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Abstract 

Cossid moth (Coryphodema tristis) is an indigenous wood-boring insect that presents serious 

environmental, ecological and economic problems globally. An extensive analysis of the current 

spatial distribution of Coryphodema tristis is therefore essential for providing applicable 

management approaches at both local and regional scales. This aim of the study was to assess GIS 

and remote sensing applications combined with species distribution models (Maxent) to monitor 

habitat suitability of the Coryphodema tristis in Mpumalanga, South Africa. The first objective of 

the study focused on comparing the robustness of species distribution models using Maxent 

(presence-data only) and Logistic regression (presence-absence data) in characterizing the habitat 

suitability of the Coryphodema tristis. The second objective of the study evaluated the 

effectiveness of the freely available Sentinel 2 multispectral imagery in detecting and mapping the 

habitat suitability of the C. tristis. The models sought to identify the factors that can be used to 

predict habitat suitability for the C. tristis using environmental and climatic variables. Presence 

and absence records were collected through systematic surveys of forest plantations. The models 

were applied on Eucalyptus nitens plantations of the study area for habitat preferences. The overall 

accuracies indicated that Maxent (AUC = 0.84 and 0.810) was more robust than the Logistic 

regression model (AUC= 0.745 and 0.677) using training and testing datasets, respectively. In 

Maxent, the jackknife indicated that mean temperature for October, aspect, age, mean temperature 

for February, June, December and elevation as the most influential predictor variables. Meanwhile, 

age was the only significant variable in the Logistic regression model. Therefore, results concluded 

that temperature, aspect, age and elevation were optimal in modelling habitat suitability for the 

Coryphodema tristis.  

For the second objective, model performance was evaluated using the Receiver Operating 

Characteristics (ROC) curve showing the Area Under the Curve (AUC) and True Skill Statistic 

(TSS), while the performance of predictors was displayed in the jackknife. Using only the 

occurrence data and Sentinel-2 bands and derived vegetation indices, the Maxent model provided 

successful results, exhibiting an area under curve (AUC) of 0.89. The Photosynthetic vigor ratio, 
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Red edge (705 nm), Red (665 nm), Green NDVI hyper, Green (560 nm) and Shortwave infrared 

(SWIR) (2190 nm) were identified as the most influential predictor variables. Results of this study 

suggests that remotely sensed derived vegetation indices from cost effective platforms could play 

a crucial role in supporting forest pest management strategies and infestation control. Overall, 

these results improve the assessment of temporal changes in habitat suitability of Coryphodema 

tristis, which is crucial in the management and control of these pests. 

Keywords: Cossid moth, Coryphodema tristis; Eucalyptus nitens infestation, Sentinel 2, 

Environmental and climatic variables, Maxent model, Habitat suitability.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 
 

Preface 

 
This study was conducted in the School of Agricultural, Earth and Environmental Sciences, 

University of KwaZulu-Natal, Pietermaritzburg, South Africa, from February 2017 to October 

2018 under the supervision of Dr. Romano Lottering, Prof Paramu Mafongoya and Kabir 

Peerbhay.  

 

I declare that the work presented in this thesis has never been submitted in any form to any other 

institution. This work represents my original work except where due acknowledgements are made.  

 

 

Samuel Takudzwa Kumbula:   Signed ………………………….                     Date………………… 

 

 

 

As the candidate’s supervisor, I certify the aforementioned statement and have approved this thesis 

for submission. 

 

 

Dr. Romano Lottering     Signed………………..                  Date……………………….. 

Prof Paramu Mafongoya     Signed………………..                  Date……………………….. 

Dr. Kabir Peerbhay      Signed………………..                  Date……………………….. 

 

 

 



iv 
 

 

Declaration 

 

 

I Samuel Takudzwa Kumbula, declare that:  

 

 

1. The research reported in this thesis, except where otherwise indicated is my original research.  

2. This thesis has not been submitted for any degree or examination at any other institution.  

3. This thesis does not contain other person’s data, pictures, graphs or other information, unless 

specifically acknowledged as being sourced from other persons.  

4. This thesis does not contain other persons writing, unless specifically acknowledged as being 

sourced from other researchers. Where other written sources have been quoted:  

a. Their words have been re-written and the general information attributed to them has 

been referenced.  

b. Where their exact words have been used, their writing has been placed in italics 

inside quotation marks and referenced 

5. This thesis does not contain text, graphics or tables copied and pasted from the internet, unless 

specifically acknowledged, and the source being detailed in the thesis and in the references 

section.  

 

Signed:………………………..                              Date……………………….. 

 

  



v 
 

Dedication 

 

I dedicate this dissertation to my beloved family, for believing so greatly in me and in the potential 

that I have to achieve greatness. From day one you have had faith in me to travel this journey and 

now we have made it, I want to continue making you proud. 

  



vi 
 

Acknowledgements 

Special thanks goes to my family for their unwavering support, Mum and Dad you are the best and 

I’m forever grateful for all the strings you pulled ……”Munondipasa manyemwe”. As for Edgar 

Mutape Chivunze aiwa babamudiki your graduation is coming the ball is still rolling, I’m still in 

the race. Babamudiki Finnet Kumbula “Oldman” thank you for your support you have been by my 

side all these journeys and I thank you.  Above all thanks to my little brothers Finnet and Hugh 

Kumbula for your support gents we made it “Mama we made it”.   

 

I would like to extend my gratitude to the University of KwaZulu-Natal, the School of Agricultural, 

Earth and Environmental Sciences and the Geography department. It has been a privilege to work 

and interact with all of you within the school at large, Thank you.  My deepest gratitude goes to 

my supervisors, Dr. Romano Lottering, Dr. Kabir Peerbhay and Prof Paramu Mafongoya who 

spent day and night to ensure that this project smoothly sailed on till today. I have learnt a lot from 

all of you, it goes without saying “Your intellectual knowledge goes beyond what one can 

imagine”. You have assembled me into a hardworking and disciplined researcher that focuses on 

the set targets and ensures that the job is done and I thank you for that. Special thanks to Prof 

Paramu Mafongoya as the NRF SARCHI for Rural Development and Agronomy for providing 

logistical support in everything much appreciated.   

 

I would also like to extend my appreciation and special thanks to Dr. Mbulisi Sibanda for his 

commitment and rigorous efforts towards mentoring me during my studies. The long hours in the 

office were sometimes fun and at the same time unpleasant but you made sure that every day you 

came with new ways of thinking and motivation to keep me going and I have no words that can 

describe what I feel this moment, be blessed and carry on the good work.  

 

I would also give special thanks to my friends and colleagues, Trylee “Chairman” Matongera, 

Rodney Muringai, Sivuyile Mkhulisi, Ngoni Chipendo, Lungile Pamela Madela, Shenell Sewell, 

Dr. Terrence Mushore, Mnqobi Mtshali, Dr. Sithabile Hlahla, Dr. Cletah Shoko, Charles Otunga, 

Mr. Donavon Devos for their encouragement during my study as well as for their unconditional 

psychological support. 



vii 
 

Table of Contents 

Abstract ............................................................................................................................................ i 

Preface............................................................................................................................................ iii 

Declaration ..................................................................................................................................... iv 

Dedication ....................................................................................................................................... v 

Acknowledgements ........................................................................................................................ vi 

Table of Contents .......................................................................................................................... vii 

List of Tables ................................................................................................................................. ix 

List of Figures ................................................................................................................................ ix 

Chapter One : General Introduction........................................................................................... 1 

1.1 Introduction ............................................................................................................................... 1 

1.2 Aims and objectives .................................................................................................................. 3 

1.3 Key research questions ............................................................................................................. 3 

1.4 Main hypothesis ........................................................................................................................ 4 

1.5 General structure of the thesis ................................................................................................... 4 

Chapter Two: Modelling potential habitat suitability of Coryphodema tristis (Cossid moth) 

on Eucalyptus nitens plantations using Species Distribution Models ....................................... 5 

Abstract ........................................................................................................................................... 5 

2.1. Introduction .............................................................................................................................. 5 

2.2. Methods and Materials ............................................................................................................. 8 

2.2.1 Study area ........................................................................................................................... 8 

2.2.2 Species occurrence data ..................................................................................................... 9 

2.2.3. Climatic and Environmental predictors........................................................................... 11 

2.2.4 Statistical Data analysis .................................................................................................... 12 

2.2.4.1 Maxent and Logistic Regression ................................................................................... 12 

2.2.4.2 Accuracy assessment ..................................................................................................... 13 

2.3. Results .................................................................................................................................... 14 

2.3.1 Evaluating the performance of Maxent and Logistic regression for detecting C. tristis 

presence………… ..................................................................................................................... 14 

2.3.2 Evaluating the significance of environmental and climatic predictors for C. tristis 

presence. .................................................................................................................................... 15 

2.3.3 Spatial distribution of areas susceptible to C. tristis habitation ....................................... 18 

2.4 Discussion ............................................................................................................................... 20 



viii 
 

2.5 Conclusion .............................................................................................................................. 23 

Chapter Three: Using Multispectral remote sensing to map habitat suitability of the Cossid 

Moth in Mpumalanga, South Africa. ........................................................................................ 24 

Abstract ......................................................................................................................................... 24 

3.1. Introduction ............................................................................................................................ 24 

3.2. Methods and Materials ........................................................................................................... 27 

3.2.1 Study area ......................................................................................................................... 27 

3.2.2 Image acquisition ............................................................................................................. 29 

3.2.3. Image processing and analysis ........................................................................................ 29 

3.2.4 Field data collection. ........................................................................................................ 30 

3.2.5 Maxent modelling approach ............................................................................................. 31 

3.2.6 Model accuracy assessment ............................................................................................. 32 

3.3. Results .................................................................................................................................... 33 

3.3.1 Prediction of the C. tristis using spectral bands and vegetation indices as independent 

datasets. ..................................................................................................................................... 33 

3.3.2 Prediction of the C. tristis using combined variables....................................................... 36 

3.3.3 C. tristis moth spatial distribution .................................................................................... 38 

3.4. Discussion .............................................................................................................................. 39 

3.5. Conclusion ............................................................................................................................. 42 

Chapter Four: Objectives reviewed and conclusions .............................................................. 44 

4.1 Introduction ............................................................................................................................. 44 

4.2 To evaluate the robustness of the Maxent approach in modelling the potential habitat 

suitability of the C. tristis on E. nitens using climatic, environmental and remotely sensed data in 

relation to the performance of Logistic regression. ...................................................................... 44 

4.3 To evaluate the effectiveness of the freely available Sentinel 2 multispectral imagery in 

detecting and mapping the habitat suitability of the C. tristis. ..................................................... 45 

4.4 Conclusions ............................................................................................................................. 46 

Reference list ................................................................................................................................ 48 

 

 

 





ix 
 

 

 List of Tables 

Table 2. 1.Twelve variables selected for modelling of the suitability of the C. tristis. ................ 11 

Table 2. 2 Results of the Logistic regression model. .................................................................... 17 

 

Table 3. 1: Sentinel 2 vegetation indices tested in this study ....................................................... 30 

Table 3. 2: Variables used in the three analysis stages in Maxent model. .................................... 33 

 

 

List of Figures 

Figure 2. 1 Study area of Sappi plantations in Lothair, Mpumalanga, South Africa with a colour 

composite of RGB (Red, NIR & Blue) using a Sentinel 2 image. ........................................ 10 

Figure 2. 2 AUC evaluating the performance of a) Maxent and b) Logistic regression in predicting 

the habitat suitability of the Coryphodema tristis using the selected variables. .................... 14 

Figure 2. 3 a) Jackknife illustrating the variables that influence the prediction of the C. tristis using 

Maxent and b) indicating the significance and non-significant variables used to model the 

occurrence of the C. tristis using the Logistic regression. ..................................................... 16 

Figure 2. 4 Response curves of mean temperature for October (a), age (b), mean temperature for 

February (c), mean temperature for June (d), mean temperature for December (e) and 

elevation (f) that show how these selected variables affected the prediction of the C. tristis 

using Maxent. ........................................................................................................................ 17 

Figure 2. 5 Maps showing the prediction of occurrence of the C. tristis using Logistic regression 

and Maxent. ........................................................................................................................... 19 

 

Figure 3. 1 a) Map of South Africa and b) the location of the Mpumalanga Province; (c) and (d) 

show healthy and infested Eucalyptus nitens and e) shows the sampled parts of the forest using 

the Sentinel 2 image with a colour composite of RGB (Red, NIR & Blue). ......................... 28 

Figure 3. 2: The receiver operator characteristic curve that was used to measure model accuracy 

of a) spectral wavebands and b) vegetation indices. ............................................................. 34 

Figure 3. 3 Jackknife test variable importance graph of a) spectral wavebands and b) vegetation 

indices derived in modelling the spatial distribution of the Coryphodema tristis. ................ 35 

Figure 3. 4 The receiver operator characteristic curve of combined variables that was used to 

measure model accuracy. ....................................................................................................... 37 

Figure 3. 5 Jackknife test variable importance graph of combined variables derived in modelling 

the spatial distribution of the Coryphodema tristis. .............................................................. 38 

Figure 3. 6 Map showing the habitat suitability of C. tristis on the Lothair plantation. ............... 39 

 



1 
 

Chapter One 

 General Introduction 

1.1 Introduction  

Eucalyptus tree species are among the most planted trees in the world because of their economic 

value and rapid growth rate (Wingfield et al., 2008). In commercial forest plantations, Eucalyptus 

tree species have been widely grown and cultivated mainly for fuelwood, timber, pulp and paper 

(Swain and Gardner, 2003; Wingfield et al., 1996). Emerging insect pests and diseases have caused 

extensive damage to Eucalyptus nitens commercial forests threatening future sustainability of the 

forestry sector. Coryphodema tristis (commonly known as the Cossid moth) in particular, is one 

of the emerging pests that has adversely affected the growth and yield of E. nitens plantations 

(Adam et al., 2013; Boreham, 2006). Literature shows that the C. tristis was recorded on E. nitens 

plantations in South Africa in 2004. The C. tristis is native to South Africa and has been associated 

with grapevine, apple, quince and sugar pear trees (Bouwer et al., 2015). However, a sudden shift 

to infest E. nitens in South Africa has been observed and is associated with environmental 

conditions as well as the absence of natural enemies. C. tristis is an indigenous wood-boring insect 

that feeds on the bark of the E. nitens trees. It poses a major threat to the forestry sector as it affects 

the quality and quantity of the yield. During the initial stages, extensive tunneling in the sapwood 

and heartwood of the trees is observed. As infestation progresses, resin and sawdust from larval 

feeding will also be observed (Adam et al., 2013; Gebeyehu et al., 2005). The biology and impact 

of the C. tristis on E. nitens plantation forests will be further described in chapter two of this study. 

Currently, there is no biological agent to control the damage of the moth. Hence, understanding 

the spatial distribution as well as habitat suitability conditions of the C. tristis would be beneficial 

to the forestry stakeholders.  

Species Distribution Models (SDM) have become increasingly important and widely used to 

determine the spatial distribution of forest pests (Michael and Warren 2009; Wisz et al. 2013). 

These methods use presence and absence or presence-only datasets to relate known locations of  

pests with the environmental conditions of the target area so as to estimate the response function, 

contribution of variables and use them to predict the potential spatial distribution of species 

(Matawa et al., 2016; Phillips et al., 2017; Yi et al., 2016). Several studies have challenged the 
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reliability of absence data in modelling forest pests, indicating that failure to observe does not 

necessarily signify absence (Baldwin, 2009; Phillips and Dudík, 2008). According to Elith et al., 

(2006) and Phillips et al., (2006) absence data are rarely available and costly to collect in traditional 

field surveys, especially in cases of rare or emerging species. In addition, traditional data collection 

methods are mostly time-consuming, labor-intensive and spatially restrictive resulting in 

subjective absence information (Ndlovu et al., 2018; Pause et al., 2016; Pietrzykowski et al., 2007). 

When comparing presence-only datasets and presence and absence datasets, presence-only 

datasets represent a convenient dataset that reduces the processing and handling costs (Sahragard 

and Ajorlo, 2018). Hence, presence-only datasets are appropriate for species distribution 

modelling, due to being readily available and cost-effective as compared to absence datasets. For 

example, several studies compared the prediction accuracy of Logistic regression, Maximum 

entropy, artificial neural network and other SDMs in the potential habitats of species. Maxent that 

uses presence-only data was found to be a robust algorithm among other SDM’s (Elith et al., 2011; 

Phillips et al., 2017; Tarkesh and Jetschke, 2012).  

Recently, integration of SDM’s and GIS and remote sensing for assessing the sensitivity of data 

in detecting and mapping the habitat suitability of forest pests has become increasingly appealing 

(Kozak et al., 2008; Ndlovu et al., 2018). In South Africa, determining the vulnerability of E. nitens 

forests to the C. tristis has been currently conducted with traditional field surveys, climatic and 

topographic data only. Remote sensing plays a key role in the assessment and monitoring of forest 

health as well as condition of habitat suitability of plantation forest pests in real time (Ismail et al., 

2007; Lottering et al., 2018; Oumar and Mutanga, 2013). Advances in multispectral remote sensing 

have improved the spatial and spectral capabilities of sensors even in the detection and mapping 

of forest plantation pests and diseases. Different studies utilizing spectral information such as 

wavebands, red edge bands and vegetation indices of multispectral sensors show that they have 

offered opportunities to enhance the capability of SDM’s both spatially and temporally (Adelabu 

et al. 2013; Lottering and Mutanga 2016; Oumar and Mutanga 2011; Rullan-Silva et al. 2013). In 

addition, Light Detection and Ranging (LIDAR) has provided an extensive contribution to the 

monitoring of forest health (Lausch et al., 2017; Pause et al., 2016). For example, Müller and 

Brandl (2009) stated that derived predictor variables from LIDAR improved the modelling of the 

habitat suitability of forest beetles in Germany. On the other hand, Oumar and Mutanga (2013) 
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acknowledged that the addition of remotely sensed environmental predictors such as wavebands 

and vegetation indices improved the robustness of SDM’s.  

Due to the infestation outbreaks of the C. tristis, understanding the current and potential 

distribution of the C. tristis is essential for effective forestry management. Hence, the application 

of remote sensing would be beneficial to the forestry sector, because of its ability to cover large 

areas at a cheaper cost (Adelabu et al., 2014; Senf et al., 2017). The new generation of freely 

available multispectral sensors such as Sentinel-2 characterized by 13 spectral bands that cover the 

red edge region (Band 5, 6 and 7) acquired at 290 km orbital swath width, offers the potential to 

determine the habitat suitability of the C. tristis over a large landscape scale (Addabbo et al., 2016; 

Hawryło et al., 2018). The sensor is associated with a high revisit time of 5 days which provides 

an effective temporal resolution that can monitor forest plantation health. In addition, vegetation 

indices calculated from the Sentinel 2 wavebands are sensitive to vegetation health and have been 

widely used as predictor variables in mapping and monitoring of forest pests. Therefore, the 

current study aimed at assessing the application of remotely sensed data combined with SDMs in 

mapping the habitat suitability of the C. tristis in Mpumalanga, South Africa.  

1.2 Aims and objectives  

The overall purpose of the study was to model the potential habitat suitability of the Cossid moth 

(Coryphodema tristis)in Mpumalanga, South Africa.  The following objectives were set: 

➢ To evaluate the robustness of the Maxent approach in modelling the potential habitat 

suitability of the C. tristis on E. nitens using climatic, environmental and remotely sensed 

data in relation to the performance of Logistic regression. 

➢ To understand the climatic and environmental variables that influence the suitability of the 

C. tristis on E. nitens plantation.  

➢ To evaluate the effectiveness of the freely available Sentinel 2 multispectral imagery in 

detecting and mapping habitat suitability of the C. tristis.    

1.3 Key research questions  

➢ To what extent does the Maxent model successfully predict the potential habitats of the C. 

tristis? 
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➢ How can Maxent as a SDM identify the climatic and environmental variables that influence 

the suitability preference of the C. tristis on E. nitens plantation?  

➢ How effectively does the freely available Sentinel 2 sensor detect and map the C. tristis 

habitat suitability?  

1.4 Main hypothesis  

➢ The integration of species distribution models and remotely sensed data has the potential 

to detect and map the spatial distribution of the C. tristis habitat suitability with acceptable 

accuracies.   

1.5 General structure of the thesis  

This thesis consists of four chapters. The first chapter is the general introduction that provides 

general background information on the subject at hand as well as the aim and objectives of the 

study. The two objectives of this thesis are presented in chapter two and three as standalone 

research papers that when combined answer the overarching aim of this study. The last chapter is 

the conclusion, which provides a synthesis of the overall research.  

Chapter two assessed the habitat suitability of the C. tristis by comparing the robustness of two 

species distribution models (Maxent and Logistic regression) and testing the performance of 

remotely sensed data in modelling the suitability preference of the moth. In addition, it also 

investigates the climatic and environmental variables that contribute to the habitat preference of 

the C. tristis. Finally, the chapter highlights the advantages of presence-only datasets over 

presence-absence datasets in modelling and mapping the habitat suitability of the C. tristis.  

Chapter three assessed the utility of the freely available Sentinel 2 multispectral instrument in 

detecting and mapping the habitat suitability of the C. tristis. The study tested the application of 

wavebands, red edge bands and vegetation indices in detecting and mapping the habitat suitability 

of the moth.  
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Chapter Two 

Modelling potential habitat suitability of Coryphodema tristis 

(Cossid moth) on Eucalyptus nitens plantations using Species 

Distribution Models  

Abstract 

The study sought to assess the robustness of species distribution models using Maxent (presence-

data only) and Logistic regression (presence-absence data) algorithms to model the habitat 

suitability of Coryphodema tristis. The models were also used to identify climatic and 

environmental variables that can predict habitat suitability for the C. tristis in Mpumalanga, South 

Africa. Presence and absence records were collected through systematic surveys of forest 

plantations. Climatic and environmental variables included climate, topography and compartment-

specific attributes. The overall accuracies indicated that Maxent (AUC = 0.840 and 0.810) was 

more robust than the Logistic regression model (AUC= 0.745 and 0.677) using training and testing 

data, respectively. In Maxent, the jackknife indicated that mean temperature for October, aspect, 

age, mean temperature for February, June, December and elevation were identified as the most 

influential predictor variables. Meanwhile, age was the only significant variable in the Logistic 

regression model. Therefore, results concluded that temperature, aspect, age and elevation were 

optimal in modelling habitat suitability for the C. tristis. Thus, these results improve the assessment 

of temporal changes in habitat suitability of C. tristis, which is crucial in the management and 

control of these pests. 

Keywords: Cossid moth, climatic and environmental variables, Maxent model, Habitat 

preference.  

2.1. Introduction  

Coryphodema tristis (Lepidoptera: Cossidae), commonly known as the Cossid moth, is an 

indigenous wood-boring insect that has caused significant damage to commercial Eucalyptus 

plantations (Degufu et al. 2013). The native moth has suddenly been recorded in cold-tolerant 

areas of Mpumalanga that are prone to frost and snow, these conditions are conducive for 

Eucalyptus nitens plantations (Boreham 2006; Degefu et al. 2013). The C. tristis has recently 

shifted its hosts to E. nitens and this has been attributed to the absent or low numbers of natural 

enemies (Battisti and Larsson, 2015; Gebeyehu et al., 2005). Eucalyptus tree species have been 

widely grown and cultivated mainly for fuelwood, timber, pulp and paper (Swain and Gardner, 

2003; Wingfield et al., 1996). Hence, the continuous infestation of E. nitens plantations reduces 

the quality and quantity produced by the commercial forest plantations, which may affect the gross 
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domestic product of the host country. Currently, the forest industry produces input raw materials 

for other sectors such as construction and textile. Therefore, the negative impact of pests and 

diseases reduces the income generated by the host country from commercial E. nitens plantations.   

The biology of the C. tristis indicates that it takes between two or three years to complete its life 

cycle and its estimated that up to eighteen months is spent in its larval stage, which is the greater 

part of its life cycle (Adam et al. 2013; Bouwer et al. 2015). As a native species in South Africa, 

adult moths emerge from October to mid-December in the Western Cape province on fruit tree 

species of grapevine, apple, quince and sugar pear trees (Bouwer et al. 2015; Gebeyehu et al. 

2005). Previous studies conducted in the Mpumalanga area indicated that occurrence times of the 

C. tristis are almost similar to those found in the Western cape (Adam et al. 2013; Boreham 2006). 

In July, signs and symptoms of larvae damage occurrence was recognized, this resulted in the 

development of the adult C. tristis that were seen between August to October (Gebeyehu et al. 

2005). In addition, traditional field surveys reported the establishment of all stages in the month 

of October, which was seen by pupal cases protruding out on tree holes resembling existence of 

adult moths (Adam et al. 2013). The adult moths are rarely seen due to their dull colour and their 

short-lived duration, creating a challenge of identification of the moth (Ramanagouda et al. 2010).  

However, few studies regarding the habitat suitability of the C. tristis have been undertaken. 

Investigating and developing a habitat suitability model to estimate the spatial distribution, as well 

as habitat preferences of the C. tristis is crucial for the conservation of E. nitens plantations.  

Over the years, several studies have been conducted to identify and understand how climatic and 

environmental variables influence the spatial distribution of pests. Climatic variables such as 

temperature and precipitation influence the development, reproduction, survival, geographic range 

and population size of insect pests (Jaworski and Hilszczański 2013; Petzoldt and Seaman 2006). 

A number of studies indicated that temperature changes have influenced warming in tropical areas 

and has resulted in tropical insects becoming sensitive to little changes (Biber-Freudenberger et 

al. 2016; Dillon et al. 2010). Change in temperature either negatively/positively impacts the 

surrounding conditions inducing pest’s populations to either disperse, adapt or shift hosts (Deka et 

al. 2011). Different studies have highlighted that increased summer temperatures and shortened 

winter periods have resulted in rapid insect reproduction and faster growth (Kocmánková et al. 

2009; Oumar and Mutanga 2013). Hence, changes in temperature reduce winter mortality and 
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increase the population size of pests which results in tree species becoming more vulnerable to 

infestation (Deka et al. 2011).  Moisture (precipitation) availability and variability also contribute 

to the habitat preferences of pests as it affects insect pest predators, parasites, and diseases 

(Jaworski and Hilszczański 2013; Kutywayo et al. 2013). In addition, habitat preference is related 

to elevation gradients because without favorable matting, host foraging and ovipositional 

conditions the pest cannot reproduce and survive (Péré et al. 2013). Forest stakeholders such as 

agro foresters, ecologists and conservation practitioners need to understand the fundamental 

factors that shape species spatial distributions in order to develop effective management strategies 

(Meier et al. 2010). For that reason, we developed Species Distribution Models (SDM) as a 

function of location, climatic and environmental conditions.  

SDMs model the geographic distributions of species using either presence and absence data or 

presence-only data (Michael and Warren 2009; Wisz et al. 2013). Corresponding mathematical 

environmental conditions and distribution data is utilized to estimate the suitable species habitat 

and projected onto the geographic area to determine the probability of habitat preferences (Elith 

and Leathwick 2009; Yi et al. 2016). To estimate suitable preferences, SDM’s use true presences 

and true absences obtained either from traditional field surveys or georeferenced species records 

(Biber-Freudenberger et al. 2016; Wang et al. 2018). Several studies have indicated that it is very 

difficult to obtain absence data (Babar et al. 2012; Farzin et al. 2016; Michael and Warren 2009). 

According to  Baldwin (2009), absence data is very difficult to verify because failure to observe 

the target species does not mean absence and this results in substantially biased species-habitat 

relationships. In addition, traditional data collection methods are mostly time-consuming, costly, 

labor-intensive and spatially restrictive hindering the collection of actual absence data (Pause et 

al. 2016; Pietrzykowski et al. 2007). To date, a number of models that use presence-absence and 

presence-only datasets such as Generalized Linear Model (GLM), Logistic regression, Genetic 

Algorithm for Rule-set Production (GARP), DOMAIN and Maxent have been used to predict 

species distributions. In recent comparative studies of these models, presence-only datasets have 

been identified as robust algorithms that can be used to optimally model the spatial distribution of 

species.  

A previous study utilized the random forest species distribution model to map the presence or 

absence of C. tristis infestations on E. nitens forests in Mpumalanga (Adam et al. 2013). In their 
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endeavor, they only utilized climatic and topographic variables to determine the susceptibility of 

E. nitens forests to C. tristis infestations. Their study successfully identified four variables that 

included elevation, the maximum temperature for September and April as well as the median 

rainfall for April as influential to infestation of E. nitens. Previous application of climatic and 

environmental variables to evaluate species distributions has been commonly used. However, the 

recent integration of remotely sensed data into SDM has become increasingly appealing and 

considered to improve the performance of SDMs (Kozak et al. 2008; Ndlovu et al. 2018). Presence-

only datasets have also proved to be cost-effective and statistically better for modelling species 

distribution as fewer costs are associated in collecting and processing the data in the field. As a 

result, this study selected Maxent because of its various advantages: (1) The input species data can 

be presence-only data; (2) both continuous and categorical data can be used as input variables; (3) 

its prediction accuracy is always stable and reliable, even with incomplete data, small sample sizes 

and gaps; (4) a spatially explicit habitat suitability map can be directly produced; and (5) the 

importance of individual environmental variables can be evaluated using a built-in jackknife. 

However, it is essential to compare the predictive efficiency of the Maxent model using a presence 

and absence SDM. Hence, the Logistic regression model was selected based on the criteria that 

both models use different input data type and modelling procedure. Considering the different 

capabilities of both models, there is a need for a more reasonable and cost-effective modeling 

approach in relation to the limitation of resources and budget constraints in the data collection 

process for large-scale operations.  

In this study, using climatic and environmental variables we built SDM’s for modelling the habitat 

suitability of the C. tristis using the following approach: 1) to validate Maxent’s robustness in 

modelling the suitability preference of the C. tristis, we compared it with the Logistic regression 

model that uses presence and absence data; 2) to test the performance of remotely sensed data in 

modelling the suitability preference of the C. tristis; 3) determine the factors that influence the 

suitability of the C. tristis in Mpumalanga, South Africa.   

2.2. Methods and Materials 

2.2.1 Study area 
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The study was conducted in commercial Eucalyptus plantations of the Mpumalanga province of 

South Africa (Fig. 2.1). Eucalyptus plantations occupy an area of 23 928 Ha at an elevation that 

ranges between 1200m to 2100m. The mean annual precipitation for the area is 630–1600 mm and 

the mean annual temperature is 13 – 210C. E. nitens is planted in this region due to the cold 

tolerance of the tree species. Compartments are managed for pulp and timber production and 

between 1 ha to 100 ha. 

2.2.2 Species occurrence data 

Commercial Eucalyptus compartments are annually assessed by Sappi for C. tristis induced 

infestation. The assessments are done following a two-tier approach. This is done during winter 

(June – July) and summer (August - October) seasons. Our field surveys were conducted during 

this period because the larvae stages occur between June and July and the adult moth is identified 

between August and October. The age of the E. nitens trees ranged between 4.5 to 6.7 years. Using 

a zigzag sampling technique, the number of infested trees were measured within a pre-determined 

number of transects across each stand (Boreham 2006). Transects were distributed evenly across 

each stand to ensure full representation. Each transect was made up of 100 live trees with the 

number of transects per stand area being proportional to the planted area of the stands. In each 

hectare, one plot was selected randomly and those less than one hectare was excluded from the 

survey (Adam et al. 2013). To determine the presence and absence of the moth, the boring dust on 

the stem or on the floor around the base of the tree was used an indicator (Boreham 2004, 2006, 

Adam et al. 2013). The number of infested trees per plot were then counted and expressed as a 

percentage for each surveyed stand. The attained percentages were used to indicate the suitable 

and unsuitable habitats of the C. tristis. According to the surveyed stands (n = 77), only 37 stands 

had signs of C. tristis infestation indicating suitable habitats while 40 compartments were free 

from infestation. Using ArcGIS 10.4, a polygon dataset was created to represent the suitable and 

unsuitable habitats of the C. tristis. These records were used to create presence and absence and 

presence only data to train (70%) and test (30%) the models. These recorded suitable and 

unsuitable datasets were then used to extract information using climatic and environmental and 

variables. 
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Figure 2. 1 Study area of Sappi plantations in Lothair, Mpumalanga, South Africa with a color composite of RGB (Red, NIR & Blue) 

using a Sentinel 2 image. 
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2.2.3. Climatic and Environmental predictors  

 

A total of 32 environmental variables were considered when developing the C. tristis model. 

Multicollinearity between independent variables was checked through the calculation of the 

variance inflation factor (VIF) in the Logistic regression method. Variables that had a VIF lower 

than 10 were selected because they indicated that there was no multicollinearity between 

independent variables (Table 2.1). Precipitation and temperature variables were obtained from the 

WorldClim dataset (Fick and Hijmans 2017) at 30 arc-second (1 km x1 km grid cells) resolution. 

The dataset consisted of mean precipitation and temperature for the 12 months derived from 

historical records from weather stations across the globe, and it is available at 

http://www.worldclim.org (accessed 24 October 2016). Table 2.1 shows the selected variables to 

model the habitat suitability of the C. tristis.  

Table 2. 1.Twelve variables selected for modelling of the suitability of the C. tristis. 

Variable Type  Variables  

1. Environmental  

 

Age, Aspect, Elevation, Slope  

2. Climatic  Mean Temperature- February, June, October, December  

Mean Precipitation- January, July, October, November 

 

Both variables were calculated on the basis of monthly averages of rainfall and temperature and 

were significant because they contained the average information of the trends experienced during 

that particular month. Using a 1m DEM derived from LIDAR, topographic data comprised of 

slope, aspect and digital elevation were extracted using the spatial analyst tool in ArcGIS 10.4. 

However, Maxent is compatible with ASCII raster datasets and all the variables should have the 

same pixel size, extent and projection system in order to run the model (Ndlovu et al. 2018). 

Therefore, all the other variables were resampled to 1m spatial resolution and projected to the 

Universal Transverse Mercator (UTM) projection to match topographic variables. Hence, the 

conversion of all variables from raster to ASCII was carried out in ArcGIS to ensure all variables 

match.    

http://www.worldclim.org/
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2.2.4 Statistical Data analysis 

 

2.2.4.1 Maxent and Logistic Regression  

 

Maximum entropy (Maxent) distribution model was used in this study. The model uses presence-

data-only and the related environmental and climatic variables to model habitat suitability of the 

C. tristis. Maxent applies the maximum‐entropy principle to fit the model and compares the 

interactions between the presence locations and variables to estimate the probability of species 

distribution (Berthon et al. 2018; Elith et al. 2011; Phillips et al. 2017). A complementary log-log 

(clog log) output was utilized as it strongly predicts areas of moderately high output (Phillips et al. 

2017). The regularization multiplier was set at 4 to avoid overfitting of the test data. Model 

parameters were set to default replication of 1 with 500 iterations using cross-validation run type. 

Final outputs of the Maxent model predictions were exported to ArcGIS 10.4 for further analysis. 

The results from the model serve as an approximation of the suitable ecological niche for the moth 

under the studied environmental conditions.  

 

In comparison, a Logistic regression model that depends on presence-absence datasets was utilized 

in this study based on principles to predict the causal relationship between predictors (independent 

variables) and predicted variables (dependent variables) (Gumpertz et al. 2000; Neupane et al. 

2002). Using the Statistical Package for the Social Sciences (SPSS), C. tristis presence-absence 

datasets were used as the dependent variables, while the environmental and climatic variables were 

the predictors. To generate the best combination of predictors and approximate beta (β), we used 

a backward stepwise (conditional) entry of variables criteria and maximum likelihood method. In 

addition, for the model to accept species presence from the model prediction, a random threshold 

probability was required. Logistic regression is most sensitive to threshold effects because a given 

threshold can interact with species’ prevalence (i.e. the frequency of suitability) to influence 

positive and negative prediction error (Gribko et al. 1995; Otunga et al. 2018). Hence, a probability 

threshold value greater than or equal to the selected threshold illustrates suitable habitats, while a 

threshold lesser than the selected value shows unsuitable habitats. As a result, only predictors with 

confidence levels above 95% or a p-value less than 0.05 were considered significant and used in 

fitting the Logistic regression function. Lastly, to validate the robustness of Maxent and Logistic 
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regression for mapping habitat suitability of the C. tristis, the dataset was randomly split into 70% 

training data and 30% test data and used for accuracy assessment. 

 

2.2.4.2 Accuracy assessment  

 

Receiver operating characteristic (ROC) area under the curve (AUC) method has been widely used 

for comparing species distribution model performances of Maxent and Logistic regression models 

(Bagheri et al. 2018; Cianci et al. 2015; Remya et al. 2015). The ROC plots the sensitivity values 

and the false-positive fraction for all available probability thresholds (Germishuizen et al. 2017). 

Sensitivity is the ability of a model to correctly identify known positive sites and specificity is the 

ability of a model to correctly identify known negative sites (Cianci et al. 2015; Phillips and Dudík 

2008).  AUC provides a single measure of model performance independent of any particular choice 

of threshold, making it an excellent index to evaluate model performance (Baldwin 2009). The 

AUC measures model performance that ranges from 0 to 1. Values close to 0.5 points to a random 

prediction, while a value of 1.0 indicates a perfect fit (Dicko et al. 2014; Fourcade et al. 2014).  

Response curves are the most important aspects of species distribution modelling, because they 

can provide information on the relationship between the species and the environment (Baldwin 

2009). Using Maxent and Logistic regression models, response curves showed how each of the 

environmental and climatic variables predicted habitat suitability of the C. tristis. The Maxent 

predictions (clog log output value) greater than 0.5 indicate conditions that are suitable and less 

than 0.5 showed unsuitable conditions for the distribution of the C. tristis. On the other hand, 

Logistic regression response curves depended on the significance of the relationship between the 

independent and predictor variables with alpha at 0.05 in determining the suitable habitat for the 

C. tristis. The Jackknife test was used to examine the importance of individual variables for 

Maxent predictions (Makori et al. 2017; Ndlovu et al. 2018).  
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2.3. Results  

2.3.1 Evaluating the performance of Maxent and Logistic regression for detecting C. 

tristis presence.  

 

Figure 2.2 displays the accuracies derived from estimating the suitable habitats for the C. tristis. 

Our results indicated that the Logistic regression and the Maxent have roughly similar efficiencies 

in predicting habitat suitability of the C. tristis. Using training and testing data respectively, 

Maxent produced a higher AUC of 0.840 and 0.810 when compared to Logistic regression (0.745 

and 0.677). According to the sensitivity and specificity values, Maxent outperformed the Logistic 

regression.    
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Figure 2. 2 AUC evaluating the performance of a) Maxent and b) Logistic regression in 

predicting the habitat suitability of the C. tristis using the selected variables. 

 

2.3.2 Evaluating the significance of environmental and climatic predictors for C. tristis 

presence.  

 

Figure 2.3 shows the contribution of the predictor variables in modelling the C. tristis. The Maxent 

model (Figure 2.3a) produced a test jackknife that indicated the relative importance of each 

variable in the modelling process. In Figure 2.3a, the most influential variables in the model were 

mean temperature for October, February, June, December and elevation respectively. As illustrated 

in Figure 2.3b, age was the only significant variable in the Logistic regression model. 
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Figure 2. 3 a) Jackknife illustrating the variables that influence the prediction of the C. tristis 

using Maxent and b) indicating the significance and non-significant variables used to model the 

occurrence of the C. tristis using the Logistic regression. 

 

Table 2.2 shows the results from Logistic regression that was used to determine the significant and 

non-significant variables in the model. Age was found to be the only significant variable among 

the 12 variables used in the model.  

Table 2. 2 Results of the Logistic regression model. 

  Estimate 

β 

S.E. Sig. p-value exp(b) 

Intercept -59.3436 56.47802 0.293379 1.6881E-26 

Age* 1.61089 0.674597 0.016944* 5.00726634 

Aspect 0.06948 0.23123 0.76381 1.07195083 

Elevation -0.06539 0.233941 0.779861 0.93670512 

Mean Prec Jan -0.12098 0.215493 0.574519 0.88605183 

Mean Prec July 0.091586 0.963713 0.924287 1.09591131 

Mean Prec Nov 0.217647 0.289818 0.452666 1.24314777 

Mean Prec Oct 0.24557 0.306542 0.423076 1.27834945 

Mean Temp Dec 16.36976 11.70297 0.161882 12861654.2 

Mean Temp Feb -8.75496 8.309308 0.292051 0.00015768 

Mean Temp June -1.5471 4.202071 0.712742 0.21286366 

Mean Temp Oct -7.06748 6.870387 0.303626 0.00085237 

Slope 0.079346 0.183817 0.665991 1.08257837 
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Figure 2.4 shows the response curves of the seven most optimal environmental variables. The 

results in Fig 2.4 indicates that suitability of the C. tristis is associated with the mean temperature 

for October that is greater than 14.5 o C. 

 

Figure 2. 4 Response curves of mean temperature for October (a), age (b), mean temperature for 

February (c), mean temperature for June (d), mean temperature for December (e) and elevation 

(f) that show how these selected variables affected the prediction of the C. tristis using Maxent. 
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  Additionally, the results illustrate that aspect played a crucial role in identifying suitable conditions 

for the C. tristis. Figure 2.4 c shows that E. nitens plantations above the age of 4.7 provide a 

suitable habitat for the C. tristis. This means that plantations below 4.7 are likely unsuitable for 

the moth to occupy them. More specifically, the mean temperature of February (16.7 oC), June 

(8.5 oC) and December (16.4 oC) strongly influenced the favorable habitat for the C. tristis.  

Finally, results suggest that elevations between 1400m – 1650m have suitable conditions that favor 

the distribution of the C. tristis as compared to other areas in the study area (Fig 2.4 f). As a result, 

the contribution of remotely sensed data, the topographic data (aspect, elevation and slope) 

extracted from LIDAR helped improve the overall performance of both SDMs.  

 

2.3.3 Spatial distribution of areas susceptible to C. tristis habitation 

 

Figure 2.5 shows the suitability map of the C. tristis as predicted by Maxent and Logistic 

regression.  From the maps, both models yielded good results using climatic and environmental 

variables. The visual assessment indicates that Maxent produced a highly suitable probability map 

when compared with the Logistic regression model. In this study, Maxent predictions of the moth 

corresponded to the rescaled suitability index (cloglog output), whilst the Logistic regression 

predictions corresponded to the probabilities of presence. Generally, the moth is projected to likely 

spread from the northern parts to the southern parts of the plantations. The spatial distribution 

corresponds to temperature conditions, age, elevation and precipitation. 
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Figure 2. 5 Maps showing the prediction of occurrence of the C. tristis using Logistic regression and Maxent
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2.4  Discussion 

The aim of this study was to investigate the habitat suitability of the C. tristis and to compare the 

performance of two species distribution models (Maxent and Logistic regression) as well to test 

the performance of remotely sensed data in modelling habitat suitability preference. The study 

utilised presence and absence and presence-only datasets to understand the contribution of multi-

source data in mapping the suitable habitats of the C. tristis. AUC statistics of both models showed 

high values indicating a good model performance in relation to predicting suitable habitat 

distribution. Beyond describing species distributions, Maxent and Logistic regression have been 

considered as important and widely used decision making tools that can assist forest managers 

(Gribko et al., 1995; Gumpertz et al., 2000; Matawa et al., 2016; Ndlovu et al., 2018; Sahragard 

and Ajorlo, 2018).  

Several studies have agreed that temperature influences the occurrence of the Lepidopteran 

defoliators (Adam et al. 2013; Boreham 2006; Michael and Warren 2009; Péré et al. 2013; Q. et 

al. 2017).  It is not surprising that summer temperatures had the highest discriminatory power in 

predicting the highly suitable areas for the C. tristis. The current study established that mean 

temperature of February (16.7 oC) and December (16.4 oC) are strongly associated with the 

suitability preference of the moth on E. nitens. In addition, in October a mean temperature greater 

than 14.5 oC creates a conducive environment for the C. tristis to expand its habitat suitability. 

These results corresponded with previous studies that indicated that in October in the Lothair 

plantations all stages of the moth could still be found. According to Bentz el al. (2010 and Centre 

and Carroll (2006), ongoing expansion of the mountain pine beetle (Dendroctonus ponderosae) 

has been observed due to increased summer temperatures that have resulted in the beetle surviving 

in previously unsuitable ecological areas. Moreover, in Alaska and Yukon, the high summer 

temperatures have been associated with an outbreak of the spruce bark beetle (Dendroctonus rufi 

collis) on Engelmann spruce (Picea engelmannii) forests increasing its habitat suitability (Berg et 

al., 2006). Hence, increased summer temperatures and shortened winters influence the rapid insect 

reproduction, faster growth rates and mobility of insect pests, which influence the overall habitat 

preference (Battisti et al., 2006; Kocmánková et al., 2009).  
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The results showed that the habitat preference of the C. tristis increases on E. nitens tree species 

above 4.5 and decreases on trees species below 4.5. Boreham (2006) established similar results in 

characterizing the infestation of E. nitens tree species younger than 8 years of age using the 

Residual Maximum Likelihood (REML) method. E. nitens tree species are known as fast-growing 

trees species that produce high-quality timber in a short period of time. Hence, older trees have 

stronger barks that provide favorable larvae feeding conditions, which result in internal damage 

through infestation of the sapwood and hardwood (Adam et al. 2013). Currently, the C. tristis is 

regarded as a primary pest on E. nitens tree species that has the potential to become an epidemic 

pest due to the extensive population outbreaks. Hence, failure to manage and control the moth will 

result in tree mortality, which affects the production of high-quality timber. Once productivity is 

affected, this generates a problem for forest managers as the quality of timber decreases, thus 

reducing the net profits earned. Therefore, knowledge of the age of tree species that are vulnerable 

to infestation is crucial as it improves the management and monitoring programs.  

Furthermore, the mean temperature for June (8.5 oC) was also a key element in determining the 

suitable habitat of the C. tristis. Previous studies stated that signs and symptoms of larvae damage 

were observed in July in the Lothair/Carolina area. The Highveld is associated with cold 

temperatures that are similar to parts of the Western Cape Province where the C. tristis has been 

recorded. Hence, the current study suggests that cold temperatures create favourable conditions 

that result in the larval stage of C. tristis occurrence. This effect has also been recorded on pine 

tree species as increased winter temperatures lead to better performance of the winter-feeding of 

larvae by the pine processionary moth (Thaumetopoea pityocampa) (Buffo et al., 2007). 

Furthermore, changes in the larval performance of the moth have strongly contributed to the 

progressive colonization of new areas increasing its habitats. In addition, the winter moth 

(Operophtera brumata) has also been reported to have expanded its habitat into the coldest 

continental landscapes and it is associated with the increasing winter temperature that lead to 

higher survival of overwintering eggs (Jepsen et al., 2008). As a result, cold temperatures play a 

vital role in the suitability of the habitat of the C. tristis. Certain temperature ranges as indicated 

by the results of this study trigger the C. tristis life cycle process influencing its habitat preference. 

According to the results of this study, precipitation variables did not perform as expected in 

modelling the habitat suitability of the C. tristis. Previous studies show that precipitation has not 

greatly influenced the habitat preference of the C. tristis and this area requires further studies. 
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Elevation is considered an important predictor that enhances the understanding of the distribution 

patterns of insect pests (Péré et al., 2013; Thomas et al., 2006). Results showed that the habitat 

preference of the C. tristis ranges between 1400 m and 1650 m. The relationship between suitable 

habitats of the C. tristis can be associated with matting, host foraging and ovipositional behaviors 

absent at an elevation less 1500m and greater than 1650m (Péré et al. 2013). Hence, without these 

three conditions, the development and survival of the moth are highly unsuitable. Furthermore, E. 

nitens plantation richness in different elevations also contributes to plantations being suitable for 

the moth’s presence, because the greater the availability of the tree species the greater the risk of 

infestation. Hence, elevation plays a pivotal role in the occurrence of the C. tristis. Established 

results agree with the previous studies that showed the presence of the C. tristis ranges between 

1500m and lower elevations below 1600m. According to Battisti and Larsson (2015), elevation 

and longitudinal expansion are regarded as the most common factor that influences the habitat 

suitability of insects pests. Also, it is worth noting the contribution of remotely sensed data in 

modelling habitat suitability of the C. tristis. The results in this study agree with Kozak et al. (2008) 

and Ndlovu et al. (2018) who indicated that integration of remotely sensed data into SDM’s 

improves the overall performance of SDM in modelling species distributions. Moreover, LIDAR 

as a remote sensing tool is a promising tool for identifying suitability preferences of species that 

inhabit divergent climatic regimes.   

Assessing the performance of both models was the main focus of this study, the results 

demonstrated that Maxent was more robust than Logistic regression. This outcome is not 

surprising as several studies have identified Maxent as one of the best alternatives in determining 

species distributions (Berthon et al. 2018; Elith et al. 2011; Phillips et al. 2017). Observation of 

the two distribution maps in Fig 2.5 indicated that the presence-only Maxent model produced a 

better habitat suitability map as compared to the presence-absence Logistic regression model. 

Dicko et al. (2014) had similar results demonstrating that only the Maxent model predicted an 

expert-based classification of landscapes correctly in their study as compared to Logistic 

regression. Noticeably, Logistic regression generated suitable habitats based on probabilities of 

presence data provided by data collectors. However, Fithian and Hastie (2013) challenged the 

availability of reliable absences records indicating that unreliability can be associated with 

identification errors and mostly inadequate knowledge of the target species. At the moment, the C. 

tristis is regarded as an emerging pest in forestry and less information is known about the moth on 
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E. nitens plantations. Consequently, the collection of the data of the moth can be affected by 

different aspects, such as; the lack of observer experience, identification errors and high costs 

associated with the process. As a result, comprehensive information (presence-absence data) of 

the C. tristis is essential to reduce the uncertainty in modelling the spatial distribution of the moth 

using the Logistic regression model. Hence, the results in this study confirm that suitability of the 

C. tristis on E. nitens plantations can be modelled using climatic and environmental variables and 

provides valuable information required by forest managers for effective inoculation and control of 

damaging pests, such as the wood boring C. tristis.  

2.5 Conclusion  

This study assessed the robustness of the Maxent model, compared with the Logistics regression 

model, in mapping the habitat suitability of the C. tristis in Mpumalanga, South Africa. Grounded 

in the results of this study, we conclude that:  

• Temperature, aspect, age and elevation are optimal variables for modelling the suitability 

of the C. tristis 

• Maxent model is a robust algorithm in relation to other methods such as Logistics 

regression model in mapping the habitat suitability of the C. tristis   

• Integration of remotely sensed data from LIDAR improved the overall performance of 

SDMs 

The results offer a useful tool to forest managers in understanding the climatic and environmental 

characteristics that influence the habitat suitability of the C. tristis on E. nitens compartments. At 

the moment, chemical control is not a feasible option as the use of systemic insecticides to kill the 

larvae would be impractical and expensive. Hence, the application of SDMs would benefit forest 

managers to formulate new suitable integrated pest management strategies to reduce infestation of 

un-colonized E. nitens plantations. However, the results in this study determined the habitat 

suitability of the moth based on the surrounding conditions and not the actual damage of 

plantations. Therefore, we recommend that future studies look at the utility of remote sensing and 

GIS to map and model the suitability distribution of the C. tristis.  
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Chapter Three  

Using Multispectral remote sensing to map habitat suitability of the Cossid 

Moth in Mpumalanga, South Africa. 

This chapter is based on: 

Kumbula, S., Mafongoya. P, Peerbhay, K, Lottering. R. and Ismail. (under review): Using 

Multispectral remote sensing to map habitat suitability of the Cossid Moth in Mpumalanga, South 

Africa. Remote Sensing, Manuscript number: remotesensing-374215 

Abstract  

The study sought to model habitat suitability of the Coryphodema tristis on Eucalyptus nitens 

plantations in Mpumalanga, South Africa, using a Sentinel-2 multispectral instrument (MSI). 

Traditional field surveys were carried out through mass trapping in all compartments and 

positively identified 67 infested compartments. Model performance was evaluated using the 

receiver operating characteristics (ROC) curve showing the area under the curve (AUC) and True 

Skill Statistic (TSS) while the performance of predictors was displayed in the jackknife. Using 

only the occurrence data and Sentinel-2 bands and derived vegetation indices, the Maxent model 

provided successful results, exhibiting an area under the curve (AUC) of 0.89. The Photosynthetic 

vigour ratio, Red edge (705 nm), Red (665 nm), Green NDVI hyper, Green (560 nm) and 

Shortwave infrared (SWIR) (2190 nm) were identified as the most influential predictor variables 

for detecting the habitat suitability of the C. tristis. Results of this study suggest that remotely 

sensed derived vegetation indices from cost-effective platforms could play a crucial role in 

supporting forest pest management strategies and infestation control. 

Keywords: Multispectral remote sensing, Eucalyptus nitens, Coryphodema tristis (Cossid moth), 

Sentinel 2, Maxent model. 

 

3.1. Introduction 

In South Africa, emerging forest pests have caused extensive damage to Eucalyptus plantations 

(Wingfield et al. 2001). Approximately 1.3 million hectares of South Africa’s land is composed of 

both hard and softwoods, with the majority located on the eastern parts of the country; primarily 

in Mpumalanga (40.8%), KwaZulu-Natal (39.5%) and the Eastern Cape (11.1 %) (DAFF, 2015). 

These plantations contribute annually to South Africa’s GDP with Eucalyptus plantations 

contributing over 9% to the total exported manufactured goods (DAFF 2017). These species are 

the most productive planted exotics that mostly offer timber, pulp and paper in South Africa 

(Albaugh et al. 2013; Swain and Gardner 2003; Wingfield et al. 2008). Therefore, a robust 

mechanism needs to be established to prevent excessive damage, as numerous investments have 
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been injected into the forestry sector, particularly the Mpumalanga province (SETA 2014). Since 

2004, Coryphodema tristis, commonly known as Cossid moth, has been the major damaging agent 

destroying Eucalyptus nitens plantations across Mpumalanga, with forest managers requiring up 

to date information to support their forest protection interventions at the landscape level.   

C. tristis is an indigenous wood-boring insect that commonly infests tree species, such as 

Ulmaceae (Elm Family), Vitaceae (Wild Grape family), Rosaceae (Rose family),  

Scrophulariaceae (figwort family), Malvaceae (Mallow family) and Combretaceae (Indian 

almond family) (Bouwer et al. 2015; FAO 2007 ). However, a sudden shift by the C. tristis to 

infest E. nitens in South Africa has been observed. According to Gebeyehu et al. (2005), the shift 

of the C. tristis to infest E. nitens trees may be as a result of few to the non-existence of natural 

enemies in the area. As a result, the absence of natural enemies influences the increase of pests in 

the ecological niche, due to less interspecific competition (Xing et al. 2017). This results in the 

moth breeding and multiplying at faster rates and increasing the intensities of E. nitens infestation. 

Adult female moths lay eggs on the bark of the E. nitens trees and the larvae feed on the bark 

damaging the cambium (Gebeyehu et al. 2005). The damage reduces the movement of water within 

the tree and also extend to the trunk and branches which turn black (Adam et al. 2013). 

Furthermore, as the larvae grow, it drills extensive tunnels into the sapwood and hardwood trees 

producing resin on trunks and branches and sawdust on the base of the forest floor (Bouwer et al. 

2015). However, extensive tunneling by the moth results in severe damage to trees, thus increasing 

the probability of tree mortality. Additionally, pupal casings are found protruding on the holes 

tunneled or either at the base of the floor indicating the presence of the C. tristis.  

In recent years, researchers have attempted to use environmental variables to predict the spatial 

distribution of the C. tristis (Adam et al. 2013; Boreham 2006). For example, Boreham (2006) 

conducted a study that investigated the outbreak and impact of the C. tristis on E. nitens in the 

Highveld of Mpumalanga,  using environmental variables and the Residual Maximum Likelihood 

(REML) algorithm. Their results showed that older E. nitens trees (above 8 years) and lower 

elevation sites less than 1600m were the most susceptible to C. tristis infestations. Similarly, Adam 

et al. (2013) used climatic and topographical variables to map the presence and extent of C. tristis 

infestations on E. nitens plantations of Mpumalanga. Using a random forest classifier, their results 

indicated that September and April maximum temperature, April median rainfall and elevation 
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played a crucial role in identifying conditions that are suitable for C. tristis occurrence. 

Furthermore, their results predicted that areas with a maximum temperature greater than 23oC in 

September and 22oC in April were the most susceptible to infestation. While these studies have 

successfully utilized climatic and environmental variables to predict the presence of the moth. 

Different studies have identified a number of limitations regarding traditional data collection 

methods to determine the presence or absence of pests.    

Different studies have stated that traditional methods are often time-consuming, costly, labor-

intensive, spatially restrictive and likely unreliable as data collection is based on the knowledge of 

the surveyor (Pause et al. 2016; Pietrzykowski et al. 2007). Hence, a direct detection approach that 

provides real-time information and can be repeated regularly for up to date decisions is required. 

Furthermore, utilizing environmental or climatic variables only for mapping the spatial distribution 

of pests can be challenging since these variables focus precisely on the surrounding factors and 

not the actual damage of plantations. For example, Germishuizen et al. (2017) utilized 

environmental factors to determine the susceptibility of pine stands to bark stripping by Chacma 

baboons (Papio ursinus). Results indicated that indirect variables such as elevation and altitude 

provide a challenge in explaining the complex relationship of baboon-damage risk. Moreover, 

Donatelli et al. (2017) indicated that observed environmental datasets alone were no longer 

sufficient to predict the behavior of pests, due to climate change that has influenced the variability 

of temperature averages, rainfall means and distributions. Thus, requiring more traditional field 

surveys to confirm whether a particular area has been truly infested. Bouwer et al. (2015) indicated 

that actual confirmation of infestation was through tree felling, which is impossible for large-scale 

assessments. Hence, the inclusion of remotely sensed data with ancillary data such as 

environmental and climatic variables would provide an up to date, repeatable source of information 

for forest assessment and inventory.  

Remote sensing has achieved unprecedented perspectives of forest-damaging pests using narrow 

and broad wavebands in the visible, near, shortwave-infrared and red edge regions (Lottering et 

al. 2016; Oumar and Mutanga 2013; Pietrzykowski et al. 2007). For example, Adelabu et al. (2014) 

sought to discriminate the levels of change in forest canopy cover instigated by insect defoliation 

using hyperspectral data in mopane woodlands. Results indicated that the overall accuracy of 

classification was 82.42% using random forest and was 81.21% using ANOVA. In another study, 
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Oumar and Mutanga (2013) successfully assessed the potential of WorldView-2 wavebands, 

environmental variables, as well as vegetation indices which resulted in the prediction of 

Thaumastocoris peregrinus infestations on Eucalyptus trees. Results indicated that WorldView-2 

sensor bands and indices predicted T. peregrinus damage with an R2 value of 0.65 and a root mean 

square error of 3.62% on an independent test data set. Similarly, Lottering et al. (2016) also found 

that vegetation indices derived from the red edge region correlated with G. scutellatus-induced 

vegetation defoliation using WorldView-2 satellite data. Furthermore, Pietrzykowski et al. (2007) 

assessed the presence and severity of defoliation and necrosis caused by the Mycosphaerella insect 

on Eucalyptus globulus plantation, using a multispectral imagery in north-western Tasmania, 

Australia. Their results indicated that the spectral bands performed well, producing an accuracy of 

71% for defoliation and 67% for necrosis. Therefore, despite the optimal modelling accuracies 

attained using multispectral remotely sensed data in these studies, these data sets are expensive 

and limited to a local scale. In that regard, there is an urgent need for testing and assessing the 

utility of other cheaper data sets that could capture the disease and pest incidences at landscape 

scales. 

This study, therefore, sought to model habitat suitability of the C. tristis on E. Nitens plantations 

in Mpumalanga, South Africa using the cost-effective Sentinel-2 multispectral instrument and 

derived vegetation indices. Sentinel 2 images across the valuable red edge portion of the 

electromagnetic spectrum are suitable for forest health applications related to pest and disease 

damage detection (Hojas-Gascon et al. 2015; Immitzer et al. 2016; Ng et al. 2017). The large swath 

width and a 16-day temporal resolution make this sensor suitable for repeatable monitoring over 

forest plantations and detect pest-related damage continuously for effective management and 

control. Therefore, we used Maxent a robust machine-learning algorithm to predict habitat 

suitability of the C. tristis using remotely sensed data.  

3.2. Methods and Materials 

3.2.1 Study area  

The research was conducted in the Mpumalanga province of South Africa in the Lothair village 

also known as Silindile and is located in the Msukaligwa Local Municipality (Fig 3.1). The study 

site is located between 26° 26' 25.08" S and 30° 3' 59.4" E in the Highveld of Mpumalanga. It has 

an altitude that ranges between 1200 m and 2100 m.
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Figure 3. 1 a) Map of South Africa and b) the location of the Mpumalanga Province; (c) and (d) show healthy and infested Eucalyptus 

nitens and e) shows the sampled parts of the forest using the Sentinel 2 image with a colour composite of RGB (Red, NIR & Blue).
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The area is associated with summer rainfall which ranges between 783–1200 mm per annum from 

November to March. The Highveld has a summer (October to February) to winter (April to August) 

temperature average of approximately 19º C, with average temperatures ranging between 8º C and 

26º C in the contrasting seasons. The Highveld is among South Africa’s highly productive 

commercial plantation forests that consist of Pine and Eucalyptus plantations. The greater parts of 

the Highveld are comprised of sandstone and granite derived soils, which the majority of 

commercial tree species are grown.   

3.2.2 Image acquisition  
 

A Sentinel 2 MSI image was acquired on the 19th of August 2016 under cloudless conditions, the 

sensor has a revisit time of 5 days making the detection of pest damage to vegetation instantaneous 

(Gascon et al. 2017; Hojas-Gascon et al. 2015; Immitzer et al. 2016). The satellite covers a large 

area with a swath width of 290 km for multispectral observations increasing the spatial coverage 

of the area of interests (Ng et al. 2017; Radoux et al. 2016). Sentinel 2 has thirteen spectral 

wavebands ranging from 443 nm to 2190 nm including four 10 m visible and near-infrared bands, 

six 20 m red edge, near infrared and shortwave infrared bands, and three 60 m bands visible, near-

infrared and shortwave infrared bands. The narrow red edge wavebands cover spectral regions of 

0.705 um, 0.740 um, 0.783um and 0.865um that can be utilized for monitoring vegetation status 

(Immitzer et al. 2016; Ng et al. 2017; Radoux et al. 2016).  

3.2.3. Image processing and analysis 

 

Atmospheric correction of the image was done using the Sentinel Application Platform (SNAP) 

software, which incorporates the plugin, Sen2Cor. In total, eleven bands were derived for 

modelling the suitable habitat of the C. tristis. In this study, 10 of the Sentinel 2 wavebands were 

used in the study excluding band 1, 9, and 10. These three wavebands were not incorporated in 

this study because they are not used for vegetation mapping. Using the Index Database, we selected 

vegetation indices with the best capacity to detect and map the C. tristis (see Table 3.1). 

Additionally, a number of published vegetation indices that have been effective in characterizing 

vegetation defoliation, many of which are sensitive to reflectance in the visible and NIR regions, 

were derived. However, vegetation indices with wavelengths from the red edge region were given 

more emphasis based on their ability to identify stressed vegetation (Lottering et al. 2016).  
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Table 3. 1: Sentinel 2 vegetation indices tested in this study 

Vegetation indices  Abbreviation Equation Reference  

Simple Ratio 800/500 

Pigment specific simple 

ratio C1 

PSSRc1 NIR 

Blue  

Blackburn (1998) 

Simple Ratio 520/670 SR520/670 Blue 

Red 

Carter (1994) 

Simple Ratio 774/677 SR774/677 Vegetation Red edge 

Red 

Zarco-Tejada et al. 

(2001) 

Simple Ratio NIR/700-

715 

SRNir/700-

715 

_______NIR___________  

(Red - Vegetation Red edge) 

(Gitelson et al. 

1996b) 

Normalized Difference 

Vegetation Index 

NDVI NIR - RED 

NIR + RED 

 

Gitelson and 

Merzlyak (1997) 

Normalized Difference 

780/550 Green NDVI 

hyper 

GNDVIhyper Vegetation Red edge – Green 

Vegetation Red edge + Green 

Gitelson et al. 

(1996a) 

Normalized Difference 

Salinity Index 

NDSI SWIR (1.610) - SWIR 2.190 

SWIR (1.610) + SWIR 2.190 

Richardson et al. 

(2002) 

Normalized Difference 

800/470 Pigment specific 

normalized difference C2 

PSNDc2 NIR – Blue 

NIR + Blue 

Blackburn (1998) 

Chlorophyll Green Chlgreen (Vegetation Red edge)-1 

Green 

Gitelson et al. 

(2006) 

Normalized Difference 

550/650 Photosynthetic 

vigour ratio 

PVR  Green - Red 

Green + Red 

Metternicht (2003) 

 

 

 

 

3.2.4 Field data collection.  
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A field visit was conducted in two SAPPI plantations on the 19th of August 2016 to establish the 

presence of the pest in the area. Woodstock is located in the northern region of the plantation and 

consisted of 55 E. nitens plantations, whilst Riverbend located in the south comprised of 1145 

plantations. Mass trapping of C. tristis was carried out in the field. Using a minimum of 19 and 

maximum of 348 traps randomly setup across all E. nitens stands. The number of traps used varied 

with the size of the compartments. Pheromones that match the chemical scent of a female adult 

moth was used to lure male moths into the traps that were located in the compartments (Bouwer 

et al. 2015). The sex pheromones altered the insect’s behavior, disrupting their mating process. To 

determine the presence or level of infestation, the sawdust and resin on the stem or the base of the 

tree were used as indicators. Locations of these indicators were then measured using a handheld 

Global Positioning System (GPS). The dataset was then used to extract spectra from the Sentinel-

2 image and develop training and testing datasets for statistical analysis. 

3.2.5 Maxent modelling approach  

 

The freely available Maxent approach (version 3.4.0) was used in this study and obtained from 

http://biodiversityinformatics.amnh.org/open_source/maxent/ (Phillips et al. 2017). Maxent is a 

machine learning technique that uses presence-only data to determine the potential spatial 

suitability preference of species (Ndlovu et al. 2018; Phillips et al. 2006). The model evaluates the 

probability of occurrence from a number of spatial environmental variables (Biber-Freudenberger 

et al. 2016; Matawa et al. 2016; Rebelo and Jones 2010). For Maxent to determine the suitability 

of a habitat and reduce uncertainty, it requires more presence information on the target species (Yi 

et al. 2016). The background dataset definition contributes to the model’s output significantly and 

requires the species full environmental distribution of those areas that have been searched (Farzin 

et al. 2016). As a result, Maxent establishes a model with a maximum entropy in relation to the 

known knowledge of a species (Phillips et al. 2006; Phillips and Dudík 2008).  

For this study, the data was split into 70% training and 30% test data randomly selected by the 

model within the study area. Sub-samples were used as the replicate run, and iterations were fixed 

to 500. The regularization multiplier was maintained at 4 to avoid overfitting of the test dataset 

(Phillips et al. 2006). The remaining model values were set to default values. A complementary 

log-log (clog log) output was utilized because it strongly predicts areas of moderately high output 

as compared to the logistic output (Phillips et al. 2017). During training, Maxent performs a 

http://biodiversityinformatics.amnh.org/open_source/maxent/
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jackknife test that is used to assess the relative importance of predictor variables that explain the 

spatial distribution of the species and provide the performance of each variable (Phillips and Dudík 

2008).  

3.2.6 Model accuracy assessment 

 

Presence data of the C. tristis infested locations (n = 371) within the compartments were randomly 

partitioned into two sets, 70% training data (n = 260) and 30% test data (n = 111). However, model 

performance was assessed using the area under the curve (AUC) of the receiver operating 

characteristics (ROC) (Hageer et al. 2017; Molloy et al. 2016; Rebelo and Jones 2010).  ROC was 

measured by specificity as a function of sensitivity. As a result, the sensitivity which is regarded 

as the fraction of true-positives that are presently correctly predicted, while specificity is regarded 

as the fraction of false-positive absences that are correctly predicted as absences were assessed 

(Biber-Freudenberger et al. 2016; Germishuizen et al. 2017). Hence, the model was characterized 

as more accurate when the curve followed the left-hand border as compared to the right side 

because it attained a higher sensitivity value than a specificity value.  

 

In that regard, the AUC ranged from 0 to 1 and the accuracy was classified as poor between 0.5 - 

0.70, while 0.7 and 0.80 are good and above 0.90 are termed high (Tabet et al. 2018; Wakie et al. 

2014). Additionally, the jackknife test was used to assess the contribution of each of the variable's 

to the model and highlighted the dominant ones (Rebelo and Jones 2010; Wang et al. 2018). 

Furthermore, True Skill Statistic (TSS), also known as the Hanssen–Kuipers discriminant was 

utilized to assess the accuracy of the model. TSS accommodates both sensitivity and specificity 

errors and success as a result of random guessing (Allouche et al. 2006). It ranges from − 1 to +1, 

whereby +1 indicates perfect agreement, whilst values of zero or less indicate random 

performance. The advantage of TSS as compared to Kappa is that TSS is not affected by 

prevalence making it a better accuracy assessment method (Liu et al. 2013; Thuiller et al. 2009). 

Table 3.2 shows the variables used in the three models that sought to model the habitat suitability 

of the C. tristis.  
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Table 3. 2: Variables used in the three analysis stages in Maxent model. 

Simulation stage   Applied variables List of variables used  

 Spectral wavebands Sentinel 2: Blue, Green, Red, Vegetation Red edge 

bands (band5, 6, 7 & 8A), NIR, 2 SWIR (band 11 

and 12). 

 Vegetation indices  NDVI, PVR, Green NDVI hyper, PSND, SR 

520/670, SR 800/500, SR 774/667, SR NIR, 

Chlorophyll Green & ND: Salinity index. 

 Spectral wavebands 

and vegetation indices  

Combined variables.  

 

3.3. Results 

 3.3.1 Prediction of the C. tristis using spectral bands and vegetation indices as 

independent datasets. 

 

Figure 3.2 shows the prediction of habitat suitability of the C. tristis using Sentinel 2 spectral bands 

and vegetation indices as independent datasets. The red line represents the training data and the 

blue line represents the test dataset. Using spectral wavebands, an overall accuracy of test data = 

0.898 and training data = 0.891 with a TSS value of 0.28 was achieved. While vegetation indices 

produced an overall accuracy of test data = 0.872 and training data = 0.875 with a TSS value of 

0.32. When comparing the two models, the overall accuracy decreased by 0.026 test data and 0.04 

training data. As a result, Sentinel 2 derived vegetation indices were outperformed by spectral 

indices in detecting and mapping the spatial distribution of the C. tristis.   
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Figure 3. 2: The receiver operator characteristic curve that was used to measure the model 

accuracy of a) spectral wavebands and b) vegetation indices. 
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Respectively, the Maxent model produced a test jackknife that indicated the relative importance 

of each variable in the modelling process shown in Figure 3.3. In Figure 3.3 a, the most influential 

spectral bands in the model were Vegetation red edge (Band 5 at 705 nm), Red (Band 4 at 665 

nm), Green (Band 3 at 560 nm), SWIR (Band 12 at 2190 nm), and Blue (Band 2 at 490 nm), 

respectively. As illustrated in Figure 3.3 b, Photosynthetic vigor ratio, Green NDVI hyper, Pigment 

specific normalized difference, Simple Ratio 774/667 and Salinity index were the most significant 

variables in the vegetation indices model, respectively. 

 

Figure 3. 3 Jackknife test variable importance graph of a) spectral wavebands and b) vegetation 

indices derived in modelling the spatial distribution of the Coryphodema tristis. 
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The Red edge waveband (705 nm) contributed significantly in the prediction of habitat suitability 

of the C. tristis with a variable importance of 0.814 (Fig 3.3 a). This shows the significance of the 

Red edge waveband in discriminating healthy and unhealthy E. nitens trees. In addition, the NIR 

(842 nm), Vegetation red edge (740 nm), Vegetation red edge (783 nm) and Vegetation red edge 

(865 nm) displayed a significant contribution above 0.65 each to the overall model. Moreover, the 

Sentinel 2 spectral wavebands in the Red (665 nm) were the second highest variable with a 

contribution of 0.802. The Red waveband (665 nm) recorded a decrease in the reflectance 

indicating the possibility of infested vegetation in the study area. Additionally, Fig 3.3 a illustrates 

that wavebands in the VIS had the highest contribution as Green (560 nm) was the third highest 

variable with a contribution of 0.793. Moreover, both SWIR bands performed well in the 

modelling of the C. tristis, SWIR (2190 nm) with a contribution of 0.784 was the fourth highest 

variable. The Blue (Band 2 at 490 nm) spectral waveband also yielded a contribution of 0.757 and 

was the fifth highest variable in the model. Sentinel 2 derived spectral bands demonstrated the 

high potential of predicting the likely spatial distribution of the C. tristis. 

As shown in Fig 3.3b, PVR was the most prominent variable in the model with a contribution of 

0.818. The index has the potential to detect any changes in chlorophyll content and identify weakly 

active vegetation affected by stress. The results showed that Green NDVI hyper was the second 

highest important variable with a contribution of 0.797. The test jackknife highlighted that the 

PSND was the third highest variable that performed well in the model with a contribution of 0.776. 

Both the ND: Salinity index and NDVI performed fairly equal with a contribution of 0.72. The 

remaining vegetation indices had a contribution above 0.50 on the independent dataset. The results 

obtained using Sentinel 2 derived vegetation indices alone produced slightly lower prediction 

accuracies when compared to those derived using the spectral bands as independent datasets.  

 

3.3.2 Prediction of the C. tristis using combined variables.  

 

The results in Fig 3.4 show prediction accuracies of both Sentinel 2 derived spectral wavebands 

and vegetation indices. Overall, the integration of spectral waveband information and vegetation 

indices produced higher prediction accuracy in this study. Using the combined data set, the model 

yielded high overall accuracies of 0.89 test dataset and 0.90 training dataset. Spectral wavebands 
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performed slightly weaker than vegetation indices. The ROC curves shows that the sensitivity 

value was higher than the specificity value. Therefore, the model performed above the random 

prediction of 0.5, indicating good results. 

 

 

Figure 3. 4 The receiver operator characteristic curve of combined variables that was used to 

measure model accuracy. 

 

Comparing the results attained in the analysis I and analysis II for each variable, it is evident that 

contribution accuracies did not significantly increase, indicating similar strength in the prediction 

of the occurrence of the C. tristis. Moreover, of all the three analysis conducted, PVR increased 

its contribution factor to 0.853 while Vegetation red edge (Band 5 at 705 nm) also increased to 

0.821, resulting in vegetation indices outperforming the spectral bands. Furthermore, it was 

expected that vegetation indices (TSS = 0.32) would outperform the spectral wavebands (TSS = 

0.28). However, the combined variables modeled produced a TSS value of 0.34, which is closer 

to +1 indicating a higher accuracy. Therefore, the results from the final analysis of both spectral 

and vegetation indices established a significant improvement on the overall contribution accuracies 

integrated into this study. Clearly, the results from the three models that surpassed the random 

prediction of 0.5, highlighted the great potential of the model to predict habitat suitability of the 

C. tristis.  
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Figure 3. 5 Jackknife test variable importance graph of combined variables derived in modelling 

the spatial distribution of the Coryphodema tristis. 

 

3.3.3 C. tristis spatial distribution  
 

Fig. 3.6 illustrates the potential spatial distribution of areas highly suitable for the C. tristis across 

the study area using combined variables. The suitability preference is detected in the upper 

northern parts of the boundary in the Woodstock area descending towards the southern areas. In 

the middle of the Riverbend plantation, there are more suitable habitats as compared to unsuitable 

habitats of the moth. In the lowest parts of the study area it is seen that there are more unsuitable 

habitats. Generally, the C. tristis is more likely to occupy the upper parts of the study area as 

compared lower southern parts.   
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Figure 3. 6 Map showing the habitat suitability of C. tristis on the Lothair plantation. 

 

3.4. Discussion  

In this study, using remotely sensed data we modelled the habitat suitability of the C. tristis on E. 

nitens through the application of Maxent. Derived Sentinel 2 vegetation indices and spectral 

wavebands performed well in modelling habitat suitability of the C. tristis. The significance of 

vegetation indices as compared to spectral wavebands could be explained by their ability to detect 
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the health status of vegetation. The C. tristis damages the tree trunk and branches of E. nitens 

resulting in foliage turning black through chlorosis and it ultimately dies. As a result, there is a 

reduction in the absorption rates of the visible light as there are less green pigments available, 

which cause changes in the spectral reflection.  

 

Results obtained in this study regarding the significance of vegetation indices concurs with 

previous studies of Minařík and Langhammer (2016), Metternicht (2003) and Hart and Veblen 

(2015). Gitelson and Merzlyak (1997) identified that healthy and unhealthy (stressed) vegetation 

is mostly observed in the green peak (0.665nm) and red edge (between 0.705nm and 0.783nm), 

hence vegetation indices such PVR and GNDVI yielded an outstanding performance in modelling 

the spatial distribution of the C. tristis. In addition, Metternicht (2003) highlighted that PVR 

detects any changes in the reflective properties originating from changes in chlorophyll content 

and produce low values for photosynthetically weakly active vegetation. Moreover, Gitelson et al. 

(1996a) stated that new vegetation indices such as GNDVIhyper have an extensive dynamic range 

as compared to NDVI, hence, they are more sensitive to chlorophyll changes. Therefore, this 

accounts for the high results yielded by GNDVIhyper in predicting the habitat suitability of the C. 

tristis in this study. Sanchez-Azofeifa et al. (2012) pointed out that SR and NDVI indices are used 

to estimate the chlorophyll concentration of vegetation as well as observing fundamental variations 

on leaf age, henceforth, these attributes boost its performance. Findings from this study showed 

that SR800/500, SR 774/667 and NDVI performed exceptionally well and can be credited to the 

above-mentioned.  Also, a combination of two robust wavebands (NIR and Red) strengthens the 

probability of modelling and picking up vegetation characteristics that indicate the suitability 

preference of pests. Therefore, different studies have stated that the integration of NIR and Red 

wavebands (NDVI) and vegetation indices derived from the red edge wavebands have enhanced 

the prediction of pests (Lottering et al. 2016; Marx and Kleinschmit 2017; Matawa et al. 2013; 

Oumar and Mutanga 2013). For example, Hart and Veblen (2015) illustrated that the vegetation 

indices were the most important predictors to detect tree mortality caused by spruce beetle 

(Dendroctonus rufipennis) at grey-stage. Therefore, future studies should seek to improve the 

detection of the C. tristis and its associated impacts on E. nitens trees using powerful vegetation 

indices.    
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The results of this study also showed that the red edge wavebands were the most significant bands 

in determining habitat suitability of the C. tristis (Minařík and Langhammer 2016).  There is a 

high correlation between red edge bands and chlorophyll content of leaves, so that the spectral 

signature of E. nitens after chlorosis due to being attacked by the C. tristis is easily detected on the 

red edge spectrum. Several studies that sought to detect and map the spatial distribution of insect 

pests affecting forest species confirmed that the red edge region played a significant role in the 

prediction of such pests (Adelabu et al. 2014; Atkinson et al. 2014; Eitel et al. 2011; Oumar and 

Mutanga 2013; Wulder et al. 2006). In support of these results, Oumar and Mutanga (2013), 

Murfitt et al. (2016) and Pietrzykowski et al. (2007) concluded that red edge bands perform slightly 

better than other wavebands in the detection of insect pests in forest damage. For example, Oumar 

and Mutanga (2013) illustrated that the red-edge and NIR wavebands of WorldView-2 were 

sensitive to stress-induced changes in leaf chlorophyll content, therefore, improved the potential 

to detect T. peregrinus infestations. In this regard, the Sentinel 2’s red edge wavebands 

demonstrated its great potential in the monitoring the habitat suitability of the C. tristis, using its 

higher temporal and spatial resolution.  

 

In determining habitat suitability of the C. tristis, results of this study also showed a significant 

potential of the SWIR region. This region has the ability to map vegetation statues, due to its 

sensitivity to changes in the water content of vegetation (Apan et al. 2005; Näsi et al. 2015). 

Generally, the larva of the C. tristis feeds on the cambium which is responsible for providing layers 

of phloem and xylem in E. nitens plantations. Therefore, damage to the cambium affects both 

phloem and xylem which ultimately alters the movement cycle of water from the roots through the 

trunk to the leaves of E. nitens trees (Näsi et al. 2015). This results in foliage and canopy water 

changes. It induces stress which leads to the reduction of the water content present in the main 

trunk and branches contributing to the change of color to black. Subsequently, the variations are 

then detected effectively by the SWIR portion of the electromagnetic spectrum. This then explains 

the optimal influence of the SWIR in detecting E. nitens stands that offer suitable habitat to C. 

tristis. Similarly to this study, Senf et al. (2017) accurately detected the infestations of bark beetle 

at the red-attack stage and grey-attack stage using the SWIR wavebands, which distinguished 

changes in the water content. In a similar study, Ismail et al. (2007) indicated that infestation 

caused by the S. noctilio on pine trees altered the water balance of the tree and wavebands within 
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the SWIR captured these changes and improved the overall prediction of the pests distribution. 

Furthermore, Hart and Veblen (2015) indicated that in the spruce beetle and mountain pine beetle-

infested trees, reflection in the SWIR increased and decreased in the NIR due to the decrease in 

the foliar moisture content.  

 

As a species distribution model (SDM), the Maxent model developed a spatial distribution map 

that shows the suitability preference of the C. tristis across the study area. High levels of suitable 

habitats of the moth spread across from the upper (Riverbend plantation) to the lower (Woodstock 

plantation) portions of the study area while medium presence along the center of the study area 

was recorded. The increase in suitable habitats of the moth from the upper portions to the lower 

portions might be characterized by the absence of natural enemies, hence this could explain the 

higher level of habitat suitability. The results were similar to Adam et al. (2013), which illustrated 

that in the upper portion of the study area there was a high presence of the C. tristis as compared 

to the lower portions indicating that the C. tristis is rapidly spreading. Hence, distribution maps of 

the C. tristis can help to formulate and improve on-going monitoring and management efforts to 

reduce the current infestation on E. nitens forests.  

3.5. Conclusion  

This study tested the utility of the new generation Sentinel 2 multispectral instrument in detecting 

and mapping habitat suitability of the C. tristis infestations on E. nitens plantations. Based on the 

findings of this study, we conclude that wavebands in the VIS, NIR and SWIR are significant in 

the modelling of the C. tristis. These three regions measure the spectral reflectance of vegetation 

that results in determining the amount of healthy and unhealthy vegetation. Additionally, the Red 

edge bands played a crucial role in the prediction of habitat suitability of the C. tristis. 

Consequently, vegetation indices derived from the VIS/NIR have demonstrated their influence in 

detecting changes in chlorophyll concentrations and improving the overall modelling concept in 

this study. Overall, these results underscore the significance of the Sentinel 2 sensor in detecting 

the C. tristis habitat suitability. The results are a platform towards the detection and mapping of 

the highest suitability preference of the C. tristis, using different multispectral sensors and their 

spatial resolution. The utility of remotely sensed data will improve the monitoring and 

management strategies used in forecasting the prevalence of pests as well as their spread. 
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Moreover, key stakeholders such as forest managers will be in a possession to control the damage 

of pests and devise proactive measures that are seemingly appropriate. This information is critical 

for preventing extensive damages in the forestry sector.  
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Chapter Four   

Objectives reviewed and conclusions 

4.1 Introduction  

The widespread infestation caused by insect pest has become a cause for concern globally and 

locally. This requires an effective and efficient method to manage the damage encountered in the 

forest sector. The aim of the study was to assess the robustness of species distribution models in 

modelling the habitat suitability of C. tristis. Currently, SDM’s have been utilized to provide 

current and potential distribution of insect’s pests on forestry plantations and have produced vast 

knowledge in relation to insect pests. Several studies have strongly depended on traditional field 

surveys methods to identify and highlight the spatial distribution of pests using only presence and 

absence datasets. However, this has been rendered expensive and unreliable. The main focus of 

this study was to assess the application of remote sensing and species distribution models in 

modelling the potential habitat suitability of the C. tristis in Mpumalanga, South Africa. The aim 

of this study was to model the potential habitat suitability of the C. tristis (Cossid moth) in 

Mpumalanga, South Africa.  The objectives of the study as indicated in chapter 1 were: 

4.2 To evaluate the robustness of the Maxent approach in modelling the potential habitat suitability 

of the C. tristis on E. nitens using climatic, environmental and remotely sensed data in relation to 

the performance of Logistic regression.  

 

Based on the findings in this study, Maxent outperformed the Logistic regression model in the 

prediction of the suitable habitats of the C. tristis. As a result, this indicated that presence-only 

datasets are effective in modelling habitat suitability of the C. tristis. In relation to the results, the 

margin of difference in both accuracies was small (10%), indicating that both models can predict 

the spatial distribution of the moth. However, Maxent receives more priority because it uses 

presence-only data, which is more accessible when compared to presence and absence data making 

it a cost-effective method.  
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The second objective intended to understand the climatic and environmental variables that 

influence the suitability of the C. tristis on E. nitens plantation. In relation to the results, Maxent 

highlighted the relative importance of variables using the Jackknife test. This is considered as an 

advantage of the model, because the Logistic regression doesn’t indicate variable importance, but 

only significance in predicting the suitability of the moth. Temperature, aspect, age and elevation 

were identified as optimal variables that influence the suitability preference of the C. tristis. In 

addition, remotely sensed variables which include aspect and elevation derived from LIDAR 

increased the overall performance of the Maxent model. Hence, the inclusion of remotely sensed 

data into the SDMs boosts the performance of species distribution models.  

4.3 To evaluate the effectiveness of the freely available Sentinel 2 multispectral imagery in 

detecting and mapping the habitat suitability of the C. tristis. 

    

Adverse impacts on E. nitens commercial plantations is costly for the forestry sector as quality and 

quantity of yield are heavily affected. Forest stakeholders are under pressure to minimize the 

infestation endured from different pests and they seek to identify a fast and appropriate method to 

reduce the damage on commercial plantations. This study explored the utility of the Sentinel-2 

multispectral instrument in modelling habitat suitability of the C. tristis on E. nitens through the 

application of Maxent. Based on the results, the utility of the Sentinel-2 sensor provides a cost 

effective opportunity for detecting and mapping the spatial distribution of the C. tristis. The sensor 

collects information using its high temporal resolution of 5 days, which allows the coverage of 

large areas at a short period of time. Additionally, the Sentinel 2 has a high spatial resolution with 

13 wavebands which allow the construction of an image with more pixels to produce a greater 

detail of information. Therefore, utilizing remotely sensed data would be regarded as a cost-

effective data collection method as compared to field surveys. Similarly, the jackknife from 

Maxent indicated the relative importance of variables showing that vegetation indices, red edge 

bands and wavebands determined the distribution of the moth, respectively. Our study 

demonstrated that the integration of remotely sensed data and Maxent improved the overall 

prediction of the habitat suitability of the C. tristis. Furthermore, this study provides a basis for 

identifying areas where management efforts should be focused on.  
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4.4 Conclusions  

The major aim of this study was to assess the application of remote sensing as well as evaluating 

the robustness of Maxent a species distribution model in modelling the potential habitat suitability 

of the C. tristis in Mpumalanga, South Africa. Grounded in the findings, this study concludes that 

Maxent is an important and powerful tool in predicting the spatial distribution of the C. tristis. 

Maxent revealed the most important variables that influence the suitability preference of the moth. 

In addition, the application of the Sentinel 2 and LIDAR variables in modelling improved the 

performance of the overall models indicating their capability to offer long-term monitoring 

assistance on commercial forest plantations. These conclusions are coherent with the observations 

achieved throughout this thesis and they respond to the key research questions mentioned in the 

introduction chapter: 

• To what extent does the Maxent model successfully predict the potential habitats of 

the C. tristis? 

Based on the results (achieved in chapter 2 and chapter 3), Maxent successfully predicted the 

potential habitat of the C. tristis with good accuracies. All the Maxent models in this study had 

more than the random predictions and the difference in accucaries varied due to the different 

variables used in each model. Using presence-only datasets, Maxent generated predictive maps 

that showed the prospective habitat suitability of the moth. This indicated the significance of 

presence-only datasets and classified the model as a superior SDM with a good prediction 

performance in modelling the spatial distribution of the moth.  

• How can Maxent as a SDM identify the relevant variables that influence the 

suitability preference of the C. tristis on E. nitens plantation? 

Due to the distinctive design of the Maxent model, optimum variables that influence the suitability 

preference of the C. tristis on E. nitens plantation were successful identified. Maxent showed that 

temperature, aspect, age and elevation were the optimal variables that influenced the habitat 

preference of the C. tristis within the Mpumalanaga area. These variables corresponded with the 

previous studies conducted seeking to understand the moth’s occurrence within the Mpumalanga 

area. Temperature was the most influential factor in identifying the habitat suitability of the moth 

and can be associated with climate change. Different studies have shown that climate change has 

played a critical role in the movement, shift of hosts and adaptation of insect pests across the globe. 
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As changes in temperature occur, they create favourable conditions which influence the suitability 

of the moth. Furthermore, Maxent indicated that the habitat suitability of C. tristis depended on 

the age of tree species. E. nitens tree species between the age of 4.5 and above were mostly 

vulnerable to infestation, creating a suitable habitat of the moth. Lastly, elevation that ranges 

between 1400 m and 1650 m was indicated as a conducive habitat for the moth. Clearly, the results 

show that Maxent effectively determined the variables influencing the suitability preference of the 

C. tristis on E. nitens plantation.  

• How effectively does the freely available Sentinel 2 sensor detect and map the C. tristis 

habitat suitability?  

Vegetation undergoing induced stress from either pests or diseases changes their spectral 

reflectance on the electromagnetic spectrum. As the chlorophyll content reduces, these changes 

are detected by the sensor. Based on the findings, the utility of Sentinel 2 derived vegetation 

indices, red edge bands and wavebands effectively modelled the habitat suitability of the C. tristis 

with acceptable accuracies. The combination of vegetation indices, red edge bands and wavebands 

provided a powerful tool in modelling the habitat suitability of the C. tristis. These variables 

managed to pick up stressed vegetation based on their spectral responses on the electromagnetic 

spectrum. In addition, the existence of the three red edge wavebands in the Sentinel 2 improved 

the capability of the sensor to detect any signs and symptoms of infestation on the on E. nitens 

plantations. Above that, the Sentinel 2 sensor has a revisit time of 5 days that allows the continous 

monitoring of vegetation status over a short period. This method is more cost-effective as 

compared to traditional field surveys and resulted in more information being collected. Hence, the 

freely available Sentinel 2 sensor detected the suitable habitats of the C. tristis and created platform 

towards the effective monitoring and Management of the moth.  
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