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ABSTRACT 
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ABSTRACT 

Insight into the functional and physiological state of a drug target is of essential importance in the drug 

discovery process, with the lack of emerging (3D) drug targets we propose the integration of homology 

modeling which may aid in the accurate yet efficient construction of 3D protein structures. In this study 

we present the applications of homology modeling in drug discovery, a conclusive route map and 

detailed technical guideline that can be utilised to obtain the most accurate model. Even with the 

presence of available drug targets and substantial advancements being made in the field of drug 

discovery, the prevalence of incurable diseases still remains at an all-time high. In this study we explore 

the biological activity of chemically derived fragments from natural products utilising a range of 

computational approaches and implement its use in a new route towards innovative drug discovery. A 

potential avenue referred to as the reduce to maximum concept recently proposed by organic chemists, 

entails reducing the size of a chemical compound to obtain a structural analogs with retained or 

enhanced biological activity, better synthetic approachability and reduced toxicity. Displaying that size 

may not in fact matter.  

Molecular dynamic simulations along with toxicity profiling were comparatively performed, on natural 

compound Anguinomycin D and its derived analog SB 640 each in complex with the CRM1 protein 

which plays an avid role in cancer pathogenesis. Each system was post-dynamically studied to 

comprehend structural dynamics adopted by the parent compound to that exhibited by the analog. 

Although being reduced by 60% the analog SB 640 displayed an overall exhibition of attractive 

pharmacophore properties which include minimal reduction in binding affinity, enhanced synthetic 

approachability and reduced toxicity in comparison to the parent compound. Potent inhibitor of CRM1, 

Leptomycin B (LMB) displayed substantial inhibition of the CRM1 export protein by binding to four 

of the PKIαNES residues (ϕ0, ϕ1, ϕ2, ϕ3, and ϕ4) present within the hydrophobic binding groove of 

CRM1. Although being drastically reduced in size and lacking the presence of the polyketide chain 

present in the parent compound Anguinomycin D and LMB the analog SB 640 displaced three of these 

essential NES residues. The potential therapeutic activity of the structural analog remains undeniable, 

however the application of this approach in drug design still remains ambiguous as to which chemical 

fragments must be retained or truncated to ensure retention or enhanced pharmacophore properties. In 

this study we aimed to implement the use of thermodynamic calculations, which was accomplished by 

incorporating a MM/GBSA per-residue energy contribution footprint from molecular dynamics 

simulation. The proposed approach was generated for each system. Anguinomycin D and analog SB 

640 each in complex with CRM1 protein, each system formed interactions with the conserved active 

site residues Leu 536, Thr 575, Val 576 and Lys 579. These residues were highlighted as the most 

energetically favourable amino acid residues contributing substantially to the total binding free energy. 

Thus implying a conserved selectivity and binding mode adopted by both compounds despite the 

omission of the prominent polyketide chain in the analog SB 640, present in the parent compound. A 
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strategic computational approach presented in this study could serve as a beneficial tool to enhance 

novel drug discovery. This entire work provides an invaluable contribution to the understanding of the 

phenomena underlying the reduction in the size of a chemical compound to obtain the most beneficial 

pharmacokinetic properties and could largely contribute to the design of potent analog inhibitors for a 

range of drug targets implicated in the orchestration of diseases. 
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CHAPTER 1 

1.1 Background and Rationale behind this study  

With high mortality rates, increased drug resistance, lack of effectivity of therapeutic drugs, reduced 

bioavailability and limited availability of resources, a more rational approach to drug design and 

development is required. The identification of prospective bioactive molecules that limit the 

development of a disease condition, remains a crucial component in understanding the molecular 

mechanism of pathogenesis displayed by a drug target. Based on a molecular perspective, these 

requirements translate into a scenario where a drug molecule interacts  with one or more target proteins 

that are directly implicated in the pathophysiology of a disease and may act as inhibitors, agonists or 

modulators1. A full characterization of these interactions on a molecular and structural level may add 

considerable knowledge that can be utilised in drug design processes2. Employing the insight extracted 

directly from the 3D structural details of a drug target may constitute an accurate account of the drug-

protein interaction, providing an acute perspective on the mode of action (MOA) of the drug molecule 

which may further advance the process of drug design3. Utilization of  accurate 3D protein structures 

may ensure drug-target specificity and effectivity4, which is an eminent requirement in all fields of drug 

design.  Therefore not only the identification of potential drug candidates but the availability of accurate 

drug protein targets remains a high priority in structure-based drug design protocols. The availability of 

drug targets, may ensure the development of current therapeutic with enhanced drug target specificity 

and effectivity, potentially reducing developed drug resistance, lack of effectivity and potency. There 

are many fields that take these requirements into consideration in the process of drug design and 

development, however computational chemistry is highlighted as one of the most prominent fields that 

exploits the use of various tools that may aid in the discovery of not only accurate drug targets but 

enables the identification of optimal drug candidates5.  Homology modeling is identified as a potential 

computational approach, utilised to construct a protein 3D structure, by employing the use of a protein 

sequence of a known 3D model as a template. The template sequence of one or more homologous 

proteins with a known structure, is often targeted to construct the most accurate model of the target 

protein6. This study provides a route map that can be used for the construction of the most accurate 3D 

protein structure, accompanied by detailed technical guidelines and the formidable applications of 

homology modeling in drug design over the last decade.  Once the most accurate model of a protein 

target, has been established it then becomes possible to identify potential drug candidates that may 

elucidate avid inhibitory activity against the target protein7.  

In the midst of substantial investments being made in drug discovery, there is a limited  number of new 

chemical entities being introduced to the drug discovery market2,8. The optimization of current 

therapeutic drugs forms an attractive alternative towards bridging the gap in drug design and 
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development9.A relatively new approach introduced by organic chemists known as the “reduce to 

maximum concept”10 entails reducing the size of a chemical compound, by the removal of unwanted 

fragments resulting in retention or improvement of biological parameters such as potency and 

selectivity10. The concept of reducing the size of compound whilst maintaining maximum bioactivity 

presents itself as an ideal platform for next generation drug discovery and design11. From experimental 

studies, the  application of this concept is associated with enhanced synthetic approachability, gain of 

time and resources, reduced toxicity, improved bioavailability and sustained selectivity12.Over the last 

10 decades, natural products have made a resurgence in the field of drug discovery as they harvest 

beneficial pharmacokinetic properties evidently observed  as  nature’s secrets are enshrined in natural 

products13,14. Natural products (NP) are considered to be the ideal target candidates in the application 

of the reduce to maximum concept as they possess chemical fragments that exhibit a vast range of 

beneficial therapeutic properties15. The prime use of statins derived from the natural product lovastatin 

has led to the development of treatment against cardiovascular diseases, which further exemplifies the 

essential role that NPs have played in drug discovery. Organic chemists were able to harvest the pivotal 

chemical scaffold of 3,5-dihydroxypentoate derived from lovastatin, which led to the introduction of 

more potent and therapeutic effective derivatives, with an influential impact on the current state of 

society and medicine today16,17. 

Substantial contributions have been made by synthetic protocols towards the discovery of new 

innovative drugs predominantly in chemical synthesis, however even efforts made by chemical 

synthesis cannot be the sole solution to the  pending disease crisis that looms thus efforts from other 

fields of drug discovery is encouraged18. Computational chemistry is highlighted as the one of the most 

propagated avenues currently integrated in the drug design and discovery process. As the continuous 

implementation of computational methods over the many years in drug discovery has led to a substantial 

reduction in time and resource requirements, which are crucial in chemical synthesis and biological 

protocols19. The use of computational approaches may ultimately alleviate the need for pre-clinical and 

clinical studies and its associated costs. Harvesting the essential knowledge extracted from NPs in 

combination with the technical versatility of computational methods may enable the integration of 

natural products derivatives as displayed in antibody–drug conjugates, stereo-chemical complex 

fragments, or initiate scaffold repurposing, in next generation drug discovery20.  

 

It is proposed the incorporation of the reduce to maximum concept may enable the synthesis of potential 

therapeutic drugs with enhanced potency, and a substantial reduction in the total number of synthetic 

steps21. However, it still remains ambiguous as to which fragments of the chemical compounds are 

essential for activity and which fragments must be truncated. Thus quantitative protocols are required 

to gain insight into the analogy of which fragments of the chemical compound are essential for activity 

and which fragments can be omitted22.In recent years, the use of computational approaches projected 
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in modern drug discovery processes has transpired into a close equivalent to experimental studies, the 

insight extracted from computational tools has provided a better understanding in complex biological 

phenomena23. The use of computational approaches may enable a deeper understanding of the chemical 

compounds structural features and interactions within the active site24, which is imperative as it may 

lead to the generation of molecules that emulate the transition state25,26. Molecular modeling is a robust 

computational tool used to study the conformational dynamics of biological systems. In this work, 

molecular dynamic simulations and in-depth post dynamics analysis were performed for the natural 

parent compound Anguinomycin D and its derived analog SB 640 in complex with CRM1.Chromosome 

Region Maintenance protein 1 (CRM1) plays an essential role in all eukaryote organisms as it mediates 

the transport of cargoes that contain the nuclear export signal (NES) from the nucleus to the cytoplasm27. 

However, the upregulation of this transportation process is primarily associated with common hallmarks 

for a vast spectrum of cancers. The elevation of the CRM1 protein is associated with a range of cancers 

such as pancreatic28, kidney29 and ovarian30 along with osteosarcoma31. Current nuclear export 

inhibitors of the CRM1 are associated with elevated levels of toxicity, as displayed by bacterial inhibitor 

Leptomycin B32. Anguinomycin D shares close structural features to Leptomycin B, thus displays 

inhibitory activity against the CRM1 protein. From experimental studies, it was observed structural 

analog of Anguinomycin D, analog SB 640 which is reduced by 60% in its structure maintained the 

inhibitory activity and overall  retention of bioactivity33 displayed by the parent compound 

Anguinomycin D.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 1.1 Displays the structure of natural products Leptomycin B, which shares close structural 

similarity to Anguinomycin D and its derived analog SB 640 
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This study aimed to validate the “reduce to maximum concept” and provide further insight in the 

application of a range of computational approaches that may aid in the implementation of this concept 

in the design of potential drugs. Per-residue energy decomposition analysis has become an effective 

approach to drug discovery. Its use in drug design enables the identification of the most highly 

contributing amino acid residues to the total binding affinity25, which can be correlated to determine 

which fragments of the chemical compound are imperative for the molecular and physiochemical 

properties exhibited by a compound. Per-residue energy decomposition footprints were performed in 

this study to provide a guideline in distinguishing which fragments of a chemical compound must be 

retained from the large parent structural and chemical composition to elucidate biological activity and 

which fragments of a chemical compound can be omitted as its presence may assert toxicity, resulting 

in desired pharmacophore properties exhibited by the truncated analog.  

 

1.2. Novelty and significance of this study 

With the lack of accurate 3D protein models currently available the ability to establish the molecular 

mechanism of drug interaction between a potential drug candidate and protein target involved in the 

infestation of a disease condition still remains ambiguous, this study elucidates the use of computational 

tool of homology modeling which provides a conclusive route map that can be utilized to generate the 

most accurate 3D protein model. Once the identification of a target protein is established the next step 

in effective drug design is to generate effective yet potent drug targets.  NPs remain as the sole source 

and the best inspiration for the drug-discovery process. This study aims to reveals the impact of the 

integration of experimental and theoretical approaches as a new form of rational drug discovery. Thus 

we implement the use of computational approaches to gain insight into a relatively new approach 

introduced by organic chemists referred to as the “reduce to maximum concept”, which may lead to 

next generation drug discovery.  

The “reduce to maximum concept” entails the extraction of the most essential fragments of a chemical 

compound derived from natural products to obtain a smaller structural compound with retained or 

enhanced bioactivity, better synthetic approachability and potential reduced toxicity. This approach 

presents itself as an ideal platform for innovative drug discovery10. This study forms as a rationale to 

understand the mechanism of binding, elucidated by the structural analog SB 640 (of Anguinomycin 

D) although being drastically reduced in its size, and in doing so may validate the reduce to maximum 

concept that can be implemented in all fields of drug discovery by implementing screening protocols 

stemming from the use of computational approaches such as binding interaction calculations. Even after 

conclusive experimental studies conducted the level of interaction portrayed by the reduced chemical 

compound, elucidating which structural features are essential for retention or enhanced biological 

activity and which fragments may be omitted remains ambiguous. Utilizing the knowledge extracted 
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from this study may provide a deeper understanding underlying the molecular and structural interaction 

of the reduced analog and the target protein. The inception of this approach, integrated with the 

application of computational tools may form a formidable impact in current drug development, 

cascading the introduction to next generation drug discovery. This study aimed at utilizing 

computational approaches to provide a guideline to decipher which chemical fragments of a compound 

are essential for activity and which fragments can be omitted based on thermodynamic calculations. 

Elucidating that the size of chemical compound may in fact not matter.  

Medicinal chemists and other pharmaceutics have resorted to molecular modelling drug design 

techniques as its application provides insight underlying the mechanism, dynamics  as well as the 

energetics of proteins and protein-drug complexes34,35. Molecular dynamics (MD) is a common tactic 

presently employed to overcome drug resistance and ultimately adopt a protocol that can be 

administered in all fields of drug design. There is no previous theoretical study that unveiled the precise 

molecular level understanding underlying the reduction in the size of a chemical compound and its 

mechanism of inhibitory activity correlating to its reduced size. Computational chemistry integrates 

itself as the most suitable avenue to gain insight into the structural dynamics. This is a first attempt at 

implementing the use of computational approaches such as molecular modeling and per-residue energy 

decomposition analysis to gain insight into the reduction in the size of a compound to further obtain the 

most optimal and desired biological parameters. In this study the computational approach was employed 

to confirm and validate the experimental outcomes and to understand the changes in drug binding 

landscape. We believe this study may provide immeasurable insight into a new approach that can be 

implemented in drug design and development.  

1.3. Aim and Objectives   

This study has three major aims: 

1. To investigate the use of the computational approach of homology modeling, highlighting its active 

role in the drug discovery process: 

To achieve this, the following objectives were outlined: 

 

1.1 The protocol of homology modeling is determined, along with technical guidelines that may result 

in the most accurate  models being generated  

1.2 The application of homology modeling in drug design and discovery was investigated over the last 

decade.  
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2. Validation of  the “reduce to maximum” concept  based on the magnitude of ligand binding affinity 

of the parent compound Anguinomycin D in comparison to the analog SB 640  as well as per-

residue energy decomposition analysis  

 To achieve this, the following objectives were outlined: 

 

2.1 Molecular dynamic simulations were performed along with post MD analysis of the parent 

compound Anguinomycin D and analog SB 640, to analyse the mechanism of binding exhibited by 

both compounds 

2.2 To estimate the ligand binding free energies of Anguinomycin D and its derived analog SB 640 in 

complex with the CRM1 protein to determine if the reduction in the size of chemical compound 

alters the total binding free energy contribution.  

2.3 Per-residue energy decomposition analysis were performed to determine which fragments of the      

chemical compound is essential for the biological activity exhibited and which features of the 

chemical  compound can be omitted. 

3. To determine the toxicity profile of the parent compound Anguinomycin D and the analog SB 64 

To achieve this, the following objectives were outlined: 

 

3.1 The PASS online prediction test were performed for Anguinomycin D and analog SB 640  

  

1.4. Overview of this work 

The format of this thesis is by publication with Chapter4-5 containing copies of papers that have been 

accepted and/or submitted to journals. This thesis is divided into six chapters, with this one included: 

 

Chapter 2: This chapter begins with highlighting the formidable application of homology modeling, in 

the construction of accurate 3D protein targets that can be used in effective drug design. It further 

highlights the “reduce to maximum concept” and its potential application in the drug discovery process. 

It inaugurates the use natural products as a major source for novel compounds, focusing on chemical 

fragments that can be isolated from natural products. It highlights factors associated with the prevalence 

of many diseases, highlighting cancer as one of the highest contributors to the high mortality observed. 

It further focuses on the CRM1 protein which is associated with the pathogenesis of a range of cancers, 

highlighting the first known inhibitor of CRM1, Leptomycin B and its discontinuous use in clinical 

trials, attributed to its associated high levels of toxicity associated with its use, it also highlights the 

inhibitory activity of natural product Anguinomycin D and its drastically reduced structural analog SB 

640 against the CRM1 protein.  

 



CHAPTER 1: BACKGROUND AND RATIONALE BEHIND THIS STUDY 

7 
 
 

Chapter 3: This is a brief introduction to computational chemistry, various molecular modeling and 

molecular simulation protocols and their applications. Some computational methods have been 

theoretically explained, followed by a range of computational tools applied in the study of 

Anguinomycin D and its derived analog SB 640 in complex with the CRM1 protein, with the 

fundamental focus on molecular dynamics simulations, binding free energy calculations and homology 

modelling.  

 

Chapter 4 (Manuscript Accepted) 

This chapter presents a review on homology modeling titled “Homology modeling in drug discovery: 

An update on the last decade. It highlights the use of homology modeling in the drug discovery process, 

a technical guideline to construct the more accurate model as well as the application of homology in 

drug discovery over the last decade. 

 

Chapter 5 (Submitted for publication) 

This chapter presents results from the study titled “Size does not matter: A molecular insight into the 

biological activity of chemical fragments using thermodynamic calculations”. It presents data extracted 

from molecular dynamics simulations performed on Anguinomycin D and analog SB 640, as well 

thermodynamic calculations, which elucidated a minimal reduction in the binding free energy of the 

analog in comparison to the Anguinomycin D, enhanced synthetic approachability and an overall 

reduction in toxicity.  

 

Chapter 6  

This chapter expounds the overall concluding remarks of the entire thesis and future plans and 

recommendations
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CHAPTER 2 

2.0 Literature Review  
2.1. Introduction  

The prevalence of incurable diseases has exponentially increased over many years, in spite of the 

substantial investments in the field of drug design and discovery1. The identification of innovative drugs 

emerging from chemical and pharmaceutical industries remains minimal, with accompanying attrition 

rates experiencing an all-time low2.  In order to fully characterise the effectivity of a drug, the mode or 

mechanism of action must be established thus drug target selection prevails as a decisive factor in drug 

discovery research and  productivity3. Since the early inception of the genomics era in the 1990s, the 

sole focus of drug discovery has been focused on the identification of potential drug targets4, ideally 

proteins that play a crucial in disease pathogenesis. Modification of biological activity of the target 

protein form the rational basis for the discovery of new drug candidates5.  A target-centric approach 

imparts a specific biological hypothesis, based on the structural, and molecular composition of the target 

protein, which can be utilised as a starting point for the identification of potential therapeutics6.  

  

In order to gain precise insight into the target protein mechanism and structural dynamics of the model 

of the 3D target protein must be established. Homology modeling is identified as an attractive approach 

branching from the field of computational chemistry. Homology modeling also known as comparative 

modeling can be utilised for the construction of an accurate 3D target model, in a relatively short period 

of time based on the 3D model from a template protein sequence with a known structure7. Homology 

modeling enables the refinement of novel therapeutic drug targets which may aid significantly in drug 

design and development. Once the target protein is available, the definitive mechanism by which a 

potential drug candidate elucidates its inhibitory activity can be proposed, on the basis of its interaction 

with the drug target and its conformational fit within the active site8.  

 

An accurate model of the 3D drug target may enable a better understanding of the role it undertakes 

during the molecular and structural transition leading to the disease state9. Utilizing the crucial 

knowledge extracted from the three-dimensional structure of the biological target, may assist in 

proficient yet cost-efficient lead discovery and optimization5. However the lack of new chemical entities 

towards effective drug discovery depicts how difficult it is to randomly generate potent and selective 

compounds2.The chemical versatility and pharmacophore properties displayed by NPs has been a key 

factor in the resurgence of their use in drug research and development.   
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2.2. Biological activity of Natural products in lead drug discovery  

Natural products (NP) encompass many centuries of un-relinquished potential, the chemical diversity 

confined within NP10,2, continue to illustrate its importance in modern drug discovery efforts. There has 

been an evident resurgence of NPs over the last decade, harvesting the knowledge encompassed in these 

rich commodities results in elevated biological activity, high specificity and reduced toxicity.  

chemically derived fragments with high specificity and beneficial biological activity11.The unique yet 

divergent structural composition of NPs, have certainly broadened the current database of existing 

organic molecules. As the integration of NPs in drug discovery has led to the introduction of novel 

chemical fragments12, with contrasting molecular skeletons and distinctive biological and functional 

features that would otherwise be overlooked, with the application of synthetic protocols13. 

 

2.3. Resurgence of natural products in drug discovery  

In recent times, there has been a relapse in the search towards alternative drug discovery methods, 

limiting the discovery of prospective drug candidates14, required by essential therapeutic areas such as 

immunosuppression15, anti-cancer drugs16, anti-inflammatory and treatment against viral diseases17. 

The therapeutic potential disclosed by NPs reaffirms their promising use in the field of drug design and 

development18. These fields include genetics and enzymology which have gained immeasurable insight 

and thrived, by assimilating the process of biosynthesis of NPs19. NPs have also substantially improved 

industrial sectors such as the pharmaceutical and agriculture industries with the provision of 

considerable insight into the identification of  useful molecules and lead compounds1.  

The contribution of NPs towards the drug discovery substantially supersedes the contributions made by 

combinatorial chemistry which prompts the development of synthesized compounds20. Observations 

have shown that between the years 1981-2010, there has been a minimal contribution of 36% of newly 

discovered chemical entities, that have been synthetically derived with no influence from the structural 

and chemical composition of NPs21. Although there has been a long standing dependence on 

combinatorial chemistry by drug developing companies, minimal progress in drug development has 

been achieved over the many years22,23.  

The intrinsic chemical and structural composition of NPs display a large-scale of diversity in 

comparison to synthetic compounds, consisting of an array of biologically active compounds playing 

an active role of a protagonist in innovative drug discovery24. The use of NPs is illuminated in cancer 

research as they display interesting lead structures with promising chemical entities25. The  versatile 

chemical composition of NPs, make up the fundamental  scaffolds and are considered privileged 

structures, that have been a product of evolution26. The utilization of the chemical fragments harboured 

by NPs has had an immense influence on all spheres of science and has advertently inaugurated the use  

of these chemically derived fragments in the recent process of drug design and discovery27.  
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2.4. Pitfalls in the use of natural products as potential drug leads 

There are various liable reasons for the scepticism associated with the current integration of NPs in drug 

discovery, as the time and protocol required for NPs isolation is a rather consuming and an elaborate 

affair. The ability to differentiate existing chemical compounds from NP, from those that may be newly 

discovered to avoid strenuous synthetic protocols associated with de-replication still remains a plaguing 

challenge28. Although NP display beneficial and pharmacological properties, NPs may produce an array 

of toxins, utilised by plants as a mechanism of defence that may not be embraced in the field of drug 

discovery due to its association with adverse side effects and lethal dosage of toxicity29. Some major 

setbacks associated with the use NPs as active pharmaceutical ingredients, include limited oral 

bioavailability and low stability under physiological conditions. The use of  NP also lacks adequate 

synthetic approachability, as NP tend to lack stringent criteria of “drug likeness” following Lipinski’s 

“rule of five30” and related ADME/pharmacokinetic31 criteria (ADME=absorption, distribution, 

metabolism, excretion. Lipinski’s rule of five was first introduced to provide guidelines that synthetic 

chemists could adhere to, to establish better biophysical properties and to ensure optimal bio-active 

drug candidates32.  In the late 1990s the phasing out of NP in drug development was prompted by the 

application of high-throughput screening (HTS)33 of small molecules.  However its use was short lived 

due to the downward trend of potential drug candidates in drug design.  Therefore highlighting the need 

for improvised approaches to accelerate the drug discovery process.  

 

2.5. Harvesting chemical fragments from natural sources in drug discovery  

Prompted by the relentless search for authentic novel lead compounds that could be integrated in the 

development of potential therapeutic drugs, led to resurgence of NPs. At the inception of research into 

natural products, the utilisation of chemically derived fragments harvested from these rich resources, 

rapidly lead to the emergence of innovative strategies towards drug discovery and later, towards the 

replication of these essential compounds34.. The chemical fragments isolated from natural products 

make them a viable option for lead structure in drugs as they display complex chemical diversity35, a 

vast range of biochemical specificity and beneficial bioactive properties which include a broader 

spectrum of molecular property distribution, such as a contrasting molecular mass. The prominent 

structural features of NP, include the eminent presence of chiral centres, with enhanced steric 

complexity. The high presence of oxygen atoms in comparison to nitrogen, sulphur and halogen 

containing groups is also observed in NP, accompanied by generation of resulting OH bond formation. 

From a statistical analytical perspective NP display, a lower ratio of aromatic rings to the sum of the 

heavy atoms, whilst the number of hydrogen-bonds donors that are solvated to those that are acceptors 

displays higher favourability, these properties exhibited by NP differ quiet to distinctively from 

counterparts such synthetic drugs and combinatorial libraries13. With the majority of the rings present 

in the structure of NP, selectively or completely saturated proves advantageous as NP display greater 
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interactivity with an array of proteins and enzymes36. Current therapeutic drugs implement the use of 

less than one-fifth of the ring systems present in natural products. The use of chemical fragments derived 

from  NP in modern pharmacotherapy remains imperative, as clear indications of its importance is 

displayed in its use in a range of an anti-cancer agents, which include  paclitaxel and its derivatives 

from yew (Taxus) species, brentuximab vedotin, vincristine and vinblastine from Madagascar 

periwinkle (Catharanthus roseus (L.) G. Don), and camptothecin; and a range of derived analogs. 

Recently, other classes of compounds such as the epothilones have shown promise in the battle against 

cancer and one of its derivatives37. 

 

However in recent years, despite the obvious importance, there has been a residual decline in the 

isolation of these chemical fragments isolated from NP by pharmaceutical industries. Which can be 

attributed to the relentless process of isolation and limited chemical tractability reduced number of 

newly discovered therapeutic drugs reaching the market, decreasing substantially from that which was 

anticipated38. Other identified obstacles included low stability under physiological conditions and 

limited oral bio-availability12.   

Therefore a new alternative approach for drug discovery is required. Introducing an evolving approach 

encouraging the modification of chemical compounds from natural resources by reducing the size of 

the compound whilst retaining or even enhancing the biological activity exhibited elucidating that size 

does matter39. This unique approach provides an avenue to tailor natural products through synthesis of 

a smaller compounds with essential parts, providing an extraordinary approach to unlock the full 

potential of natural products, producing optimal results with a total reduction in time and cost.   

 

2.6. The “Reduce to Maximum concept” 

The reduce to maximum concept entails the reduction in the size of a chemical compound, whilst still 

retaining or enhancing bioactivity, ensuring better synthetic approachability perpetuating the 

reproduction of essential chemical compounds derived from NP, that would otherwise be inaccessible 

from natural resources. It was first proposed by Crane and collegues34  the approach enables the versatile 

use of these chemical compounds derived from NP and offers a unique platform for the use of NP as a 

major source for innovative drug discovery25.The retention or enhanced activity exhibited by a chemical 

compound that has been drastically reduced in size can be attributed to the compound now being able 

to eloquently position itself within the active size eliminating factors such as, steric hindrance, bulky 

side chains, producing optimal torsional flexibility40. The “reduce to maximum concept” introduces the 

generation of functionally optimized analogues. Their integrated use has led to innovative drug 

discovery in various fields, from biofilm prevention, drug resistance alleviation and neuroengineering41. 

A key example would be the use of Eribulin mesylate, derived analog of  marine sponge Halichondria 

okadai Kadota42 the natural compound Halichondrin B displayed in figure 2.1. The synthetic analog 
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displayed synergistic activity as the parent compound, whilst still superseding the desired 

pharmacokinetic properties of the parent compound comprising of a 35% reduction in molecular weight. 

 

 

Figure 2.1.Halichondrin B isolated from marine sponge Halichondria okadai Kadota and its 

structural analog Eribulin42. 

The lack of availability, strenuous synthetic approachability and dose-limiting toxicities associated with 

the natural product Bryostatin isolated from Endobugula sertula, led to the development of picolog a 

structurally simplified analog of Bryostatin. Although being reduced by just 20% from the parent 

compound, the structural analog picolog superseded the biological activity of Bryostatin used in the 

treatment of cardiovascular disease, stroke, pain, or cognitive dysfunction43.  

 

This approach enables the retention of suitable effects in minimized, bioactive scaffolds which can be 

attributed to “fragment likeness” perpetuating a high-degree of similarity29. This reduce to maximum 

concept provides an avenue to overcome the limitations associated with the use of parent natural product 

structural complexity such as lack of accessibility or viable synthetic approachability, poor synthetic 

specificity and low producing yields. In addition this approach may overcome barriers in drug design 

such as drug resistance high levels of toxicity, reduced potency and effectivity, limited bioavailability 

and adverse side effects, providing a viable yet rational protocol that can be followed for next generation 

drug discovery. Enabling the utilization of the most essential fragments of a chemical compound as not 

all constituents of the natural products can be easily synthesized due to high structural complexity 

possessed by NP as well as the high costs associated with its synthesis on an industrial scale. 

Exploitation of the chemical and structural databases which are comprised of a range of diverse yet 

unique chemo types derived from NPs, may facilitate the introduction of new versatile chemical entities. 

 

Amongst the stumbling block encountered with regard to drug design and discovery, drug resistance is 

one of highest contributing factors44. Administration of pharmaceutical drugs for the treatment of a 

range of diseases, may often lead to the tolerance of these disease to the administration of therapeutic 

treatment, resulting in drug resistance. There is a large degree of complexity, escalating from in vivo 
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drug activation, which exhibits an intricate mechanism in which particular substances interact with 

different proteins. The interactions that occur between the target protein or enzymes and the therapeutic 

drugs, result in the modification, degradation and optimally the activation of the drug to perform its 

biological activity. Many anticancer drugs must undergo metabolic activation in order to acquire clinical 

efficacy45. However decreased drug activation may stem from cancer cells as they gradually gain 

resistance to treatment. The distinct prevalence of drug resistance highlighted the dire need to facilitate 

further research for a more permanent solution to the pending life threatening disease. The alarming 

rate of resistance exhibited by a range of cancers  to once effective traditional therapies46 has heightened 

the search for potential drug candidates. The battle against cancer has been one that has been on-going 

for many decades, in more recent times the treatment of various cancers are often associated with 

adverse side effects that may contribute to the reduction in effective therapeutic treatment.  Further 

prevalence of this disease may be attributed to a range of contributing factors such as high levels of 

toxicity and continuous developed resistance47.Thus the search of alternative treatment is a focal point 

in alleviating the burden inflected by this dreaded disease. 

 

2.7. The role of Nucleocytoplasmic transport in cancer pathogenesis 

Studies conducted by the International Agency for Research on Cancer (IARC), estimated 14.1 million 

new cases of cancer observed in the year 2012 globally, of these new cases 8 million  occurred in 

developing countries, which constitute 82% of  the world’s population48 as observed in figure 2.2. The 

dire effects of this pernicious disease is predicted to further impend a devastating burden on a global 

spectrum if it remains incurable, the number of newly emerging cases is expected to rise to 21.7 by the 

year 2030, with 13 million cancer deaths arising from the expansion and aging of the population49. 

 

The burden impended by cancer is one that is being experienced globally, there are wide range of 

resources dedicated towards the research of cancer and the identification of potential onco-targets. It 

has been observed, that the upregulation of nucleocytoplasmic transport is predominantly associated 

with the elevated expression of CRM1 protein. The elevated expression of the CRM1 protein correlates 

with the high incidence of cancers such as ovarian50, pancreatic51,52,  kidney53 and cervical cancers54 as 

well as gastric carcinoma55, glioma56, osteomsarcoma57, leukemia58,59. In addition to mantle cell 

lymphoma60, multiple myeloma61  and melanoma62,63 and a range of others. In 2016 it has surfaced that 

majority of these cancers are some of the most prevalent cases of cancer. Nucleocytoplasmic transport 

upregulation is also associated with drug resistance and stands out as a poor prognosis factor in many 

malignancies64.  
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Figure 2.2. Estimate number of newly emerging cases of cancer cases in 21 world areas, 201265. 

The presence of the cell nucleus distinguishes eukaryotic organisms from prokaryotes, it is enclosed by 

the nuclear envelope and isolated from the rest of the cell66. The nuclear pore complex (NPC) is the 

prominent portal mediating the transfer of proteins or nucleic acid between the nucleus and the cytosol. 

Relatively smaller molecules are freely permeable across the NPC, however to travel through these 

pores, larger molecules such as proteins exceeding a mass of 30KDa are adversely restricted by the 

NPC and are reliant on the reinforcement of transport receptors67. The transport receptors are regarded 

as an alternative mode of transport for these larger molecules or even smaller molecules to be 

transported efficiently in and out of the nucleus. This presence of soluble transport factors called 

karyopherin proteins comprise of these transport receptors68.  

 

There are a wide range of karyopherin proteins encoded by the human genome utilised for transporting 

a set of cargoes (protein or RNA) that comprise of specific sequences/motifs, also known as nuclear 

localization signal (NLS) or Nuclear export signal (NES) or both69. The karyopherin proteins can be 

distinguished as importins or exportins depending on their direction of transport in or out of the nucleus. 

Karyopherin proteins that can mediate both the import and export of molecules are referred to as 
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transportins70. The Karyopherin protein mediate their  mechanism of interaction by directly binding to 

exposed NLS or NES, and then regulate the movement of cargo to the cytoplasm or nucleus71. Dynamic 

nuclear–cytoplasmic Shuttling of specific proteins out of the nucleus is essential for the regulation of 

the cell cycle and proliferation of both normal and malignant tissues. Therefore a dysregulation of this 

fundamental process may alter a wide radius of cellular processes such as gene expression, signal 

transduction, immune response, and cell differentiation, fundamentally leading to the prognosis of 

cancer72.  The crucial role of the CRM1 protein is highlight in nucleocytoplasmic transport, in addition 

to signal transduction, immune response as well as cell differentiation74 (Figure 2.3) 

 

2.8. The role of CRM1: Nuclear export factor  

Chromosome Region Maintenance 1 protein (CRM1), also known as exportin-1 (XPO1), belongs to the 

karyopherin β family75. The exportin CRM1 is a 120 KDa protein and is the most prominent nuclear 

export receptor in the cell.The CRM1 protein mediates the export of cellular proteins and is associated 

with a leucine-rich nuclear export signal (NES, a short 8–15 amino acid hydrophobic motif)59 out of the 

nucleus. The location of gene coding for CRM1 is situated on chromosome 2p15 and is widely 

preserved in a range of species such candida, yeast, drosophila, xenopus, and mammals. The 

evolutionary conserved nature of CRM1 highlights its central role for NES-dependent nuclear export 

of protein complexes76. For a cargo to exit the nucleus, the CRM1 must recognise the nuclear export 

signal (NES), thereafter initiating the cooperative formation of a tight trimeric complex CRM1/NES-

cargo/RanGT. The complex translocates together into the cytoplasm, where RanGTP is hydrolyzed to 

RanGDP by RanGAP42 This decreases the affinity between NES and exportin, causing dissociation of 

cargoes. Bidirectional karyopherins bind to NLS cargoes in the cytoplasm and bind to NES cargoes 

when exiting nucleus, with similar cargo association/dissociation mechanism to importins and exportins 

discussed above50. 
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Figure 2.3. Schematic drawing representing the mechanism of nucleocytoplasmic transport. The steps 

highlighted are of the varying stages involved in the transport between the nucleus and the 

cytoplasm66. 

CRM1 perpetuates the cellular localization of an expanding range of diverse-functioning protein cargos, 

inclusive of many tumour suppressor, cell cycle proteins, and viral proteins. Examples of nuclear 

effectors which are exported into the cytoplasm in cancer include the drug targets topoisomerase IIα77 

and BCR-ABL78 and tumour suppressor proteins such as Rb79, APC80, p5381, p2182 and p2783,74 like 

APC (adenomatous polyposis coli protein), NFAT (nuclear factor of activated T-cells), β-catenin or 

Survivin, Rb (retinoblastoma protein), p53 and Bcr-Abl mislocalize in different cancer cells (Figure 

2.4). Another protein that is dependent on the CRM1 protein for mediated transport is the human 

immunodeficiency virus type 1 (HIV-1) regulatory protein Rev; the NES of Rev is recognized by the 

exportin 1 and transported out of the nucleus. HIV-1 Rev protein moderates the regulation of the HIV-

1 mRNA which initiates the export of un-spliced and partially spliced mRNA25.  The diagnosis of many 

cancers as well as viral and inflammatory diseases can be directing related to the aberrant 

mislocalization of cellular CRM1 cargoes, which may interrupt normal cellular functioning systems84. 

Studies reveal restricting the level on interaction occurring between the CRM1 and proteins  containing 

the NES may provide potential therapeutic benefits that can be utilised in the development of more 

permanent treatment against cancer and other disease conditions85. This can be attributed to cancer cells 

utilizing the  nuclear-cytoplasmic transport system to enable the stimulation of tumour growth and 

simultaneously evade apoptotic processes47  
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Figure 2.4. CRM1-mediated nuclear export highlighting the most prominent cancer hallmarks.      

Proteins in black display direct cargoes of CRM1. Proteins in red, are shown to be suppressed by 

nuclear export inhibition through a diverse mechanism86. 

2.9. Nuclear export inhibitors  

Cognate peptide segments present in protein cargoes to which CRM1 binds are referred to as the 

fundamental nuclear export signals or NESs (commonly known as leucine-rich NESs). The amino acids 

residues that contribute to the NES peptides are regularly spaced conserved hydrophobic residues which 

form a groove situated on the outer/convex surface of the ring-shaped CRM187. The NES peptides 

display an elevated affinity range for the CRM1 protein and are highly diverse in its composition.  NES 

peptides are usually 8–15 amino acids long with regularly spaced conserved hydrophobic residues as 

depicted in Figure 2.588. Data extracted from Sequence, peptide-library, and bioinformatic analyses best 

concluded the description for NESs is a set of six consensus sequences, which differ in the spacing’s 

between four key hydrophobic residues ϕ1, ϕ2, ϕ3, and ϕ482.There are three diverse accessible structures 

for NESs which include cargos extracted from protein kinase A inhibitor (PKI), Snurportin-1 (SNUPN), 

and the HIV1-Rev protein,  all of which are bound to CRM1. 
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Figure 2.5. Representative image of the NES binding groove present on the CRM1 protein displaying 

the essential consensus sequence comprising of hydrophobic residues62. 

2.10. First generation inhibitor- Leptomycin B  

The development of anticancer agents has always been steadily reliant upon the chemical constituents 

harboured by NPs as 60% of anti-tumoural compounds currently on the drug market used for the 

treatment of cancer has originated directly from natural sources. After the first classification as 

antifungal compounds, the potent anti-tumoural activity of Leptomycin was elucidated89,90. The first 

members of the Leptomycin family identified were Leptomycin A and B (LMB) which were first 

isolated from a strain of Streptomyces91. Biological studies further demonstrated the cogent inhibitory 

activity of the CRM1-dependent protein export from the cell nucleus. Figure 2.6 displays the structure 

of LMB, and its bound conformation to the hydrophobic NES binding groove of CRM1. LMB occupies 

the same space as four of five hydrophobic PKIαNES residues (ϕ0, ϕ1, ϕ2, ϕ3, and ϕ4). Displaying its 

mechanism of inhibition as it displaces the essential NES peptides required for binding to the CRM1 

export protein, thus elucidating its broad spectrum of inhibition of nuclear export. LMB  covalently 

modifies chromosomal region maintenance 1 (CRM1; exportin 1) at the nucleophilic sulfhydryl group 

of a reactive Cysteine residue by utilizing its α β-unsaturated ẟ-lactone, thus restricting export of protein 

cargoes that are dependent on this cleft by inhibiting the formation of the ternary CRM1/cargo 

substrate/Ran complex, or the binary complex CRM1/cargo substrate in the absence of Ran76 
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Figure 2.6. (A) Illustrates the structural composition of anti-fungal compound Leptomycin B, (B) 

displays the bound conformation of LMB to the hydrophobic NES binding groove of CRM168. 

The strong dosage-limiting toxicities associated with the administration of LMB lead to minimal 

clinical benefits , resulting in profound anorexia and malaise, which  are potentially off-target effects 

as LMB treated cells permanently retarded nuclear export posing not only lethal for cancer cells, but 

also for normal cells. Although dose-limiting toxicity prevented further development of Leptomycin B  

as an antitumor agent92, Gademann and co-workers41 saw the un-touched potential locked within the   

Anguinomycin core and went on to synthesize Anguinoymcin D, a close structural relative and  derived 

analogues for further studies with the aim of investigating if the polyketide side chain mimics93 the 

hydrophobic leucine-rich nuclear export signal of the cargo protein and is necessary for activity41. 

Anguinomycins A-D were  reported to induce apoptosis in pRB-inactivated tumour cells, mediating 

inhibitory activity of immortalized cells, simultaneously inducing restraint of growth in normal cells, 

therefore limiting the total inhibition of the CRM1. The CRM1 protein plays an essential role in the 

nucleocytoplasmic transport, thus its presence remains eminent within normal cells.  The selectivity 

displayed by Anguinomycin regarding their mode of action still remains unknown94. It was first 

hypothesized by Bonazzi and colleagues to completely omit the polyketide chain present in 

Anguinomycin D to derive the simplified structural analog SB 640. Experimental testing conducted on 

the parent compound Anguinomycin D and analog SB 640 displayed substantially inhibitory activity 

depicted by the analog SB 640 which contains a truncated polyketide chain displayed in Figure 2.7.  

Displaying a minimal reduction in the inhibitory activity as compared to the parent compound 

illustrating a retention of biological activity95.  
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Figure 2.7. Structural comparison of Anguinomycin D isolated from Streptomyces sp. and its 

simplified structural analog Anguinomycin D analogue (were constructed using Chemdraw Ultra96) 

This is not the only experimental study revealing the potent activity of the derived analogue; another 

avid example is demonstrated by militarinone D, truncated to yield structurally simplified analogues 

with improved activity46,41. This hypothesis has97 led to the prediction that truncated chemical structures 

might retain biological activity, as long as some of the key features were still maintained within the 

chemical fragment scaffold.
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CHAPTER 3 

3.0. Introduction to computational chemistry 

  

3.1. Introduction 

Computational chemistry is rapidly emerging as a subfield of theoretical chemistry, where the principal 

emphasis is focused on finding solutions to chemical related problems by employing the use of 

computers. Computational chemistry is not directly involved in developing theoretical methods, but 

rather in obtaining results relevant to chemical problems1. There is nevertheless a strong interplay 

between traditional theoretical and computational chemistry. The integration of computational 

chemistry may enable newly emerging as well as long plaguing problems, to be studied in the search 

for effective solutions. Data extracted from computational integrated calculations may reveal limitations 

and possible suggestions towards suitable improvisations that can be implemented in modern drug 

discovery2. Depending on the accuracy required, and the nature of the system at hand, it is now possible 

to obtain useful information for systems containing up to several thousand particles.  The only limitation 

associated with computational chemistry may be the selection of an appropriate theory or method for a 

given problem, and the ability to evaluate the quality of the obtained results3. There are two standard 

methods emanating from computational chemistry, the first being to study the chemistry of molecules 

at an electronic level, known as quantum mechanics, the second being molecular dynamics, which 

neglects explicit electron treatment and focuses on classical laws of physics. This chapter outlines the 

range of computational and theoretical tools applied in this study.  

 

3.2. Quantum mechanics  

In 1900, German theoretical physicist, Max Plank, inadvertently gave rise to the field of quantum 

mechanics, as he discovered that energy is discharged in small packets (called quanta) and emitted in 

wavelengths4,5. Quantum mechanics is an essential constituent of computational chemistry, enabling the 

prediction of observable chemical properties. The fundamental law of quantum mechanics aims to 

illustrate that microscopic systems can be described by wave functions that capsulate and characterize 

all physical properties of a system 6. Quantum mechanics is the branch of mechanics that focuses on the 

mathematical analysis of the motion and interaction of subatomic particles7, principally dealing with 

the influence of electromagnetic forces on the movement of electrons8.  To perceive the electronic 

behaviour in molecules and consequently of the structures and reaction of molecules, knowledge of 

quantum mechanics, particularly the Schrödinger equation9. By solving the Schrodinger equation in 

quantum chemistry, properties of a system in terms of a wave function can then be extracted. Quantum 
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mechanics can be integrated to provide a better understanding and predict large-scale phenomena, 

initiating fundamental calculation of electronic structure and interactions1 

3.3. The Schrödinger equation 

The Schrödinger equation is regarded as the fundamental core of physics, as it entails a descriptive 

analysis of quantum mechanical behaviour within a system10. It was initially introduced by Austrian 

physicist Erwin Schrödinger in 192610. In mathematical physics, the Schrödinger’s equation undertakes 

the same role as the Hamilton’s laws of motion as one of the basic equations in non-relativistic quantum 

mechanics and non-relativistic classical mechanics respectively11,12.  

 

There are two types of Schrödinger’s equation: the first is the time-dependent Schrödinger’s equation, 

this being the most applied equation in computational chemistry13, and defines the Hamiltonian operator 

as the accumulated value of the potential and kinetic energy. The second type is the time-independent 

Schrödinger’s equation14. The simplest form of Schrodinger equation is presented as follows15:  

                         Η𝜓 = Ε𝜓                                                                                          Eq.1 

 

Where H denotes the molecular Hamiltonian, 𝜓 a wave function that expounds the probability of the 

electron and nuclear within disclosed locations, and E depicts the energy of the system (3, 5). The 

molecular Hamiltonian is the sum of the kinetic (T) and potential (V) energy, which can be denoted 

as16:  

                       Η = Τ +V                                                                                         Eq. 2 

Particles are referred to as point masses, under the assumption that relativistic effects are not considered.  

The sum of kinetic and potential energy operators make up the composition of the Hamiltonian, which 

can then be presented in detail as:  

 

                       H = ‒ 
𝒉𝟐

𝟖𝝅𝟐 Ʃi 
𝟏

𝒎𝒋
  (

𝝏𝟐

𝝏𝒙𝟐 + 
𝝏𝟐

𝝏𝒚𝟐   + 
𝝏𝟐

𝝏𝒛𝟐)  + ƩiƩ<j (
𝒆𝒊𝒆𝒊

𝒓𝒊𝒋
)                      Eq.3 

Where A and B represents the nuclei: i and j are the electrons, MA depicts the  mass of nucleus A, me 

the mass of an electron, RAB the distance between nuclei A and B, rij the distance between electrons i 

and j, ZA the charge of nucleus A, rAi the distance between nucleus A and electron i17. The 1st term in  

Eq. 3 is the operator of kinetic energy of electrons, the 2nd term is the kinetic energy of the nuclei 

operator, the potential energy of electron-nuclei attractions operator is presented by term 3, the 4th term 

is the operator for potential energy of electron-electron repulsions, and the last
 
term is the operator for 

potential energy of nuclei-nuclei repulsions18. However, the Schrodinger equation integrates a range of 

equations, and hence cannot be resolved for a molecular system other than H2, therefore the  

implementation of the Born-Oppenheimer approximation is considered an applicable solution5. 

 



CHAPTER 3: INTRODUCTION INTO COMPUTATIONAL CHEMISTRY 

34 
 

3.4. Born-Oppenheimer approximation 

The Born-Oppenheimer approximation is considered an imperative commodity in finding a solution to 

the Schrödinger equation, where the coupling between the nuclei and electronic motion is often 

omitted19. This enables the nuclear parameters to be taken into consideration when solving the electronic 

part and for the resulting potential energy surface (PES) to be integrated in finding a solution for 

motion20. The Born-Oppenheimer approximation enables the use of the Schrodinger equation for a 

specific molecular system to be distinguished into two equations, namely the electron and nuclear 

equations from which the total energy of the system can be established13. The energy of a molecule is a 

function of the electron coordinates, but depends on the parameters of the nuclear coordinates, which 

define the molecular geometry. As nuclei are fixed, so the nuclear kinetic energy operator is neglected, 

as observed in Eq.4, permitting the statically distribution of electron input within a molecule to be 

determined 21,14. 

                       Telec = − 
𝒉𝟐

𝟖𝝅𝟐𝒎  
 Ʃ𝒊

𝒆𝒍𝒆𝒄𝒕𝒓𝒐𝒏𝒔  (
𝝏𝟐

𝝏𝒙𝟐 +  
𝝏𝟐

𝝏𝒚𝟐   +  
𝝏𝟐

𝝏𝒛𝟐)                      Eq.4 

Presented below is the Schrödinger equation for fixed nuclei electrons17 which is incorporated in range 

of computational chemistry software:  

 

              Helec 𝝋𝒆𝒍𝒆𝒄 (r, R) = Eeff (R) 𝝋𝒆𝒍𝒆𝒄(r,R)                                 Eq.5 

 

3.5. Potential energy surface 

The potential energy surface (PES) is a mathematical function that correlates the energy of a molecule 

as a function of its geometry21, thereby enabling a deeper visual insight of structural characterization, 

as derived from the latent relationship of potential energy versus a molecules geometry22.  PES is 

utilized to decipher energy minima, as well as the states of transition that occur within chemical 

reactions, with respect to the position of the nuclei22. The Born-Oppenheimer approximation is invoked 

in molecular systems to generate the PES23. The concept of potential energy surface arises from 

variations in the mass and magnitude of the velocity between electrons and nuclei, a phenomenon 

defined by the Born-Oppenheimer approximation24. The phenomenon of the Born-Oppenheimer 

approximation stipulates the instantaneous variation in the position of the electrons with regard to the 

nuclei displacement, thereby permitting the depiction of potential energy surface, as the potential of 

atoms motion within a molecule or atoms in collision with each other is often referred to as the adiabatic 

motion25,22,26. 
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Figure 3.1. A Graphical representation of a two-dimensional potential energy surface27. 

 

The potential energy surface displays regions of unfavourable electronic interactions as high potential 

energy, as they depict molecular conformations or high-energy nuclear arrangements27, with the regions 

of low energy being used as an indicator to display nuclear interactions presented as low energy 

molecular conformations and accompanied by favourable electronic interactions28. Reactants and 

products are commonly rendered as stable structures, resulting in relatively low potential energy, which 

is often associated with the minima on the PES of a reaction coordinate. Figure 3.1 indicates that the 

minima represents the compounds structure during a state of equilibrium, whereas the first order saddle 

point represents the transition state or activated complex. The saddle point is referred to as an indicative 

factor of particular modifications in nuclear arrangements, which may result in decreased potential 

energy, while the others lead to higher energy.  

 

3.6. Molecular mechanics  

Molecular mechanics (MM) is an approach that permits the parameterization of a simple algebraic 

expression for the total energy of a compound, disregarding the computation of wave function or the 

sum of the electron density29,30. MM is based on the classical laws of physics, which is able to compute 

a molecule’s geometrical and transitional state of equilibrium, as well as its relative energies present 

among conformers15.  In this method, there is an assumption that the electrons will attain their optimal 

position once the position of the nuclei is defined, and are hence not considered explicitly. The Born-
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Oppenheimer approximation forms the basis of the assumption, as it depicts nuclei as heavier than 

electrons, thus making their motion negligibly compared to that of electrons21. 

 

MM is commonly applicable to larger systems, such as those in pharmaceutical and biological fields of 

research as they may exceed the use of more computer-intensive molecular orbital protocols31. The 

application to large systems can be attributed to suitable approximations (and its associated fast speed) 

and ability to determine the molecular conformation, or the atomic arrangement of a molecule, on the 

basis of its structural characterization and relative potential energies32. MM is an empirical method, and 

is reliant on force field parameters that comprise of a range of parameters extracted from experimental 

data. One of the simplest illustrations of MM is that of a-ball-and-spring model of atoms and molecules, 

with classical forces being present between them8. The total energy of a molecule, as defined by 

molecular mechanics, comprises of a range of contributing interactions that includes bond length and 

angles, torsions and non-bonded interactions, such as van der Waals and electrostatic contribution, as 

presented in the equation 633:  

 

               𝑬𝒕𝒐𝒕= 𝑬𝒔𝒕𝒓+𝑬𝒃𝒆𝒏𝒅+𝑬𝒕𝒐𝒓𝒔+𝑬𝒗𝒅𝒘+𝑬𝒆𝒍𝒆c                                     Eq. 6 

 

Where Etot is the total energy, Estr is defined as the bond-stretching energy, and the energy contribution 

from angle-bending is denoted by Ebend. The torsional energy contribution is represented by the term 

Etors, and the terms Evdw and Eelec represent van der Waals and electrostatic energy contributions 

respectively. This equation in complex, with the parameters required to describe the characteristics of 

various molecules being referred to as the force field. 

 

3.7. Force fields  

A force field encompasses a set of functions and constants, defined as parameters, which can be applied 

to correlate the energy of the system in accordance with its particles34. The parameters aim to define the 

reference points and force constants, providing a description of PES for various types of molecular 

systems with contrasting degrees of freedom that result from the inclusion of attractive or repulsive 

interactions between atoms. Force fields such as AMBER35, CHARMM36, NAMD37 and GROMOS38 

display popularity, and are commonly used to set parameters that can be  applied to the simulation of 

biomolecules. The parameters incorporated in force fields are generated from the derivation of the ab 

initio method, or the semi-empirical quantum mechanical calculations. They can also be generated from 

experimental data, such as X-ray and electron diffraction, NMR and neutron spectroscopy39,34. The 

forces acting within a molecule vary with regard to each system, with the administration of each force 

field needing to be adjusted accordingly. The different force fields are associated with a range of 

strengths and weaknesses, relative to the data applied, allowing a particular problem to be dealt with. 
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The moderate low computational cost and accurate prediction protocols incorporated in the use of force 

fields highlights their use as an attractive option is molecular dynamics simulations and molecular 

mechanic calculations40.There are a wide range of force fields that can be applied to a system, the force 

field of choice must be selected cautiously as each force field contains specific parameter that are 

designed for certain families of molecules41. Therefore it is crucial to choose the correct force field as 

it may increase the accuracy and applicability of theoretical structure function of your system of study. 

Force fields can only crudely approximate electrons interaction and hence cannot be used for bonding  

breaking nor formation calculations42. The AMBER force field43 was employed in this study, by 

applying the General AMBER Force Field (GAFF) parameters accompanied by the standard AMBER43 

force field for the protein being introduced.   

 

3.8. Molecular dynamics  

Numerous studies have incorporated a vast range of molecular systems that include organic molecules 

in solution and biological macromolecules44. Molecular dynamics45,46 and Monte Carlo47 simulations 

are two techniques that provide useful insights into the structural, thermodynamic, and, for molecular 

dynamics, dynamical properties of systems in the condensed phase48. Molecular dynamics (MD) is a 

computational technique used for simulating intricate molecular systems at an atomic level, as well as 

for computing the motions of individual molecules49. The application of molecular dynamics is a sought 

after computational tool50, as it enables the fluctuations that may occur in the motion of the system to 

be evaluated over a set period of time. MD enables the kinetic and thermodynamic properties of the 

molecular system to be determined48. The low-energy deformation states derived from the inherent use  

of MD simulations can be incorporated to inspect the conformational space present in a large restricted 

system51,52. If the initial geometry of a system is derived from experimental data stemming from X-ray 

or NMR structures, then MD techniques can be employed for sampling the conformational space53. In 

order to set a MD system for simulation, the force, in combination with the energy of all particles within 

the system, must be calculated54. MD integrates the use of Newton’s equation of motion for atoms on 

an energy surface55.  

 

              Fi = mi 
𝑑2𝑟𝑖 (𝑡)

𝑑𝑡2                                                                             Eq. 7 

 

3.9. Molecular docking  

Molecular docking is an essential component of computational chemistry, which involves determining 

the most optimal position of two molecules with respect to each other. Molecular docking is utilized in 

structure-based drug design, and is often highlighted as one of the main contributing factors to the 

problems arising in global optimization56.  The dynamic level of interaction displayed between ligand 

molecules and their receptors is often dependent upon the molecular recognition of  the lock and key 



CHAPTER 3: INTRODUCTION INTO COMPUTATIONAL CHEMISTRY 

38 
 

mechanism57. Docking is often referred to as the positioning of a small molecule, such as an inhibitor 

or drug candidate, often referred to as a ligand, into the active site of macromolecules of known 

structural conformation44. These macromolecules include proteins, such as nucleic acid, receptor or 

enzyme. Docking is performed to generate the optimal conformational pose, as well as to determine the 

crude binding affinity between the protein-ligand interaction58.  Being able to predict the binding of 

small molecules to target proteins plays a crucial role in structure-based drug design, as it enables the 

screening of virtual libraries59 of “drug like” molecules, thereby assisting in next generation drug 

development60.  The ligand-receptor binding energy is calculated as follow61:  

 

               𝑬𝒃𝒊𝒏𝒅𝒊𝒏𝒈=𝑬𝒕𝒂𝒓𝒈𝒆𝒕+𝑬𝒍𝒊𝒈𝒂𝒏𝒅+𝑬𝒕𝒂𝒓𝒈𝒆𝒕−𝒍𝒊𝒈𝒂𝒏𝒅                              Eq. 8 

 

Numerous molecular docking programs are used for academic and commercial purposes62, such as 

Dock63, AutoDock GOLD64,  FlexX65, -+ GLIDE66,  ICM62 , Surflex and others. While each program 

displays sufficient suitability for precise docking, the docking program Autodock generates two-orders 

of magnitude in comparison to other programs, while maintaining substantial accuracy in its binding 

mode prediction67. The docking method used in this research study is the advanced version of 

AutoDock, AutoDock Vina68. The application of molecular docking in this study enabled the 

confirmation of the most optimal binding pose of both compounds Anguinomyicn D and derived analog  

SB 640 in the NES binding groove of the CRM1 protein69 (detailed discussion in chapter 5).The binding 

affinity generated by many docking software’s such as Autodock63, neglect the presence of protons of 

the enzyme and inhibitors, thus the scores generated are often regarded as unreliable. MD takes into 

consideration protons and the solvent often water molecules. Thus MD results generates a more accurate 

binding affinity score as opposed to docking protocols42. 

 

3.10. Thermodynamic calculations 

The embodiment of thermodynamics in computational chemistry enables a deeper understanding of 

chemical reactions, providing a platform to calculate molecular properties and its derived entities, and 

predicts the chemical reactivity.  The essential role of thermodynamic calculations is highlighted, due 

to its current contribution in the field of quantum mechanics, allowing the optimization of geometry 

and calibration. Thermodynamic calculations aid in distinguishing the energy surface associated with a 

particular chemical reaction. The use of thermodynamics can retroactively justify minimization of 

energy, and its interconnection with energy surface may therefore provide ample knowledge based on 

the transition structure and reaction pathways70. Thermodynamic calculations assist in determining the 

binding free energy as an endpoint calculation, which provides indispensable information about the 

binding interaction that occurs between the ligand-protein complexes.  
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3.10.1 Binding free-energy calculations 

Binding free energy calculations are eminent in the ligand-receptor complex formation71,72, and have 

aided substantially in studies that include computational chemistry, thereby providing in-depth 

knowledge about drug design, protein structure determination73 and protein-protein complexes74,75. Two 

popular methods used to estimate the free binding energy with success of small ligands to biological 

macromolecules are the Molecular Mechanics/ Poisson-Boltzmann Surface Area (MMPB-SA) and 

Molecular Mechanics/Generalized Born Surface Area (MMGB-SA) approaches70,76. MM/GB-SA and 

MM/PB-SA rely on molecular simulations of the ligand-protein complex to compute rigorous 

statistical-mechanical binding free energy within a specified force field77. Both approaches display 

favourable use, which can be attributed to their modular nature and lack of calculations that stem from 

training set integrating continuum solvation models merging with molecular mechanics calculations78 . 

Each approach displays avid accuracy and computational effort between the empirical scoring and 

stringent alchemical perturbation methods, and can be compared in order to reproduce and rationalize 

experimental data79. The MM/PB-SA and MM/GB-SA methods are utilised to determine free energy 

decomposition, which can be meticulously ranged into various groups, depending on the groups of 

atoms or types of interactions from which they originated 74,80,  

 

The MM-PBSA employs a more rigorous algorithm than the MM/GB-SA, and simultaneously 

substitutes the MM/GB-SA model of electrostatics in water 81,82. However, with regard to calculations 

incorporating protein-drug interaction ,including carbohydrates83 and nucleic acids 84, the MM-GBSA 

method is favoured over the MM-PBSA 85. The use of binding free-energy calculations can also be 

utilized to enhance the results of virtual screening and the docking of therapeutics drugs58. The binding 

free energy between the ligand and receptor highlighting the MM/GB-SA is given by86:  

              GBIND = GCOMPLEX – GRECEPTOR - GLIGAND                                     Eq. 9 

 

              ΔGBIND = ΔEMM+ ΔGGBSA– TΔS                                         Eq.10 

 

              ΔEMM =ΔEINT +ΔEVDW +ΔEEEL                                                                Eq. 11 

 

              ΔGGBSA = ΔGEGB +ΔGESURF                                                                         Eq.12 

 

where ΔEMM is the molecular mechanics energy of the system in a vacuum, ΔGGBSA denotes the 

solvation free energy, TΔS is the entropy, the sum of the bonded internal energy (ΔEInt) is represented 

by ΔEMM, non-bonded van der Waals (ΔEVDW), electrostatic (ΔEEEL) and ΔGGBSA consists of polar 

contributions accounted for by the generalised born model (ΔGEGB) and non-polar contributions 
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(ΔGESURF)87,88. An additional preference for applying the MM/GB-SA method is due to its potential to 

aid in analysing per residue energy decomposition. 89,90. The dynamic analysis of binding affinity aids  

in  determining the approximate inhibitory activity of each inhibitor91,92. During the MM-GBSA binding 

energy calculation, the correct binding conformation of each ligand can be determined prior to the 

binding energy estimation.93. Herein, ligand-protein binding free energies were predicted using a 

MM/GB-SA approach. 

 

 3.11. PASS toxicity prediction  

High levels of toxicity and adverse side effects displayed by current therapeutic still remains a challenge 

in the field of drug discovery. Therefore, alternative methods are required to improve toxicity prediction 

and safety assessment of potential drug candidates, prior to be being administered in clinical trials.  

Computational methods aim to complement in vitro and in vivo toxicity tests to potentially alleviate the 

burden associated with animal testing ultimately diminishing high associated expenses and time 

constraints. Incorporating the use of computational tools may permit the assessment of the toxicity 

profile of a chemical compound prior to synthesis.  

  

The in silico tool referred to as PASS (Prediction of Activity Spectra for Substances)94 is an integral 

resource that can be utilised to predict a spectrum of biological characteristics of a chemical fragment. 

PASS is an online based in silico prediction tool, it initiates the prediction of the biological activities of 

selected chemical compounds, their mechanisms of action and related levels of toxicity interacting with 

a single or a range of biological targets within an organism94. The proposed in silico prediction tool 

establishes the activity of a chemical compound based on the chemical constituents of the chemical 

fragment which extends further to reveal novel biological activities of selected phytochemical leads, 

their bioactive constituents and related side-effects95.  

 

The current version of PASS encompasses the prediction capacity of over 3750 pharmacological effects, 

biochemical mechanisms of action, specific toxicities levels and metabolic terms on the basis of 

structural formulae of drug-like substances with average accuracy >95%. Results obtained from the use 

of this in silico tool has been validated with the application of in-vitro as well as in-vivo assays, the 

results obtained from these studies correlate to those predicted by PASS online software94. The PASS 

online prediction was performed for parent compound Anguinomycin D and analog SB 640 (results are 

presented in chapter 5) 

 

3.12. Homology modeling  

In the midst of newly developing diseases, the crystal structure of a target protein is of utmost 

importance in the field of drug discovery and development96. While various techniques can be utilised 
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to generate the structure of macromolecule, which include the use of as X-ray crystallography, NMR 

spectroscopy and electron microscopy, they are often associated with multiple pitfalls. Homology 

modeling is gradually emerging as the sought after tool to be used to construct 3D macromolecule 

structure, as it is done with  ease and accuracy in comparison to the other techniques97. Homology 

modeling enables the construction of a proteins structure by using its sequence as a reference template, 

of which the X-ray crystal structure is known. An accurate homology model depends on the existence, 

detection and quality of the known template structure from which it will be modelled. Although high-

resolution structures are optimally extracted through X-ray crystallography, this approach is associated 

with a high cost increment, considerable experimental time and many trial runs98. Furthermore, some 

biologically important macromolecules lack X-ray crystal structures or high resolution 3D- structural 

properties, with reference to their protein sequence, the implementation of homology modeling resolves 

this challenge. An essential aim of drug discovery is to contrive bioactive molecules that are intended 

to target the disease condition, with minimal side effects, and hence are beneficial to the patient. The 

3D structure of the target protein is a fundamental factor to obtaining full characterisation and exhibition 

of the mechanism of interaction on a structural and molecular level, elucidating the mode of action 

(MOA) of a drug molecule, and hence, greatly facilitate drug design. This study provides a precise 

protocol that can be followed for homology modeling to generate a protein model of high accuracy that 

can aid in developing therapeutic drugs.  The role and application of homology modeling in next 

generation drug discovery is presented in Chapter 4. 
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4.1. Abstract  

The continual evolution of the world is chaperoned by the emergence of new diseases, which presents 

itself at every turn therefore determining the 3D structure of a protein drug target becomes a crucial 

factor in the process of drug discovery and design. The 3D structure of a protein plays a critical role 

when establishing the functional domain of a protein, enabling the structural dynamic interactions with 

specified ligands and proteins to be studied and understood on a molecular level. The essential role of 

Homology modeling also regarded as comparative modeling, is described in this review as its use 

enables the provision of low-resolution structures that may aid molecular biologists, and pharmaceutical 

scientists with considerable insight regarding the spatial conformation of important residues within the 

protein structure providing a template for the design of new innovative drugs. This reviews provides a 

conclusive route map of the process of homology modeling that can be followed, accompanied by 

technical guidelines and tools that can be utilised. This review highlights the features of each tool 

enabling the construction of the most accurate model that may aid in next generation drug discovery.  

4.2. Introduction 

There has always been a steadfast focus on the field of drug design and development, focusing on 

structural biological studies of protein-drug interactions1,2. Understanding the underlying mechanism 

of protein-drug interaction is pivotal, as it provides insight into the structural features that are prominent 

for ligand affinity3, drug specificity and optimization during these interactions4,5 to ultimately  ensure 

optimal effectivity of the therapeutic drug. The continual use of homology modeling for the generation 

of three-dimensional (3D) protein structures6 has molded the way to develop docking and structure-

based virtual screening protocols,7. These 3D generated models are being sought after to gain intricate 

information behind the mechanism of interaction between drug-protein complexes such as binding 

mode analysis8. In addition, they provide indispensable insight into a protein’s 3D structural and 

mechanistic molecular functions. In the last decade, homology modeling has transitioned into the most 

popular in silico tool for generation of three-dimensional (3D) structures of molecular targets 9,10. 

Homology modeling also known as comparative modeling uses homologous sequences with known 3D 

structures for the modeling and prediction of the structure of a target sequence11,12.   

Due to the combined efforts of experimental structural biologists and genomics, an increasing fraction 

of protein families has at least one member with a known experimental structure present in the Protein 

Data Bank (PDB)13,14. This is accompanied by the development of sensitive and precise HMM profile 

methods15, prompting researchers to grasp the availability of sequence information to aid in the 

detection of remote template relationships16. The recent advances in homology modeling, distinctly in 

identification and alignment of reference sequences in relation to the template structures, distant 

homologues, modelling of loops and side chains, 3D model optimisation and validation contributes 

substantially to the consistent prediction of a protein’s structure which were not possible even several 

years ago10, 17,18.  The core essence underlying the use of homology modelling to predict the 3D structure 
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of a protein relies on the use of the target sequence to be used in comparison to other known structures 

(the templates), this  notion implies that similar sequences (evolutionary related)  display similarity in 

their structures10. 

 A crucial role of homology modeling amongst many others has been the generation of 3D molecular 

targets of cancer19 in a bid to develop and discover effective therapeutics drugs to attenuate this 

malignant disease20.Recent studies, highlight the utilization of homology modeling for the construction 

of the 3D structure of RNA-dependent RNA-polymerase of the Ebola virus21 elucidating the 

instrumental role of homology modeling in drug discovery22. Another key example of the development 

of new drug targets constructed utilizing homology is the NS5 protein of the Zika virus which has been 

identified as a global health threat by the World Health Organization (WHO)23. Current technologies 

such as X-ray difractometry24 and Nuclear Magnetic resonance (NMR) are utilized for experimental 

illustration of the 3D structure of a protein 25, however these tools are associated with a range of 

limitations such as an increase in cost and  time consumption26, 27. Despite prominent advances in X-

ray crystallography, NMR spectroscopy, and a wide range of other structural identification tools, the 

lack of newly emerging 3D protein structures, still remains a challenge in drug discovery. The potential 

use of homology modeling for the generation of these missing protein 3D structures is an attractive 

option as its use is often associated with low-cost and time effective protocol28. 

This review provides intricate information of some of the most popular homology modeling tools and 

software’s that have been utilized for over a decade. It also highlights the essential role homology 

modeling has played in the drug discovery research along with some of the challenges that maybe 

associated with its application. In addition this review provides technical guidelines that can be 

incorporated to achieve the most accurate model. This review also provides a clear outline of the protocol 

of homology modeling and steps that can be followed, presented in Figure 4.1.  
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Figure 4. 1. General Protocol of 3D Protein Model generation by Homology Modeling 

 

4.3. Protocol of Homology Modeling 

There is a standard protocol of homology modeling which is adopted, with minor variations occurring 

in the validation and optimization steps of homology modeling. Homology modeling procedure consists 

of the following steps: 
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serving as  the template sequence30,31. A protein’s 3D structure may be largely determined by its amino 

acid sequence as proteins from the same homologous line display greater conservation in their 3D 

structure in comparison to their amino-acid sequences32, 33, 34,35,36. Elucidating similarity between two 

proteins which may be detectable at sequence   level, and may therefore imply shared structural 

similarity among these proteins 37,38. 

The target sequence is rendered as the query sequence in the search of template sequences against 

databases such as PDB (Protein Data Bank)39 for known protein structures using the target sequence as 

a query. A search is conducted as each structure in the database is compared to that of the target 

sequence. If the target sequence is not known, popular algorithm tools such as BLAST (Basic Local 

Alignment Search Tool) which incorporate the pairwise sequence-sequence comparison40, structural  

protein sequence databases such as GenBank41 NCBI36,  protein database FastA42, or protein 

identification resource UniProt43 can be utilized  to search for structures in the data banks of amino acid 

sequences that could be compared to the target sequence. The accuracy and validity of the generated 

3D structure is largely dependent upon the sequence similarity of the template sequences in relation to 

the target sequence 44,45. Sequential identities >25% suggest that the template and target have similar 

3D structures and, therefore, the template is appropriate for modeling46,10,34. However, sequence 

similarity greater than 25% is the minimum requirement for generating useful and accurate models47,48.  

Once suitable templates have been identified, a comprehensive literature search must be undertaken on 

the chosen template sequences, analysing all the entities of the sequence inclusive of its biological role 

and relation to the target sequence49,50. Apart from choosing a template sequence with a high sequence 

similarity, there are various factors that must also be taken into consideration when selecting an 

appropriate reference template. These factors include selecting templates that are derived from similar 

phylogenetic tree to the target sequence51,52 which may aid in the correct selection of template sequences 

which are in close relation to the target sequence resulting in the most accurate 3D model being 

generated 53 .  

Other factors include assessment of environmental34 parameters such as pH54,55 solvent 44, and  identified 

ligands 10,18  of the template sequences in comparison to the target sequence. This must be accomplished 

when selecting the most appropriate templates as it ensures the most optimal conditions are adhered for 

the generation of an accurate target model 48. The E-value (Expected value) 56 is also referred to when 

selecting the most appropriate templates to be used, as the closer the E-value is to zero the greater 

similarity amongst the templates ensuring overall accuracy. Template selection may also be based on 

multiple alignment as the use of multiple template sequences may increase the accuracy of the 3D 

protein model34. The refinement of the experimental structure is another essential factor when selecting  

a template, such as the resolution and the R-factor of a crystallographic structure57, inclusive of the 
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number of restraints per residue for an NMR structure58 as it is indicative of the template sequence 

reliability and precision.   

4.3.2. Template Alignment – Once the most suitable reference templates have been identified, 

alignment is performed which integrates a specialized method to align the template sequences to the 

target sequence55. Local alignment is referred to as the alignment of the query sequence to the substring 

of the target sequence59, whereas global alignment involves the use of substrings of both sequences 

during alignment60. Local alignment is performed to aid in the detection of possible templates 61,  

whereas global alignment is used for model construction62.  

It has been observed that for closely related protein sequences with a greater percentage similarity than 

25% there is pronounced accuracy observed during alignment and thus renders it appropriate for 

modeling63,64,65,66. There is an increased observation of misplaced gaps, representing insertions or 

deletions which cause residues to be misplaced in the template ultimately leading to alignment errors, 

commonly occurring in models that are generated from sequences with a low sequence similarity. 

However alignment errors are the main cause of deviations in comparative modeling even when the 

correct template is chosen67.  Elucidating the essential role of sequence alignment as a crucial step in 

homology modeling and thus the quality of sequences to be aligned is of utmost importance and is an 

indicative factor of accuracy of the generated 3D model68. Multiple alignments can be used when more 

than one template is available. This approach proves advantageous as it increases the spectrum from 

which the target 3D protein can be modelled69,31 providing more options to model bad-aligned regions 

and affords a model reflecting the mean values among all templates31. Careful inspection and adjustment  

on automatic alignment may improve the quality of the modeling51,70. There are a wide range of 

programs that are utilized for sequence alignment such as PSI-BLAST40 which aligns the target 

sequence to a sequence profile constructed from multiple alignment of members derived from a protein 

family. Further advancement of this class of methods is to align two sequence profiles37 such as the 

FFAS71,72 and SALIGN73,45.  Alignment accuracy improves as one progresses from one generation of 

the profile methods to another 74,55. 

5.3.3. Model building - Proceeding the target-template alignment, the next step in homology modeling 

is model building. Table 4.1 displays useful tools and services that can be used for model building, 

some programs presented are also able to generate loop and side chain regions of the 3D model. There 

is a versatile range of methods that can be utilized to build a protein model one these methods is the 

rigid-body assemble method75. This method dissects various conserved regions of the protein such as 

the loop regions which anchors the proteins and the side chains which decorate the backbone of the 

protein model. This method is based on natural dissection enabling the construction of a protein model,  

by assembling the framework of  a small number of rigid bodies, extracted from the aligned template 

protein structures76,1, 36,77.  
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Table 4.1. Popular Tools or Services used for Homology Modeling 
 

Homology modeling  

Tools or Services 

Description 
 

 

 

Links 

CPHmodels Is a web-server that is able to predict a 3D protein structure from a 

single template homology model This server employs a novel  

remote homology-modeling algorithm incorporated in the hybrid 

scoring functions of the CPHmodels-2.0 78,79 

http://www.cbs

.dtu.dk/service

s/CPHmodels/ 

MODELLER Is a comparative modeling tool that constructs 3D protein structures 

based on spatial restraints. MODELLER is able to generate a 3D 

protein model from the provision of an aligned  sequence with 

known related structures44,80 

http://www.sali

lab.org/modell

er/ 

 

SWISS-MODEL 

Is a fully automated protein structure homology-modeling server. 

User-friendly web interfaces. The SWISS-MODEL template library 

provides annotation of quaternary structure and essential ligands   in 

combination with co-factors to assist in the construction of precise 

structural models, inclusive of oligomeric structure. This server 

makes considerable use of model quality estimation for selection of 

the most suitable templates and provides approximation of the 

expected accuracy of the resulting models. SWISS-MODEL only 

requires an amino acid sequence input81, 82, 83, 84 

http://swissmo

del.expasy.org/ 

Phyre2 This remote homology modeling utilizes a range of detection tools 

to build 3D models. Special features include prediction of ligand 

binding  as well as analysis  of variants among the amino acid 

sequence of a protein sequence 85. 

http://www.sbg

.bio.ic.ac.uk/ph

yre2/html/page

.cgi?id=index 

Pcons.net PconsM, an automated protocol that uses single templates to build 

protein models, whereas PconsM utilizes multiple templates to 

generate a protein model.  PconsM is implemented as a separate 

extension to this pipeline that is run when the internal and external 

predictions by Pcons.net are completed, and updated as soon as 

there are new alignments available86. 

http://pcons.net

/ 

HHpred HHpred generates 3D models based on pair wise comparison of 

profile hidden Markov models (HMMs) from a single or multiple 

query sequence.  HHpred displays high sensitivity when generating 

homology models and searches a range of alignment databases such 

as Pfam or SMART( different from other software’s that use 

Uniprot) 87. 

http://toolkit.tu

ebingen.mpg.d

e/hhpred 

 

LOMETS 

Local Meta-Threading-Server) is an on-line web service that 

incorporates spatial restraints to construct 3D protein structures. 

This server generates the model via collection of high-scoring 

target-to-template alignments from 8 locally-installed threading 

programs (FUGUE88 HHsearch, MUSTER, PPA, PROSPECT2, 

SAM-T02, SPARKS, SP3). 

http://zhanglab

.ccmb.med.umi

ch.edu/LOME

TS/ 

Robetta Develops both ab initio and comparative models of protein 

domains. By using the ROSETTA fragment insertion method89. 

http://www.rob

etta.org/ 

http://www.cbs.dtu.dk/services/CPHmodels/
http://www.cbs.dtu.dk/services/CPHmodels/
http://www.cbs.dtu.dk/services/CPHmodels/
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/
http://www.salilab.org/modeller/
http://swissmodel.expasy.org/
http://swissmodel.expasy.org/
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://www.sbg.bio.ic.ac.uk/phyre2/html/page.cgi?id=index
http://toolkit.tuebingen.mpg.de/hhpred
http://toolkit.tuebingen.mpg.de/hhpred
http://toolkit.tuebingen.mpg.de/hhpred
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://zhanglab.ccmb.med.umich.edu/LOMETS/
http://www.robetta.org/
http://www.robetta.org/
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This server is able to construct full-length with the use of a domain 

prediction method 90,90 

Chunk-TASSER A protein structure prediction method that integrates threading 

templates from SP3 and ab into folded chunk structures, and 

displays great accuracy when modeling difficult targets91,92 

http://cssb.biol

ogy.gatech.edu

/skolnick/webs

ervice/chunk-

TASSER/inde

x.html  

 

PSiFR 

Provides a vast range of tools for protein tertiary structure prediction 

and structure and sequence-based function annotation. Incorporates 

a range of protein structure prediction methods such as TASSER, 

TASSER-Lite and METATASSER 

http://psifr.cssb

.biology.gatech

.edu/ 

Protein Model Portal 

(PMP) 

The PMP displays a unique interface highlighting the structural 

features of a protein. PMP offers interactive services for model 

building and quality assessment81,93 

http://www.pro

teinmodelporta

l.org/ 

ProModel  

ProModel generates 3D protein structures either from a reference 

template or a defined template, allowing comprehensive analysis of 

the target protein such as the active site and channels. ProModel 

possesses a built-in roamer library able to generate side-chain 

conformation38 

http://www.vlif

esciences.com/

products/VLife

MDS/Protein_

Modeller.php 

SCWRL4 
SCWRL is ranked amongst the best homology modelling tools due 

to its speed, accuracy, and ease-of-use. It uses a backbone-

dependent rotamer library. Due to its speed and accuracy it is an 

attractive tool specializing in  generation of side chain 

conformations 94 

 

http://dunbrack

.fccc.edu/scwrl

4/index.php 

 

 

IntFOLD 

The IntFOLD server is a novel independent server and  provides a 

unified interface for Tertiary structure prediction/3D modeling, 3D 

model quality assessment, Intrinsic disorder prediction, Domain 

prediction, Prediction of protein-ligand binding residue 95. 

http://www.rea

ding.ac.uk/bioi

nf/IntFOLD/  

PSIPRED The PSIPRED is a simple and versatile model construction tool, 

incorporating two feed-forward neural networks which perform an 

analysis on output obtained from PSI-BLAST 96. This server 

performs scalable biological analyses97. 

http://bioinf.cs.

ucl.ac.uk/psipr

ed 

PEPstrMOD Performs prediction for structure of peptides containing natural and 

non-natural/ modified residues. The Pepstr server predicts the 

tertiary structure of small peptides with sequence length varying 

between 7 to 25 residues98. 

http://www.imt

ech.res.in/ragh

ava/pepstr/ 

PROTEUS2 
 

 

 

PROTEUS2 bundles signal peptide identification, transmembrane 

helix prediction, transmembrane b-strand prediction, secondary 

structure prediction (for soluble proteins) thus highlighting its role 

as an avid homology modeling tool. It incorporates all this into a 

single prediction pipeline99,100. 

http://wks1633

8.biology.ualb

erta.ca/proteus

2/ 

Jpred The Jpred server can utilize either a single protein sequence or 

multiple sequence alignment and generates a predicted model based 

on the Jnet algorithm101 

http://www.co

mpbio.dundee.

ac.uk/jpre) 

http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://cssb.biology.gatech.edu/skolnick/webservice/chunk-TASSER/index.html
http://psifr.cssb.biology.gatech.edu/
http://psifr.cssb.biology.gatech.edu/
http://psifr.cssb.biology.gatech.edu/
http://www.proteinmodelportal.org/
http://www.proteinmodelportal.org/
http://www.proteinmodelportal.org/
http://www.vlifesciences.com/products/VLifeMDS/Protein_Modeller.php
http://www.vlifesciences.com/products/VLifeMDS/Protein_Modeller.php
http://www.vlifesciences.com/products/VLifeMDS/Protein_Modeller.php
http://www.vlifesciences.com/products/VLifeMDS/Protein_Modeller.php
http://www.vlifesciences.com/products/VLifeMDS/Protein_Modeller.php
http://dunbrack.fccc.edu/scwrl4/index.php
http://dunbrack.fccc.edu/scwrl4/index.php
http://dunbrack.fccc.edu/scwrl4/index.php
http://dunbrack.fccc.edu/scwrl4/index.php
http://www.reading.ac.uk/bioinf/IntFOLD/
http://www.reading.ac.uk/bioinf/IntFOLD/
http://www.reading.ac.uk/bioinf/IntFOLD/
http://www.ncbi.nlm.nih.gov/blast
http://bioinf.cs.ucl.ac.uk/psipred
http://bioinf.cs.ucl.ac.uk/psipred
http://bioinf.cs.ucl.ac.uk/psipred
http://www.imtech.res.in/raghava/pepstr/
http://www.imtech.res.in/raghava/pepstr/
http://www.imtech.res.in/raghava/pepstr/
http://wks16338.biology.ualberta.ca/proteus2/
http://wks16338.biology.ualberta.ca/proteus2/
http://wks16338.biology.ualberta.ca/proteus2/
http://wks16338.biology.ualberta.ca/proteus2/
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Other methods include segment matching where comparative models can be constructed by utilising a 

subset of atomic positions such as the Cα atoms from template structures as “guiding” positions in a bid  

to identify and assemble short, all-atom segments that correlate to these guiding positions 103. The search 

for all-atom segments that may correlate with the  conformational search restrained by an energy 

function 18 it can also be obtained with the use of segment matching program SEGMOD34,86 which 

incorporates a generalized method for modelling of 3D protein structures.  

Comparative modeling by satisfaction of spatial restraints is one of the most popular methods used for 

model building, which is performed by computer program MODELLER104,80,49, this method is initiated 

by generating a range of constraints derived from the structure of the target sequence105.  

The restraints are generated based on the corresponding distances between aligned residues in the 

template and the target structures assuming that their structures share structural similarity106,44. These 

derived restraints are usually determined by stereo-chemical restraints on bond lengths, bond angles, 

dihedral angles, and non-bonded atom contacts that are obtained from molecular mechanics force 

field107. Minimization is performed on the infractions of all the restraints in order to optimise the 3D 

protein model. The last method utilized is the modeling of the protein structure using artificial evolution. 

Once the backbone of the 3D protein model is generated it is followed by loop and side-chain modeling. 

4.3.4. Modeling loops – Homologous proteins have gaps or insertions in sequences, which are often 

referred to as loops. However the structure of the loops are not conserved throughout evolution and are 

regarded as the most variable regions of a protein where insertion and deletion often transpire108. The 

loop structure predominantly determines the functional specificity of a protein structure and plays an 

essential role in the active and binding site of a protein109. The accuracy of loop modeling is a crucial 

factor in determining the validity and adequacy of homology models for analysing protein-ligand 

complex interactions110. The generation of loops is necessary to connect the sections within the protein 

and are generally much shorter in length in comparison of the whole protein chain77. Thus prediction of 

the loop structure is a complex process as the loop structure exhibits greater structural variability than 

strands and helices111. There are two widely used methods that are implemented for the construction of 

the loops. These methods include database-search approach or conformational search methods112. The 

data-base search approach scans all known protein structures to find segments accommodating the 

pivotal core regions44. These methods provide accuracy and efficiency, but may also be associated with 

limitations such as the number of possible conformations vary as the length of the loop increases113. As 

a result only 4-7 residues long have their conformations present in the protein structure databases.  

3D Robot 3D Robot is a new algorithm that generates decoys of the protein 

structure integrating free fragment assembly accompanied by 

supplemented with hydrogen-bonding inclusive of compact 

interactions102. 

http://xhanglab

.ccmb.med.umi

ch.edu/3DRob

ot 

http://xhanglab.ccmb.med.umich.edu/3DRobot
http://xhanglab.ccmb.med.umich.edu/3DRobot
http://xhanglab.ccmb.med.umich.edu/3DRobot
http://xhanglab.ccmb.med.umich.edu/3DRobot
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The second method is the ab initio114 approach also known as the conformational search approach which 

relies on the optimization of a scoring function 55. The search strategies include the minimum 

perturbation method115, molecular dynamics simulations116, genetic algorithms5, Monte Carlo 117 and 

simulated annealing 60.Loop prediction by optimization is applicable to both simultaneous modeling of 

multiple loops in combination with the generation of loops interacting with ligands. Although this is a 

complex process, it is much easily constructed using the ab-initio method as compared to the data-base 

search approach34,  118, as fragments are extracted from unrelated structures with different environments. 

4.3.5. Side-chain modeling – Sidechain modeling is an important step of homology modelling. 

Sidechain prediction usually involve the addition of the chains onto fixed backbone coordinates, either 

obtained from template structures or generated from ab initio modeling119 simulations or a combination 

of these two methods120. Protein side chains tend to exist in a limited number of low energy 

conformations called rotamers121,102. In sidechain prediction methods, rotamers are selected based on 

the preferred protein sequence and the given backbone coordinates, by using a defined energy function 

and search strategy. The sidechain quality can be analysed by root mean square deviation (RMSD)122 

for all atoms or by detecting the fraction of correct rotamers found123. Table 4.2. Presents tools that can 

be used for loop and side chain modeling.  

 

Table 4.2. Tools used for Loop and Side Chain Modeling  

Loop and Side Chain Modeling Tool Link  

Loop Prediction  

COILS  http://www.ch.embnet.org/software/COILS_form.html 

CONGEN http://www.congenomics.com/congen/doc/index.html 

Side-Chain Prediction   

RAMP  http://www.ram.org/computing /ramp/ramp.html 

SWCRL  http://dunbrack.fccc.edu/SCWRL3.php 

 

4.3.6. Model optimization – After constructing a model the next step is the optimization in order to  

eliminate or minimize unfavorable interactions between non-covalently bonded atoms124. This is 

usually performed by energy minimizations protocols such as molecular dynamics simulations125,63 

using force fields, implementing avid restrictions in order to avoid excessive deviations from the 

original templates and, therefore, loss of the experimental configuration of the model 30. 

http://www.ram.org/computing%20/ramp/ramp.html
http://dunbrack.fccc.edu/SCWRL3.php
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4.3.7. Model validation – the quality of the predicted model can determine the functionality of the 

model and the amount of data that can be extracted. Thus the accuracy of the model is of utmost 

importance. The model can be evaluated as a whole or validated based on various segments of the 

structure117. Determining whether the model has the correct fold is one of the key essential steps in 

validation. The H-factor126 resembles the role that the R-Factor plays in X-ray crystallography. It stems 

from the basics of homology modeling and it incorporates all data that were included in the model 

building protocol to evaluate its accuracy in addition to checking for good stereochemistry.  A correct 

fold will be established if the most optimal template is utilized for the generation of the model in 

accordance with precise template alignment. A high sequence similarity increases the assumption that 

the correct fold has been constructed85. This can also be attributed to a significant Z-score as well as 

retention of essential functional or structural residues in the target sequence. Once the correct fold has 

been accepted, a more detailed analysis can be conducted on the 3D protein model.  Apart from 

sequence similarity playing a crucial role in accuracy as mentioned, the environment influences the 

accuracy significantly as the structure of a protein determines its functionality within a designated 

environment.  

The stereo-chemical analysis of the protein structure is a basic requirement. Some popular programmes 

specialising in determining the stereochemistry of the generated models include WHATCHECK127,55 

and PROCHECK128,129. Stereo-chemical analysis of the model’s consistency is evaluated in a similar 

manner in which experimental structures are performed. This is according to parameters like the 

distribution of the torsional angles ϕ and ψ from the main chain130,131 and the distribution of the rotational 

angles of side chains132, in order to fix eventual experimental and interpretation errors133, 134. Residues 

with stereo-chemical problems will fall in non-permitted regions of the Ramachandran plot135, 56. The 

ideal model should present more than 90% of the residues within the permitted regions of the 

Ramachandran plot 130. 

Other programs focus on determining spatial features of the 3D protein model, based on 3D profiles 

and statistical potential of mean force. These programs include VERIFY3D 136,137 and PROSAII138,139. 

These programs pay substantial attention to environmental parameters in which the model was 

constructed in respect to the expected environment. Table 4.3 comprises of validation tools that can be 

utilized when evaluating the validity of the generated 3D model. Model that’s have been generated 

utilising homology modeling can be further assessed  in a biannual large-scale experiment known as 

the Critical Assessment of Techniques for Protein Structure Prediction, or CASP140. 
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Table 4.3. Tools used for Homology Model Validation  
 

Validation Tool  Description  Link  

 

PROCHECK 

Stereochemical property analysis which includes 

bond length and angle, torsional angles and 

chirality of residues141 

http://www.biochem.ucl.ac.uk/

~roman/procheck/procheck.ht

ml 

 

WHATCHECK Analysis of the models Stereochemistry,  analysis 

of nomenclature, symmetry, identification of 

missing atoms or bonds142 

 

http://www.swift.cmbi.ru.nl/gv

/whatcheck/ 

VERIFY3D  Analysis of model compatibility within a 

designated environment prioritizing the analysis of 

residue interaction143 

http://www.doe-

mbi.ucla.edu/Services/Verify_

3D or 

http://nihserver.mbi.ucla.edu/V

erify_3D 

PROSAII Focuses on regions in the model that may have 

been incorrectly folded, as well as incorrect regions 

of the structural model144, 145 

http://www.cam.sbg.ac.at 

Molprobity MolProbity is a web based 3D structure validation 

service that evaluates the quality of a structure at 

both the global and local levels. Includes steric and 

geometric analysis146.  

http://molprobity.biochem.duk

e.edu/index.php?MolProbSID=

7h23k0a4ji0t4ecvmpbtbeoje5

&eventID=2 

 

VADAR  

Volume, Area, Dihedral Angle and Reporter 

Utilises 15 different algorithms and programs for 

protein structure analysis including quantitative 

and qualitative assessment 

http://vadar.wishartlab.com/V

ADAR 

Bioinformatics 

Toolkit  

Integrates a broad spectrum of interactive protein 

bioinformatics analysis147 

http://toolkit.tuebingen.mpg.de  

 

 

4.4. Applications of Homology Modeling  

Homology modeling plays a focal role in the process of structure-based drug design and its importance 

is vastly becoming more evident as the number of available crystal structures increases.  

The function of a protein is dependent upon its motion and conformational changes that may occur148. 

In order to fully understand the molecular mechanism of a protein, a concise description of versatile 

functional states that the protein structure can adopt dynamically must be established8. Some examples 

include allosteric conformational changes on binding events, identification of drug-binding cavities 149, 

86, intermediate excited states on reaction cycles, transport and motion phenomena150, 151. Thus  

elucidating the pivotal role that homology modeling plays in exploring these alternative conformations, 

generating a better understanding behind protein dynamic transitional changes 152, 153, 154.  

 

http://www.doe-mbi.ucla.edu/Services/Verify_3D
http://www.doe-mbi.ucla.edu/Services/Verify_3D
http://www.doe-mbi.ucla.edu/Services/Verify_3D
http://nihserver.mbi.ucla.edu/Verify_3D
http://nihserver.mbi.ucla.edu/Verify_3D
http://www.cam.sbg.ac.at/
http://molprobity.biochem.duke.edu/index.php?MolProbSID=7h23k0a4ji0t4ecvmpbtbeoje5&eventID=2
http://molprobity.biochem.duke.edu/index.php?MolProbSID=7h23k0a4ji0t4ecvmpbtbeoje5&eventID=2
http://molprobity.biochem.duke.edu/index.php?MolProbSID=7h23k0a4ji0t4ecvmpbtbeoje5&eventID=2
http://molprobity.biochem.duke.edu/index.php?MolProbSID=7h23k0a4ji0t4ecvmpbtbeoje5&eventID=2
http://vadar.wishartlab.com/VADAR
http://vadar.wishartlab.com/VADAR
http://toolkit.tuebingen.mpg.de/
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Homology modeling is a formidable application that has not only benefited many spectrums of drug 

design but has also enhanced our understanding on various other aspects that impact drug discovery 

such as analysis of mutations within the active site155, 156 and assessing their biological role in the disease 

state70. Homology modeling has also been found to play a crucial role in compound optimization 102 

Typical applications of a homology model in drug discovery require a very high accuracy of the local 

side chain positions in the binding site. There are a substantial number of 3D protein structures arising 

from homology modeling over the years. Targets have included antibodies 157, multiple proteins 

involved in human biology and medicine158. Homology modeling also plays a crucial role in structure-

based virtual screening for drug discovery7. Figure 4.2 displays the many applications of homology 

modeling in drug discovery.  

Figure 4.2. Range of applications stemming from Homology Modeling accompanied by various 

Protein targets-orange of each application 
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Employing the insight extracted directly from the 3D structural details of a drug target may 

constitute an accurate account of the drug-protein interaction, providing an acute perspective 

on the mode of action (MOA) of the drug molecule which may further advance the process of 

drug design and discovery. Utilization of accurate 3D protein structures may ensure drug-target 

specificity and effectivity, which is an eminent requirement in all fields of drug design. 

Although homology modeling plays a pivotal role in drug discovery, there are minor hiccups 

associated with its application that must be overcome. These challenges along with possible 

solutions are summarized in Table 4.4 

Table 4.4. Challenges and possible solution associated with Homology Modeling 

 

Challenges associated 

with Homology 

Modeling 

Possible Solutions towards generating an accurate homology 

model 

Reduced accuracy  Improving the accuracy of the model, might encompass optimization 

techniques in side chain modeling as well as loop modeling. 

Modeling of 3D Protein 

structures with low 

sequence similarity to 

other templates  

Use of multiple templates, which may ultimately lead to the larger 

coverage of the target sequence 

The use of multiple 

templates can led to 

deviations in the 

alignment thus leading to 

problems associated with 

convergence 

Use of multiple templates that are derived from similar phylogenetic 

tree as that of the target sequence eliminates this challenge  also the use 

of multiple templates alleviates the need for free modeling and thus 

increases the quality of the target protein   

Homology models are 

sometimes considered 

incorrect 

This may not be applicable if the homology model can be compared to 

a structure that spans the entirety of the target sequence 

Alignment errors are the 

main cause of deviations 

in comparative modeling 

Careful inspection and adjustment on automatic alignment may 

improve the quality of the modeling51 

 

4.5. Conclusion  

A rising number of publications have established homology modeling as a fast, trustable, and very 
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useful tool to access consistent 3D models for proteins in which experimental structures are not 

available. The main aim of homology modeling is to predict a structure from its sequence with an 

accuracy that is similar to the results obtained experimentally. Homology modeling provides a feasible 

cost-effective alternative method to generate models. Homology modeling studies are fastened through 

the use of visualization technique, and the differential properties of the proteins can be discovered. 

Advances in structural biology obtained using homology models substantiates the robustness and 

reliability of the software available today to build models. The recent advances in a range of software 

with improvements in the algorithms for alignment, modeling loops and side chains, detection of errors 

and validation of models, have made possible the prediction of proteins structures that, until recently, 

were a remote possibility. Today it is quite clear that with the appropriate software and templates, very 

consistent models can be built utilising this innovative tool. Models generated utilising homology 

modeling have effectively contributed to the field of drug design and development, and from the looks 

of it, homology modeling will continue to be a strong defender against the war on infectious diseases 

where X-ray crystal structures of drug targets are unavailable.
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5.2. Abstract  
This study aims to give  molecular insight into the activity of chemical fragments obtained from natural 

sources, elucidating how the reduction in their structure, may be a contributing factor to retention or 

enhanced biological activity, reduced structural complexity as well as an overall exhibition of desired 

pharmacophore activity displayed. All of which are key aspects of drug design and development. 

Natural compounds have timelessly been a choice in drug design and development however due to 

factors such as limited bioavailability and strenuous synthetic protocols, manipulation of the chemical 

structures obtained from these natural compounds are vastly becoming the new approach in drug 

synthesis.  In a bid to understand and validate the newly established concept of "reduce to maximum” 

highlighting the truncation of  a chemical compounds structure  derived from natural sources, molecular 

dynamic ensembles were generated to obtain per-residue energy decomposition footprints as well as 

thermodynamic integrations as previously introduced in our publications.  From the simulations it can 

be seen that the activity of the analog SB 640 derived from its parent compound Anguinomycin D 

displayed a slight decrease in binding affinity in comparison to the parent compound although being 

reduced by more than half of the C skeleton the analog still displays retention of activity due to the 

presence of the α, β-unsaturated ẟ-lactone moiety, in accordance with experimental data. The analog 

SB 640 also displayed reduced toxicity in comparison to the parent compound with improved chemical 

tractability and a significant reduction in the number of synthetic steps.  

Keywords: Chemical fragment; Natural products; Anguinomycin D; Analog SB 640; Pharmacokinetic 

properties; MD simulation,   

 

5.3. Introduction  

Despite prominent advances in drug design and development, there has been a decline in the 

advancement of new drugs, threatening new therapeutic advances as well as commerciality of drug 

companies. With factors such as limited resources and adamant time constraints, the discovery of viable 

lead drug candidates is still an ongoing challenge in the field of drug development1. The transition of 

screening hits to the actual selection of potential drug targets is a task that requires both discernment as 

well as expertise2,3,4,5. Other underlying factors that influence the observable rise in the incidence of 

prevalent diseases can be attributed to the lack of potential drugs, limited bioavailability or accessibility 

of potential drug sources and lack of expedient synthetic approachability 6,7,8. 

Drug resistance also plays a pivotal role in the observed increase in prevalence. It has been reported 

that between 44000-98000 annual deaths , an estimated 7000 deaths were due to drug resistance and 

adverse drug response caused by harmful side effects of drugs, lack of effectiveness, as well as the  

administration of interacting drugs often leading to toxicity 9.  
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Natural products encapsulate the wisdom of evolution as their derivatives have timelessly been sought 

after on a molecular level due to their pivotal role in biological processes, elucidating their contributing 

efforts in the advancement of human quality of life and healthcare10. Natural products have also been 

highlighted as the ideal starting point in drug discovery due to their ability to selectively and optimally 

bind to the target proteins11,12. Natural products tend to have a high binding affinity to protein targets 

whilst still maintaining constant entropy with limited loss and are still being sought after due to their 

flexibility of adopting different conformations in aqueous and lipophilic environments13.  

The structural diversity and beneficial therapeutic properties possessed by compounds obtained from 

plant derivatives as well as other various natural sources including marine organisms and 

microorganisms, inaugurate their inherent use in the development of pharmacological drugs thus 

unravelling a new era of drug design14,15,16. Chemical fragments isolated specifically from natural 

products have made a resurgence over the past 10 decades in the field of drug development due to the 

exiguous amount of innovative and effective drugs emerging from the field of pharmacological drug 

research and design17,18. Currently, over 50% of new drugs being synthesized by pharmaceutical 

companies are derived directly from secondary metabolites obtained from natural products. 19 

Compounds isolated from natural sources were not the first option in drug design due to the inability to 

determine their chemical tractability, as well as the inability to adhere to the stringent criteria following 

Lipinski’s “rule of five”20  and related ADME (absorption, distribution, metabolism and 

excretion)/pharmacokinetic aspects, which all led to the phasing out of natural products in the 

production of next generation therapeutics21,22. Although there are ample amounts of chemical 

fragments derived from natural compounds that are currently being used in drug development, there are 

still evident pitfalls as they lack adequate effectivity, reduced solubility and display observed 

toxicity23,24,25. 

However recent advances in technology in both organic and computational chemistry have initiated a 

vital transition with the use of synthetic organic chemistry, allowing the traceability of complex 

chemical structures of natural products which has been used to design simplified structural analogs with 

retained biological activity, enhanced biological properties, reduced toxicity, as well as an overall 

reduction in the number synthetic steps 26,27. Such advances have allowed the modification and synthesis 

of compounds derived from natural resources to develop more potent drugs. The biological evaluation 

of the structural intricacy of natural products exemplifies the importance of reducing the chemical 

structure of a complex natural product in order to generate an analog structure for drug discovery 

28,29.This process involves the reduction of unwanted fragments of natural products that are contributing 

factors to the lack of effectivity and toxicity. This may result in retention of essential fragments required 

to induce biological activity. Such strategic process may also aid in providing favourable structurally 

simplified compounds that can be easily manipulated.30 Analysis of drugs and recognition of target 
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proteins through computational modeling and drug design tools may provide vital insight and guidance 

into the design of pharmaceutical drugs31. This could aid substantially in understanding the effect of 

structure reduction of compounds derived from natural resources and how it may further enhance 

optimal pharmacodynamics and desired pharmacokinetic properties essential in drug synthesis. 

 

5.3.1. “Reduce to maximum Concept”  

A study performed by Crane et al.32 encompassing the “reduce to maximum concept” reported the use 

of fragments derived from natural compounds denoting a significant decline in molecular weight, 

structural intricacy as well as reduced number of synthetic steps all of which contributed to the overall 

increase in biological activity thus indicating potency and effectivity14. Derived compounds from 

natural products typically possess a large molecular weight, encompassing a large structure that may 

not be directly involved in the biological activity exhibited by the compound33. This large structure of 

natural compounds may also be a contributing factor to the observed toxicity quintessentially displayed 

by natural compounds34,35. Such structure may also induce inhibition or suppression of the biologically 

active fragment of the compound from exhibiting its full potent effect. A contributing factor could be 

the limitation of the flexibility of the fragment altering optimal binding at the active site of the 

receptor36,37 Simplified analogs derived from natural products may however bind to the target protein 

at more optimal orientations and conformations due to the reduced molecular size,  enabling the ligand 

to direct itself eloquently into the receptor’s active site where it undergoes various internal 

conformational alterations, such as torsion angle rotations and translations38. The reduced size of the 

ligand may allow an adequate fit into the binding site illustrating  improvement or retention of binding 

affinity and chemical specificity39. 

 

A key example would be the use of Eribulin mesylate, a synthetic analogue of Halichondrin B isolated 

from the marine sponge Halichondria okadai Kadota40. The synthetic analog displayed synergistic 

activity as the parent compound, however still superseding the desired pharmacokinetic properties of 

the parent compound comprising of a 35% reduction in molecular weight, requiring only half the 

number of synthetic steps to retain the potency elucidating its key role as an avid cancer treatment 41. 

Another study encompassing the use  of anti-malarial drug artemisinin and its structural analogues 

displayed comparable in vitro anti-malarial activities of the structural analogs as compared to the parent 

compound and  were furthermore effective in animal models 42, 14.  

 

Analog (SB 640) derived from parent compound Anguinomycin D displayed a 60% reduction in 

molecular weight in comparison to the parent compound presented in Figure 5.2 14 Biological studies 

conducted on Anguinomycin D isolated from Streptomyces cerevisiae revealed that this natural 

compound exhibited inhibition of the chromosome maintenance region 1 (CRM1), a 120 KDa protein 
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that plays a crucial role in nucleocytoplasmic transport, in addition to signal transduction, immune 

response as well as cell differentiation43,44. Studies conducted on CRM1 isolated from several organisms  

which include human, mouse, fungi C. thermophilum and S. cerevisiae, the architecture of CRM1 

appears conserved across these homologs19,45,46. The nuclear export signal (NES)-binding groove of 

CRM1 is responsible for binding to NES peptides that direct proteins out of the nucleus mediated by 

the CRM1 export pathway43,47. The NES-binding groove consists of five hydrophobic PKIαNES 

residues (ϕ0, ϕ1, ϕ2, ϕ3, and ϕ4 ) to which the NES peptide fragments in protein cargoes attach to the 

CRM1 for transport out of the nucleus48. Excessive levels of CRM1 in the cytosol have been linked to 

cancer, either inactivation of its tumour suppressive function or an excess of anti-apoptotic activity 

(onco-protein)49,44. In addition, aberrant CRM1 mediated transport results in the further prognosis of 

disease state which include cancer, viral and anti-inflammatory diseases47,50. Inhibition of CRM1 is an 

activity shared by close structural relative of the Anguinomycin family, Leptomycin B, however studies 

on this compound were abandoned due to its elevated levels of toxicity19. Natural compound 

Anguinomycin D exhibits remarkable biological activity which includes induction of inactivated 

retinoblastoma protein (pRB) glia cell death and in the process, pRB is inactivated all of which are key  

points in cancer progression and development.32 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1. The crystal structure of CRM1 inhibitor Anguinomycin A (magenta) in complex with 

CRM1-RAN-RANBP1; CRM1-meduim blue, RAN-orange, RANBP1-yellow 

Biological assays conducted by Gademann and colleagues illustrated biological activity retention by 

the synthesized simplified analog SB 640 of Anguinomycin D, displaying a substantial decrease in 

molecular weight, presence of one stereo-center and reduced unsaturation10, thus displaying a 

substantial significance of reducing the structure of a chemical compound to generate smaller and more 

optimally functioning compounds that surpass or retain the biological activity of the parent compound10.  
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Experimental studies conducted by Bonazzi and colleagues illustrated retention in the biological activity 

of the simplified structural analog (SB 640) as compared to the parent compound19. Due to lack of 

resources and in a bid to reduce time constraints, the SB 640 poses as an optimal choice in synthesis 

and effectivity in comparison to the naturally derived parent compound.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. 2. Structural comparison of Anguinomycin D isolated from Streptomyces sp. and its 

simplified structural analog Anguinomycin D analogue (were constructed using Chemdraw Ultra51) 

In this study, we apply computational approaches to validate the “reduce to maximum concept” and 

provide further insight in determining which fragments of the parent compound can be truncated, as 

well as to aid in the synthesis of smaller and more concise compounds which exhibit a higher degree of 

potency and effectivity. Understanding the mechanism behind the latter concept may also aid in further 

development of next generation therapeutics. 

We also aim to determine if the reduced compound will generate a lower binding affinity as opposed to 

the parent compound, as an evaluation of the total energy of interaction between the therapeutic drug 

and target may be minimal, in order to ensure full and adequate efficacy of the therapeutic drug.  

Computational tools such as molecular docking and thermodynamic calculations render this an easy 

task as it advances the analysis of the level of interaction between the drug-protein complexes, ensuring 

adequate determination of the binding affinity. A computational approach may also aid in determining 

which fragment of the chemical structure is essential for biological functionality and which fragment 

can be truncated in order to ensure optimal activity and retention or enhanced potency. 
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There are various computational tools that cogently estimate ligand binding affinities with an extent of 

precision and efficacy52. Molecular dynamics simulation (MD) is identified as a key computational tool 

utilized in the theoretical inspection of biological molecules53,54. MD simulations provide intricate 

information on the fluctuations and conformational changes that may occur during drug-protein 

interactions.55 Application of molecular dynamics enables the distinctive identification of highly 

contributing amino acid residues based on thermodynamic calculations incorporating per-residue 

energy decomposition technique. This approach allows the identification of highly contributing amino 

acid residues towards the total binding energy in this study MD simulations were performed for 

Anguinomycin D and analog SB 640 each in complex with CRM1. Post MD analyses were further 

performed on the respective systems including thermodynamic calculations to determine binding free 

energy contributions of the parent compound Anguinomycin D and the analog SB 640-CRM1 systems.  

Substantiating the role of MD and thermodynamic calculations in order to understand the structural 

composition, dynamics and thermodynamics of biological molecules of each system. It is also utilized 

to further identify commonly shared amino acid residues  that contribute substantially  towards the total 

binding energy of each system The RMSD, RMSF and Rg of each system were also determined as well 

as the predicted toxicity profile of each compound.   

 

5.4. Computational Methods 

5.4.1. Systems Preparation 

The crystal structure of CRM1 in complex with Anguinomycin A was obtained from the Protein Data 

Bank, PDB code: 4HAV48. UCSF Chimera56 was used to observe and manipulate the crystal structure, 

where chains A and B, H2O molecules, Mg atoms, Cl atoms and a phosphoaminophosphonic acid-

Guanylate ester (GNP)  as well as Anguinomycin A were removed.   

The ligands Anguinomycin D and derived analog SB 640 were drawn using ChemDraw Ultra 9.0 51. 

Each ligand was individually analysed in MMV57, Chimera 56 as well as Gaussview 5.0 58software to 

ensure the correct angle bonds and hybridization were visible. The ligands were individually minimized 

incorporating the steepest descent method and MMFF94S force field in Avogadro59. Receptor 

modification visualization was accomplished using Chimera56 and MMV 57,60,61.  

 

5.4.2. Molecular Docking  

Molecular docking aims to provide the most energetically favourable binding pose as the ligand 

positions itself within the binding cavity of the target protein. Molecular docking was performed using 

AutoDock 62a well-established docking program. Autodock Vina62 was used to generate the calculations 

obtained from the docking scores. During the process of docking, Geister partial charges were added 

whilst Autodock atom types were defined using the Autodock Graphical user interface supplied by 

MGL tools.63 The Lamarckian Genetic Algorithm was applied to determine the docked conformations, 
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a docking technique that is considered rather reliable and adequate64,65. Raccoon 62software was used to 

convert the files into pdbqt format in assembly for docking66. The gridbox was defined using Autodock 

Vina with the grid parameters being X = -32.777, Y = 72.797 and Z = 32.985 for the dimensions and X 

= 36, Y = 30 and Z = 30 for the center grid box67. Molecular visualization of the docked complexes was 

conducted using Chimera software and the LigPlot68 program.  

 

5.4.3. Molecular Dynamic Simulations  

MD simulations were performed on four systems: a parent compound Anguinomycin D-CRM1 

complex; derived structural analog SB 640-CRM1 complex, docked Anguinomycin A-CRM1 complex 

as well as the original complex of Anguinomycin A bound to CRM1 retrieved from the RSCB Protein 

Data Bank. Using the GPU version of PMEMD incorporated in the Amber 14 package, MD simulations 

were conducted for these systems 69, 70. Protein systems were modelled using the standard AMBER 

(FF99SB) force field71 present in the Amber 14 package. The LEaP module of Amber 14 was employed 

to add hydrogen atoms and counter ions to aid in the stabilisation of the system70. Optimisation of 

ligands was performed by addition of partial atomic charges, which were calculated encompassing the 

restrained electrostatic potential (RESP)59,60. Neutralisation was achieved by the addition of Na+ ions 

which were performed on all systems. Atomic partial charges comprising of General Amber Force Field 

(GAFF) were prompted by the ANTECHAMBER module72. Complete solvation of the systems was 

attained within a TIP3P waterbox consisting of a buffering distance of 8 Å in the midst of water and the 

protein surface at box extremity.73  Long-range electrostatics interactions were performed adhering to 

the particle mesh Ewald (PME) method administered in the Amber 14  package with a van der Waals 

limitation of a distance of 10 Å.  

Systems were subjected to consecutive partial partial minimization and full minimization steps. Initial 

energy minimization with a 500 kcal/mol Å2 restraint potential related to the solute, were performed 

incorporating the steepest descent method for 1000 iterations which were finally followed  by 1000 

iterations of conjugate gradient minimization. MD simulations were carried out for 10 ns during which 

the system was heated moderately between a range of 0-300K regulated with the aid of the Langevin 

thermostat74. Systems were equilibrated at 300K under 1 atm pressure whilst retaining force constraints 

on the restrained solute for 500ps prior to production runs, followed by removal of restraints and 

maintenance of a constant pressure (1 bar) using a Berendson barostat.75 All atoms covalently bound to 

a hydrogen atom were subjected to the SHAKE algorithm throughout the MD simulation.76 From 

experimental studies, the preferred pH of the system was at 6.6 which was kept constant and validated 

in accordance with data projected from the H++77 tool which computes the pKa value of ionisable 

groups.78 All simulations were run at a 2 fs time step and the SPFP precision module. Trajectories were 

saved and analysed every 1 ps. The root mean square deviation (RMSD)79, root mean square fluctuation 
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(RMSF)80 and radius of gyration (Rg)81 were calculated using the PTRAJ and CPPTRAJ modules found 

in the Amber 14 package. Results were analyzed and plotted using Origin software82. 

 

5.4.4. Thermodynamic calculations 

Thermodynamic calculations assist in determining the binding free energy as an endpoint calculation 

which provides indispensable information about the ligand-protein interaction. There are various 

computational tools used in the coherent determination of binding affinities namely thermodynamic 

integration (TI)83, free energy perturbation (FEP)84, Molecular Mechanics Generalized Born Surface 

Area (MM/GB-SA)85, Molecular Mechanics Poisson-Boltzmann Surface Area (MM/PB-SA)86, linear 

response (LR)87, and fluctuation-dissipation theorem (FDT)78,79. All these methods provide meaningful 

insight, however there is a generated focus on the MM/PBSA and MM/GBSA methods as they are more 

computationally efficient and encompass a versatile range of parameters for each energy term. The 

MM/PBSA and MM/GBSA methods are employed to calculate binding free energies for 

macromolecules integrating continuum solvation models merging with molecular mechanics 

calculations86. The MM/GB-SA and MM/PB-SA methods are applied to determine the binding free 

energy estimation whilst the MM/GB-SA method presented in Figure 5.3 is employed to establish the 

per-residue energy decomposition of the highest contributing amino acid residues to the total binding 

free energy88,89  

 

Figure 5.3. The different computational approaches used to determine binding affinity, highlighting 

the MM-GBSA approach 

Egas denotes the gas-phase energy; Eint indicates the internal energy; and Eele and EvdW are the Coulomb 

and van der Waals energies, respectively. Egas is determined incorporating the FF99SB force field 

terms. The solvation free energy, denoted by Gsol, is a direct contribution of the polar and non-polar 

states where the polar solvation contribution GGB can be further calculated by resolving the GB 
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equation. The contributing value of the non-polar solvation can be approximated directly from the  

Solvent-accessible surface area (SASA) estimated using a water probe radius of 1.4 Å. TS subsequently 

correspond to temperature and total solute entropy. In order to determine the individual amino acid 

contribution towards total binding free energy between CRM1 and parent compound Anguinomycin D 

and derived analogue SB 640 a decomposition analysis of the interaction energy for each residue was 

computed by using the MM/GBSA binding free energy decomposition protocol in Amber 14 package. 

 

5.4.5. PASS Toxicity Prediction  

Compound toxicity may result from a series of interactions that may occur in relation to a range of 

biological targets within an organism. Toxicity can be characterized by an interaction with a single 

target or from a range of interactions with a versatile group of targets within an organism. Therefore 

determination of  the toxicity of a particular  chemical compound remains an intricate process.90 The 

online tool PASS (Prediction of Activity Spectra for Substances)91 incorporates an in-silico approach 

that generates the predicted biological activities of selected chemical compounds, their mechanisms of 

action and related levels of toxicity interacting with a single or a range of biological targets within an 

organism. PASS prediction is based on the analysis of the chemical compounds structure 

relative to the biological activity exhibited for about 60 000 biologically active compounds92,91. The Pa 

and Pi values vary from 0.000 to 1.000 and the probabilities Pa +Pi≠1 are calculated independently. 

The selected structures of Anguinomycin D and SB 640 were generated using ChemDraw Ultra 9.0.51 

The sdf files were then submitted for toxicity prediction in the PASS online programme.  

 

5.5. Results and Discussion 

5.5.0. Post MD analysis 

Post MD analysis is utilized to analyse the results obtained from Molecular dynamic 

simulations. It can be used to understand the relation between protein secondary structure and 

internal motions59. 

5.5.1. Validation of docking  

Molecular docking validation is pivotal as it ensures the ligand is in an accurate conformational pose as 

it binds to the active site of the target protein. This can be established by validating the grid box size 

and coordinates center along the binding pocket. During the process of molecular docking, the size and 

center of the coordinates of the grid box where the ligands bind must be validated to ensure certainty 

that the correct conformation pose is established93. In a bid to validate our docking approach, we 

removed Anguinomycin A from the crystal structure of CRM1 in complex with RAN-RANBP1 (PDB: 

4HAV) and re-docked it into a low energy structure of the same active site. The docked Anguinomycin 
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A conformational pose was similar to that of the crystallographic pose with an RMSD less than 0.05 Å, 

implying that the applied AutoDock docking parameters were conducive for this system. A 

superimposed image of the crystallized complex along with an energy-minimized structure are 

presented in the supplementary material (S4) implying that the protocol implemented during 

simulations are of adequate reliability and genuine authenticity. 

5.5.2. Root mean square fluctuation 

The biological properties of a protein may be reliant on its physical interaction with other molecules, as 

exhibited upon ligand binding and dissociation that may induce conformational changes essential to a 

CRM1 function. Root mean square fluctuation (RMSF) is calculated to determine the mobility of 

individual residues within a protein59. Figure 5.4 displays the RMSF of Anguinomycin D and analog SB 

640-CRM1 complexes over the 10 ns simulation. 

 

 

Figure 5.4. RMSF of Anguinomycin D-CRM1 and derived analogue SB 640-CRM1 complexes. 

 

The average RMSF values of Anguinomycin D and SB 640 are 1.34 Å and 1.29 Å respectively, 

exhibiting a slight difference of 0.057Å. Both systems displayed rigid stability throughout the 

simulations. From visual inspections, there is evident residue fluctuation predominantly in non-binding 

http://www.ncbi.nlm.nih.gov/books/n/mboc4/A4754/def-item/A5688/
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residues. The structural and active site residues display minimal fluctuation throughout the simulation 

of the two-systems, substantiating that the binding activity of analog SB640 may be analogous to that 

observed from the parent compound Anguinomycin D whilst displaying marginal perturbation in the 

stability of the protein backbone.  

 

5.5.3 Radius of gyration 

The radius of gyration (Rg) measures the thermodynamics and kinetics of protein folding and may aid 

in determining the compactness and stability of protein complexes94. Figure 5.5 displays the radius of 

gyration of Anguinomycin D and analog SB 640 both in complex with CRM1. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.5. Radius of gyration of C-alpha atoms of Anguinomycin D-CRM1 and analog SB 640-

CRM1 complexes 

The Rg of Anguinomycin D and analog SB 640 complexed with CRM1 was determined at 300 K. From 

the conformational analysis, the Rg of both systems displayed significant difference with an average 

Rg value of 37.18 Å for the parent compound Anguinomycin-CRM1 complex as compared to the 

analog-CRM1 complex which was 37.00 Å. SB 640 displays reduced fluctuation of 0.18 Å in 

comparison to Anguinomycin D in complex with CRM1, depicting an overall stable SB640-CRM1 

system as opposed to the parent Anguinomycin D-CRM1 system. The analog SB 640 displayed reduced 

stability during the time interval of 0-2000 ps as opposed to the parent compound, showing that 
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Anguinomycin D-CRM1 complex reached stability much earlier in the simulation as opposed to the 

analog. However between 3500-8000 ps the Anguinomycin D-CRM1 system displayed minimal 

stability in comparison to the analog SB 640-CRM1 system. The observed decline in the Rg may be 

attributed to the hydrophobic interactions presented in Figure 5.7 as the analog SB 640 positions itself 

within the active site of CRM1 protein resulting in a system displaying greater stability.  

5.5.4. MM/GBSA Binding Free Energy Calculations  

Binding free energy calculations were computed using the MM/GBSA protocol. MM/GBSA 

calculations are based on molecular dynamics simulations of the receptor-ligand complex and hence 

are intermediate in both accuracy and computational effort between empirical scoring and precise 

alchemical perturbation methods95,96. This method determines the magnitude of the binding affinity of 

the  contributing amino acid residues.97,39 . The calculated binding free energy (ΔGbind) of the parent 

compound Anguinomycin D and analog SB 640 in complex with CRM1 are -35.10 kcal/mol and -29.13 

kcal/mol respectfully.The analog SB 640 displayed a minimal reduction of  ̴ 6 Kcal/mol , this is in great 

correspondence with experimental studies conducted whereby the analog displayed a marginal 

decrease, however managed to retain biological activity comparable to that displayed by the parent 

compound19. Despite drastic simplification and total reduction in the polyketide chain of Anguinomycin 

D and SB 640, the structurally simplified analog (SB 640) still displayed high activity which can be 

attributed to the essential presence of the α, β-unsaturated ẟ-lactone moiety. From a synthetic 

perspective, the synthesis of the analog SB 640 is reduced by 60% thus resulting in a gain of time as 

well as resources. From previous studies conducted on natural products, a reduction of more than one-

half of the Carbon  skeleton often leads to complete loss of bioactivity19. However, from the binding 

energy exhibited by SB 640 and experimental studies conducted, this has proven to challenge this 

concept, introducing the possibility of a drastic reduction in the total number of synthetic steps as well 

as retention of biological activity. The calculated van der Waals contributions (ΔEvdW) to the total 

binding free energy in the Anguinomycin D-CRM1 complex (-40.83 kcal/mol) are higher than that of 

the SB 640-CRM1 complex (-29.35kcal/mol). The observed van der Waals interactions between the 

parent compound and CRM1, as presented in Figure 5.6, can be attributed to the presence of a 

polyketide chain consisting of a carbonyl group at C17 and hydroxyl group at C18, which is totally 

omitted in SB 640. Although there was a drastic reduction in size of the analog SB 640, the electrostatic 

interactions (ΔEelec) of SB 640 was -11.95kcal/mol superseding that of the parent compound 

Anguinomycin D which was -4.11kcal/mol. From Table 1, it can observed that the electrostatic force 

between the analog SB 640-CRM1 complexes is greater than that of the Anguinomycin D-CRM1 

system with electrostatic forces of -11.95±7.03 kcal/mol and -4.11±5.08 kcal/mol respectively. The 

difference in the electrostatic forces between these systems can be attributed to the ability of SB 640 to 

optimally position itself deeper within the hydrophobic binding groove of the CRM1 protein as opposed 
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to the conformational pose taken by the parent compound Anguinomycin D presented as depicted in                                                                                                                                                                                                                                                                                                                        

Figure 5.6.   

 

Table 5.1. MM/GBSA binding free energies 

Hit                                           Energy Components (kcal/mol)  

Rank                       ΔEvdW               ΔEelec               ΔGgas             ΔGsolv            ΔGbind  

Anguinomycin D   -40.83±3.48      -4.11±5.08     -44.94±6.38     9.84±4.71     35.10±3.28 

Analog SB 640       -29.35±3.18     -11.95±7.03     -41.94±7.80   12.16±5.77    29.13±3.49 

  

Figure 5.6 presents Anguinomycin D bound to the NES binding groove of the CRM1 protein.  

 

Anguinomycin D displays higher van der Waals contributions to the binding of the NES binding groove 

of CRM1. This is due to the presence of the polyketide chain which consists of a carbonyl group at C17 

and hydroxyl group at C18, absent in the analog SB 640.   

 

 

Figure 5.6. 3D structure of Anguinomycin D in complex with CRM1 showing interactions with 

binding site residues 
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Figure 5.7 presents the analog SB 640 bound to the NES binding groove of the CRM1 protein. The 

minimized structure of the analog SB 640, in which the polyketide chain is omitted allows the analog 

to eloquently penetrate much deeper into the groove within the hydrophobic binding groove of the 

CRM1 as presented in Figure 5.7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7 . Representative structure for analog SB 640 in complex with CRM1 Anguinomycin D 

with 2D and 3D graphical representation of the different binding forces. 

5.5.5. Per–residue Energy Decomposition Analysis  

Per-residue energy decomposition enables the analysis of the protein-drug interaction establishing the 

highest contributing amino acid residues towards the total binding energy. Analysis of the most 

energetically favourable residues highlighted major contributions from amino acid residues Leu 536,  

Thr 575, Val 576 and Lys 579 favoured by van der Waals forces in combination with electrostatic 

interactions commonly shared amongst both ligands. Electrostatic forces aid in inhibitor molecules 

gaining binding energy, contributing substantially to the overall total binding energy. Amino acid Lys 

579 provided favourable electrostatic energy contributions of -1.282 and -2.583 Kcal/mol to the total 

binding energy, which can be observed between Anguinomycin and analog SB 640 CRM1 bound 

complexes respectively. From experimental studies Cys 539 is highlighted as an essential hot spot 

residue, which plays a pivotal role in the binding of potential inhibitors to the NES binding region of 

CRM1. However from MM/GBSA calculations, Cys 539 displayed relatively less favourable energy 
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contributions of 0.05 and 0.50 kcal/mol towards the binding of Anguinomycin D and analog SB 640 to 

CRM1 respectively. Underlying factors such as conformational plasticity and steric repulsion explain 

why molecular modelling of Anguinomycin D and related analogs into a rigid NES-binding groove may 

be different from that depicted in experimental studies. As steric repulsion between certain atoms pairs, 

may be intimately related to the chosen functional form for the non-bonded energy. Another 

contributing factor may be the balance between the functional form and the angle bend/torsional terms 

ultimately affecting the shape, conformation and reactivity of the conformational pose of the ligand as 

it fits itself within the active site of the target protein. 

The NES peptide fragments in protein cargoes are essential as they attach to the CRM1 for transport 

out of the nucleus and restriction of the NES peptide fragments would result in limited transportation 

of onco-proteins out of the nucleus49,50. Natural compound Anguinomycin D occupies four of five 

hydrophobic PKIαNES residues (ϕ0, ϕ1, ϕ2, ϕ3, and ϕ4) at the NES binding site, whereas analog SB 

640 being reduced 60%, occupies three of the five PKIαNES residues despite its massive reduction size. 

Extensive inhibition of the NES groove of CRM1 is attributed to the ability of inhibitors to overlap and 

occupy the majority of the groove displacing the residing NES peptides, thus explaining the extensive 

spectrum of nuclear export blocking exhibited by Anguinomycins and its derivatives.  

 

Table 5.2. MM/GBSA per-residue energy decomposition 

Residue        ΔEvdw                 ΔEele                     ΔGpolar solv             ΔGnon-polar solv          ΔGbind 

Lys 525   -0.304 ±0.264       0.306±0.868         0.060±0.900        -0.051±0.057         0.011±0.219 

                -0.002± 0.001       0.111±0.112        -0.100±0.112         0.000±0.000         0.009±0.002a 

Ile 532     -1.350±0.319        0.206±0.137        -0.065±0.169        -0.152±0.040        -1.362±0.303 

                -0.402±0.190       -0.083±0.081         0.101±525           -0.025±0.020        -0.410±0.194a 

Lys 533   -1.071±0.475        0.063±3.657         0.477±3.439        -0.233±0.114        -0.764±0.452 

                -0.040±0.010        0.224±0.383        -0.157±0.380         0.000±0.000         0.026±0.015a 

Leu 536   -1.925±0.43         -0.013±0.122         0.152±0.112        -0.467±0.071     .  -2.253±0.469 

                -1.401±0.352       -0.150±0.268         0.356±0.315        -0.311±0.057        -1.506±0.334a 

Cys 539   -0.002±0.062       -0.046±0.053         0.089±0.056        -0.005±0.008        -0.045±0.063 

                -0.544±0.325       -0.069±0.518         0.239±0.378        -0.115±0.030        -0.499±0.298a 

Val 540   -0.089±0.07         -0.053±0.055         0.094±0.062        -0.009±0.017        -0.058±0.084 
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                -0.205±0.225        0.020±0.142        -0.009±0.138       -0.048±0.061         -0.241±0.281a 

Phe 572   -2.579±0.531        0.038±0.274      0.831±0.222        -0.368±0.058        -2.259±0.454 

                -0.489±0.163        0.051±0.138      0.117±0.162        -0,093±0.034        -0.415±0.135a 

Thr 575   -1.172±0.476       -0.261±0.921      0.119±0.619        -0.232±0.066        -1.543±0.646 

                -0.520±0.237        0.281±0.350     -0.178±0.310        -0.085±0.047        -0.503±0.241a 

Val 576   -1.496±0.405       -0.050±0.270      0.080±0.213        -0.141±0.029        -1.606±0.439 

                -1.173±0.365        0.158±0.123     -0.013±0.144        -0.118±0.028        -1.146±0.351a 

Lys 579   -1.745±0.303      -1.231±1.071       2.010±1.081        -0.316±0.041        -1.282±0.453 

                -2.227±0.464        -7.538±3.989     7.572±3.432        -0.392±0.053        -2.583±0.771a 

Phe 583   -0.440±0.208         -0.067±0.076      0.240±0.090      -0.095±0.053        -0.362±0.195 

                -1.379±0.367        -0.278±0.202      0.616±0.233      -0.194±0.043        -1.234±0.343a 

 

a   SB 640 

The highest contributing amino acid residues towards the total binding energy of the Anguinomycin D-

CRM1 complex. Substantial energy contributions were evident from residues Phe 572, Leu 536, Val 

576, Thr 575 and Ile 532, contributing -2.26, -2.25, -1.61, -1.54 and -1.36 kcal/mol to the total binding 

energy respectively (Figure 5.8). Phe 572 is identified as the energetically favourable residue with a 

substantial energy contribution of -2.259 Kcal/mol. Its functional aromatic ring forms a hydrophobic 

interaction with the carbonyl group present on the aromatic ring present in Anguinomycin D. Lys 579 

is another energetically favourable residue as the charged NH group of Lys 579 interacts with C1 and 

C13 atoms present in the Anguinomycin D. Contributions from residues Thr 575 and Ile 532 were 

generated through hydrophobic interactions with Anguinomycin D presented in Figure 5.8.  
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Figure 5.8. Per-residue energy decomposition contributions of Anguinomycin D. 

Its functional aromatic ring forms a hydrophobic interaction with the carbonyl group present on the 

aromatic ring present in Anguinomycin D. Lys 579 is another energetically favourable residue as the 

charged NH group of Lys 579 interacts with C1 and C13 atoms present in the Anguinomycin D. 

Contributions from residues Thr 575 and Ile 532 were Amino acids Leu 536, Thr 575, Val 576, and Phe 

583 all contributed substantially with electrostatic and van der Waal forces to the total binding energy 

observed between analog SB 640 and CRM1 complex presented in Figure 5.9. Lys 579 is identified as 

an energetically favourable amino acid residue, with a significant electrostatic energy contribution of -

2.583 Kcal/mol to the total binding energy. The charged NH group of Lys 579 interacts with the terminal 

carbon atoms present in the analog SB 640 as present in Figure 5.7.  

 

 

 

 

 

 

 

Figure 5.9. Per residue energy decomposition contributions of Analog SB 640. 
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5.5.6. PASS Toxicity Prediction  

Prediction of activity spectra for substances (PASS)98 is an online software tool that can be utilised to 

generate the predicted spectrum of a compound’s potential biological activity in addition to predicted 

toxicity and computes it as probable activity (Pa) and probable inactivity (Pi). The PASS predicted 

toxicity profile for Anguinomycin D and analog SB 640 are presented in Table 5.3. It can be observed 

from Table 5.3 that the toxicity profile whereby Pa>Pi for Anguinomycin D displays a higher 

probability of predicted toxicity in comparison to its counterpart SB 640. The range of toxicity varies, 

using an index whereby Pa>0.7 indicates that significant activity that can be observed experimentally; 

0.5<Pa<0.7 indicates that activity can be observed however minimal activity can be observed 

experimentally. Although this may be the case, the compound holds great biological significance as it 

may not be similar to current pharmaceutical agents. From the results projected in Table 5.3, it can be 

observed that the analog SB 640 displayed an overall reduction in the toxicity levels in comparison to 

the parent compound Anguinomycin D. Anguinomycin D displays increased predicted toxicity as an 

immunosuppressant, DNA and RNA synthesis inhibitor, which supersedes that predicted by the analog 

SB 640. The observed increase in toxicity levels displayed by Anguinomycin D may be attributed to 

the polyketide chain present in its   structure which is omitted in the analog SB 640. Although the 

polyketide chain is predominantly associated with a vast range of biological activity, recent studies have 

unveiled that its synthesis is affiliated with toxin production99. The presence of the polyketide chain is 

also found in Leptomycin B which is a close structural relative of the Anguinomycin family. 

Leptomycin B was found to be associated with dose-limiting toxicity and thus prompted its 

discontinuation as an inhibitor of CRM1 exportin protein14. 

 

Table 5.3. Toxicity Prediction of Anguinomycin D and SB 640.  

Activity                                                                                  Pa                   Pi   

Immunosuppressant                                                                0.801              0.005                                         

                                                                                                                                                0.745              0.012a 

DNA synthesis inhibitor                                                         0.672              0.007 

                                                                                                                                                0.402              0.028a 

RNA synthesis inhibitor                                                         0.642              0.002 

 

                                                                                                                                                0.488              0.008a 

HMG CoA synthase inhibitor                                                 0.574             0.001 
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                                                                                                                                                0.506              0.002a    

Protein synthesis inhibitor                                                      0.509              0.006 

                                                                                                0.500              0.006a 

ATPase inhibitor                                                                    0.496               0.002 

                                                                                                0.350              0.006a                  

Acylaminoacyl-peptidase inhibitor                                        0.443              0.023  

                                                                                                0.282              0.042a  

Lactase inhibitor                                                                     0.413              0.055 

                                                                                                0.294              0.146a  

Electron Transport Complex I inhibitor                                 0.047              0.022 

                                                                                                0.045              0.026a 

HIF1A expression inhibitor                                                    0.444              0.079  

                                                                                                0.348              0.135a                                                                                               

 

Pa: Coefficient of Activation   Pi: Coefficient of Inhibition   

a SB 640 

5.6. Conclusion   

Natural product analogs have timelessly displayed improved characteristics of solubility as well as 

pharmacokinetics and are thus constantly being targeted in drug design and synthesis. From the 

thermodynamics calculations projected in this study, it is observed that the derived analog SB 640 

exhibited slight reduction in binding affinity whilst still maintaining an overall retention of biological 

activity. Although being reduced by 60% in molecular weight, the analog SB 64 illustrated retention of 

biological activity in comparison with the parent compound Anguinomycin D, which is in 

correspondence with experimental studies conducted 14. The toxicity profile of SB 640 in comparison 

to the parent compound was substantially reduced, further highlighting that a reduction in the size of a 

compound may result in reduced toxicity. These fragments provide an ideal initial platform to assist 

medicinal chemists in drug design as they portray vital interactions thus reducing time constraints whilst 

and production costs. The use of structural analogs would aid in synthesis being much more time 
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efficient and thus bridging the gap of a lack of bioavailability of natural products. Further investigations 

into the “reduce to maximum” concept may be pivotal in expanding the horizon of the drug discovery.  

Supplementary Information  

RMSD of the C-alpha backbone of CRM1 in complex with Anguinomycin D and analog SB 640 

provided in the supplementary material. 
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CHAPTER 6 

6.0. General conclusion and future study recommendations  

 

6.1 General conclusions  

The major aims of this study were to validate the “reduce to maximum concept” utilising computational 

modeling approaches in a bid to contrive new alternative protocols that can be followed in next 

generation drug discovery. To generate a protocol that can be utilised to distinguish which fragments 

of a chemical compound must be retained for biological activity and which fragments can be omitted 

based on thermodynamic integrated calculations. In addition to providing significant molecular insight 

into the binding affinities and molecular mechanism interaction of the parent compound Anguinomycin 

D and derived analog SB 640. Estimating the toxicity profiles of parent compound Anguinomycin D in 

comparison to its structural analog SB 640. Another pivotal aim of this study was to highlight the use 

computational tools such as homology modeling in the drug design and discovery process.  Results 

from this work have led to the following conclusions:  

 

1. Although being reduced by more than 60 % in its structural composition, the derived analog of 

Anguinomycin D, SB 640 displayed only a minimal reduction in the binding affinity in 

comparison to the parent compound which corresponds with experimental studies conducted. 

The retention of biological activity exhibited by SB 640 may be attributed to the retention of 

the crucial α, β unsaturated ẟ-lactone moiety.  

2. The convergence of post-dynamic simulation of Anguinomycin D-CRM1 and analog SB 640-

CRM1 systems were validated by RMSF and Rg potential energy plots. The RMSF of both the 

parent compound and analog SB 640 in complex with the NES binding groove of the CRM1 

protein displayed a relatively rigid and stable systems. With the parent compound 

Anguinomycin D-CRM1 complex displaying a greater amino acid fluctuation in comparison to 

the analog SB 640. 

3. From the Rg potential energy plot, the analog SB-640-CRM1 complex displayed an overall 

stable system as compared to Anguinomycin D-CRM1 system which exhibited prominent 

flexibility. The high level of stability exhibited by the analog SB 640 can be attributed to its 

compact size and ability to position itself deeper, as displayed by Figure 5.7 within the active 

site. 

4. From the thermodynamics calculations performed it can observed, that the electrostatic 

interaction exhibited by the analog SB 640 supersedes that of the parent compound, the 

observed increased in the electrostatic interactions can be correlated to the conformational pose 
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undertaken by the analog SB 640 within the hydrophobic NES binding groove of the CRM1 

protein. However the parent compound Anguinomycin D displayed a higher van der Waal 

contribution to the binding of the NES binding groove of the CRM1, which can be attributed 

to the presence of the polyketide chain which is omitted in the structure of the analog SB 640.   

5. Per-residue energy decomposition analysis displayed energetically favourable contributions 

from amino acids Leu 536, Thr 575, Val 576 and Lys 579, these prominent amino acid residues 

were conserved in the analog SB 640-CRM1 and Anguinomycin D-CRM1 complexes. 

Elucidating which fragments of a chemical compounds is essential for retention or enhanced 

biological activity and which fragments can be omitted.   

6. Toxicity profiling of the parent compound Anguinomycin D displayed a greater level of toxicity 

of the parent compound in comparison to the analog SB 640, which can be allocated to the 

presence of the polyketide chain present in the parent compound. Highlighting that the 

reduction in the size of a compound may result in reduced toxicity exhibited by the analog SB 

640.  

7. The reduce to maximum concept demonstrates the potent activity of compact structural 

analogues, which was further validated in this study, the execution of this concept may enable 

better synthetic approachability of chemical fragments derived from natural products.   

8. Homology modeling was identified as a prominent tools in drug discovery, identifying its 

various applications as well as providing a conclusive protocol that can be followed to generate 

the most accurate yet optimal 3D protein structure.  

 

6.2 Future study recommendations  

Strategic computational techniques presented in this work will serve as beneficial tools to enhance novel 

drug discovery and development process. This study displays the potential use for the “reduce to 

maximum concept “to be implemented in all spheres of drug design and discovery. As the data extracted 

from this study displays the retention of biological activity, reduced toxicity and enhanced synthetic 

approachability of the derived analog although being reduced by more than 60% in its structural 

composition form that of the parent compound Anguinomycin D. This study displays the use of 

computational approaches such as thermodynamic calculations that can be utilised to isolate and 

reproduce only the most essential chemical fragments derived from natural products that can be used in 

drug discovery. As well as highlights which fragments can omitted as their presence may result in the 

toxic effect displayed by many pharmacological drugs and so the implementation of this study may 

prevent the synthesis of unwanted and toxic component of chemical fragments, this study in 

combination with chemical synthesis and prospective biological testing of lead compounds identified 

may alleviate the pending crisis of lack of new prospective drug candidates required for rational drug. 

The implementation of homology modeling in drug design and discovery protocols to generate the most 

accurate model, increasing the specificity of potential drug candidates ultimately leading to the effective 
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treatment of disease conditions. Further validation of the data extracted from this study may provide 

insight into the direct molecular interactions with regard to the distribution of motion, providing further 

into the exact binding mode adopted by the analog in comparison to the parent compound. This can be 

accomplished by performing Principal Component Analysis (PCA), Residue Interaction Network 

(RIN), and Substrate Envelope Analysis (SEA). Application of these methods may provide vital insight, 

elaborating the enzyme dynamics, drug-enzyme interactions and conformational structural changes. 
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A1. RMSD of the C-alpha backbone of CRM1 in complex with Anguinomycin D (black) and 

analog SB 640 (red).
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