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ABSTRACT

Modelling Soil-Transmitted Helminths Using Generalised Polynomial Chaos

Siboniso Nqubeko Goba
School of Mathematics, Statistics and Computer Science

Master of Science

Soil-transmitted helminths are the group of neglected tropical diseases for humans caused by par-
asitic worms; Ascaris lumbricoides, Trichuris trichiura and hookworm species. It occurs mostly
in tropical and subtropical regions as it survives in warm and moist temperature. The disease is a
severe public health problem as it is prevalent to school-aged children. In this study, a non-linear
mathematical model is formulated to model the transmission dynamics and the spread of soil-
transmitted Helminths. Firstly, the deterministic model is formulated, and the stability analysis of
the model was performed. The disease-free equilibrium is globally asymptotically stable for the
basic reproduction number R0 < 1, while for R0 > 1, a unique endemic equilibrium exists and is
globally asymptotically stable. Secondly, we apply the polynomial chaos approach to the system
of differential equations with random coefficients. This approach takes into account the random-
ness in the model parameters. The polynomial chaos is applied resulting in a system of coupled
ordinary differential equations. The resulting system is solved numerically to obtain the first-order
and second-order moments of the stochastic output processes. Sensitivity analysis based on Sobol
indices is also employed to determine parameters with the most significant influence on the output.
Finally, both deterministic and polynomial chaos simulations reveal that the reduction of the con-
tact rate can reduce the size of the epidemic. The polynomial chaos numerical simulations show
low volatility in the number of susceptibe, exposed and infectious human population compared to
the egg and larva density which is chaotic.

Keywords: ascaris lumbricoides, trichuris trichiura, hookwork, polynomial chaos
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Chapter 1

Introduction

1.1 Background Of Soil Transmitted Helminths

Soil-transmitted helminthiases (STH) are the group of neglected tropical diseases (NTD) for hu-

mans caused by parasitic worms; ascaris lumbricoides, trichuris trichiura and hookworm species.

The human population get infected through contact with the parasite’s egg or larva in the soil. For

ascaris lumbricoides and trichuris trichiura a fully developed egg is ingested for the infection to

occur. Ingestion can happen in many ways such as consumption of vegetables which are not care-

fully washed or cooked [10]. Hookworm larva penetrates the skin of the host for infection, and

this usually happens when people are walking barefoot [10]. Inside the host, developed hookworm

stay in the upper part of the human small intestine, whereas ascaris lumbricoides stay in the entire

small intestine and trichuris trichiura stay in the large intestine [8]. The worms feed on intestinal

host tissues including blood, which result in the loss of iron and protein [10, 11]. The worm bur-

den is prevalent in the tropical and subtropical region as it survives in warm and moist temperature

[11, 12]. Light infection in most cases has no symptoms. However, heavier worm presence causes

more symptoms such as malnutrition, malabsorption, abdominal pain, cramping and tiredness, and

1



2 Chapter 1 Introduction

impaired cognitive and physical development [13].

In 2010 the global STH infection estimate was 43.9 million, 819.0 million and 464.6 million

people for Hookworm, ascaris and truchuris respectively [14], which means more than 1.3 billion

people in the world are infected with STH [14]. An estimate of 568 million school-age children

(SAC) in the world live in areas endemic to STH. The worldwide prevalence estimate of STH

is more than that of HIV/AIDS, tuberculosis and malaria [15]. More infections recorded are

from pre-SAC and SAC sub-populations living in poor and malnourished communities. The world

health organisation (WHO) in 2016 estimated that more than 3 million Pre-SAC population in

South Africa required treatment for STH and more than 2 million SAC population also need the

treatment. WHO recommended that endemic countries should control disease morbidity through

periodic treatment of at-risk people. In endemic areas treatment should be given once a year when

the baseline prevalence of soil-transmitted helminth infections is over 20% and twice a year when

the prevalence of soil-transmitted helminth infections is over 50% [10]. Most studies revealed that

inadequate hygiene, poor health care systems and facilities, social instability, civil war, and natural

disasters make the situation worse [16, 17].

1.2 Soil-Transmitted Helminths Life Cycle.

Soil-transmitted helminths worm species have different life cycles. In this section, we discuss

the life cycles for three worm species affecting humans, namely ascaris lumbricoides, trichuris

trichiura and hookworm.
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1.2.1 Ascaris lumbricoides

Adult ascaris worms stay in the small intestine of the human host. A female adult worm release

about 200000 eggs per day through the human stool. They release both fertile and infertile (which

are not infective) eggs. Fertilised eggs embryonates and become infective after about 18 days

depending on environmental conditions. Infective eggs are then ingested and hatch into larvae

which invades intestinal mucosa and carried into the lungs via the blood [18]. In the lungs, the

larva breaks into the alveoli and pass up the trachea, where they are coughed up and may be

swallowed [18]. Upon reaching the small intestines they develop into adult worms. The cycle

takes 2 to 3 months. The adult worms in the intestine can live for about 1 to 2 years. Figure 1.1

show the full cycle for ascaris worm development [8].

Figure 1.1 Life cycle of ascaris lumbricoides. Source [8].



4 Chapter 1 Introduction

1.2.2 Trichuris trichiura

Trichuris egg is deposited into the soil before embryonation. In the soil it undergoes embryonation

in two stages; 2-cell stage and advanced cleavage which takes up to 15 to 30 days. Once the egg

have embryonated it becomes infective. Human hosts then ingest infective eggs for infection to

occur. After ingestion, the egg hatch in the small intestine and become a larva. The larva grow

and establish itself as the adult worm in the colon. Adult female larva start to shed eggs into the

environment after 60 to 70 days of initial infection. Approximately 3000 to 20000 eggs per day

are realised by adult female worms. The adult worms in the colon have the lifespan of up to one

year. Figure 1.2 show the diagrammatic representation of this process [8].

Figure 1.2 Life cycle of trichuris trichiura. Source [8].
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1.2.3 Hookworm

Hookworm egg is passed in the stool of heavily infected individuals into the soil. In about 1 to 2

days, the egg hatch into first stage larva called rhabditiform if environmental conditions (warmth

and moisture) are conducive. The first stage larva grows in the soil and becomes filariform larva.

Filariform larva is infective and can survive in the soil for about 3 to 5 weeks. Upon interaction

of filariform larva with human, they penetrate the skin and move through the blood vessels to the

heart and then to the lungs. They gain entrance to the pulmonary alveoli and invade the bronchial

tree to the pharynx before being swallowed to the small intestine. The adult worms in the lumen

of the small intestine feed on blood tissues, which may result in blood loss of the host. Adult

worms stay in the small intestine for 1 to 2 or several years. Figure 1.3 shows the diagrammatic

representation of the life cycle for Hookworm in humans [8].

Figure 1.3 Life cycle of hookworm species. Source [8].
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1.3 Diagnosis

Infection detection is achieved by stool examination for the presence of STH species eggs. The

most common procedure in population studies is the Kato-Katz method. This method is based

on faecal smear and microscopy examination, it is also recommended by WHO as the method of

STH infection detection. However, the sensitivity of detection for Kato-Katz is low, especially for

light intensity infections. Some studies have also revealed that multi stool examination reduces the

diagnostic error, hence getting accurate prevalence estimate [19].

1.4 Problem Statement

Despite preventative chemotherapy treatment STH remains the public health problem in poor

Asian, American and sub-Saharan Africa with more than 2 billion people infected in more than

100 countries worldwide [20]. More than 267 million pre-SAC and more than 568 million SAC

stay in areas where the transmission of these parasites is intense, and are in need of treatment and

preventive interventions [20]. Little change has been observed in the prevalence of STH in sub-

Saharan Africa, more than one billion people are still infected [21]. In a study conducted in 15

schools in rural South Africa, almost all the schools required treatment for STH infection once or

twice a year according to WHO guidelines [22]. In studies conducted in some areas of Kwa-Zulu

Natal and Western Cape, the prevalence of STH was more than 50% as shown on the map in Fig-

ure 1.4 [9]. Strategies such as preventative chemotherapy have been employed in communities and

villages at risk in the attempt to eradicate the disease. There is still more work needed to improve

sanitation in endemic areas. Unlike most tropical diseases, very minimal research work on math-

ematical models in population level for STH is available in the literature [23]. In this work, the

STH population model is formulated. The model is designed to study dynamics at the population

level. Deterministic and stochastic method using generalized polynomial chaos is employed in
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the analysis of the model. Bio-mathematical models are useful for government and public health

practitioners to help in formulating policies and proper plan for treatment administration based on

the processes and patterns of the interacting species.

Figure 1.4 South African distribution of soil-transmitted helminths. Source [9]

.

1.5 Aim and Objectives

1.5.1 Aim

The aim of this project is to quantify uncertainty in the model parameters for the soil-transmitted

helminths using generalised polynomial chaos.

1.5.2 Objectives

1. To develop and analyse a population model to capture soil-transmitted helminths dynamics.
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2. To apply generalised polynomial chaos in the model to capture parameters uncertainty.

1.6 Generalised Polynomial Chaos Preliminaries

1.6.1 Orthogonality of polynomials

Definition 1. [24] Let U be the interval in R. A weight function ξ (x) is a nonnegative integrable

function of x ∈U.

Definition 2. [24] For any functions f ,g ∈ Lξ (U), the inner product of f and g is

〈 f ,g〉=
∫

U
f (x)g(x)ξ (x)dx (1.1)

Definition 3. [25] A Hilbert space is a vector space Lξ with an inner product 〈 f ,g〉 such that the

norm defined by | f |=
√
(〈 f , f 〉) turns Lξ into a complete metric space.

Definition 4. [24] Let U be an interval in R. Let f and g be two functions in a Hilbert space

Lξ (U). The functions f and g are orthogonal functions if

〈 f ,g〉= 0 (1.2)

Definition 5. [24] The function Pn is a polynomial of degree n if there is a sequence of real

numbers αi ∈ R for i = 1,2,3, . . . ,n such that

Pn(x) =
n

∑
i=0

αixi (1.3)

where x ∈U

Definition 6. [24] The set of polynomials {P+
n } are orthogonal polynomials if P+

n is a polynomial

of degree n and:

〈P+
i ,P+

j 〉= 0, f or i 6= j (1.4)
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We assume that for all orthogonal polynomials of degree zero

P+
0 (x) = 1, x ∈U (1.5)

Theorem 1. [24] Let {P+
n } be a set of orthogonal polynomials and ξ (x) be weight function. The

integral ∫
U

P+
0 (x)ξ (x)dx =

∫
U

ξ (x)dx (1.6)

Moreover, for n≥ 1 we have ∫
U

P+
n (x)ξ (x)dx = 0 (1.7)

Proof. From (1.5) proving (1.6) is easy. For the case of n≥ 1∫
U

P+
n (x)ξ (x)dx =

∫
U

P+
0 (x)P+

n (x)ξ (x)dx

= 〈P+
0 (x),P+

n (x)〉

= 0

by definitions 2 and 6.

Theorem 2. [24] For U an interval in R and ξ a weight function in U, the function

f (x) =
ξ (x)∫

U ξ (x)dx

for x ∈U is a probability density function.

Proof. The proof is straight forward,∫
U

f (x)dx =
∫

U

ξ (x)dx∫
U ξ (x)dx

=
1∫

U ξ (x)dx

∫
U

ξ (x)dx

= 1
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Theorem 3. [24] Let {P+
n } be a set of orthogonal polynomials. Assume that x is a random

variable associated with the probability density function f , from weight function ξ . The expected

value of Pn(x) is given by

E(Pn(x)) =


1, f or n = 0

0. f or n≥ 1
(1.8)

and the variance is given by:

V (P+
n (x)) =


0, f or n = 0

〈P+
n ,P+

n 〉∫
U ξ (x)dx , f or n≥ 1

Proof. For n = 0, by definition of expectation we have:

E(P+
0 (x)) =

∫
U

P+
0 (x) f (x)dx

=
∫

U
f (x)dx

= 1,

since P+
0 (x) is the constant, V (P+

0 (x)) = 0.

For n≥ 1,

E(P+
n (x)) =

∫
U

P+
n (x) f (x)dx

=
∫

U
P+

n (x)
ξ (x)∫

U ξ (x)dx

=
1∫

U ξ (x)dx

∫
U

P+
n (x)ξ (x)dx

= 0,

by Theorems 1 and 2.
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Using the definition of variance, we have

V (P+
n (x)) = E[(P+

n (x)−E(P+
n (x)))2]

= E(P+
n (x)2)

=
∫

U
P+

n (x)2 f (x)dx

=
1∫

U ξ (x)dx

∫
U

P+
n (x)2

ξ (x)dx

=
〈P+

n ,P+
n 〉∫

U ξ (x)dx

from definition 2 and Theorem 2.

1.6.2 Generalized Polynomial Chaos.

The idea of polynomial chaos was first introduced by Wiener [26], in a problem involving indepen-

dent Gaussian random variables. The Hermite polynomial was used as a basis function. Xiu and

Karniadakis [27] expanded the idea to generalised polynomial chaos (GPC). They noticed that Her-

mite polynomials can be used in solving stochastic differential equations (SDE) involving random

variables. Generalized polynomial chaos is a way of representing stochastic processes paramet-

rically using a set of random variables. For example, consider the probability space (Ω,A ,P),

where Ω is the event space, A ∈ 2Ω is an σ -algebra and P its probability measure. A stochastic

process X(ω) governed by a set of random variables {ζ1(ω),ζ2(ω),ζ3(ω) . . . ,ζN(ω)} is given by

X(ω) =
∞

∑
i=0

αiΨk(ζ (ω)), (1.9)

where ω ∈ Ω is the event and {Ψk(ζ (ω)} is a set of orthogonal polynomials. Each probability

distribution function is assigned to a family of orthogonal polynomials as shown in Table 1.1. The

expansion given by equation ( 1.9) can be truncated by reducing the expansion to finite-dimension

and set the significant highest order of polynomial {Ψ}. The stochastic process in the N-dimension
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Distribution Random variable Polynomial Support

Continuous Gaussian Hermite (−∞,∞)

Gamma Lauegerre [0,∞]

Beta Jacobi [a,b]

Uniform Legendre [a,b]

Discrete Poisson Charlier {0,1,2, . . .}

Binomial Krawtchouk {0,1,2, . . . ,N}

Negative binomial Meixner {0,1,2, . . .}

Hyper geometric Hahn {0,1,2, . . . ,N}

Table 1.1 Distribution functions with their corresponding orthogonal polynomials

form is given by

X(ω) =
M

∑
i=0

αiΨk(ζ (ω)), (1.10)

where ζ = (ζ1,ζ2, . . . ,ζN)
T is N-dimensional random vector. Let us denote the highest order of

the polynomial by P, then the total number of expansions M+1 is calculated as

M+1 =
(N +1)!

N!P!
(1.11)

1.6.3 General Stochastic Garlerkin Algorithm [1]

Let us consider the stochastic differential equation

L (Y, t,ω;X) = f (Y, t;ω), (1.12)

where X =: X(y, t;θ) is the solution and f (Y, t;ω) is the source function. The operator L gener-

ally involves differentiation in space/time and it can be nonlinear. Boundary conditions and initial

conditions are assumed. The random parameter ω exists because of the introduction of uncertainty
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into the system. Uncertainty can be introduced in the system through boundary conditions, initial

conditions, material properties, etc. The solution, X , is regarded as the random process and can be

expanded by the truncated Wiener-Askey polynomial chaos defined by equation (1.10).

Next, we substitute equation (1.10) into the differential equation

L
(

Y, t,ω;
M

∑
i=0

αiΨk(ζ (ω))
)
= f (Y, t,ω) (1.13)

The choice of ξ and {Ψk} defines a weight function for an inner product. Using this inner product,

we take a Galerkin projection of the differential equation onto each basis polynomial Ψi.〈
L
(

Y, t,ω;
M

∑
i=0

αiΨk(ζ (ω))
)
,Ψi

〉
= 〈 f (Y, t,ω),Ψi〉 (1.14)

The projection ensures that the error in the approximate solution is orthogonal to the space

spanned by {Ψk}. By the orthogonality of {Ψk}, the stochastic differential equation reduces to a

system of coupled deterministic differential equations for the coefficients of the truncated PCE. We

can use any appropriate spatial and temporal discretization of the coefficients to solve this system.

1.7 Mathematical Modelling Tools

Let consider the dynamical system

ẋ(t) = f (t,x), x ∈ Rn (1.15)

1.7.1 The Equilibrium Point And Its Stability [2]

Definition 7. X∗ ∈Rn is said to be an equilibrium point of equation (1.15) if f (t,X∗) = 0 for all t.

Definition 8. An equilibrium point X∗ of the system in (1.15) is said to be



14 Chapter 1 Introduction

1. Stable if for any positive scalar δ there exist a positive scalar σ such that ||X(t0)|| < σ ,

||X(t)||< δ for all t ≥ t0.

2. Asymptotically stable if it’s stable and

lim
t→∞

X(t)→ X∗

3. Unstable if is not stable.

1.7.2 Lyapunov Local Stability Theorem [3]

Consider the map

ẋ(t) = f (t,x), Xe = 0. (1.16)

Define the Lyapunov function V : N → R as a function which satisfies the following properties:

1. V (x) and its partial derivatives are continuous.

2. V (x) is positive definite.

3. V̇ (x) is negative semidefinite.

Theorem 4. If there exists a Lyapunov function for the system of equation (1.16), then Xe = 0 is

stable.

Theorem 5. (Lyapunov direct method). If there exists a Lyapunov function for the system of equa-

tion (1.16), with the additional propery that V̇ (x) is negative definite then Xe = 0 is asymptotically

stable.

Theorem 6. If there exists a positive definite function V for which V̇ (x) is also positive definite for

the system of equation (1.16), then Xe = 0 is unstable.
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1.7.3 Lyapunov Direct Global Stability Theorem [3]

The theorems for Lyapunov global stability are similar with the local stability theorems, except for

the following differences

1. N → Rn and

2. V (x)→ ∞ as ||X || → ∞. A function with this property is said to be radially unbounded and

its needed to ensure that the contours of V define closed curves.

1.7.4 Lyapunov Indirect Local Stability [4]

Let us define the system of differential equations

dx
dt

= f (x), (1.17)

where f : D→Rn is continuously differentiable and D is close to x∗. Let X∗ be an equilibrium point

of the system of differential equations (1.17). The Jacobian matrix of equation (1.17) evaluated at

the equilibrium point x∗ is given by

M =
∂ f
dx

∣∣∣∣∣
X=X∗

.

The linearised system of (1.17) is given by

du
dt

= Mu, u = x− x∗ (1.18)

then

1. x∗ is asymptotically stable if Re(λi(A))< 0 for i = 1, . . . ,n.

2. x∗ is unstable if Re(λi(A))> 0 for at least one i.

Re(λi(A)) is the real part of the ith eigenvalues of A. Stability defined by indirect method is called

local stability because A is only defined at x∗, hence the stability is restricted to the small neigh-

borhood of x∗.
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1.7.5 Centre Manifold Theorem [5]

Theorem 7. Let consider the ordinary differential equation:

dx
dt

= f (x,φ), f : Rn×R→ R and f ∈ C2(Rn×R) (1.19)

Let assume 0 is an equilibrium point for the system for values of the parameter φ , that is :

f (0,φ) = 0, for all φ

Let assume

• A = Dx f (0,0) =
(

∂ fi
∂x j

(0,0)
)

is the linearisation matrix of the system around the equilibrium

point 0 with the parameter φ evaluated at 0. In simple terms, zero is the eigenvalue of A and

all other eigenvalues of A have negative real parts.

• Matrix A has nonnegative right eigenvector v and a left eigenvector w corresponding to the

zero eigenvalue.

Lets assume fk to be the kth element of f and

a =
n

∑
k,i, j=1

wkviv j
∂ 2 fk

∂xi∂x j
(0,0),

b =
n

∑
k,i=1

wkvi
∂ 2 fk

∂xi∂φ
(0,0).

The local dynamics of equation (1.19) are determined by a and b as follows:

1. a > 0,b > 0. When φ < 0 with |φ | << 0 is locally asymptotically stable, and there exists a

positive unstable equilibrium; 0 < φ << 1 is unstable and there exists a negative and locally

asymptotically stable e quilibrium;

2. a < 0,b < 0. When φ < 0 with |φ | � 0 is unstable; when 0 < φ � 1, 0 is locally asymptoti-

cally stable, and there exists a positive unstable equilibrium;
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3. a > 0,b < 0. When φ < 0 with |φ | � 0 is unstable, and there exists a locally asymptotically

stable negative equilibrium; when 0< φ� 1, 0 is stable, and a positive unstable equilibrium

appears;

4. a < 0,b > 0. When φ changes from negative to positive, 0 changes its stability from stable

to unstable. Correspondingly a negative unstable equilibrium becomes positive and locally

asymptotically stable.

1.7.6 The Basic Reproduction Number [6]

In the study of epidemics, the basic reproduction number measures the expected number of sec-

ondary infections that may result if one infectious individual is introduced in the purely susceptible

population. One method used to calculate this quantity is the next generation matrix. This section

discusses this method briefly.

Let x = (x1,x2, . . . ,xn)
T represent the size of each compartment, where the first m < n com-

partments contain infected individuals. Assume that the disease free equilibrium x0 exists and it is

stable. Consider the system of differential equations for x1,x2, . . . ,xn written in the form

dxi

dt
= Fi(x)−Vi(x) for i = 1,2, . . . ,m

where Fi(x) is the rate of appearance of new infection in compartment i and Vi(x) is the rate of

transition between compartment i and other compartments. Now, let define the matrices

F =

(
∂Fi(x0)

∂x j

)
, V =

(
∂Vi(x0)

∂x j

)
for 1≤ i, j ≤ m

The next generation matrix is given by FV−1. The basic reproduction number is calculated as the

spectral radius of FV−1 and it is given by

R0 = ρ(FV−1).
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1.7.7 The Descartes Rule Of Signs [7]

The Descartes rule of signs is a method used to examine signs of a polynomial function roots. Let

us consider the polynomial

P(x) = a0 +a1x+a2x2 + · · ·+anxn

where a0,a1,a2, . . . ,an are real constants and an 6= 0. The polynomial P(x) has n number of roots.

The concept of Descartes of finding the signs of these roots is given as follows:

1. The number of positive real roots of P(x) is either equal to the number of sign change in the

coefficients of P(x) or less than this by an even number.

2. The number of positive real roots of P(−x) is either equal to the number of sign change in

the coefficients of P(−x) or less than this by an even number.

1.7.8 The Expected value(Mean) [28]

Definition 9. Let f (x) be the probability density function of the random variable X in the space S

and the summation

∑
x∈S

u(x) f (x) (1.20)

exists, then the sum is called the mathematical expectation or expected value of u(x) and is denoted

by E(u(x)). That is

E(u(x)) = ∑
x∈S

u(x) f (x) (1.21)

Theorem 8. If the mathematical expectation, E exists, it satisfies the following properties if a, b

are constant and u, v are function:

1. E(a) = a

2. E(au(x)) = aE(u(x))

3. E(au(x)+bv(x))=aE(u(x))+bE(v(x))
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1.8 Thesis outline.

Chapter 2 begins by providing literature review based on mathematical models on soil-transmitted

helminths and uncertainty qualification using generalized polynomial chaos. In chapter 3 we for-

mulate the basis deterministic model and analyse its solutions analytically. Transmission param-

eters uncertainty is included to the model using GPC in chapter 4, which results in the system

of coupled ordinary differential equations. Models presented in chapter 3 and 4 are analysed nu-

merically in chapter 5 and we discuss the results. Chapter 6 we conclude our work with relevant

recommendations for further research work.

1.9 Summary

This chapter outlined the background information on soil-transmitted helminths infection. We

presented different worm species affecting the human population, their life cycles and popular

method of disease diagnosis. Statistics in the South African and the whole world context were

discussed. The statistics showed why it is important to study soil-transmitted helminths dynamics

at the population level. The problem statement, aims and objective of the study were stated in

details. We also provided in detail mathematical preliminaries, which will be applied in this study

in the later chapters. The significance of the study was also stated, we revealed the contribution

this study could make in the public health policy making. Finally, this chapter gave the outline of

this study.



Chapter 2

Literature review

2.1 Mathematical models

The earliest work on mathematical models for STH was reviewed by Anderson and May [29].

They looked at the most published models on intestinal nematodes which consist of two equations

describing the changes in the densities of adult worms and infective state. The model describing

the mean number of sexually mature worms in-host has two loss terms. The gain term represents

parasite recruitment to sexually mature worms. The two lost terms in the mean number of worms

are worm natural death and host species death. The model also describes dynamics of the infective

stage in the environment, this is described by one gain term and two lost terms. This model is

developed deterministically but has some probability elements. Among the number of conclusions

drawn for their analysis is that the substantial changes in parasite intensity do not result in con-

comitant changes in the prevalence and also the direct relation of STH infection to worm burden.

Truscott, Hollingworth and Anderson [30] modelled the interruption of transmission of soil-transmitted

helminths by repeated mass chemotherapy of school-aged children. They formulated and analysed

20
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the age-structured model of STH population dynamics with regular treatment. The aim of their

study was to use models derived from age-structured hybrid to design mass drug administration

(MDA) program. They employed an existing model and included dynamics of infectiousness in

the environment and worm sexual reproduction. They investigated eradication with finite rounds

of treatment and its dependencies in the value of the basic reproduction number and treatment fre-

quencies. They first analysed the stability of a model with no sexual reproduction under treatment.

Their analysis revealed that de-worming has a significant impact on worm load and infectiousness

in the reservoir in the environment. They also concluded that treatment produces an immediate

effect on worm burden, but the population also gets reinfected because of infectious material in

the environment. The analysis for model considering sexual reproduction shows that it easier to

interrupt transmission in the presence of sexual reproduction term in the model.

A Monstresor [31] analysed the data for soil-transmitted helminths prevalence in the Philip-

pines. They used the Markov chain to develop transitional probability model to predict preva-

lence changes when only baseline data are available. The model initially assigns each individual

to different condition states according to their worm intensity. There are four conditions, state

zero, light, moderate and high-intensity egg presence defined by world health organisation. The

movement of individuals into different condition state is defined by transition probability. Using

the observed baseline prevalence data, the result showed that the model predicted the prevalence

change for Ascaris better than other STH worm species. The prevalence of hookworms was pre-

dicted less precisely than for other STH species. This is probably because hookworms are two

different species with different response to anthelminthics, but all the studies they considered did

not distinguish, they were all reported as "hookworms".
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2.2 Polynomial chaos in differential equations

Chen-Charpentier, Cortes and Romero [32] employed generalized polynomial chaos in the analy-

sis of airy random differential equation. They assumed a different statistical distribution for each

random parameter. They expanded each parameter with respect to their generalized polynomial

chaos basis function [27]. They explored the representation of solutions as polynomials with dif-

ferent statistical distribution, rather than using Hermite polynomial with parameters assumed to be

normally distributed. They also studied the possibility of having random model parameters repre-

sented in different basis functions. The study revealed that the choice of the distribution of random

model parameters plays an important role in approximating the solution of random differential

equations by generalized polynomial chaos, this conclusion was also supported by the gPC-based

sobol’s indices.

Roberts [33] used generalized polynomial chaos in the epidemic model with uncertainty in the

reproduction number. Kermack-McKendrick model was analysed with reproduction number rep-

resented as the probability distribution instead of single value. State variables were then expanded

in orthogonal polynomials. The reproduction number was varied into three statistical distributions,

namely, the beta, normal and uniform distribution. They used H1N1 influenza data for numerical

simulations. He concluded that if the range of reproduction number is known the uniform distri-

bution is appropriate and if the estimate is obtained with likelihood profile assumed to be normally

distributed, then solutions may be approximated by the beta distribution.

Santonja and Chen-Charpentier [34] applied generalized polynomial chaos in obesity model

with uncertainty in model parameters. They considered transmission parameters to be random,

the probability distribution. Due to the minimal data points available, the assumed transmission

parameters followed the uniform distribution because of its non-informative form. Polynomial
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chaos-based Sobol’s indices were used for sensitivity analysis. Sensitivity analysis showed that the

rate at which people aged between 24−65 years contribute more to the overall obesity prevalence.

They also showed the usefulness of the application of polynomial chaos to an epidemiological

model to determine the epidemic evolution close to reality than the deterministic approach.

Minimal studies are available in literature applying generalised polynomial chaos in the epi-

demic models. Reviewed studies in this section are going to form the building blocks of the current

study on helminths infection.

2.3 Summary

In this chapter, we reviewed different papers about mathematical models and data analysis of soil-

transmitted helminths. Epidemic models reviewed focuses mostly on the in-host dynamics of the

disease with little available literature studying population dynamics. We also reviewed studies on

the application of generalised polynomial chaos in the system of differential equations. Most of

the studies available in the literature apply this method in engineering uncertainty studies. In our

study, we apply this method to the epidemic model.



Chapter 3

Soil-Transmitted Helminths Deterministic

Model

This section presents a basic transmission model for soil-transmitted helminths species interacting

with the human host population. This model captures the critical stages of the life cycles of the

species. We consider three stages of infection in the human population and two stages of the worm

development in the soil. We analyse the model by showing that the model is positively invariant

and bounded in a feasible region, calculating the reproduction number and determining equilibrium

points and their stability.

3.1 Model Formulation

We consider the human host population interacting with STH eggs and larvae in the soil. The hu-

man population is stratified into three subpopulations; the susceptible humans; S, which represents

individuals who are free of worm burden but at risk of acquiring the infection, the exposed hosts,

E, represents individuals who have interacted with the contaminated soil by walking barefoot and

get penetrated by the hookworm larva or ingested eggs but they are not shedding eggs in the soil

24
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yet, the infectious hosts, I, represents individuals with fully developed worms in the intestine that

produces eggs to be deposited in the soil. The density of eggs in the soil is denoted by We and

finally, the infectious larva density is represented by Wl . Individuals move from one compartment

to another as the worm develops inside the host after infection. The total human population is

given by

N(t) = S(t)+E(t)+ I(t). (3.1)

We have assumed that the infection can only occur when individuals interact with contaminated

soil through ingestion. We have also assumed that only human population shed eggs in the soil.

The birth rate µ was assumed to be equal to the death rate, hence the total population was kept

constant. The number of new infection per susceptible human host, λ (t), is given by

λ (t) =
β (We + τWl(t))

1+aWe(t)+bWl(t)
, (3.2)

where β is the effective contact rate, a and b are the attacking efficiency rates for the eggs and larva

respectively. We assume here that the larva density has a slightly lower probability to initiate new

infections, thus, 0 ≤ τ ≤ 1. Individuals in the exposed sub-population E move to the infectious

sub-population I at the rate γ . The egg shedding rate for infected humans is represented as ρ . The

number of eggs shed by one infected human per day is represented by n1. In favourable environ-

mental conditions, eggs develop and hatch into infectious larva at the rate α . If the environment

is not conducive for an egg to hatch, it degrades in the soil at the rate of σ1. The larva can only

survive in the soil for some time and if no infection occurs, the egg larva dies in the soil at a rate

of σ2. The dynamics of human hosts, worm and larva are represented by the schematic diagram in

Figure 3.1.
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Figure 3.1 A schematic representation of compartmental model.

3.1.1 Model equations

The system (3.3) of nonlinear ordinary differential equations describe the dynamics of soil-transmitted

helminths epidemics in human as represented by the scheme in Figure 3.1. The state variables,

parameters and initial conditions are considered to be non-negative.

S′(t) = µN(t)− (λ +µ)S(t),

E ′(t) = λS(t)− (µ + γ)E(t),

I′(t) = γE(t)−µI(t),

W ′e(t) = ρn1I(t)− (α +σ1)We(t),

W ′l (t) = αWe(t)−σ2Wl(t).

(3.3)

3.1.2 Model assumptions

1. Birth and death rates are equal.



3.2 Model analysis. 27

Variables Description

S(t) The susceptible human population size.

E(t) The exposed human population size.

I(t) The infectious individuals.

We(t) The worm egg population size in the soil.

Wl(t) The worm larva population size in the soil.

Table 3.1 Description of model state variables for the system 3.3.

2. Infection only occurs through infectious larvae or egg ingestion.

3. The eggs are only shed by infectious human hosts.

4. Human host does not acquire immunity against the infection.

5. In-host dynamics of the worm are not considered, therefore worm sexual reproduction is not

considered.

6. Low sanitation community is assumed.

7. Eggs density initiate more infections than larva density

3.2 Model analysis.

In this section, we analyse the general properties of the system described by the system (3.3) with

non-negative initial conditions. The model describes the dynamics of two interacting populations

(humans and larva).
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Parameter Description

µ Human birth and death rate

β Larvae-human contact rate.

γ Rate of progression from latency to actively infectious in humans

ρ Rate at which eggs are shed by the human population.

n1 Average number of eggs shed by each individual

α Rate at which the egg hatches into infectious larva

σ1 Rate of egg degradation in the soil

σ1 Rate of larvae degradation in the soil

a Attacking efficiency rate of the egg

b Attacking efficiency rate of the larva

τ Modification parameter

Table 3.2 Description of model parameters as used in the system 3.3
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3.2.1 Positivity of solutions

System (3.3) describe the human and worm/egg population. So it is necessary to verify that state

variables will be non-negative. Here, we prove that solutions of the system (3.3) with non-negative

initial conditions will remain non-negative for all t ≥ 0.

Theorem 9. The solutions of system in (3.3) are all non-negative for all t ≥ 0.

Proof. From the first equation of system (3.3) we can deduce that,

S′(t) = µN(t)− (λ (t)+µ)S(t)≥−(λ (t)+µ)S(t)

This inequality ODE can be solved using the method of separation of variables as follows,

dS(t)
S(t)

≥−(λ (t)+µ)dt∫ S(t)

S(0)

dP
P
≥−

∫ t

0
(λ (y)+µ)dy

And this integrates to

S(t)≥ S(0)exp
(
−
∫ t

0
(λ (y)+µ)dy

)
≥ 0.

Similarly for other equations of system (3.3) we deduce that,

E(t)≥ E(0)exp(−(µ + γ)dt)> 0

I(t)≥ I(0)exp(−µdt)> 0

We(t)≥We(0)exp(−(α +σ1)dt)> 0

Wl(t)≥Wl(0)exp(−σ2dt)> 0

Thus, the solutions of system (3.3) remain positive for t ≥ 0.
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3.2.2 Invariant region

Lemma 1. The solutions of system (3.3) are uniformly bounded in the set Ω = Ω1×Ω2, where

Ω1 =
{
(S(t),E(t), I(t)) ∈ R3

+ : N(t)≤ N0

}
,

Ω2 =
{
(We(t),Wl(t)) ∈ R2

+ : We ≤
ρn1N0

α +σ1
, Wl ≤

αρn1N0

α +σ1

}
.

Proof. The rate of change of the human population is given by

dN(t)
dt

= 0.

Therefore the total population is constant,

N(t) = N0,

which means as t→ ∞, 0≤ N(t)≤ N0.

Since the total human population is constant, we know that I(t)≤ N0 which implies that,

dWe(t)
dt

≤ ρn1N0− (α +σ1)We(t), (3.4)

dWe(t)
dt

+(α +σ1)We(t)≤ ρn1N0.

This ODE can be solved by finding integrating factor:

F(t) = exp(
∫
(α +σ1)dt) = exp((α +σ1)t) (3.5)

Multiplying Equation (3.4) and (3.5) gives

dWe(t)
dt

exp((α +σ1)t)+(α +σ1)Weexp((α +σ1)t)≤ ρn1N0exp((α +σ1)t). (3.6)

Equation (3.6) can be re-written as

d
dt
(We(t)exp(α +σ1)t)≤ ρn1N0exp((α +σ1)t).
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Integrating both sides and using the Fundamental Theorem of Calculus [35]

We(t)≤
ρn1N0

α +σ1
+

C
exp((α +σ1)t)

And the constant term C can be solved using initial condition We(0) which gives the solution:

We(t)≤

(
We(0)−

ρn1N0

α +σ1

)
exp(−(α +σ1)t)+

ρn1N0

α +σ1
(3.7)

As t→ ∞ the eggs population size in the soil remains in the interval

We(0)≤We(t)≤
ρn1N0

α +σ1
(3.8)

And therefore the population of eggs in the soil, We(t), is bounded in the first orthant.

For the larvae population we can use the results given by Equation (3.8) and the fifth equation

of our system (3.3) and notice that

dWl(t)
dt

+σ2Wl(t)≤
αρn1N0

α +σ1

This can also be solved using integrating factor and differential inequality

F(t) = exp
(∫

σ2dt
)
= exp(σ2t) (3.9)

which solves to:

Wl(t)≤
(

Wl(0)−
αρn1N0

(α +σ1)σ2

)
exp(−σ2t)+

αρn1N0

(α +σ1)σ2

Also for larva, as t→ ∞ the infectious larva population size, Wl , in the soil remains in the interval

Wl(0)≤Wl(t)≤
αρn1N0

(α +σ1)σ2
.

We can, therefore, conclude that the human, egg and larva population will approach the thresh-

old N, ρn1N0
α+σ1

and αρn1N0
(α+σ1)σ2

respectively as t→ ∞. Therefore, all the solutions starting in the region

Ω remain in Ω. And then the region is attracting. Thus Ω is a feasible region for the system

(3.3).
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3.2.3 Disease free equilibrium

When there is no disease in the population the disease-free equilibrium point (DFE) exists. The

model we are studying assume that the birth and death rate are equal, therefore the total population

is constant throughout. The disease-free equilibrium is therefore only possible when the whole

population is susceptible and no parasitic larva and eggs are present in the soil. The DFE for our

system (3.3) is given by

E0 = (N,0,0,0,0).

3.2.4 The basic reproduction number

The basic reproduction number is the number of secondary infections caused by the introduction

of one infectious case in the wholly susceptible population. This quantity is important in the

epidemiological study to asses the spread of the disease. For the system (3.3), we calculate the

basic reproduction number using the next generation matrix method described in chapter 1 and

[36]. We consider the matrix F consisting of rates of appearance of new infections in the model

F =



β (We(t)+τWl(t))S(t)
1+aWe(t)+bWl(t)

0

0

0


.

The Jacobian matrix of F at the disease-free equilibrium, E0 is given by

0 0 βN0 βτN0

0 0 0 0

0 0 0 0

0 0 0 0


.
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Now, we consider the transition matrix, V ,

V =



(µ + γ)E(t)

µI(t)− γE(t)

(α +σ1)We(t)−ρn1I(t)

σ2Wl(t)−αWe(t)


.

The Jacobian matrix of V at the disease-free equilibrium, E0, is given as follows

V =



µ + γ 0 0 0

−γ µ 0 0

0 −ρn1 α +σ1 0

0 0 −α σ2


.

The inverse of matrix V is given by

V−1 =



1
γ+µ

0 0 0

γ

µ(γ+µ)
1
µ

0 0

γρn1
(γ+µ)(α+σ1)µ

ρn1
µ(α+σ1)

1
α+σ1

0

αγρn1
σ2(α+σ1)(γ+µ)µ

αρn1
σ2(α+σ1)µ

α

σ2(α+σ1)
1

σ2


.

The next generation matrix FV−1 is given by

FV−1 =



βγρn1N0(ατ+σ2)
σ2(α+σ1)(γ+µ)µ

βρn1N0(ατ+σ2)
σ2(α+σ1)µ

βN0(ατ+σ2)
σ2(α+σ1)

βτN0
σ2

0 0 0 0

0 0 0 0

0 0 0 0


.

The reproduction number is the spectral radius of the next generation matrix FV−1 and it is given

by

R0 =
βγρn1N0(ατ +σ2)

σ2(γ +µ)(α +σ1)µ
. (3.10)
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The effect of the model parameter in the reproduction number.

We calculate the change in the basic reproduction caused by the model parameters β ,ρ,n1,γ,σ1,α

and σ2, we compute the partial derivative of equation (3.10) with respect to the model parameter

∂R0

∂β
=

αγρn1N0(ατ +σ2)

σ2(γ +µ)(α +σ1)µ
,

∂R0

∂ρ
=

βαγn1N0(ατ +σ2)

σ2(γ +µ)(α +σ1)µ
,

∂R0

∂n1
=

βαγρN0(ατ +σ2)

σ2(γ +µ)(α +σ1)µ
,

∂R0

∂γ
=

βρn1N0(ατ +σ2)

(γ +µ)2(α +σ1)σ2
,

∂R0

∂σ1
=− βρn1N0(ατ +σ2)

µ(γ +µ)(α +σ1)2σ2
,

∂R0

∂α
=

βρn1N0(τσ1−σ2)

µ(γ +µ)(α +σ1)2σ2
,

∂R0

∂σ2
=− βρn1τN0

µ(γ +µ)(α +σ1)σ
2
2
.

∂R0
∂β

, ∂R0
∂ρ

, ∂R0
∂n1

, ∂R0
∂γ

being positive means that the basic reproduction number, R0, increases with

the parameters rate β ,ρ,n1,γ . Biologically, we expect that the increase contact rate, human egg

shedding rate, average number of eggs shed by each individual and progression rate from latency

to actively infectious will increase the number of infections produced because of an infectious

individual introduced into the population. We therefore conclude that the interventions aiming

the contact rate reduces, egg shedding rate, progression rate and the average number of eggs shed

by each individual reduces the number of new infections. On the other hand, an increase in the

egg and larva degradation rate σ1 and σ2 respectively is expected to decrease the number of new

infections.
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3.2.5 Existence of endemic equilibrium

At the endemic equilibrium point (EEP), humans are infected by the STH larvae. The endemic

equilibrium of the model under study is given by

E1 = (S∗,E∗, I∗,W ∗e ,W
∗
l ),

satisfying the following equations

µN∗(t)− (λ +µ)S∗(t) = 0,

λS∗(t)− (µ + γ)E∗(t) = 0,

γE∗(t)−µI∗(t) = 0,

ρn1I∗(t)− (α +σ1)W ∗e (t) = 0,

αW ∗e (t)−σ2W ∗l (t) = 0.

(3.11)

The EEP, E1 is calculated by solving the equations in (3.11). The first equation in the set of

equations in (3.11) yielded

S∗ =
µN0

λ ∗+µ
, (3.12)

Similarly for the rest of the equations,

E∗ =
λ ∗µN0

(µ + γ)(λ ∗+µ)
, (3.13)

I∗ =
γλ ∗N0

(µ + γ)(λ ∗+µ)
, (3.14)

W ∗e =
ρn1γλ ∗N0

(µ + γ)(λ ∗+µ)(α +σ1)
, (3.15)

W ∗l =
αρn1γλ ∗N0

σ2(µ + γ)(λ ∗+µ)(α +σ1)
. (3.16)
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The equations (3.12) - (3.16) can be written as the basic reproduction number as follows

S∗ =
(γ +µ)(α +σ1)σ2(β +bµ(µ−ατ)+µR0)(bατ +aσ2)

βγρn1(ατ +σ2)(β +bµ2 +aµσ2)µ
, (3.17)

E∗ =
σ2µ(α +σ1)

γρn1(β +µ(aσ2 +bµ))
(R0−1), (3.18)

I∗ =
σ2µ(α +σ1)

ρn1(β +µ(aσ2 +bµ))
(R0−1), (3.19)

W ∗e =
σ2µ

β +µ(aσ2 +bµ)
(R0−1), (3.20)

W ∗l =
αµ

β +µ(aσ2 +bµ)
(R0−1). (3.21)

We note from the equations (3.17) - (3.21) that the endemic equilibrium point exists only when

R0 > 1.

3.2.6 Stability analysis of disease-free equilibrium.

The system (3.3) always has a disease-free equilibrium E0. The disease-free equilibrium corre-

sponds to the model condition of no STH breakout.

Theorem 10. The disease free equilibrium for the system (3.3) exist; and it is locally asymptoti-

cally stable in the set Ω if R0 < 1 and unstable otherwise.

Proof. The Jacobian matrix of system (3.3) evaluated at DFE is given by

J(E0) =



−µ 0 0 βN0 −βτN0

0 −(µ + γ) 0 βN0 βτN0

0 γ −µ 0 0

0 0 ρn1 −(α +σ1) 0

0 0 0 α −σ2


. (3.22)
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The eigenvalues of the Jacobian matrix in (3.22) are x1 = −µ and the rest are solutions of the

equation

a4 +a3x+a2x2 +a1x3 + x4 = 0. (3.23)

The coefficients of the characteristic equation in (3.23) are;

a1 = α + γ +2µ +σ1 +σ2 > 0,

a2 = µ(γ +µ)+α(γ +2µ)+(α + γ +2µ)σ2 +(γ +2µ +σ2)σ1 > 0,

a3 = µ(γ +µ)(α +σ1)+(µ(γ +µ)+α(γ +2µ)+(γ +2µ)σ1)σ2,

a4 =
1

µ(α +σ1)(γ +µ)σ2
(1−R0).

According to the Descartes rule of signs, if R0 < 1 there will be no sign change in the coeffi-

cients of the characteristics equation in (3.23). Therefore, there are no positive eigenvalues when

R0 < 1.

Theorem 11. The disease free equilibrium is globally asymptotically stable in the positive invari-

ant region if R0 ≤ 1.

Proof. We define the candidate Lyapunov function as

L(t) = σ2E +
σ2(µ + γ)

γ
I +

µ(µ + γ)σ2

ρn1γ
We +βWl. (3.24)

The time derivative of (3.24) is given by

dL
dt

= σ2
dE
dt

+
σ2(µ + γ)

γ

dI
dt

+
µ(µ + γ)σ2

ρn1γ

dWe

dt
+β

dWl

dt
,

= σ2(β (We +Wl)− (µ + γ)E(t))+
σ2(µ + γ)

γ
(γE(t)−µI(t))

+
µ(µ + γ)σ2

ρn1γ
(ρn1I(t)− (α +σ1)We(t))+β (αWe(t)−σ2Wl(t)),

=
(

µ(µ + γ)(α +σ1)σ2

ρn1γ
(R0−1)

)
We(t). (3.25)
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From 3.25 we can clearly see that dL
dt < 0 for R0 < 1. And also, dL

dt = 0 if and only if E = I =

We =Wi = 0. Therefore L is the Lypunov function. Therefore the largest possible invariant set in{
(S,E, I,We,Wl) ∈Ω : dL

dt = 0
}

is the singleton {E0}. According to La-Salle’s invariant principle

E0 is globally attractive. Therefore the disease-free equilibrium is globally asymptotically stable

for R0 < 1.

3.2.7 Stability analysis of endemic equilibrium.

From the calculations in section 3.2.5, we know that the system described in (3.3) has the unique

endemic equilibrium E1. The endemic equilibrium means the disease does not die when intro-

duced into the population and all the states of the model reach the stable state. In this section, we

investigate the stability of the endemic equilibrium point.

Theorem 12. The endemic equilibrium point E1 is locally asymptotically stable in the region Ω if

R0 > 1.

Proof. We used the centre manifold theorem to study the stability of the endemic equilibrium. For

simplicity let re-define state variables S = x1,E = x2, I = x3,We = x4 and Wl = x5. Therefore, we

can re-write system (3.3) as

dxi

dt
= f (xi, t) for i = 1,2,3,4,5 (3.26)

Thus the system (3.3) can be rewritten as follows

x′1(t) = µN(t)− (λ +µ)x1(t),

x′2(t) = λx1(t)− (µ + γ)x2(t),

x′3(t) = γx2(t)−µx3(t),

x′4(t) = ρn1x3(t)− (α +σ1)x4(t),

x′5(t) = αx4(t)−σ2x5(t).

(3.27)
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R0 = 1 is similar to having

β = β
∗ =

σ2(γ +µ)(α +σ1)µ

αγρn1N0(ατ +σ2)
.

where β ∗ is chosen to be the bifurcation parameter when R0 = 1.

The Jacobian matrix of the system (3.27) at DFE with β = β ∗ is given by

J(E0,β
∗) =



−µ 0 0 β ∗N0 −β ∗τN0

0 −(µ + γ) 0 β ∗N0 β ∗τN0

0 γ −µ 0 0

0 0 ρn1 −(α +σ1) 0

0 0 0 α −σ2


. (3.28)

The linearised system J(E0) evaluated in (3.22) is similar to J(E0,β
∗) evaluated at R0 = 1, hence

the characteristics polynomial a3x+a2x2+a1x3+x4 = 0 has the eigenvalues x1 = 0 and x2 =−µ .

We also recall from section (3.2.6) that the constants a1, a2 and a3 are all positive and concluded

using the Descartes rule of signs that other roots (eigenvalues) of the characteristics equations are

negative. Since we have a simple zero eigenvalue, we can apply the centre manifold theorem to

assess local stability of the endemic equilibrium by defining the left eigenvector associated zero

eigenvalue as

w = (w1,w2,w3,w4,w5),

and the left eigenvector can be calculated by solving the equation

w[J(E0,β
∗)] = 0,

(w1,w2,w3,w4,w5)



−µ 0 0 −β ∗N0 −β ∗τN0

0 −(µ + γ) 0 β ∗N0 β ∗τN0

0 γ −µ 0 0

0 0 ρn1 −(α +σ1) 0

0 0 0 α −σ2


= 0,
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which solves to

(w1,w2,w3,w4,w5) =
(

0,
σ2

β ∗τN0
w5,

σ2(µ + γ)

β ∗τN0γ
w5,

σ2(µ + γ)µ

β ∗τN0γρn1
w5,w5).

We also define the right eigenvector associated with the zero eigenvalue as

v = (v1,v2,v3,v4,v5),

and it can be calculated by solving the equation

[J(E0,β
∗)]vT = 0,

−µ 0 0 0 −β ∗N0

0 −(µ + γ) 0 0 β ∗N0

0 γ −µ 0 0

0 0 ρn1 −(α +σ1) 0

0 0 0 α −σ2





v1

v2

v3

v4

v5


= 0,

which solves to

(v1,v2,v3,v4,v5) =
(
− β ∗N0(σ2 + τ)

µα
v5,

σ2(α +σ1)µ

αγρn1
v5,

σ2(α +σ1)

αn1
v5,

σ2

α
v5,v5

)
Now we will compute the value of a and b as described in Theorem 7. Since w1 = 0 we will

only computed the partial derivatives for f2, f3, f4 and f5. The partial derivatives at the disease free

equilibrium are given by

∂ 2 f2

∂x1∂x5
=

∂ 2 f2

∂x5∂x1
= β

∗
τ,

∂ 2 f2

∂x5∂x5
=−2β

∗N0bτ (3.29)

∂ 2 f2

∂x1∂x4
=

∂ 2 f2

∂x4∂x1
= β

∗,
∂ 2 f2

∂x4∂x4
=−2β

∗N0a (3.30)

∂ 2 f2

∂x4∂x5
=

∂ 2 f2

∂x5∂x4
=−β

∗N0(aτ +b) (3.31)

∂ f2

∂x4∂β ∗
= N0,

∂ f2

∂x5∂β ∗
= N0τ (3.32)
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The value of a and b is given by

a =− 2σ2

α2τµ
((σ2 + τ)(β ∗σ2 +aτ +2aσ2µ)aσ

2
2 µ)w5v2

5 < 0 (3.33)

b =
σ2(α +σ2)

αβ ∗τ
w5v5 > 0 (3.34)

Therefore a < 0, b > 0 and there exist a forward bifurcation at R0 = 1 and this implies that the

endemic equilibrium point E1 is locally asymptotically stable for R0 > 1 but close to one.

Theorem 13. The endemic equilibrium is globally asymptotically stable when R0 > 1.

Proof. Let define the Lyapunov function

L =
5

∑
i=1

DiLi, Di > 0,

where

Li = x− x∗− x∗ ln
( xi

x∗i

)
, xi ∈ {S,E, I,We,Wo}.

Equating the partial differentiation of L to zero, that is

∂Li

∂xi
= Di

(
1− x∗i

xi

)
= 0,

yield that xi = x∗i which means S = S∗, E = E∗, I = I∗, We = W ∗e and Wl = W ∗l implying that the

endemic equilibrium is the only stationary point for L. Moreover,

∂ 2Li

∂x2 = Di
x∗i
x2

i
> 0,

implies that E1 is the global minimum for L. Differentiating L with respect to time yields

dL
dt

=
3

∑
i=1

Di

(
1− x∗i

xi

)dxi

dt
+D4

(
1−

x∗4
x4

)dx4

dt
+D5

(
1−

x∗5
x5

)dx5

dt
. (3.35)

We know that

N ≤ N0, (3.36)

We(t)≤

(
We(0)−

ρn1N0

α +σ1

)
e−(α+σ1)t +

ρn1N0

α +σ1
, (3.37)

Wl(t)≤
(

Wl(0)−
αρn1N0

(α +σ1)σ2

)
e−σ2t +

αρn1N0

(α +σ1)σ2
. (3.38)
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Differentiating Equations (3.36), (3.37) and (3.38) with respect to time gives

dN
dt
≤ 0, (3.39)

dWe

dt
≤ (α +σ1)

(
ρn1N0

α +σ1
−We(0)

)
e−(α+σ1)t (3.40)

dWl

dt
≤ σ2

(
αρn1N0

(α +σ1)σ2
−Wl(0)

)
e−σ2t (3.41)

It follows that

dL
dt
≤ D4(α +σ1)

(
1−

x∗4
x4

)(
ρn1N0

α +σ1
−We(0)

)
e−(α+σ1)t

+D5σ2

(
1−

x∗5
x5

)(
αρn1N0

(α +σ1)σ2
−Wl(0)

)
e−σ2t .

(3.42)

Equation (3.42) clearly shows that if We(0) ≤ ρn1N0
α+σ1

and Wl(0) ≤ αρn1N0
(α+σ1)σ2

, L ≤ 0 and if We(0) ≥
ρn1N0
α+σ1

and Wl(0) ≥ αρn1N0
(α+σ1)σ2

, L ≤ 0 as t → ∞. In addition, L = 0 if and only if S = S∗, E = E∗,

I = I∗, We =W ∗e and Wl =W ∗l . Therefore the largest compact invariant set is singleton set E1 which

is endemic equilibrium. By LaSalle’s invariant principle E1 is globally asymptotically stable on

Ω.

3.3 Summary

In this chapter, we formulated and analysed the soil-transmitted helminths model describing the

interaction between the parasitic worms and the human population. We proved that the model

has positive solutions that are bounded in a biological meaningful region. The basic reproduction

number was calculated using the next generation matrix approach. The basic reproduction number

was used to assess the contribution of the contact rate β in the dynamics of the disease. Two equi-

librium points were computed (disease-free and endemic equilibrium). The analysis revealed that

the existence of the endemic equilibrium depends on the value of basic reproduction number R0.
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We further used the Lyapunov function’s LaSalle’s invariance principle to show that the endemic

equilibrium is globally asymptotically stable.



Chapter 4

Model With Polynomial Chaos

4.1 Polynomial chaos expansions.

In this section, we consider uncertainty in the model because of environmental and biological dis-

turbances. We, therefore, consider parameters β , γ , ρ and α as functions of random variables

depending on the outcome ω of the experiment. The other parameters and initial conditions will

not be considered random for simplicity and they can be determined with much more accuracy than

one considered as random in this section. The random parameters take the form β (ω), γ(ω), ρ(ω)

and α(ω). The model state variables S(t,ω), E(t,ω), I(t,ω), O(t,ω),L(t,ω) become stochastic

processes depending on time and outcome of the experiment [24]. We employ the Generalized

polynomial chaos to perform numerical simulations of the dynamics of the model under study

with random parameters. Polynomial chaos represent solutions of the system (3.3) and random pa-

rameters as the series expansion of orthogonal polynomials in terms of the corresponding random

44
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variables as follows 

S(t,ω) =
∞

∑
i=0

Si(t)Ψi((ω)),

E(t,ω) =
∞

∑
i=0

Ei(t)Ψi((ω)),

I(t,ω) =
∞

∑
i=0

Ii(t)Ψi((ω)),

We(t,ω) =
∞

∑
i=0

Wei(t)Ψi((ω)),

Wl(t,ω) =
∞

∑
i=0

Wli(t)Ψi((ω)),

β (ω) =
∞

∑
i=0

βiΨi((ω)),

γ(ω) =
∞

∑
i=0

γiΨi((ω)),

ρ(ω) =
∞

∑
i=0

ρiΨi((ω)),

α(ω) =
∞

∑
i=0

αiΨi((ω)).

(4.1)

where Ψi are carefully selected Lagendre polynomial basis functions.

4.2 Parameters probability distribution

There is no enough information available in literature about the distribution of model random pa-

rameters, hence we assume that they all follow the non-informative uniform distribution. Legendre

polynomial chaos associated with uniform distribution is therefore chosen as a basis function for

expansions given in (4.1), because its weight function matches the distribution of random parame-

ters. This allows the orthogonality of polynomials to be used to make calculations trivial.

For numerical simulations we are going to use Legendre polynomial of order two and chaos di-

mension of four. There are fifteen Legendre polynomial chaos of degree less or equal to two using
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a selection of four. There is one polynomial of degree zero, four of degree one, for each random

variable ζi, four of degree two in one variable for (ζi,ζi) and six of degree two, in two variables,

each for (ζi,ζ j), i 6= j, therefore the number of terms of the polynomial chaos of stochastic process

is fifteen, calculated using equation (1.11) as described in Chapter 1.

In practice, a truncated polynomial chaos is considered for computational efficiency. The trun-

cated expansion is given by

S(t,ω) =
14

∑
i=0

Si(t)Ψi((ω)) = S0(t)+
4

∑
i=1

Si(t)Ψ1(ζi(ω))

+
4

∑
i=1

i

∑
j=1

Si j(t)Ψ2(ζi(ω),ζ j(ω))

(4.2)

E(t,ω) =
14

∑
i=0

Ei(t)Ψi((ω)) = E0(t)+
4

∑
i=1

Ei(t)Ψ1(ζi(ω))

+
4

∑
i=1

i

∑
j=1

Ei j(t)Ψ2(ζi(ω),ζ j(ω))

(4.3)

I(t,ω) =
14

∑
i=0

Ii(t)Ψi((ω)) = I0(t)+
4

∑
i=1

Ii(t)Ψ1(ζi(ω))

+
4

∑
i=1

i

∑
j=1

Ii j(t)Ψ2(ζi(ω),ζ j(ω))

(4.4)

We(t,ω) =
14

∑
i=0

Wei(t)Ψi((ω)) =We0(t)+
4

∑
i=1

Wei(t)Ψ1(ζi(ω))

+
4

∑
i=1

i

∑
j=1

Wei j(t)Ψ2(ζi(ω),ζ j(ω))

(4.5)

Wl(t,ω) =
14

∑
i=0

Wli(t)Ψi((ω)) =Wl0(t)+
4

∑
i=1

Wli(t)Ψ1(ζi(ω))

+
4

∑
i=1

i

∑
j=1

Wli j(t)Ψ2(ζi(ω),ζ j(ω))

(4.6)

(S0(t),E0(t), I0(t),We0,Wl0) are first-order moments of stochastic processes and Ψ1,Ψ2 are Legen-

dre polynomials given as
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Ψ1(ζi(ω)) = ζi(ω),

Ψ2(ζi(ω),ζi(ω)) = 1
2(3ζi(ω)2−1),

Ψ2(ζi(ω),ζ j(ω)) = ζi(ω)ζ j(ω).

Random parameters can also be expressed as random variables. Since we are assuming that ran-

dom variables are independent and identically distributed, each parameter can be represented as a

function of only one random variable (ζ1(ω),ζ2(ω),ζ3(ω),ζ4(ω)) and functions are given by:

β (ω) = β0 +β1Ψ1(ζ1(ω))+β2Ψ2(ζ1(ω),ζ1(ω)),

γ(ω) = γ0 + γ1Ψ1(ζ2(ω))+ γ2Ψ2(ζ2(ω),ζ2(ω)),

ρ(ω) = ρ0 +ρ1Ψ1(ζ3(ω))+ρ2Ψ2(ζ3(ω),ζ3(ω)),

α(ω) = α0 +α1Ψ1(ζ4(ω))+α2Ψ2(ζ4(ω),ζ4(ω)).

where β0, γ0, ρ0 and α0 are the first-order moments for each parameter. β1, γ1, ρ1, α1, β2, γ2,

ρ2 and α2 are constants.

We can now construct the equations used in the numerical simulations. Consider system of differ-

ential Equation (3.3) and introducing the truncated polynomial expansions represented by equation

(4.2) - (4.6) results:

14

∑
i=0

dSi(t)
dt

Ψi(ω) = µN0−
14

∑
i=0

14

∑
j=0

14

∑
k=0

βiPjSkΨiΨ jΨk−µ

14

∑
i=0

SiΨi (4.7)

where

Pj =

14
∑
j=0

We j + τ
14
∑
j=0

Wl j

1+a
14
∑
j=0

We j +b
14
∑
j=0

Wl j

(4.8)

We use orthogonality of the basis function to obtain the system of differential equations. Taking
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the inner product of (4.7) with basis function.

〈ΨN ,ΨN〉
dSN(t)

dt
= 〈µN0,ΨN〉−

14

∑
i=0

14

∑
j=0

14

∑
k=0

βiPjSk〈ΨiΨ jΨk,ΨN〉

−
14

∑
i=0

Si〈Ψi,ΨN〉
(4.9)

The rest of the equations are given as follows

〈ΨL,ΨL〉
dEL(t)

dt
=

14

∑
i=0

14

∑
j=0

14

∑
k=0

βiPjSk〈ΨiΨ jΨk,ΨN〉

−µ

14

∑
i=0

Ei〈Ψi,ΨL〉−
14

∑
i=0

14

∑
i=0

γiI j〈ΨiΨ j,ΨL〉
(4.10)

〈ΨL,ΨL〉
dIL(t)

dt
=

14

∑
i=0

14

∑
i=0

γiI j〈ΨiΨ j,ΨL〉−µ

14

∑
i=0

Ii〈Ψi,ΨL〉 (4.11)

〈ΨL,ΨL〉
dWeL(t)

dt
=n1

14

∑
i=0

14

∑
i=0

ρiI j〈ΨiΨ j,ΨL〉

−
14

∑
i=0

14

∑
j=0

αiWe j〈ΨiΨ j,ΨL〉−σ1

14

∑
i=0

Wli〈Ψi,ΨL〉
(4.12)

〈ΨL,ΨL〉
dWlL(t)

dt
=

14

∑
i=0

14

∑
i=0

αiWe j〈ΨiΨ j,ΨL〉−σ2

14

∑
i=0

Wli〈Ψi,ΨL〉 (4.13)

The inner products in the about equations can be calculated using definition 2. Although un-

certainty was introduced, equations (4.9) - (4.12) is a system of non-linear ordinary differential

equations. This system can be solved numerically using python’s ODE solver.
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4.3 Mean and Variance

The mean and variance can easily be calculated directly from stochastic Galerkin solutions. Con-

sider the population of infected people I(t) and using definition 9 the mean (E) is given by

E(I(t,(ω))) = E

(
∞

∑
i=0

Ii(t)Ψi((ω))

)

=
∫
(ω)

(
∞

∑
i=0

Ii(t)Ψi((ω))

)
f ((ω))d(ω)

=
∞

∑
i=0

Ii(t)
∫
(ω)

Ψi((ω)) f (ω)d(ω)

= I0(t)
∫
(ω)

Ψ0((ω)) f ((ω))dω +
∞

∑
i=1

Ii(t)
∫
(ω)

Ψi((ω)) f ((ω))d(ω)

= I0(t)E(Ψ0)+
∞

∑
i=1

Ii(t)E(Ψi)

E(I(t,ω)) = I0(t)

by Theorem 3. The variance is given by

Var(I(t,ω)) = E((I−E(I))2)

= E

(( ∞

∑
i=0

Ii(t)Ψi((ω))− I0

)2
)

= E

(( ∞

∑
i=1

Ii(t)Ψi((ω))
)2
)

=
∞

∑
i=1

I2
i (t)E(Ψi((ω))2)

=
∞

∑
i=1

I2
i (t)Var(Ψi((ω))) (4.14)

Therefore the mean is simply the zero order chaos term and the variance is the sum of squares of

the higher order terms. Similarly, we can calculate the mean and variance for all the stochastic
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processes. The mean for the rest of the stochastic processes is given by

E(S(t,ω)) = S0(t),

E(E(t,ω)) = E0(t),

E(We(t,ω)) =We0(t),

E(Wl(t,ω)) =Wl0(t),

(4.15)

and the variance is given by

Var(S(t,ω)) = ∑
∞
i=1 S2

i (t)Var(Ψi((ω))),

Var(E(t,ω)) = ∑
∞
i=1 E2

i (t)Var(Ψi((ω))),

Var(We(t,ω)) = ∑
∞
i=1W 2

ei(t)Var(Ψi((ω))),

Var(Wl(t,ω)) = ∑
∞
i=1W 2

li (t)Var(Ψi((ω))).

(4.16)

Noting that the mean is a zero order chaos term and the variance is a sum of squares of higher

order terms.

4.4 Sensitivity analysis - Sobol indices

We have shown how to calculate the mean and variance, but it may be useful to calculate how much

of variance each uncertain parameter account for. This can be useful in determining parameters

responsible for a greater fraction of variance so that more time can be invested in determining that

parameter with more certainty to reduce variance. We utilise Sobol indices to study this.

Sobol indices are a decomposition of the model output variance. They determine what fraction

of variance each random parameter contribute in the total variance. The truncated variance can be

written as:
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Var(S(t,ω)) =
14

∑
i=1

I2
i (t)Var(Ψi((ω))), (4.17)

which can be decomposed as follow:

Var(S(t,ω) = S2
1Var(Ψ1(ζ1(ω)))+S2

2Var(Ψ1(ζ2(ω)))+S2
3Var(Ψ1(ζ3(ω)))+S2

4Var(Ψ1(ζ4(ω)))

+S2
5Var(Ψ2(ζ1(ω),ζ1(ω)))+S2

6Var(Ψ2(ζ2(ω),ζ2(ω)))

+S2
7Var(Ψ2(ζ3(ω),ζ3(ω)))+S2

8Var(Ψ2(ζ4(ω),ζ4(ω)))

+S2
9Var(Ψ2(ζ1(ω),ζ2(ω)))+S2

10Var(Ψ1(ζ4(ω),ζ3(ω)))

+S2
11Var(Ψ2(ζ1(ω),ζ4(ω)))+S2

12Var(Ψ2(ζ2(ω),ζ3(ω)))

+S2
13Var(Ψ2(ζ2(ω),ζ4(ω)))+S2

14Var(Ψ2(ζ3(ω),ζ4(ω)))

(4.18)

The sobol indices are defined as follows:

SY
θ =

Vi +Vi j

Var(Y )
(4.19)

where θ and Y is the respective parameter and the state variable respectively. Vi and Vi j are the

composition of the total variance and stand for the partial first and second order variance respec-

tively. Therefore the sobol indices for susceptible individuals are as follows:

SS
β
=

S2
1(t)Var(Ψ1(ζ1(ω)))+S2

5(t)Var(Ψ2(ζ1(w),ζ1(ω)))

Var(S(t,ω))

SS
γ =

S2
2(t)Var(Ψ1(ζ2(ω)))+S2

6(t)Var(Ψ2(ζ2(w),ζ2(ω)))

Var(S(t,ω))

SS
ρ =

S2
3(t)Var(Ψ1(ζ3(ω)))+S2

7(t)Var(Ψ2(ζ3(w),ζ3(ω)))

Var(S(t,ω))

SS
α =

S2
4(t)Var(Ψ1(ζ4(ω)))+S2

8(t)Var(Ψ2(ζ4(w),ζ4(ω)))

Var(S(t,ω))
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Similarly for the rest of the compartments we have, exposed individuals:

SE
β
=

E2
1(t)Var(Ψ1(ζ1(ω)))+E2

5(t)Var(Ψ2(ζ1(w),ζ1(ω)))

Var(E(t,ω))

SE
γ =

E2
2(t)Var(Ψ1(ζ2(ω)))+E2

6(t)Var(Ψ2(ζ2(w),ζ2(ω)))

Var(E(t,ω))

SE
ρ =

E2
3(t)Var(Ψ1(ζ3(ω)))+E2

7(t)Var(Ψ2(ζ3(w),ζ3(ω)))

Var(E(t,ω))

SE
α =

E2
4(t)Var(Ψ1(ζ4(ω)))+E2

8(t)Var(Ψ2(ζ4(w),ζ4(ω)))

Var(E(t,ω))

infectious individuals:

SI
β
=

I2
1 (t)Var(Ψ1(ζ1(ω)))+ I2

5 (t)Var(Ψ2(ζ1(w),ζ1(ω)))

Var(I(t,ω))

SI
γ =

I2
2 (t)Var(Ψ1(ζ2(ω)))+ I2

6 (t)Var(Ψ2(ζ2(w),ζ2(ω)))

Var(I(t,ω))

SI
ρ =

I2
3 (t)Var(Ψ1(ζ3(ω)))+ I2

7 (t)Var(Ψ2(ζ3(w),ζ3(ω)))

Var(I(t,ω))

SI
α =

I2
4 (t)Var(Ψ1(ζ4(ω)))+ I2

8 (t)Var(Ψ2(ζ4(w),ζ4(ω)))

Var(I(t,ω))

egg density in the soil:

SWe
β

=
W 2

e1(t)Var(Ψ1(ζ1(ω)))+W 2
e5(t)Var(Ψ2(ζ1(w),ζ1(ω)))

Var(We(t,ω))

SWe
γ =

W 2
e2(t)Var(Ψ1(ζ2(ω)))+W 2

e6(t)Var(Ψ2(ζ2(w),ζ2(ω)))

Var(We(t,ω))

SWe
ρ =

W 2
e3(t)Var(Ψ1(ζ3(ω)))+W 2

e7(t)Var(Ψ2(ζ3(w),ζ3(ω)))

Var(We(t,ω))

SWe
α =

W 2
e4(t)Var(Ψ1(ζ4(ω)))+W 2

e8(t)Var(Ψ2(ζ4(w),ζ4(ω)))

Var(We(t,ω))
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larvae density in the soil:

SWl
β

=
W 2

l1(t)Var(Ψ1(ζ1(ω)))+W 2
l5(t)Var(Ψ2(ζ1(w),ζ1(ω)))

Var(Wl(t,ω))

SWl
γ =

W 2
l2(t)Var(Ψ1(ζ2(ω)))+W 2

l6(t)Var(Ψ2(ζ2(w),ζ2(ω)))

Var(Wl(t,ω))

SWl
ρ =

W 2
l3(t)Var(Ψ1(ζ3(ω)))+W 2

l7(t)Var(Ψ2(ζ3(w),ζ3(ω)))

Var(Wl(t,ω))

SWl
α =

W 2
l4(t)Var(Ψ1(ζ4(ω)))+W 2

l8(t)Var(Ψ2(ζ4(w),ζ4(ω)))

Var(Wl(t,ω))

4.5 Summary

In this chapter, we introduced uncertainty in parameters governing the model formulated in chapter

3. Contact rate β , progression rate γ , egg shedding rate ρ and egg hatching rate α were assumed

to be random. These parameters were then re-written as the functions of random variables with

probability distributions. Parameters were assumed to follow a uniform distribution, due to the

lack of data points to establish a suitable distribution for each parameter. The mean and variance

were calculated directly from the stochastic solutions of the model. We found that the mean is

the zero order chaos term and the variance is the sum of squares of the higher order terms. The

Sobol indices were calculated by decomposing the variance to find the influence of each parameter

in the variance. Sobol indices are used to determine the parameter responsible for the majority of

variance so that most resources could be used in determining that parameter with more certainty.



Chapter 5

Numerical results

5.1 Introduction

In chapter 3, we formulated and analysed a model analytically to enhance the understanding of

dynamics for soil-transmitted helminths in human hosts interacting with infectious eggs and larva.

Furthermore, we introduced randomness in parameters with uncertainty using polynomial chaos

for better visualisation of a model with uncertainty parameters in chapter 4. To meet our objective,

we employed numerical analysis in the model. Some estimates for parameters were obtained from

the literature, while others were estimated from the biological evolution of worm infection. Due

to lack of data point to estimate the distribution of random parameters, we assumed they follow a

uniform distribution. Therefore simulations presented here are purely theoretical. The open source

framework chaospy was use to generate stochastic objects in the model [37] and ODE solver in

python was used to solve polynomial chaos coefficients and further determining chaos solution,

mean, variance and Sobol indices.

54
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5.2 Parameter Estimation

In this section, we consider average parameter values that encompass features of soil-transmitted

helminths (STH) including the rate of infection, incubation period, length of infections period

for ascaris lumbricoides and hookworm. STH is listed as one of the neglected tropical diseases

(NTDs), this makes it a challenge to find parameter values governing our model readily in the lit-

erature. Therefore to be able to do numerical simulations, some parameter values would need to

be estimated and contextualized. ascaris lumbricoides and trichuris trichiura have almost similar

life cycle. For this reason, our simulations will only focus on ascaris lumbricoides and hookworm

species.

According to the study of STH in the Nigerian children population, individuals aged between 1 and

17 years were recorded [38]. The birth and death rate is therefore estimated as the reciprocal of

the difference in age, which yields µ = 1
16 per year. For computational purposes, We have assumed

that a year is made up of 365 days.

1
σ1

and 1
σ2

are interpreted as the time spent in the soil by each egg and larvae respectively. 1
σ1

can

be estimated as the average time it takes each egg to develop to become a larva for hookworm.

Hookworm egg takes about 9 days to become infectious filariform larva, we can therefore estimate

that the egg degradation rate as σ1 = 1/9 per day [39]. 1
σ2

is interpreted as the average time each

hookworm larva survives in the soil before it infects a human being. Each larva can survive in the

soil for about 3 to 5 weeks, assuming the average of 30 days we obtain that σ2 =
1

30 per day [8].

The average incubation period in humans is about 6 to 7 weeks, assuming the average of 45 days,

we obtained that γ = 1
45 per day [8].

World health organisation classify host with moderate intensity of infection to produce between
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2000− 3999 eggs per gram of faeces for hookworm [10]. An average SAC individual excrete

an estimate of 96.8−127.9g faeces per day [19]. We used the average of the egg production and

faeces mass to estimate the number of eggs produces by one individual, n1. Therefore the number

of hookworm eggs shed by each individual per day is n1 = 336000. The hatching rate α is assumed

to be the rate a developed egg hatch to be an infectious larva. There is no data in the literature to

estimate this parameter and it is mostly dependent on environmental conditions such as temperature

and the level of moisture. For this reason, we have assumed that 40% of the eggs hatch into larvae

per day, therefore egg hatching rate can be estimated to be α = 0.4. The contact rate β could

not be estimated using the basic reproduction number simply because most studies estimating the

basic reproduction number considers the sexual mating of the worm. We, therefore, assumed that

the contact rate depends on the rate of poverty in the particular community and β = 0.0049 was

then estimated using the South African poverty rate. For our model, we assume moderate to high

intensity infection as classified by the world health organisation. This class has individuals who

shed 2000−3999 eggs per gram of faeces. Each adult hookworm produces about 15000−30000

eggs per day. We can then estimate the egg shedding rate ρ = 0.13 using these quantities. Similar

contextualisation is used for ascaris lumbricoides and parameter values are summarised in Table

5.1.

5.3 Initial Conditions

For illustration purposes, we simulated the dynamics of a particular community of 1000 people.

Initial the number of susceptible and infectious individuals is 800 and 200 respectively. The initial

conditions used in this chapter are summarised in Table 5.2.
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Parameter Hookworm Ascaris Source

µ 0.0001712 0.0001712 [38]

β 0.0049 0.0049 Estimated

τ 0.33 0 Estimated

a 0 2 Assumed

b 2 0 Assumed

γ 0.0222 0.0133333 [8]

ρ 0.133 0.11 Estimated

n1 336000 4705000 Estimated

α 0.4 0 Assumed

σ1 0.11 0.1 [39] [8]

σ2 0.0333 0.017857 [39] [8]

Table 5.1 Parameter values for hookworm and ascaris used in the deterministic simula-
tions. The rates are given in per day.

S(0) E(0) I(0) We(0) Wl(0)

800 0 200 5000 5000

Table 5.2 Initial conditions used for numerical simulations

5.3.1 The effect of model parameters in the reproduction number

Sobol indices were used to perform the sensitivity analysis of the basic reproduction number to

check the parameter values that are significant in the variability of the basic reproduction number.

Figure 5.1 shows the result of the sensitivity analysis from the evaluation of 10 parameters mak-
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ing up the reproduction number. The results indicate that parameters β , γ , n1 and α contributes

more in the variability of the basic reproduction number. Therefore interventions addressing these

parameters can change the basic reproduction number. The result further reveals that human birth

and death rate do not contribute much to the variability of the basic reproduction number. In the

analysis of the basic reproduction number in chapter 3, we showed that an increase in the egg

degradation rate σ1 decreases the reproduction number. In figure 5.1 we note that σ2 is responsi-

ble for about 10% variability of the basic reproduction number, so interventions such as soil and

plant fumigation can potentially decrease the basic reproduction number.

Figure 5.1 A schematic representation of compartmental model.

5.4 Deterministic Model Simulation Results

In this section, we present numerical simulations of the preliminary system represented by system

3.3 to show a clear difference in the model for different hypothetical parameter values. Firstly,

we presented simulations for ascaris and hookworm species to observe the more prevalent species

in the human population. We also varied the contact rate, β , to assess the effect of the human
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behaviour in the dynamics of soil-transmitted helminths and presented numerical solutions.

To demonstrate the effect of human behaviour in the dynamics of soil-transmitted helminths, we

set the contact rate β to different values. The contact rate β was varied for hookworm, while other

parameters were kept the unchanged as given in Table 5.1. The dynamics of human population,

larva density and egg density were observed. Figure 5.2 shows the effect of changing the con-

tact rate in the human population, egg density and larva density when β is equalled to 0.039975,

0.029975 and 0.019975. We observe that if the change in β increases, the concentration of egg

and larvae increases dramatically. The susceptible population decreases with the increased value

of the contact rate β . Exposed group of individuals shows the sharp incline in the peaks followed

by a sharp decrease with the increase in β . It was also observed that if the value of β increased,

the number of individuals shedding eggs is higher from the beginning throughout the epidemic

period. We also observed that for different values of the contact rate, the system still reached the

endemic equilibrium. The fact that the number of infective individual, egg and larvae density in-

creases as time progress implies that the contact rate contributes significantly to the persistence of

the disease in the community. Therefore these results suggest that the pattern of soil-transmitted

helminths prevalence is due to the contribution of the contact rate, which can be attributed to the

poor sanitation and increased infectious larvae density in the soil. Furthermore, we can deduce

that human behavioural changes that reduce contact with contaminated soil reduces transmission

of the disease and slows down the egg and larva propagation speed.
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Figure 5.2 Preliminary model simulations for the soil-transmitted helminths epidemic
model with varied contact rate, β .
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5.5 Generalized Polynomial Chaos Model Simulation

5.5.1 Random Parameters Distribution Approximation

Transmission parameters (α,β ,γ,ρ) are assumed to be random and follow uniform distribution,

Uniform(a,b). The range for parameters in Table 5.1, used in numerical simulations was used as

the support parameters for the uniform distribution. Distribution for each random parameter used

in generalised polynomial chaos simulations are summarised in Table 5.3.

Parameter Value Source

β Uni(0.0265,0.0533) Estimated

γ Uni(0.0111,0.0167) [8]

ρ Uni(0.0200,0.1999) Estimated

α Uni(0,0.4) [8]

Table 5.3 Random parameter distribution estimation.

5.5.2 Generalised Polynomial Chaos Simulation Results

Figure 5.3, represents the population of susceptible, exposed, infectious individuals, larva and egg

density in the environment simulated using the generalized polynomial chaos. The solid line repre-

sents the mean, while the grey shaded region shows the standard deviation interval for each stochas-

tic process, i.e
(
(S0±

√
Var(S(t)),(E0±

√
Var(E(t)),(I0±

√
Var(I(t)),(E0±

√
Var(E(t)),(O0±√

Var(O(t))
)

. We observe that the polynomial chaos approach captures the output uncertainty

due to randomness in the input parameters. The simulations also reveals that the population of

infectious individuals and infectiousness increases to endemic equilibrium, while the population

of susceptible individuals decreases.
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Figure 5.3 also shows that the variance for the susceptible, exposed and the infective popu-

lation slowly approaches the mean as the disease progresses to the endemic equilibrium. These

results suggest the low volatility during the epidemic, and this suggests that the mean for each

sub-population can be a reasonable estimate for the empirical sub-populations sizes. On the other

hand, the egg and larvae density is very volatile, the variance increases as the disease approach

endemic equilibrium, this may suggest that the mean does not capture the larvae and egg density

appropriately.

5.6 Sensitivity analysis

We carried out the sensitivity analysis of the model using polynomial chaos-Based Sobol indices,

and we did this in order to quantify the output uncertainty due to the randomness in each of the

random parameters. This analysis was based on the decomposition of the variance.

Figure 5.6 - 5.8 shows the influence of parameters β , γ , ρ and α in the prediction of the model

compartment sizes. We assessed the influence of random parameters on the population of suscep-

tible individuals. Figure 5.4 shows that susceptible population is most sensitive to the contact rate

β . Figure 5.5 shows that the exposed population is sensitive to the contact rate β and progression

rate γ . At the beginning of the simulations, the exposed populations respond more to the contact

rate and towards the end of the simulations responds more to the progression rate. Sobol’s in-

dices plots in Figure 5.6, for the effects of β in the infectious population, show that the infectious

population evolution depends on the contact rate, β . Therefore, we can conclude that prevention

strategy related infectious population can be an optimal policy to address the epidemic.
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Figure 5.3 Generalized polynomial chaos method simulations. The red line represents the
mean for each class in the model and the grey shaded area is the plus/minus one standard
deviation from the mean for each class of the model.
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Figure 5.7 and 5.8 shows that the egg and larva densities respond more on the egg shedding rate

and hatching rate than other random parameters.

Figure 5.4 Influence of uncertain transmission parameters on the susceptible population
prediction
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Figure 5.5 Influence of uncertain transmission parameters on the exposed population
prediction
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Figure 5.6 Influence of uncertain transmission parameters on infectious population pre-
diction
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Figure 5.7 Influence of uncertain transmission parameters in the egg density prediction
in the soil
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Figure 5.8 Influence of uncertain transmission parameters on the larva density prediction
in the soil
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5.7 Summary

This chapter presented graphical representations of the models in chapters 3 and 4. The numeri-

cal simulations were in the form of graphs. The graphs represented the predicted time series for

human population interacting with contaminated soil. We presented Ascaris and hookworm nu-

merical simulations to predict the most common STH worm infection in the human population.

Furthermore, the contact rate was varied to understand the effect of human behaviour on the dy-

namics. Lastly, randomness in four model parameters was assumed. The generalised polynomial

chaos in the numerical simulations was applied. An increase in the variance for the egg and larval

density simulations was observed.
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Discussion And Conclusion

6.1 Discussion

In this study, we proposed a compartmental deterministic model that considers the human popu-

lation interacting with soil-transmitted helminths worms in the soil. The model was designed to

understand the dynamics and the effect of human behaviour on soil-transmitted helminths.

The global and local stability behaviour of the model was investigated using the Lyapunov function

and the geometric method. Our analysis of the model revealed that when the basic reproduction

number is smaller than a unity, the model has a globally asymptotically stable disease-free equilib-

rium. Furthermore, we established that there exists a unique endemic equilibrium when the basic

reproduction number is more than unity and it is globally stable.

In chapter 4, we showed the possibilities of quantifying uncertainty using polynomial chaos in

epidemiological models. Four transmission parameters were assumed to be functions of random

variables, which changed the state variable for the model formulated in chapter 3 to be stochastic

70
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processes. We employed the generalized polynomial chaos to incorporate the uncertainty parame-

ter in the model. Polynomial chaos proved to be a useful method to consider the effects of random-

ness in the evolution of the epidemics. The method makes it easy to perform sensitivity analysis

for random parameters using polynomial chaos based Sobol’s indices. This study has shown how

polynomial chaos can be applied in the system of ordinary differential equations to study the model

more vigorously than in the deterministic approach. This method makes it possible to define the

confidence interval of epidemic evolution.

Chapter 5, we investigated the effect of the contact rate in the dynamics of STH using the de-

terministic model developed in chapter 3. Simulations for the mean of the susceptible, exposed,

infective population as well as the egg and larva density in the soil were presented. The plots also

show the region one standard deviation from the mean of each stochastic process. Egg and larvae

density had a more significant standard deviation as the epidemic progress compared to other state

variables. Finally, we presented a sensitivity analysis for random parameters to measure the con-

tribution of each random parameter in the variability of the infected population.

In the literature, we gathered that the hookworm species has the fastest life cycle compared to other

STH species. Hence the hookworm matures faster and therefore shed egg within a short space of

time compared to other species. Despite this fact, numerical simulations revealed that ascaris

lumbricoides are the popular STH species affecting the human population, this may be caused by

the number of eggs shed by one mature ascaris lumbricoides worm.
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6.2 Conclusion

Based on our analysis, reducing the contact rate can be expected to reduce the size of the epi-

demic. This can be achieved by reducing the number of ways the human population interact with

contaminated soil. Improving sanitation can be expected to improve most aspects of community

health than reducing the soil-transmitted helminths prevalence. Greater focus is needed in putting

in place safe and hygiene toilets in high soil-transmitted helminths prevalent communities.

6.3 Future work

In the future study, we could bring the model closer to reality by considering the co-existence of

all three worms in human hosts. We could also explore the worm development more especially

in-host worm-egg dynamics.It would be interesting to study how the amount of worms being in-

gested depend on the method of contamination (contaminated food, water of feaces or penetration

through the skin). Our numerical analysis showed a significant value for the variance of egg and

larvae density, and this suggested that the mean values simulated in generalised polynomial chaos

may not be the excellent estimate of these quantities. For future work, we may look at mathemati-

cal or statistical methods to estimate these quantities or explore methods to reduce the variance so

that we can estimate the epidemic with accuracy. The model can also be improved by considering

intervention strategies such as vaccine and treatment. Lastly, we could estimate parameters bet-

ter by obtaining more data point to obtain more accurate simulations and better approximate the

distribution for random parameters.
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