooling structure for information retrieval. In Proceedings

of the 23rd ACM International Conference on Information and Knowledge Management,
pages 101–110, 2014.

[57] Noah A Smith and Jason Eisner. Contrastive estimation: Training log-linear models on
unlabeled data. In Proceedings of the 43rd Annual Meeting on Association for Computa-

tional Linguistics, pages 354–362, 2005.

[58] Ilya Sutskever, Oriol Vinyals, and Quoc V Le. Sequence to sequence learning with neural
networks. Advances in Neural Information Processing Systems, pages 3104–3112, 2014.

[59] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going deeper
with convolutions. In Proceedings of the IEEE Conference on Computer Vision and Pat-

tern Recognition, pages 1–9, 2015.

BIBLIOGRAPHY 61

[60] Yuker Wang, Victoria EH Carlton, George Karlin-Neumann, Ronald Sapolsky, Li Zhang,
Martin Moorhead, Zhigang C Wang, Andrea L Richardson, Robert Warren, Axel Walther,
Melissa Bondy, Aysegul Sahin, Ralf Krahe, Musaffe Tuna, Patricia A Thompson, Paul T
Spellman, Joe W Gray, Gordon B Mills, and Malek Faham. High quality copy number and
genotype data from FFPE samples using molecular inversion probe (MIP) microarrays.
BMC Medical Genomics, 2(1):8, 2009.

[61] Wikipedia. Evaluation of binary classifiers. https://en.wikipedia.org/wiki/Evaluation_of_
binary_classifiers. Accessed: 2019-12-11.

[62] Petra Wolffs, Halfdan Grage, Oskar Hagberg, and Peter Rådström. Impact of DNA poly-
merases and their buffer systems on quantitative real-time PCR. Journal of Clinical Mi-

crobiology, 42(1):408–411, 2004.

[63] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex Smola, and Eduard Hovy. Hi-
erarchical attention networks for document classification. In Proceedings of the 2016

Conference of the North American Chapter of the Association for Computational Lin-

guistics: Human Language Technologies, pages 1480–1489, 2016.

[64] Lin Yao, Zhengyu Pan, and Huansheng Ning. Unlabeled short text similarity with LSTM
encoder. IEEE Access, 7:3430–3437, 2019.

[65] Yijia Zhang, Qingyu Chen, Zhihao Yang, Hongfei Lin, and Zhiyong Lu. BioWordVec,
improving biomedical word embeddings with subword information and MeSH. Scientific

Data, 6(1):52, 2019.

[66] Han Zhao, Zhengdong Lu, and Pascal Poupart. Self-adaptive hierarchical sentence model.
In Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelli-

gence, pages 4069–4076, 2015.

https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers
https://en.wikipedia.org/wiki/Evaluation_of_binary_classifiers

Curriculum Vitae

Name: Sudipta Singha Roy

Post-Secondary B.Sc. in Computer Science and Engineering
Education and Khulna University of Engineering & Technology
Degrees: 2010 - 2014

Honours and Western Graduate Research Scholarship
Awards: 2018-2019

Related Work Teaching Assistant
Experience: The University of Western Ontario

2018 - 2019

Research Assistant
The University of Western Ontario
2018 - 2019

Publications:

• Sudipta Singha Roy, Robert E. Mercer, and Felipe Urra, Investigating Citation Link-
age as a Sentence Similarity Measurement Task Using Deep Learning, 33rd Canadian
Conference on Artificial Intelligence, 2020. (In Press)

• Sudipta Singha Roy, Mahtab Ahmed, M. A. H. Akhand, Noisy Image Classification Us-
ing Hybrid Deep Learning Methods, Journal of Information and Communication Tech-
nology, 17(2):233–269, 2018.

• Sudipta Singha Roy, Sk Imran Hossain, MAH Akhand, Kazuyuki Murase, A robust sys-
tem for noisy image classification combining denoising autoencoder and convolutional
neural network, International Journal of Advanced Computer Science and Applications,
9(1):224–235, 2018.

62

BIBLIOGRAPHY 63

• Shaikh Akib Shahriyar, Kazi Md Rokibul Alam, Sudipta Singha Roy, Yasuhiko Mori-
moto, An Approach for Multi Label Image Classification Using Single Label Convo-
lutional Neural Network, 21st International Conference of Computer and Information
Technology (ICCIT), pp. 1–6, 2018.

• Sudipta Singha Roy, Shaikh Akib Shahriyar, Md Asaf-Uddowla, Kazi Md Rokibul Alam,
Yasuhiko Morimoto, A novel encryption model for text messages using delayed chaotic
neural network and DNA cryptography, 20th International Conference of Computer and
Information Technology (ICCIT), pp. 1–6, 2017.

• Sudipta Singha Roy, Mahtab Ahmed, MAH Akhand, Classification of massive noisy im-
age using auto-encoders and convolutional neural network, 8th International Conference
on Information Technology (ICIT), pp. 971–979, 2017.

• Sudipta Singha Roy, Tamjid Haque Sarker, MMA Hashem, A novel trust measurement
system for cloud-based marketplace, 2nd International Conference on Electrical Infor-
mation and Communication Technologies (EICT), pp. 49–54, 2015.

	Investigating Citation Linkage as a Sentence Similarity Measurement Task using Deep Learning
	Recommended Citation

	Abstract
	Lay Abstract
	Acknowlegements
	List of Figures
	List of Tables
	Introduction
	Literature Review
	Citation Linkage Research
	Neural Net Research
	Recurrent Neural Networks
	Neural Network Based Word Embedding Models
	Sentence Embedding
	Attention Mechanisms For Natural Language Processing Tasks
	Hierarchical Attention Network
	Attention-Based Multi-Perspective Convolutional Neural Network

	Semantic Similarity Measurement

	Methodology
	Dataset Creation
	Sentence Embedding
	Annotated Sentence Pair Creation
	Data Cleaning

	Citation Linkage as a Semantic Similarity Measurement Task
	Word Embedding for the Semantic Similarity Measurement Task
	Neural Models for the Semantic Similarity Measurement Task
	Using Infersent for the Semantic Similarity Measurement Task

	Experimental Setup And Results Analysis
	Network Parameters and Settings
	Performance Analysis

	Conclusions and Future Work
	Conclusions
	Future Work

	Bibliography
	Curriculum Vitae

